2nd Workshop on Evolutionary Computation for the Automated Design of Algorithms
                                                                    July 7th, 8.30 AM, Assembly E
                                                                      Philadelphia, USA

Description

Although most evolutionary computation techniques are designed to generate specific solutions to a given instance of a problem, some of these techniques can be explored to solve more generic problems. For instance, while there are many examples of evolutionary algorithms for evolving classification models in data mining or machine learning, the work described in [1] used a genetic programming algorithm to create a generic classification algorithm which will, in turn, generate a specific classification model for any given classification dataset, in any given application domain.

Although the work in [1] consisted of evolving a complete data mining/machine learning algorithm, in the area of optimization this type of approach is named a hyper-heuristic. Hyper-heuristics are search methods that automatically select and combine simpler heuristics, creating a generic heuristic that is used to solve any instance of a given target type of optimization problem. Hence, hyper-heuristics search in the space of heuristics, instead of searching in the problem solution space [2,3], raising the level of generality of the solutions produced by the hyper-heuristic evolutionary algorithm. For instance, a hyper-heuristics can generate a generic heuristics for solving any instance of the traveling salesman problem, involving any number of cities and any set of distances associated with those cities [4]; whilst a conventional evolutionary algorithm would just evolve a solution to one particular instance of the traveling salesman problem, involving a predefined set of cities and associated distances between them.

Whether we name it an approach for automatically designing algorithms or hyper-heuristics, in both cases, a set of human designed procedural components or heuristics surveyed from the literature are chosen as a starting point (or as "building blocks") for the evolutionary search. Besides, new procedural components and heuristics can be automatically generated, depending on which components are first provided to the method.

The main objective of this workshop is to discuss evolutionary computation methods for automatic generation of algorithms or heuristics. Instead of using evolutionary computation to evolve solutions, these methods evolve methodologies that can be applied to future problems, after the evolution process has finished. We aim to discuss all aspects of the automatic design of algorithms. The areas of application of these algorithms may include, for instance, data mining, machine learning, optimization, bioinformatics, image processing, economics, etc.


[1] G. L. Pappa and A. A. Freitas, Automating the Design of Data Mining Algorithms: An Evolutionary Computation Approach, Springer, Natural Computing Series, 2010. xiii + 187 pages.

[2] E. K. Burke, M. Hyde, G. Kendall and J. Woodward, A genetic programming hyper-heuristic approach for evolving two dimensional strip packing heuristics. In: IEEE Transactions on Evolutionary Computation, 2010.

[3] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan and J. R. Woodward, Exploring Hyper-heuristic Methodologies with Genetic Programming, Computational Intelligence: Collaboration, Fusion and Emergence, In C. Mumford and L. Jain (eds.), Intelligent Systems Reference Library, Springer, pp. 177-201, 2009

[4] M. Oltean and D. Dumitrescu. Evolving TSP heuristics using multi expression programming. In: Computational Science - ICCS 2004, Lecture Notes in Computer Science 3037, pp. 670-673. Springer, 2004.
top


 
Important Dates





top

Paper Submission

Submitted papers should follow the ACM format, and not exceed 8 pages. Please see the GECCO 2012 information for authors for further details. However, note that the review process of the workshop is not double-blind. Hence, authors' information should appear in the paper.

All accepted papers will be presented at the workshop and appear in the GECCO workshop volume. Proceedings of the workshop will be published on CD-ROM, and distributed at the conference.

Papers should be submitted in PostScript or PDF format to: [john.woodward at nottingham dot edu dot cn], and contain the subject "GECCO Workshop".

top
Schedule

This will be a half day workshop. Each presentation is planned to last for 20 minutes followed by 10 minutes for discussions, and the panel will last 45 minutes.

  8.30     Workshop Introduction
  9.20     Evolving Evolutionary Algorithms, Nuno Lourenco, Francisco B. Pereira and Ernesto Costa
  9.50     Supportive Coevolution, Brian W. Goldman and Daniel R. Tauritz
10.20     Coffee Break
10.40     The Automatic Generation of Mutation Operators for Genetic Algorithms, John Woodward and Jerry Swan   
11.10     Autoconstructive Evolution for Structural Problems, Kyle Harrington, Lee Spector, Jordan Pollack and Una-May                    O’Reilly
11.40     Discussion Panel
12.30     Wrap up and Conclusions

top
Workshop Chairs

     John Woodward - University of Nottingham, Ningbo, China

     Gisele L. Pappa - UFMG(Federal University of Minas Gerais), Brazil

     Matthew R. Hyde - University of Nottingham, United Kingdom

     Jerry Swan - University of Nottingham, United Kingdom

top
 
 
 
 
Contact




top
 
Call for Papers

Although most evolutionary computation techniques are designed to generate specific solutions to a given instance of a problem, some of these techniques can be explored to solve more generic problems. The main objective of this workshop is to discuss evolutionary computation methods for generating generic algorithms and/or heuristics. These methods have the advantage of producing solutions that are applicable to any instance of a problem domain, instead of a solution specifically produced for a single instance of the problem. The areas of application of these methods may include, for instance, data mining, machine learning, optimization, bioinformatics, image processing, economics, etc.

The workshop welcomes original submissions on all aspects of Evolutionary Computation for Designing Generic Algorithms, which include (but are not limited to) the following topics and themes:



top
 








Last updated on 29 May, 2012

Previous Editions


top