
Certified Derivative-Based Parsing of Regular
Expressions

Raul Lopes1, Rodrigo Ribeiro2, and Carlos Camarão3

1 DECOM, Universidade Federal de Ouro Preto (UFOP), Ouro Preto
raulfpl@gmail.com

2 DECSI, Universidade Federal de Ouro Preto (UFOP), João Monlevade
rodrigo@decsi.ufop.br

3 DCC, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte
camarao@dcc.ufmg.br

Abstract We describe the formalization of a certified algorithm for reg-
ular expression parsing based on Brzozowski derivatives, in the depen-
dently typed language Idris. The formalized algorithm produces a proof
that an input string matches a given regular expression or a proof that
no matching exists. A tool for regular expression based search in the
style of the well known GNU grep has been developed with the certified
algorithm, and practical experiments were conducted with this tool.

1 Introduction

Parsing is the process of analysing if a string of symbols conforms to given rules,
involving also, in computer science, formally specifying the rules in a grammar
and also, either the construction of data that makes evident the rules that have
been used to conclude that the string of symbols can be obtained from the
grammar rules, or else indication of an error, representative of the fact that the
string of symbols cannot be generated from the grammar rules.

In this work, we are interested in the parsing problem for regular languages
(RLs) [16], i.e. languages recognized by (non-)deterministic finite automata and
equivalent formalisms. Regular expressions (REs) are an algebraic and com-
pact way of specifying RLs that are extensively used in lexical analyser gener-
ators [19] and string search utilities [15]. Since such tools are widely used and
parsing is pervasive in computing, there is a growing interest on correct pars-
ing algorithms [10,11,8]. This interest is motivated by the recent development
of dependently typed languages. Such languages are powerful enough to express
algorithmic properties as types, that are automatically checked by a compiler.

The use of derivatives for regular expressions were introduced by Brzo-
zowski [7] as an alternative method to compute a finite state machine that is
equivalent to a given RE and to perform RE-based parsing. According to Owens
et. al [27], “derivatives have been lost in the sands of time” until his work on
functional encoding of RE derivatives have renewed interest on its use for pars-
ing [25,13]. In this work, we provide a complete formalization of an algorithm

for RE parsing using derivatives, as presented by [27], and describe a RE based
search tool that has been developed by us, using the dependently typed language
Idris.

More specifically, our contributions are:

– A formalization of derivative based regular expression parsing in Idris. The
certified RE parsing algorithm presented produces as a result either a proof
term (parse tree) that is evidence that the input string is in the language of
the input RE, or a witness that such parse tree does not exist.

– A detailed explanation of the technique used to quotient derivatives with
respect to ACUI axioms4 in an implementation by Owens et al. [27], called
“smart-constructors”, and its proof of correctness. We give formal proofs
that smart constructors indeed preserve the language recognized by REs.

The rest of this paper is organized as follows. Section 2 presents a brief
introduction to Idris. Section 3 describes the encoding of REs and its parse
trees. In Section 4 we define derivatives and smart constructors, some of their
properties and describe how to build a correct parsing algorithm from them.
Section 5 comments on the usage of the certified algorithm to build a tool for
RE-based search and present some experiments with it. Related work is discussed
on Section 6. Section 7 concludes.

All the source code in this article has been formalized in Idris Version 0.11,
but we do not present every detail. Proofs of some properties result in functions
with a long pattern matching structure, that would distract the reader from
understanding the high-level structure of the formalization. In such situations
we give just proof sketches and point out where all details can be found in the
source code.

The complete Idris development, instructions on how to build and use it can
be found at [21].

2 An Overview of Idris

Idris [5] is a dependently typed functional programming language that focus on
supporting practical programs. Idris syntax is inspired by Haskell’s with some
minor differences. Unlike Haskell, Idris is strict by default, but lazy evaluation
is supported through code annotations. Idris allows the definition of datatypes
using traditional Haskell and a GADT-style syntax. The type of types is called
Type, rather than ?5. Each instance of Type has an implicit level, inferred by
the compiler. Levels are cumulative — everything in Typen is also in Typen+1.

As an example of Idris code, consider the following data type of length-
indexed lists, also known as vectors.

4 Associativity, Commutativity and Idempotence with Unit elements axioms for
REs [7].

5 In Haskell, types are classified using kinds [28] instead of universe levels. The kind
of types is denoted by ? and type operators have functional kinds: κ→ κ′, where κ
and κ′ are kinds. As an example, in Haskell, type Bool has kind ? and the list type
constructor has kind ?→ ?.

data Nat = Z | S Nat

data Vec : Nat -> Type -> Type where

Nil : Vec Z a

(::) : a -> Vec n a -> Vec (S n) a

Constructor Nil builds empty vectors. The cons-operator inserts a new element
in front of a vector of n elements (of type Vec n a) and returns a value of type
Vec (S n) a. The Vec datatype is an example of a dependent type, i.e. a type
that uses a value (that denotes its length). The usefulness of dependent types
can be illustrated with the definition of a safe list head function: head can be
defined to accept only non-empty vectors, i.e. values of type Vec (S n) a.

head : Vec (S n) a -> a

head (x :: xs) = x

In head’s definition, constructor Nil is not used. The Idris type-checker can figure
out, from head’s parameter type, that argument Nil to head is not type-correct.

In Idris, free variables that start with a lower-case letter are considered to
be implicit arguments, i.e. arguments that can be automatically infered by the
compiler. It is also possible to mark arguments as implicit by surrounding them
in curly braces. In function head, both n : Nat and a : Type are implicit ar-
guments; they could be explicitly annotated in head’s type as follows:

head : {a : Type} -> {n : Nat} -> Vec (S n) a -> a

Thanks to the propositions-as-types principle6 we can interpret types as log-
ical formulas and terms as proofs. An example is the representation of equality
as the following Idris type:

data (=) : a -> b -> Type where

Refl : x = x

This type is called propositional equality7. It defines that there is a unique
evidence for equality, constructor Refl (for reflexivity), that asserts that the
only value equal to x is itself. Given a type P, type Dec P is used to build proofs
that P is a decidable proposition, i.e. that either P or not P holds. The decidable
proposition type is defined as:

data Dec : Type -> Type where

Yes : p -> Dec p

No : Not p -> Dec p

Constructor Yes stores a proof that property P holds and No an evidence that
such proof is impossible (Not is an implication of falsity). Some functions used
in our formalization use this type.

6 Also known as Curry-Howard “isomorphism” [30].
7 Readers who know type theory probably have noticed that this equality encoding

corresponds to the so-called heterogeneous equality [23], which is used in the Idris
Prelude. Detailed discussions about equality in type theory can be found in [32].

Dependently typed pattern matching is built by using the so-called with

construct, that allows for matching intermediate values [24]. If the matched
value has a dependent type, then its result can affect the form of other values.
For example, consider the following code that defines a type for natural number
parity. If the natural number is even, it can be represented as the sum of two
equal natural numbers; if it is odd, it is equal to one plus the sum of two equal
values. Pattern matching on a value of Parity n allows to discover if n = j + j
or n = S(k + k), for some j and k in each branch of with. Note that the value
of n is specialized accordingly, using information “learned” by the type-checker.

data Parity : Nat -> Type where

Even : Parity (n + n)

Odd : Parity (S (n + n))

parity : (n : Nat) -> Parity n

parity = -- definition omitted

natToBin : Nat -> List Bool

natToBin Z = Nil

natToBin k with (parity k)

natToBin (j + j) | Even = False :: natToBin j

natToBin (S (j + j)) | Odd = True :: natToBin j

A detailed discussion about the Idris language is out of the scope of this
paper. A tutorial on Idris is available [17].

3 Regular Expressions

Regular expressions are defined with respect to a given alphabet. Formally, RE
syntax follows the following context-free grammar

e ::= ∅ | ε | a | e e | e+ e | e?

where a is a symbol from the underlying alphabet. In our formalization, we
describe symbols of an alphabet as a natural number in Peano notation (type
Nat), i.e. the symbol’s numeric code. The reason for this design choice is due to
the way that Idris deals with propositional equality for primitive types, like Char.
Equalities of values of these types only reduce on concrete primitive values; this
causes computation of proofs to stop under variables whose type is a primitive
one. Thus, we decide to use the inductive type Nat to represent the codes of
alphabet symbols, since computation of its equality proofs behaves as expected
in other languages, like e.g. Agda [26].

Datatype RegExp, defined below, encodes RE syntax:

data RegExp : Type where

Zero : RegExp

Eps : RegExp

Chr : Nat -> RegExp

Cat : RegExp -> RegExp -> RegExp

Alt : RegExp -> RegExp -> RegExp

Star : RegExp -> RegExp

Constructors Zero and Eps denote respectively the empty language (∅) and
empty string (ε). Alphabet symbols are constructed using Chr constructor. Big-
ger REs are built using concatenation (Cat), union (Alt) and Kleene star (Star).

Using the datatype for RE syntax, we can define a relation for RL member-
ship. Such relation can be understood as a parse tree (or a proof term) that a
string, represented by a list of Nat values, belongs to the language of a given
RE. Datatype InRegExp defines RE semantics inductively.

data InRegExp : List Nat -> RegExp -> Type where

InEps : InRegExp [] Eps

InChr : InRegExp [a] (Chr a)

InCat : InRegExp xs l ->

InRegExp ys r ->

zs = xs ++ ys ->

InRegExp zs (Cat l r)

InAltL : InRegExp xs l ->

InRegExp xs (Alt l r)

InAltR : InRegExp xs r ->

InRegExp xs (Alt l r)

InStar : InRegExp xs (Alt Eps (Cat e (Star e))) ->

InRegExp xs (Star e)

Each constructor of InRegExp datatype specifies how to build a parse tree for
some string and RE. Constructor InEps states that the empty string (denoted by
the empty list []) is in the language of RE Eps. Parse tree for single characters
are built with InChr a, which says that the singleton string [a] is in RL for
Chr a. Given parse trees for REs l and r; InRegExp xs l and InRegExp ys

r, we can use constructor InCat to build a parse tree for the concatenation of
these REs. Constructor InAltL (InAltR) creates a parse tree for Alt l r from
a parse tree from l(r). Parse trees for Kleene star are built using the following
well known equivalence of REs: e? = ε+ e e?.

Several inversion lemmas about RE parsing relation are necessary to for-
malize derivative based parsing. They consist of pattern-matching on proofs of
InRegExp and are omitted for brevity.

4 Derivatives, Smart Constructors and Parsing

4.1 Preliminaries

Formally, the derivative of a formal language L ⊆ Σ? with respect to a symbol
a ∈ Σ is the language formed by suffixes of L words without the prefix a.

An algorithm for computing the derivative of a language represented as a RE
as another RE is due to Brzozowski [7] and it relies on a function (called ν) that
determines if some RE accepts or not the empty string:

ν(∅) = ∅
ν(ε) = ε
ν(a) = ∅

ν(e e′) =

{
ε if ν(e) = ν(e′) = ε
∅ otherwise

ν(e+ e′) =

{
ε if ν(e) = ε or ν(e′) = ε
∅ otherwise

ν(e?) = ε

Decidability of ν(e) is proved by function hasEmptyDec, which is defined by
induction over the structure of the input RE e and returns a proof that the
empty string is accepted or not, using Idris type of decidable propositions, Dec
P.

hasEmptyDec : (e : RegExp) -> Dec (InRegExp [] e)

hasEmptyDec Zero = No (void . inZeroInv)

hasEmptyDec Eps = Yes InEps

hasEmptyDec (Chr c) = No inChrNil

hasEmptyDec (Cat e e’) with (hasEmptyDec e)

hasEmptyDec (Cat e e’) | (Yes prf) with (hasEmptyDec e’)

hasEmptyDec (Cat e e’) | (Yes prf) | (Yes prf’)

= Yes (InCat prf prf’ Refl)

hasEmptyDec (Cat e e’) | (Yes prf) | (No contra)

= No (contra . snd . inCatNil)

hasEmptyDec (Cat e e’) | (No contra)

= No (contra . fst . inCatNil)

hasEmptyDec (Alt e e’) with (hasEmptyDec e)

hasEmptyDec (Alt e e’) | (Yes prf)

= Yes (InAltL prf)

hasEmptyDec (Alt e e’) | (No contra) with (hasEmptyDec e’)

hasEmptyDec (Alt e e’) | (No contra) | (Yes prf)

= Yes (InAltR prf)

hasEmptyDec (Alt e e’) | (No contra) | (No f)

= No (void . either contra f . inAltNil)

hasEmptyDec (Star e)

= Yes (InStar (InAltL InEps))

The hasEmptyDec definition uses several inversion lemmas about RE semantics.
Lemma inZeroInv states that no word is in the language denoted by RE Zero

and inChrNil states that the empty string (represented by an empty list) isn’t
in language denoted by RE Chr c, for some c : Nat. Inversion lemmas for
concatenation and choice are similar.

4.2 Smart Constructors

Following Owens et. al. [27], we use smart constructors to identify equivalent REs
modulo identity and nullable elements, ε and ∅, respectively. RE equivalence
is denoted by e ≈ e′ and it’s defined as usual [16]. The equivalence axioms
maintained by smart constructors are:

– For union:
1) e+ ∅ ≈ e 2) ∅+ e ≈ e

– For concatenation:
1) e ∅ ≈ ∅ 2) e ε ≈ e
3) ∅ e ≈ ∅ 4) ε e ≈ e

– For Kleene star:
1) ∅? ≈ ε 2) ε? ≈ ε

These axioms are kept as invariants using functions that preserve them while
building REs. For union, we just need to worry when one parameter denotes the
empty language RE (Zero):

(.|.) : RegExp -> RegExp -> RegExp

Zero .|. e = e

e .|. Zero = e

e .|. e’ = Alt e e’

In concatenation, we need to deal with the possibility of parameters being the
empty RE or the empty string RE. If one is the empty language (Zero) the result
is also the empty language. Since empty string RE is identity for concatenation,
we return, as a result, the other parameter.

(.@.) : RegExp -> RegExp -> RegExp

Zero .@. e = Zero

Eps .@. e = e

e .@. Zero = Zero

e .@. Eps = e

e .@. e’ = Cat e e’

For Kleene star both Zero and Eps are replaced by Eps.

star : RegExp -> RegExp

star Zero = Eps

star Eps = Eps

star e = Star e

Since all smart constructors produce equivalent REs, they preserve the parsing
relation. This property is stated as a soundness and completeness lemma, stated
below, of each smart constructor with respect to InRegExp proofs.

Lemma 1 (Soundness of union). For all REs e, e’ and all strings xs, if
InRegExp xs (e .|. e’) holds then InRegExp xs (Alt e e’) also holds.

Proof. By case analysis on the structure of e and e’. The only interesting cases
are when one of the expressions is Zero. If e = Zero, then Zero .|. e’ = e’

and the desired result follows. The same reasoning applies for e’ = Zero.

Lemma 2 (Completeness of union). For all REs e, e’ and all strings xs, if
InRegExp xs (Alt e e’) holds then InRegExp xs (e .|. e’) also holds.

Proof. By case analysis on the structure of e, e’. The only interesting cases are
when one of the REs is Zero. If e = Zero, we need to analyse the structure of
InRegExp xs (Alt e e’). The result follows directly or by contradiction using
InRegExp xs Zero. The same reasoning applies when e’ = Zero.

Lemma 3 (Soundness of concatenation). For all REs e, e’ and all strings xs,
if InRegExp xs (e .@. e’) holds then InRegExp xs (Cat e e’) also holds.

Proof. By case analysis on the structure of e, e’. The interesting cases are when
e or e’ are equal to Eps or Zero. When some of the REs are equal to Zero, the
result follows by contradiction. If one of the REs are equal to Eps the desired
result is immediate, from the proof term InRegExp xs (e .@.e’), using list
concatenation properties.

Lemma 4 (Completeness of concatenation). For all REs e, e’ and all strings
xs, if InRegExp xs (Cat e e’) holds then InRegExp xs (e .@. e’) also holds.

Proof. By case analysis on the structure of e, e’. The interesting cases are when
e or e’ are equal to Eps or Zero. When some of the REs are equal to Zero, the
result follows by contradiction. If one of the REs are equal to Eps the desired
result is immediate, using the following fact:

InRegExp xs’ e -> xs = xs’ ++ [] -> InRegExp xs e

which asserts that if a strings xs’ is in e’s language, then so is xs’ ++ [].

Lemma 5 (Soundness of Kleene star). For all REs e and string xs, if InRegExp
xs (star e) then InRegExp xs (Star e).

Proof. Straightforward case analysis on e’s structure.

Lemma 6 (Completeness of Klenne star). For all REs e and all strings xs, if
InRegExpa xs (Star e) holds then InRegExp xs (star e) also holds.

Proof. Straightforward case analysis on e’s structure.

All definitions of smart constructors and their properties are contained in
SmartCons.idr, in the project’s on-line repository [21].

4.3 Derivatives and its Properties

The derivative of a RE with respect to a symbol a, denoted by ∂a(e), is defined
by recursion on e’s structure as follows:

∂a(∅) = ∅
∂a(ε) = ∅

∂a(b) =

{
ε if b = a
∅ otherwise

∂a(e e′) = ∂a(e) e′ + ν(e) ∂a(e′)
∂a(e+ e′) = ∂a(e) + ∂a(e′)
∂a(e?) = ∂a(e) e?

This function has an immediate translation to Idris. Notice that the derivative
function uses smart constructors to quotient result REs with respect to the
equivalence axioms presented in Section 4.2 and RE emptiness test. In the symbol
case (constructor Chr), function decEq is used, which produces an evidence for
equality of two Nat values.

deriv : (e : RegExp) -> Nat -> RegExp

deriv Zero c = Zero

deriv Eps c = Zero

deriv (Chr c’) c with (decEq c’ c)

deriv (Chr c) c | Yes Refl = Eps

deriv (Chr c’) c | No nprf = Zero

deriv (Alt l r) c = (deriv l c) .|. (deriv r c)

deriv (Star e) c = (deriv e c) .@. (Star e)

deriv (Cat l r) c with (hasEmptyDec l)

deriv (Cat l r) c | Yes prf = ((deriv l c) .@. r) .|. (deriv r c)

deriv (Cat l r) c | No nprf = (deriv l c) .@. r

From this definition we prove the following important properties of derivative
operation. Soundness of deriv ensures that if a string xs is in deriv e x’s
language, then InRegExp (x :: xs) e holds. Completeness ensures that the
other direction of implication holds.

Theorem 1 (Soundness of derivative operation). For all RE e, string xs and
symbol x, if InRegExp xs (deriv x e) then InRegExp (x :: xs) e.

Proof. By induction on the structure of e, using the soundness lemmas for smart
constructors and decidability of the emptiness test.

Theorem 2 (Completeness of derivative operation). For all RE e, string xs

and symbol x, if InRegExp (x :: xs) e then InRegExp xs (deriv e x).

Proof. By induction on the structure of e using the completeness lemmas for
smart constructors and decidability of the emptiness test.

Definitions and properties of derivatives are given in Search.idr, in the
project’s on-line repository [21].

4.4 Parsing

RE parsing with derivatives uses the following definition that extends ∂a(e) from
a single symbol to a whole word by induction on the word structure:

∂?ε (e) = e
∂?aw(e) = ∂?w(∂a(e))

We say that a string w is in e’s language if ∂?w(e) is nullable, that is, if
ν(∂?w(e)) = ε.

The Idris encoding of this function involves testing if the RE used for parsing
is a prefix or a substring of the parsed string. Prefixes of a string are represented
by datatype Prefix e xs, which expresses that a string parsed by RE e is a
prefix of xs.

data Prefix : (e : RegExp) -> (xs : List Nat) -> Type where

MkPrefix : (ys : List Nat) ->

(zs : List Nat) ->

(eq : xs = ys ++ zs) ->

(re : InRegExp ys e) ->

Prefix e xs

In order to state that some string ys is a prefix of xs, we need to build a proof
that ys matches e and that it is indeed a prefix of xs, by providing an evidence
that, for some zs, we have that xs = ys ++ zs.

A function for building prefixes just recurse over the structure of the input
string, using derivatives. Definition of decidability of Prefix e xs is an imme-
diate consequence of Theorem 1. Definitions and properties about prefixes can
be found in file Prefix.idr in the source-code [21].

Substrings are represented by the type

data Substring : (e : RegExp) -> (xs : List Nat) -> Type where

MkSubstring : (ys : List Nat) ->

(ts : List Nat) ->

(zs : List Nat) ->

(eq : xs = ys ++ ts ++ zs) ->

(re : InRegExp ts e) ->

Substring e xs

that specifies that a string ts is a substring of xs if it is parsed by e and if
there exist strings ys and zs such that xs = ys ++ ts ++ zs. Deciding if a
RE parses a substring of some input is straightforward by recursion over the
input string using prefix decidability. Definitions about substrings can be found
in Substring.idr [21].

5 Implementation Details and Experiments

From the algorithm formalized we built a tool for RE parsing in the style of
GNU Grep [15]. We have used Lightyear [20], Idris parser combinator library,

for parsing RE syntax and to deal with file I/O; we have used Idris effects
library [6], which relies on dependent types to provide safe side-effect usage.

In order to validade our tool (named iGrep — for Idris Grep), we compare its
performance with GNU Grep [15] (grep), Google regular expression library [29]
(re2) and with Haskell RE parsing algorithms described in [13] (haskell-regexp).
We run RE parsing experiments on a machine with a Intel Core I7 1.7 GHz, 8GB
RAM running Mac OS X 10.11.4; the results were collected and the median of
several test runs was computed.

We use the same experiments as [31] using files formed by thousands of
occurrences of symbol a were parsed, using the RE (a+ b+ ab)?; in the second,
files with thousands of occurrences of ab were parsed using the same RE. Results
are presented in Figures 1 and 2, respectively.

Figure 1. Results of experiment 1.

Our tool behaves poorly when compared with all other options considered.
Possible causes for this inefficiency: 1) We represent alphabet symbols as nat-
ural numbers in Peano notation which has a costly equality test (linear on the
term size); 2) our algorithm relies on the Brzozowski definition of RE parsing,
which needs to quotient resulting REs. We believe that the use of disambiguation
strategies like greedy parsing [14] and POSIX [31] would be able to improve the
efficiency of our algorithm without sacrificing its correctness. The usage of these
strategies can avoid the use of smart constructor to quotient equivalent REs. We
leave the formalization of such disambiguation strategies for future work.

Figure 2. Results of experiment 2.

6 Related Work

Parsing with derivatives : recently, derivative-based parsing has received a lot
of attention. Owens et al. were the first to present a functional encoding of RE
derivatives and use it to parsing and DFA building. They use derivatives to build
scanner generators for ML and Scheme [27] and no formal proof of correctness
were presented.

Might et al. [25] report on the use of derivatives for parsing not only RLs
but also context-free ones. He uses derivatives to handle context-free grammars
(CFG) and develops an equational theory for compaction that allows for efficient
CFG parsing using derivatives. Implementation of derivatives for CFGs are de-
scribed by using the Racket programming language [9]. However, Might et al.
do not present formal proofs related to the use of derivatives for CFGs.

Fischer et al. describes an algorithm for RE-based parsing based on weighted
automata in Haskell [13]. The paper describes the design evolution of such algo-
rithm as a dialog between three persons. Their implementation has a competitive
performance when compared with Google’s RE library [29]. This work also does
not consider formal proofs of RE parsing.

An algorithm for POSIX RE parsing is described in [31]. The main idea of
the article is to adapt derivative parsing to construct parse trees incrementally to
solve both matching and submatching for REs. In order to improve the efficiency
of the proposed algorithm, Sulzmann et al. use a bit encoded representation of
RE parse trees. Textual proofs of correctness of the proposed algorithm are
presented in an appendix.

Certified parsing algorithms : certified algorithms for parsing also received atten-
tion recently. Firsov et al. describe a certified algorithm for RE parsing by con-
verting an input RE to an equivalent non-deterministic finite automata (NFA)
represented as a boolean matrix [10]. A matrix library based on some “block”
operations [22] is developed and used Agda formalization of NFA-based parsing
in Agda [26]. Compared to our work, a NFA-based formalization requires a lot
more infrastructure (such as a Matrix library). No experiments with the certified
algorithm were reported.

Firsov describes an Agda formalization of a parsing algorithm that deals
with any CFG (CYK algorithm) [12]. Bernardy et al. describe a formalization
of another CFG parsing algorithm in Agda [3]: Valiant’s algorithm [33], which
reduces CFG parsing to boolean matrix multiplication. In both works, no exper-
iment with formalized parsing algorithms were reported.

A certified LR(1) CFG validator is described in [18]. The formalized checking
procedure verifies if CFG and a automaton match. They proved soundness and
completeness of the validator in Coq proof assistant [4]. Termination of LR(1)
automaton interpreter is ensured by imposing a natural number bound.

Formalization of a parser combinator library was the subject of Danielsson’s
work [8]. He built a library of parser combinators using coinduction and provide
correctness proofs of such combinators.

Almeida et al. [1] describes a Coq formalization of partial derivatives and its
equivalence with automata. Partial derivatives were introduced by Antimirov [2]
as an alternative to Brzozowski derivatives, since it avoids quotient resulting
REs with respect to ACUI axioms. Almeida et al. motivation is to use such
formalization as a basis for a decision procedure for RE equivalence.

7 Conclusion

We have given a complete formalization of a derivative-based parsing for REs
in Idris. To the best of our knowledge, this is the first work that presents a
complete certification and that uses the certified program to build a tool for
RE-based search.

The developed formalization has 563 lines of code, organized in seven mod-
ules. We have proven 23 theorems and lemmas to complete the development.
Most of them are immediate pattern matching functions over inductive datatypes
and were omitted from this text for brevity.

As future work, we intend to work on the development of a certified pro-
gram of greedy and POSIX RE parsing using Brzozowski derivatives [31,14] and
investigate on ways to obtain a formalized but simple and efficient RE parsing
tool.

Acknowledgements: The first author thanks Fundação de Amparo a Pesquisa de
Minas Gerais (FAPEMIG) for financial support.

References

1. José Bacelar Almeida, Nelma Moreira, David Pereira, and Simão Melo de Sousa.
Partial derivative automata formalized in coq. In Michael Domaratzki and Kai Sa-
lomaa, editors, Implementation and Application of Automata - 15th International
Conference, CIAA 2010, Winnipeg, MB, Canada, August 12-15, 2010. Revised Se-
lected Papers, volume 6482 of Lecture Notes in Computer Science, pages 59–68.
Springer, 2010.

2. Valentin Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. Theoretical Computer Science, 155(2):291 – 319, 1996.

3. Jean-Philippe Bernardy and Patrik Jansson. Certified context-free parsing: A for-
malisation of valiant’s algorithm in agda. CoRR, abs/1601.07724, 2016.

4. Yves Bertot and Pierre Castran. Interactive Theorem Proving and Program De-
velopment: Coq’Art The Calculus of Inductive Constructions. Springer Publishing
Company, Incorporated, 1st edition, 2010.

5. Edwin Brady. Idris, a general-purpose dependently typed programming language:
Design and implementation. Journal of Functional Programming, 23:552–593, 9
2013.

6. Edwin Brady. Programming and reasoning with algebraic effects and dependent
types. In Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’13, pages 133–144, New York, NY, USA, 2013.
ACM.

7. Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494,
October 1964.

8. Nils Anders Danielsson. Total parser combinators. SIGPLAN Not., 45(9):285–296,
September 2010.

9. Matthias Felleisen, M.D. Barski Conrad, David Van Horn, and Eight Students
of Northeastern University. Realm of Racket: Learn to Program, One Game at a
Time! No Starch Press, San Francisco, CA, USA, 2013.

10. Denis Firsov and Tarmo Uustalu. Certified parsing of regular languages. In Georges
Gonthier and Michael Norrish, editors, Certified Programs and Proofs - Third In-
ternational Conference, CPP 2013, Melbourne, VIC, Australia, December 11-13,
2013, Proceedings, volume 8307 of Lecture Notes in Computer Science, pages 98–
113. Springer, 2013.

11. Denis Firsov and Tarmo Uustalu. Certified CYK parsing of context-free languages.
J. Log. Algebr. Meth. Program., 83(5-6):459–468, 2014.

12. Denis Firsov and Tarmo Uustalu. Certified {CYK} parsing of context-free lan-
guages. Journal of Logical and Algebraic Methods in Programming, 83(5–6):459 –
468, 2014. The 24th Nordic Workshop on Programming Theory (NWPT 2012).

13. Sebastian Fischer, Frank Huch, and Thomas Wilke. A play on regular expressions:
Functional pearl. In Proceedings of the 15th ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP ’10, pages 357–368, New York, NY, USA,
2010. ACM.

14. Alain Frisch and Luca Cardelli. Greedy regular expression matching. In Josep
Dı́az, Juhani Karhumäki, Arto Lepistö, and Donald Sannella, editors, Automata,
Languages and Programming: 31st International Colloquium, ICALP 2004, Turku,
Finland, July 12-16, 2004. Proceedings, volume 3142 of Lecture Notes in Computer
Science, pages 618–629. Springer, 2004.

15. GNU Grep home page. https://www.gnu.org/software/grep/.

16. John E. Hopcroft, Rajeev Motwani, Rotwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages and Computability. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2000.

17. The Idris Tutorial. http://docs.idris-lang.org/en/latest/tutorial/.
18. Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. Validating lr(1)

parsers. In Proceedings of the 21st European Conference on Programming Lan-
guages and Systems, ESOP’12, pages 397–416, Berlin, Heidelberg, 2012. Springer-
Verlag.

19. M. E. Lesk and E. Schmidt. Unix vol. ii. chapter Lex&Mdash;a Lexical Analyzer
Generator, pages 375–387. W. B. Saunders Company, Philadelphia, PA, USA, 1990.

20. The Lightyear Idris Parsing Combinator Library.
https://github.com/ziman/lightyear/.

21. Raul Lopes, Rodrigo Ribeiro, and Carlos Camarão. Certified deriva-
tive based parsing of regular expressions — on-line repository.
https://github.com/raulfpl/idrisregexp, 2016.

22. Hugo Daniel Macedo and José Nuno Oliveira. Typing linear algebra: A biproduct-
oriented approach. CoRR, abs/1312.4818, 2013.

23. Conor McBride. Dependently Typed Functional Programs and their Proofs. PhD
thesis, Department of Informatics, University of Edinburgh, 1999.

24. Conor McBride and James McKinna. The view from the left. J. Funct. Program.,
14(1):69–111, January 2004.

25. Matthew Might, David Darais, and Daniel Spiewak. Parsing with derivatives: A
functional pearl. SIGPLAN Not., 46(9):189–195, September 2011.

26. Ulf Norell. Dependently typed programming in agda. In Proceedings of the 4th
International Workshop on Types in Language Design and Implementation, TLDI
’09, pages 1–2, New York, NY, USA, 2009. ACM.

27. Scott Owens, John Reppy, and Aaron Turon. Regular-expression derivatives re-
examined. J. Funct. Program., 19(2):173–190, March 2009.

28. Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st
edition, 2002.

29. Google Regular Expression Library - re2. https://github.com/google/re2.
30. Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard Iso-

morphism, Volume 149 (Studies in Logic and the Foundations of Mathematics).
Elsevier Science Inc., New York, NY, USA, 2006.

31. Martin Sulzmann and Kenny Zhuo Ming Lu. POSIX regular expression parsing
with derivatives. In Michael Codish and Eijiro Sumii, editors, Functional and Logic
Programming - 12th International Symposium, FLOPS 2014, Kanazawa, Japan,
June 4-6, 2014. Proceedings, volume 8475 of Lecture Notes in Computer Science,
pages 203–220. Springer, 2014.

32. The Univalent Foundatiosn Program. Homotopy Type Theory: Univalent Founda-
tions of Mathematics. http://homotopytypetheory.org/book/, 2013.

33. Leslie G. Valiant. General context-free recognition in less than cubic time. J.
Comput. Syst. Sci., 10(2):308–315, April 1975.

http://homotopytypetheory.org/book/

	Certified Derivative-Based Parsing of Regular Expressions

