Temporal Analysis of Inter-Community User Flows in Online Knowledge-Sharing Networks

Anna Guimarães, Ana Paula Couto da Silva, Jussara Almeida
Department of Computer Science - UFMG (Brazil)

October 16, 2016
Communities in Knowledge-Sharing Networks

- Online Knowledge-Sharing Networks
 - Wikis, Q&A sites, discussion forums
 - User-created and maintained discussions
 - Wealth of knowledge!
Communities in Knowledge-Sharing Networks

- More than repositories for knowledge
 - Community structure surrounding discussions
 - Multiple topics, multiple communities
Communities in Knowledge-Sharing Networks

- More than repositories for knowledge
 - Community structure surrounding discussions
 - Multiple topics, multiple communities

- This study:
 - Communities in knowledge-sharing networks
 - Inter-community relationships according to user dynamics
 - Temporal evolution of inter-community relationships
Communities in Stack Overflow

redirect stderr to stdout in c shell

When I run the following command in csh, I got nothing, but it works in bash, is there any equivalent in csh which can redirect the standard error to standard out? xxx 2>&1 Note: xxx is a ...

Is it possible to run a python command within a shell script?

I'm learning some basic scripting and I thought I would try my hand at "automating" a small task at work and make things a little easier for users not so comfortable working inside their terminal. ...
Communities in Stack Overflow

Tags

- shell
- csh
- io-redirection

- python
- shell
Communities in Stack Overflow

- Communities centered around topics
 - Topics are explicitly defined
 - Independent from social interaction graph
- Non-exclusive membership to multiple communities
Stack Overflow Dataset

- **User activity**
 - User ID, Tag ID, Time stamp
- **Data covering a six-year period**
 - 2008–2014

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Tags</th>
<th>Posts</th>
<th>Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-100</td>
<td>100</td>
<td>15.4 million</td>
<td>1.2 million</td>
</tr>
<tr>
<td>Top-400</td>
<td>400</td>
<td>19.8 million</td>
<td>1.7 million</td>
</tr>
</tbody>
</table>
Inter-Community User Flows

• How to measure the relationship between two communities?
• How to measure the relationship between two communities?
 – Tag hierarchy
Inter-Community User Flows

• How to measure the relationship between two communities?
 – Tag hierarchy
 – Semantic similarity of keywords
Inter-Community User Flows

- How to measure the relationship between two communities?
 - Tag hierarchy
 - Semantic similarity of keywords
 - User dynamics

\[\text{Flow of users between communities: } \text{flow}_{c_1, c_2}(t) = \left| C_{c_2}(t) \cap C_{c_1}(t-1) \right| / \left| C_{c_1}(t-1) \right| \]
Inter-Community User Flows

• How to measure the relationship between two communities?
 – Tag hierarchy
 – Semantic similarity of keywords
 – User dynamics

• Flow of users between communities:

\[
flow_{c1,c2}(t) = \frac{|C_2(t) \cap C_1(t - 1)|}{|C_1(t - 1)|}
\]
Inter-Community User Flows: Findings

- Prevalence of lower flow values
 - $\text{flow}_{c_1,c_2} > 0.20$ for 25% and 10% of all community pairs
Inter-Community User Flows: Findings

- Prevalence of lower flow values
 - $\text{flow}_{c_1,c_2} > 0.20$ for 25% and 10% of all community pairs
- Increasing number of low flow values over time
 - $\text{flow}_{c_1,c_2}(2014) > 0.14$ for 22% and 10% of all community pairs

Mean Flow Value

<table>
<thead>
<tr>
<th>Dataset</th>
<th>2008</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-100</td>
<td>0.21</td>
<td>0.08</td>
</tr>
<tr>
<td>Top-400</td>
<td>0.14</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Inter-Community User Flows: Findings

- Prevalence of lower flow values
 - $flow_{c1,c2} > 0.20$ for 25% and 10% of all community pairs
- Increasing number of low flow values over time
 - $flow_{c1,c2}(2014) > 0.14$ for 22% and 10% of all community pairs
- Greater variability of flow values over time

<table>
<thead>
<tr>
<th>Mean Coefficient of Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset</td>
</tr>
<tr>
<td>Top-100</td>
</tr>
<tr>
<td>Top-400</td>
</tr>
</tbody>
</table>
Flow Evolution: CSS to Javascript

2008

CSS

0.75

JS

0.55

2008
Flow Evolution: Active Record to Ruby on Rails

AR → Rails 3: 0.61
AR ← Rails 3: 0.25

2010
Flow Evolution: Active Record to Ruby on Rails

AR -> Rails 3
0.61

AR <-> Rails 3
0.25

AR <-> Rails 3
0.41

0.26

2010

2014
Flow Evolution: Active Record to Ruby on Rails

AR 0.61 0.25 2010

Rails 3

AR 0.41 0.26 2014

Rails 3

Rails 4
Macro-Communities

- Increasingly well-defined inter-community relationships

- Groups of communities with high inter-community flows
 - Determined by user dynamics instead of semantic analysis

- Clique Percolation Method applied over community graph
 - Communities as nodes and user flows as edge weights
 - Top 10% edges with highest flow values
 - Community overlap
Macro-Communities

iOS

Apple

Programming

Java

Windows

windows
Macro-Communities

- Small number of macro-communities
 - Popular communities connected to several satellite communities
 - e.g., Java connected to 78 communities in the Top-100 set

- Topical cohesion
 - General programming, Windows-related technologies, Apple-related technologies, Ruby on Rails technologies, programming IDEs and extensions
Evolution of Macro-Communities

• Changes to macro-community structure over time:

Top-100

Top-400
Evolution of Macro-Communities

- Fragmented macro-communities converge over time

- Variable community composition
 - Macro-communities may feature a different subset of communities in each time period

- Single, dominant macro-community
 - Present at every time window
 - Covers a majority of the communities
 - General, more popular topics

- Recurring core of communities
Conclusions

• Knowledge-sharing networks as a dynamics multi-community environment

• Inter-community relationships as a function of their members
 – Different evolution patterns for community relationships
 – Translate changes in topics themselves

• Discovery of macro-communities
 – Cohesive in terms of topics and user flows
 – Alternative to community detection
Thank you!

Anna Guimarães
anna@dcc.ufmg.br