United We Move: Decentralized Segregated
Robotic Swarm Navigation

Fabricio R. Indcio, Douglas G. Macharet, Luiz Chaimowicz

Abstract A robotic swarm is a particular type of multi-robot system that employs
a large number of simple agents in order to cooperatively perform different types
of tasks. In this context, a topic that has received much attention in recent years
is the concept of segregation. This concept is important, for example, in tasks that
require maintaining robots with similar features or objectives arranged in cohesive
groups, while robots with different characteristics remain separated on their own
groups. In this paper we propose a decentralized methodology to navigate heteroge-
neous groups of robots whilst maintaining segregation among different groups. Our
approach consists of extending the ORCA algorithm with a modified version of the
classical flocking behaviors to keep robots segregated. A series of simulations and
real experiments show that the groups were able to navigate in a cohesive fashion in
all evaluated scenarios. Furthermore, the methodology allowed for a faster conver-
gence of the group to the goal when compared to state-of-the-art algorithms.

Keywords: Swarm robotics, segregative navigation, flocking, ORCA.

1 Introduction

The use of multi-robot systems in different contexts can bring several advantages
over single-robot systems. In this sense, we consider the specific scenario of robotic
swarms, which are systems composed of a large number of agents seeking to co-
operatively accomplish a particular task. Inspired by colonies of social insects that
cooperate with each other to carry out tasks of common interest, robotic swarms
emerged as an alternative to solve complex problems.

The authors are with the Computer Vision and Robotics Laboratory (VeRLab), Department of
Computer Science, Universidade Federal de Minas Gerais, Brazil. e-mails:{fabricio.rod, doug,
chaimo} @dcc.ufmg.br. This work was developed with the support of CNPq, CAPES, FAPEMIG.

2 Fabricio R. Inécio, Douglas G. Macharet, Luiz Chaimowicz

In general, swarms usually consist of simple agents with little processing power
and able to perform a limited set of actions. Another common feature in swarms
is the limitation of perception and communication between agents. Normally, each
agent is capable of sensing a small portion of the environment and communicating
locally, i.e., the communication takes place only between agents who are close to
each other.

Similarly to different swarms found in nature (e.g. some insects colonies, bird
flocks or fish schools), an important aspect in robotic swarms is the absence of a
central entity responsible for coordinating the entire swarm. Hence, each individual
behavior contributes to emergent group behaviors that are able to guide the swarm
to its objectives [9].

One of these group behaviors is segregation, a natural phenomenon that is com-
monly used as a sorting mechanism by several biological systems and can be useful
in many different tasks and scenarios. This behavior can be important for maintain-
ing robots with similar features or objectives arranged in cohesive groups, while the
groups with different characteristics remain separated [11].

In this paper we present a methodology capable of navigating heterogeneous
groups of robots whilst maintaining segregation among distinct groups. Our ap-
proach consists of extending the Optimal Reciprocal Collision Avoidance (ORCA)
algorithm [14] with a modified version of the classical flocking behaviors [8]. The
set of possible velocities is informed with the flocking demands, which enables
different robot groups to avoid collisions and navigate in a cohesive manner. This
methodology improves our previous approach, which was based on velocity obsta-
cles [10], presenting a much better performance. Moreover, differently from other
segregation works found in the literature [7, 11], the proposed technique is fully
decentralized and assumes local perception only.

2 Related Work

2.1 Navigation and collision avoidance

Finding feasible paths for mobile agents that are either length or time optimized
is fundamental in any task that requires the navigation from an initial to a goal
position in the environment. However, in general, path planners consider single-
agent systems, a static and known environment with a given map, and may not be
able to adapt to dynamic issues that may arise during the execution of the path.

An approach that has received much attention in recent years is called Veloc-
ity Obstacles (VO). Proposed in [4], this technique uses the agents’ velocities and
obstacles’ positions to calculate the VO-set of all velocities that, if applied to the
agents, will result in a collision and then must be considered obstacles. Next, linear
and angular speeds that do not belong to the VO-set must be chosen, which ensures
a safe navigation to the agents. Several extensions over the VO algorithm have been

United We Move: Decentralized Segregated Robotic Swarm Navigation 3

proposed in the literature [6, 12, 13, 15], which aim to improve its performance and
increase the possibilities for use.

The concept of using the agents velocity space in order to choose acceptable
velocities, i.e., the ones that avoid collisions, was further extended resulting in the
ORCA algorithm [14]. This technique computes for each other robot a half-plane
of allowed velocities. The robot must select its optimal velocity from the intersec-
tion of all permitted half-planes, which can be done efficiently by solving a low-
dimensional linear system. Moreover, differently from the VO, the ORCA algorithm
guarantee local collision-free navigation [14].

2.2 Group segregation in robotic swarms

A characteristic found in social insect communities is the existence of specific roles
that segregate the individuals into distinct groups (e.g. bees and ants). Each group
of individuals has a distinct set of activities and responsibilities that promote the
perpetuation of the colony.

In robotic swarms, as well, it might also be interesting to keep different groups of
agents segregated, allowing for example to assign specific tasks according to certain
characteristics of each group.

One of the first works to deal with this problem was [7]. It presented an algo-
rithm capable of segregating distinct types of agents by applying different potential
functions on the robot according to the type of the agents which are in its neighbor-
hood. The technique produced satisfactory results, however, it can only be applied
in scenarios where there are only two different types of agents. In applications that
use a very large number of robots, there may be the need to segregate the swarm in
more than two groups.

The aforementioned technique was later extended in [11] in order to deal with
more than two types of robots. In order to calculate the potential to be used, each
agent evaluates whether the neighbors are of their same type or of a different type.
Thus, it is possible to obtain the artificial force which must be applied to each agent
in order to make the robots with the same type come closer, while robots of different
types remain spaced apart. The main restrictions of this technique are the need for
global sensing and a balanced number of agents in all groups. More recently, an
approach based on abstractions and using an artificial potential function to segregate
the groups was proposed [3]. Differently from other works on swarm segregation, it
is mathematically guaranteed that the system will always converge to a state where
multiple dissimilar groups are segregated. A different segregation algorithm, based
on the Brazil Nut Effect, is discussed in [5]. A distributed controller considers robots
as having distinct virtual sizes, and local interactions make “larger” robots move
outwards, segregating the robots in annular structures.

A segregative navigation strategy is proposed in [10], combining the concepts of
flocking [8] and the use of abstractions to represent the groups. Built upon the clas-
sical VO algorithm [4], it introduces a novel concept called Virtual Group Velocity

4 Fabricio R. Inécio, Douglas G. Macharet, Luiz Chaimowicz

Obstacles (VGVO). In this algorithm, a robot i senses the relative position and ve-
locity of every robot j within its neighborhood 7; and builds shapes containing other
teams of robots, with the exception of its own. These shapes can be considered as the
smallest enclosing disc, the convex hull, or the more general class of a-shapes [2].
In the workspace of robot i, these shapes are considered as virtual obstacles moving
at the average velocity of their respective underlying robots. Thus, robot i can build
a virtual velocity obstacle specifying all velocities that will lead to a collision with
these shapes, assuming that they maintain their current average velocities. However,
the cost of computing the virtual shape for each group can be prohibitive, slowing
down the navigation.

To cope with this problem, in this paper we propose a decentralized methodol-
ogy in order to navigate heterogeneous groups of robots whilst maintaining segrega-
tion among different groups. We propose a modification over the classical flocking
model established by Reynolds [8] and combine it with the ORCA algorithm [14]
in order to avoid collisions and keep the group cohesion.

3 Methodology

As mentioned, our methodology is based on a combination of flocking behaviors
with the ORCA algorithm. Using local sensors, each robot is able to sense its neigh-
borhood and compute the velocity that will guide it to the goal, while keeping it
close to its group. This velocity is used as the preferred velocity by the ORCA al-
gorithm, which is responsible for navigating the robot while avoiding other agents.
As in the original algorithms, we assume that an agent has access to the position
and velocity of all other agents present in its neighborhood, or can infer these values
based on its observations. They can also detect if its neighbors belong to its group
and infer their state. Finally, we consider that the robots start in a segregated state
and know the direction of a specific goal in the environment. The next sections detail
our methodology.

3.1 Robot and Group Modeling

We consider a scenario in which a swarm &% = {%1,...,%’”} of 1 robots must
navigate in a static 2D environment. Each robot i is represented by its pose ¢; =
(xi,¥i, 6;), with kinematic model given by ¢; = u;.

Robots are holonomic and can move in any direction given by the velocity vector
u;. Thus, 6; is the direction of the movement of robot i in a global frame.

The entire swarm is formed by distinct types (groups) of robots, which we rep-
resent by the partition I' = {I, ..., I}, }, where each I} contains all agents of type k.
We assume that Vj,k: j # k — I;NI; = 0, i.e., each robot is uniquely assigned to a
single type.

United We Move: Decentralized Segregated Robotic Swarm Navigation 5

3.2 Flocking

In order to maintain a cohesive behavior during navigation, we use a slightly modi-
fied version of the classical flocking behaviors presented in [8]. These behaviors are
obtained by applying three simple rules, which are described next.

Initially, we define a robot’s neighborhood based on its sensing range. During
navigation, robot i maintains a neighborhood .4#; around its current position. A
neighborhood consists of a circular region of radius A around the current position
of a robot. Within the neighborhood, we may have robots from the same group
and robots from different groups. Therefore, we define .4/ t={Z% il —pill <
ANZ;, Z; € It} as the set of all robots of the same group currently located in the
neighborhood. Similarly, we define A~ ={Z, : |p; —pil| <AN(Z; € [, N%; €
I;,u # k)} the set of all robots of other groups in its neighborhood.

The first flocking rule is related to cohesion. This rule is used to keep the agents
close to each other. Therefore, agent i must compute the midpoint of the positions
of all agents in 4] *. Next, a velocity vector that moves the agent to the computed
point is calculated. Formally:

1

— N 1
cohesion ‘%+|j6§(+p1 Di ()

The second rule was originally proposed to keep a safe distance among agents,
with the objective of avoiding collisions between them. However, as will be further
detailed, we use the ORCA algorithm in order to ensure obstacle avoidance during
navigation. Therefore, we use the separation rule in order to keep distinct groups of
agents apart from each other. The agent should move to a position that respects a
minimum distance from agents of other groups in its neighborhood, given by:

Vseparation = Z (pi _pj)' @
JjeN~

We emphasize that the safety distance among robots of the same group are guaran-
teed by the ORCA algorithm. Therefore, the proposed algorithm does not use the
separation rule for agents that belong to the same type.

Finally, the third rule evaluates the alignment of agents of the same group. In
order to respect this rule, each agent calculates the average of the spatial orientation
of all agents in its group inside its neighborhood. After that, the agent is guided by
the calculated average alignment, i.e.,

1
Valignment = T Z ej- 3)
‘ i | j€¢/1§+
The final resulting vector vgock that will be used in the control phase is given by:

Vflock = ke * Veohesion + K * Vseparation 1~ kg - Valignment “4)

6 Fabricio R. Inécio, Douglas G. Macharet, Luiz Chaimowicz

which is composed by the weighted sum of the three vectors. Constants k., ks, and
k, are determined empirically, and normally k. receives a larger value.

3.3 Setting Robot Velocities

The robot velocities can be adjusted according to the different situations an agent
may face during its navigation. For example, it can be surrounded by agents from its
own group only, or it may be in a position where there are no other agents between
itself and the goal or may be close to agents who belong to another group. Thus the
control input is composed by a combination of different velocities:

U= O.Vgoql + B Vtock T V-Vaux-)

Veoal 18 an attractive velocity that drives the agent towards its goal, v s/, is a flocking
velocity set according to Equation 4 and v, is an auxiliary velocity. Constants o,
B and v, as well as the auxiliary velocity, are set according to the scenario faced
by the robot. This is controlled by a finite state machine depicted in Figure 1 and
explained next.

1) It detects agents of another group.

2) It has unobstructed view toward its goal.

3) It has no clear view, but one of its neighbors have.
4) It has neither free vision nor neighbor who has.

5) It does not perceive any agent of another group.

Follower

Vision Free

Fig. 1: Finite state machine describing the possible situations faced by each robot.

Single Group: This first state is enabled whenever a robot does not perceive any
agent of a different group within its neighborhood. In this case, its action is to move
straight to the goal while also keeping cohesion with its group. For this behavior,
the constants are set in such way that o > 8 and y=0.

Vision Free: The state Vision Free is enabled if the agent perceives the presence
of one or more robots of different groups, but still has a free line of sight to its goal.
More specifically, in a sector defined from the current position of the agent towards
its goal and within his field of view there is no agent of a different group. In this
case, the agent still tends to move to the goal, but also gives more importance to the
flocking factor. Thus, constants are set so that & > 8 and y = 0.

United We Move: Decentralized Segregated Robotic Swarm Navigation 7

Follower: If the robot does not have a clear view towards the goal but detects a
neighbor of its own group that is in one of the previous states, it enters in a follower
mode, following the agent that has a clear path to the goal, but also keeping the
flocking behavior. In this case, the v,,, component is set to move the robot towards
this neighbor, with a =0 and § < .

Turn right: Finally, if the agent does not fit into any of the situations described
above, it probably has a congested situation in front of it and should move to avoid
this. So, a “traffic rule” is imposed that makes the robot move perpendicularly to its
goal direction, i.e., vy 18 set in a direction that is perpendicular to vg,q. With this
behavior, the agents try to get around this congested area rather than trying to cross
it. Constants are set to balance this velocity and the flocking component: ¢ = 0 and

B~v.

3.4 ORCA

The ORCA algorithm [14] is a velocity-based navigation strategy based on the con-
cept of velocity obstacles [4].

Consider two robots %4 and %p with radii r4 and rp, positions p4 and pp and
velocities v4 and vp, respectively. Robot %y tries to reach an assigned goal point
ga by selecting a preferred velocity vgref . The objective is to choose an optimal v},
which lies as close as possible to vﬁref , such that collisions among the robots are
avoided for at least a time horizon 7.

The velocity obstacle VOZ;l p for Z4 induced by #p in the local time interval [0, 7]
is the set of velocities of %, relative to Zp that will cause a collision between %4
and Zp at some moment before time 7 has elapsed. It is assumed that both robots
maintain a constant trajectory within that time interval. Formally:

VOZ&|B ={v|3t€[0,7] ::t(v—vp) € D(pp — pa,ra+rp)} (6)

where D(pg — pa,ra + rp) denote an open disc of radius (r4 + rg) centered at po-
sition (pp — pa). If Z4 and Zp each choose a velocity outside VO;‘ 5 and VOI_?;,| "
respectively, then they will be collision-free for at least the period of time 7.

The half-plane of velocities ORCAY , can be constructed geometrically as fol-
lows. Let us assume that #Z4 and %Zp adopt velocities v4 and vp, respectively, and
that these velocities causes %4 and %p to be on collision course, i.e. v4 — vg
€ VOf\‘ 5- Let w be the vector from v4 — vp to the closest point on the boundary
of the velocity obstacle:

w = (argmin ||v— (va —vg)||) — (va — vB). @)

vEt?VOX‘B

Then, w is the smallest change required to the relative velocity of %4 and %Zp to
avert collision within 7 time. To “share the responsibility” of avoiding collisions

8 Fabricio R. Inécio, Douglas G. Macharet, Luiz Chaimowicz

among the robots, %, adapts its velocity by (at least) %w and assumes that B takes
care of the other half. Hence, the set ORCA;;| B of permitted velocities for %, is the

half-plane pointing in the direction of n starting at the point v4 + %w, where n is the
outward normal of VO;‘B atvya—vp +w [14]:

ORCAZ = {|(v— (va + %w)).n > 0}. ®)
In our methodology, the finite state machine described in the previous section is
used to calculate the preferred velocity. This velocity is passed along to the classic
ORCA algorithm that sets the new velocity to be applied to the agent. In other
words, the velocity computed by equation 5 is fed to ORCA as the preferred velocity,
which is a value used as a reference to determine the actual velocity that will be
assigned to the robot during navigation. Consequently, the value belonging to that
half-plane that most closely matches the preferred velocity is calculated using linear
programming and passed as the new velocity that the robot should take.

4 Experiments

To evaluate the proposed methodology with regards to its performance and feasibil-
ity, we executed a series of simulations and compared it with the classical versions
of the ORCA and VGVO algorithms. We also performed proof-of-concept experi-
ments with a group of e-puck robots to show its applicability with real robots.

The parameters used in these experiments are shown in Table 1. Our main objec-
tive when selecting the values was to keep the robots segregated, even if this requires
spending more time for the groups to achieve their goals.

Agent Status ke ks ke, o B v
Single Group 10 0 10 10 1 0
Vision Free 15 5 5 3 1 0
Follower 15 10 0 0 20 50
Turn Right 5 2.5 1 0 20 30

Table 1: Parameters used in the experiments.

In Figure 2, we show snapshots of the execution of the three algorithms. In this
first example, we have 4 distinct groups, represented by different colors, each one
formed by 40 agents. Each group must navigate to its opposite direction, changing
sides with another group. As can be seen in Figure 2a, as expected, ORCA does not
keep robots segregated when groups meet in the center of the scenario. Figures 2b
and 2c show, respectively, the results obtained by the VGVO algorithm and the pro-
posed methodology for the same scenario. As shown, with both algorithms, robots

United We Move: Decentralized Segregated Robotic Swarm Navigation 9

belonging to the same group remain united during the entire navigation, while seek-
ing to move away from other groups.

(a) Execution of the ORCA algorithm.

(b) Execution of the VGVO algorithm.

(c) Execution of the proposed algorithm.

Fig. 2: Execution of the evaluated algorithms in a scenario composed of 160 agents
evenly distributed into 4 groups.

To better evaluate the segregation, we use a metric proposed in [7], which consists
of calculating the average distances between agents of the same group and agents
from different groups. According to this metric, two different groups of agents, e.g.
A and B, are said to be segregated if the average distance between the agents of the
alike types (type A or type B) is less than the average distance between the agents
of the unlike types (i.e., between the agents of type A and type B). More formally,
we should have:

dap <dap and dpp < dap,)]

where dyy is the average distance between the agents of types X and Y. Formally:

1 1

dxy = 5T Y <|FY|JZ (Pi—Pj)>- (10)

iely cly

The segregative behavior of the methodology may be confirmed by using the
aforementioned metric pairwise. As can be seen in Figure 3, the average distance

10 Fabricio R. Inécio, Douglas G. Macharet, Luiz Chaimowicz

between agents in the group A are smaller than the average distance between agents
from group A relative to agents of all other groups, i.e., dxx < dxy V Ix,Iy € %.

B
2 20

Average distance
RN
/
Average distance (m
IR

SER2RIARNRKBERIASTLIEIRILS

Time (s) Time (s)
——=-AA ——AB AC AD -==-AA ——AB AC AD ——AE ——AF AG ——AH
(a) 4 distinct groups. (b) 8 distinct groups.

Fig. 3: Average distance among agents during the execution of the proposed al-
gorithm. Two scenarios were considered: (a) 4 distinct groups and (b) 8 distinct
groups.

In the following experiments, we varied the number of robots and groups. Ini-
tially, the algorithm was evaluated considering a fixed number of groups and an in-
creasing number of agents in each group. Next, we have fixed the number of agents
and varied the quantity of distinct groups in the environment. Finally, we have eval-
uated the methodology in a scenario where each group has a different number of
agents.

In the first experiment we investigated the performance of the approach relative
to the variation in the number of agents on each group. The simulations were per-
formed with 4 groups consisting of 10, 20, 30 and 40 agents. We emphasize that on
these first set of simulations all the groups have the same number of agents.

The methodology was evaluated considering the average time the groups take
to converge to their goals and the results were compared to the ones obtained by
the ORCA and the VGVO algorithms. We recall that ORCA does not sort (segre-
gate) agents into distinct groups, i.e., each agent is considered as a single entity
and no group information is used during its execution. The main objective of this
evaluation is to verify if the restriction to keep the groups segregated would affect
the navigation time and if our approach is able to increase the performance of the
VGVO algorithm.

Since the proposed technique (as well as the VGVO algorithm) may produce
different results during executions (due to a non-deterministic factor on the velocity
selection), we performed 100 simulations for each experiment and the average time
was used for comparison. Figure 4 presents the results for each technique for this
scenario.

As might be expected, the time required for all the agents to reach their goals
increases with the number of agents. Also, we can observe that the proposed algo-
rithm has a much better performance than ORCA and VGVO when the number of

United We Move: Decentralized Segregated Robotic Swarm Navigation 11

275,0
250,0
225,0
200,0

125,0

175,0 }

150,0 {

100,0

75,0 I

50'0 I . : . I I

25,0 I

o | N | -
10 20 30 40

Group size
B ORCA ® VGVO m Proposed Algorithm

Execution Time (s)

Fig. 4: Average execution time of the algorithms varying group size.

robots increase. This may be explained by the fact that in ORCA, robots have to
deal with a very congested situation when all groups meet, which makes it difficult
for the algorithm to find feasible velocities. Regarding VGVO, as explained in [10],
the algorithm prioritizes slower speeds in order to maintain stable relative distances
and velocities among robots. We can also note that, due to its characteristics, VGVO
has a large variation in its running time within the 100 runs, while in ORCA and our
algorithm the standard deviation is relatively small.

Next, the second experiment aims to evaluate our approach in scenarios with a
fixed number of agents that were distributed in a different number of groups in each
set of runs. The simulations consist of scenarios composed by a total of 160 agents
evenly distributed into 2, 4, 6, and 8 groups. As shown in Figure 5, the increase in the
number of groups causes the time required for the agents to reach their targets to also
increase. However, we observe that the proposed approach improves considerably
the average navigation time. Another point to note is the difference between the
times obtained using VGVO algorithm and the proposed algorithm. The VGVO
algorithm makes the groups to be positioned uniformly in the conflict area, causing
the agents to take a long time to find a new path that would allow the group to
contour the obstacles that hinder its movement. On the other hand, our approach
allows the agents to start diversion maneuvers when a new group is detected, causing
a reduction on the time needed to solve the problem.

Finally, the last experiment was performed in order to investigate the method-
ology behavior in scenarios with groups of different sizes. One of the experiments
evaluated a scenario with 220 agents divided into 8 groups with sizes ranging from
10 to 40 agents. Figure 6 shows snapshots of the navigation over time.

It is possible to observe that the proposed algorithm has the same segregating
behavior when used in environments having different group sizes. We call attention
to the trajectory performed by the pink group during this simulation. As shown in
Figures 6(c), (d) and (e), despite the definition of an explicit rule that requires the
agents to move to the right when another group is blocking its way, the pink group
managed to find a better path than the path resulting from applying the rule. This

12 Fabricio R. Inécio, Douglas G. Macharet, Luiz Chaimowicz

600,0
550,0

500,0
450,0
400,0
350,0

300,0
250,0

200,0
150,0 I
100,0 . N
50,0 I _ - _ z
o0 BN BN mowm - |
2 4 6 8

Number of Groups
B ORCA mVGVO m Proposed Algorithm

Execution Time (s)

Fig. 5: Average execution time of the algorithm with different number of groups.

(@) (b) (© (@ (e

Fig. 6: Execution of the proposed algorithm in a scenario with 220 agents distributed
in 8 groups of different sizes.

occurs because at least one of the agents on the pink group could directly see the
goal and, consequently, the other agents began to follow it.

Finally, real experiments were conducted indoors using six e-puck robots. These
proof-of-concept experiments are important in order to show the feasibility of the
algorithm in real scenarios, where uncertainties caused by sensing and actuation
errors may have a great impact on the results.

In these experiments, we used a swarm localization framework based on an over-
head camera and fiduciary markers for estimating robot’s pose, orientation. Also, as
the e-puck’s IR sensors have a very small range, we implemented a virtual sensor
based on the localization system to detect neighboring agents. To account for non-
holonomic constraints, input velocities were transformed following the approach
presented in [1].

The Figures 7 and 8 show snapshots from executions of the proposed algorithm
with two and three groups of robots (we overlay colored circles to highlight the
different groups). We can visually inspect that the behaviors obtained with the real
robots is pretty similar to the simulation results, i.e., robots maintain cohesion and
segregation during navigation. Despite not showing the graphs, we observed that
average distances follow the trend shown in Figure 3: the average distance between
robots in the same group is always less than the average distance among robots in

United We Move: Decentralized Segregated Robotic Swarm Navigation 13

different groups. These proof of concept experiments indicate that the algorithm
can work well to coordinate groups of real robots, allowing them to navigate while
maintaining a segregative behavior in an efficient way.

Fig. 7: Execution of the proposed algorithm in a scenario with 6 e-puck robots dis-
tributed in 2 groups.

Fig. 8: Execution of the proposed algorithm in a scenario with 6 e-puck robots dis-
tributed in 3 groups.

5 Conclusion

In this paper we proposed a decentralized methodology to navigate heterogeneous
groups of robots maintaining segregation among different groups. Our approach
consists of extending the ORCA algorithm with a modified version of the classical
flocking behaviors: using local sensors, each robot is able to sense its neighborhood
and, using a variation of the flocking rules, compute the velocity that will guide it
to the goal, while keeping it close to its group. This velocity is used as the preferred
velocity by the ORCA algorithm, which is responsible for navigating the robot while
avoiding other agents.

Several experiments were performed to evaluate the proposed methodology and
the results showed that our algorithm is an effective alternative to maintain different
robots groups segregated whilst they navigate on a shared environment. By choosing
better trajectories and avoiding congested areas, it achieved a better performance
when compared to other state-of-the-art algorithms.

As in ORCA and VGVO, in our methodology the robots must be able to infer
the position and velocities of the neighboring robots. Moreover, robots should infer
the state (considering the FSM) and orientation of their neighbors and also know

14 Fabricio R. Inécio, Douglas G. Macharet, Luiz Chaimowicz

the position of a common goal for the group. This can be considered a limitation of
the proposed methodology, mainly considering that swarms of robots are normally
comprised of simple robots with limited sensing capabilities.

Future research directions include the evaluation of different segregation metrics,
such as the intersection area of the convex hull formed by the agents and a possible
network connectivity inside the group. We also intend to consider standard metrics
of separation used in cluster analysis, for example, the distance between centroids of
the groups weighted by their variance. More experiments should also be performed
using a larger number of real robots to better analyze the behavior of the algorithm
in real scenarios.

References

1. De Luca, A., Oriolo, G., Vendittelli, M.: Stabilization of the unicycle via dynamic feedback
linearization. In: 6th IFAC Symp. on Robot Control, pp. 397-402 (2000)
2. Egerstedt, M., Hu, X.: Formation constrained multi-agent control. In: Robotics and Automa-
tion, 2001. ICRA’01. IEEE International Conference on, vol. 4, pp. 3961-3966 vol.4 (2001)
3. Ferreira Filho, E.B., Pimenta, L.C.A.: Segregating Multiple Groups of Heterogeneous Units
in Robot Swarms using Abstractions. In: Proceedings of the IEEE International Conference
on Intelligent Robots and Systems (IROS), pp. 401-406 (2015)
4. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles.
The International Journal of Robotics Research 17(7), 760-772 (1998)
5. GroB, R., Magnenat, S., Mondada, F.: Segregation in swarms of mobile robots based on the
brazil nut effect. In: Proceedings of the IEEE International Conference on Intelligent Robots
and Systems (IROS), pp. 4349-4356 (2009)
6. He, L., van den Berg, J.: Meso-scale planning for multi-agent navigation. In: Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA) (2013)
7. Kumar, M., Garg, D.P., Kumar, V.: Segregation of heterogeneous units in a swarm of robotic
agents. Automatic Control, IEEE Transactions on 55(3), 743-748 (2010)
8. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In: ACM Siggraph
Computer Graphics, vol. 21, pp. 25-34. ACM (1987)
9. $Sahin, E.: Swarm robotics: From sources of inspiration to domains of application. In: Swarm
robotics, pp. 10-20. Springer (2005)
10. Santos, V.G., Campos, M.F., Chaimowicz, L.: On segregative behaviors using flocking and ve-
locity obstacles. In: Distributed Autonomous Robotic Systems, pp. 121-133. Springer (2014)
11. Santos, V.G., Pimenta, L.C., Chaimowicz, L., et al.: Segregation of multiple heterogeneous
units in a robotic swarm. In: Robotics and Automation (ICRA), 2014 IEEE International
Conference on, pp. 1112-1117. IEEE (2014)
12. Snape, J., Guy, S.J., Vembar, D., Lake, A., Lin, M.C., Manochall, D.: Reciprocal collision
avoidance and navigation for video games. In: Game Developers Conf., San Francisco (2012)
13. Van Den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Optimal reciprocal collision avoidance
for multi-agent navigation. In: Proc. of the IEEE International Conference on Robotics and
Automation, Anchorage (AK), USA (2010)
14. Van Den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In:
Robotics research, pp. 3—19. Springer (2011)
15. Wilkie, D., Van den Berg, J., Manocha, D.: Generalized velocity obstacles. In: Intelligent
Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pp. 5573—
5578. IEEE (2009)

