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Abstract— The use of multiple robots in exploration missions
has attracted much attention in recent years. Here we deal with
the specific problem in which a team of robots have to visit a
set of target points to perform some action. Robots have a map
of the environment and should compute and execute paths in a
distributed way, trying to minimize the total mission cost that
is dependent on the quality of the target-to-robot allocation. In
this paper, we focus on this target allocation problem and use
combinatorial auctions to solve it. We propose novel approaches
for improving combinatorial auction mechanisms in the target
allocation problem and compare them with approaches based
on single-item auctions, sequential auctions, and other combina-
torial auction algorithms. Experimental results showed that the
auction approaches for multi-robot target allocation proposed
in this work achieved better results than other auction based
mechanisms found in the literature.

I. INTRODUCTION

The exploration problem is considered one of the funda-
mental problems in mobile robotics [1]. The term exploration
is used in the literature to define both (i) the problem in
which robots must build a map of an unknown environment
[2], and (ii) the problem in which the robots have a model
of the environment and must explore some areas of interest
in that environment [3], [4]. We deal with the second
problem, in which there is a team of robots and a fixed
number of target points that must be visited by exactly one
robot from the team. The objective is to provide a fully
distributed approach to coordinate the robots in order to
minimize the total mission cost of visiting all the targets.
This study is motivated by applications such as surveillance
and monitoring, search and rescue, and data collection in
sensor networks, among others. In all these applications, the
target-to-robot allocation is a critical step of the coordination
approach.

More formally, the problem tackled in this paper can
be defined as follows. Given a set of robots R =
{r1, r2, . . . , rn}, a set of targets T = {t1, t2, . . . , tm}, whose
coordinates are known beforehand, the exploration problem
consists in (i) finding an assignment S = {S1, S2, . . . , Sn}
of targets to robots, where Si ⊆ T denotes the set of targets
assigned to robot ri ∈ R, with Si ∩ Sj = ∅ for all i 6= j,
and

⋃m
i=1 Si = T , and then (ii) computing a route Pi for

each robot ri such that all targets in Si are visited once and
that the robot returns to its initial position. The objective is
to minimize the sum of travel distances over all robots. This
problem was proven to be NP-Hard in [5].
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Single-Item Auctions [6] and Sequential Single-Item auc-
tions [7] are distributed mechanisms that have been widely
used to coordinate multiple robots in exploration missions
because they are easy to design and implement, besides
presenting low computational complexity compared with
centralized solutions. But due to their limitations, these
mechanisms may not be able to provide good allocations.
Combinatorial Auctions [8], on the other hand, are able
to provide better solutions since these mechanisms allow
robots to consider the value of combinations or packages of
targets. However, if robots are allowed to bid on all possible
combinations of targets, the allocation problem becomes
exponential.

In this paper, we propose and investigate different com-
binatorial auction strategies for limiting the possible com-
binations of targets the robots can bid on in order to
make the target allocation a polynomial process. The pro-
posed strategies were implemented and compared with other
auction strategies found in the literature based on single-
item auctions, sequential auctions, and other combinatorial
auctions. Computational experiments showed that the auction
strategies for multi-robot target allocation proposed in this
work achieved better results than other strategies in the
literature.

The remainder of this paper is organized as follows. In
Section II, we review the main auction mechanisms used
to coordinate multiple robots in exploration missions in the
literature. In sections III and IV, we propose new combina-
torial auction mechanisms to be used in robot coordination
approaches. In Section V, these mechanisms are evaluated
and compared against other auction based coordination ap-
proaches found in the literature. Concluding remarks are
presented and opportunities for future works are discussed
in the last section.

II. AUCTIONS IN MULTI-ROBOT EXPLORATION

Auction-based mechanisms have been used to coordinate
multiple robots in exploration missions, due to their simplic-
ity and flexibility [9], [10], [11], [12]. The targets that the
robots must visit are the items being auctioned and the value
of the bids are the expected utility cost for the robots to visit
the corresponding targets. The robots compete for the targets
trying to maximize their individual performances. Although
the robots are selfish, the maximization of individual rewards
results in the maximization of the whole team reward.
Auctions are efficient both in communication cost, since the
informations exchanged by the robots are just numerical bids,
as in computation cost, since each robot compute its bids in
parallel [13].



A. Single-Item and Sequential Auctions

Single-item auctions are those in which a robot bids on a
target independently of the values he bid for the other targets
it won in the past auction rounds [12], [14], [15]. They are
distributed mechanisms that have been used to coordinate
robots in exploration missions because they are easy to de-
sign and implement. Besides, they present low computational
complexity compared with centralized solutions. However,
due to their limitations, these mechanisms might not provide
good allocations in applications where the utility cost of
visiting a subset of targets with the same robot is smaller
than that of visiting the same targets with different robots.

Sequential Single-Item auctions (SSI) are an extension of
single-item auctions in which the value a robot bids for a
target is calculated taking into consideration the targets the
robot won in the past rounds of the auction [5], [7]. This
mechanism may increase the performance of the single-item
auctions since targets that are close to the other targets won
by a robot in previous rounds have smaller utility costs than
those that are not. Therefore, targets that are close to each
other are more likely to be won by the same robot. However,
as SSI auctions are greedy allocation mechanisms, the quality
of the allocation they provide greatly depends on the order
the targets are auctioned.

B. Combinatorial Auctions

Combinatorial auctions have been used in a wide range of
applications, such as transportation logistics, scheduling of
bus routes, allocation of airport arrival and departure slots,
etc (see [8] for a full review). In this type of auction, agents
can bid on a subset of items (also called package of items),
instead of only on a single item [16]. This allows the bidder
to bid on a subset of items that are only profitable if they
are acquired together. In this case, either the bidder wins all
items in the subset or it wins none of them. Basically, these
auctions have two steps. In the bid formulation step, bidders
decide and communicate to the auctioneer in which subsets
of items they will bid, and in the winner determination step,
the auctioneer decides which bids have higher profits and
determine the winners. The main limitations of this auction
mechanism are that (i) the number of subsets of items one
can bid is exponentially large, and (ii) the winner determi-
nation step is NP-Hard in the general case [16]. Therefore,
it is necessary to use strategies that limit the subset of items
one can bid, such that the winner determination step can be
done in polynomial time.

The Package Tree Strategy [17] consists in organizing the
candidate packages of items in a tree structure, where each
node is a package that robots can bid during the auction
process. The child nodes contain disjoints subsets of the
parent node items, and the union of all packages in the
child nodes is equal to the package of the parent node. The
root node is composed by all items to be auctioned, and the
leafs are composed by a single item. Using this structure, the
winner determination can be done recursively in polynomial
time as described in [17].

The Sorting Strategy [17] is based on the fact that (i) if the
items to be auctioned are sorted according to any criterion
and (ii) the bids are restricted only to those packages made of
consecutive items according to the sorting, then the winner
determination can be done in polynomial time by a dynamic
programming algorithm as described in [17].

As far as we know, the only works in the literature that
apply combinatorial auctions to robot exploration are [18]
and [19]. In [18], a package-tree based combinatorial auction
mechanism is proposed for an area reconnaissance problem,
which is different from the problem tackled here. On the
other hand, Berhault et al. [19] tackles the same exploration
problem studied in this work. They proposed four strategies
to limit the possible combinations of targets the robots can
bid on, described below.

The first and the simplest strategy consists of limiting
the number of targets in each package. According to this
strategy, robots can bid on any package with less targets than
the established limit. In this case, the winner determination
problem is solved by inspection.

The second strategy rely on pre-defined information about
clusters of targets, with sizes varying from three to six, that
were observed in the environment. According to this strategy,
robots can bid on all packages containing one or two targets,
as well as on packages composed by sets of pre-defined
targets clustered in the environment. In this case, the winner
determination problem is also solved by inspection.

The third combinatorial auction mechanisms of [19] is
based on bidding on good sequences of targets. The se-
quences are recursively created by starting with just one
target ti ∈ T and adding to this sequence the target tj ∈ T
that is the closest to the last target in the sequence if the
surplus of the new sequence (the reward minus the cost of
visiting the targets) is greater than or equal to the surplus of
the old sequence and tj is the closest target to the last target
in the old sequence.

The last and more sophisticated strategy proposed in [19]
models the problem as a complete weighted graph in which
the vertices correspond to targets and the edge weights are
the travel costs between them. It builds a binary package-
tree as follows. The root node consists of a package with
all targets being auctioned. First, a max-cut problem [20] is
solved in order to divide the vertices in this package into
two disjoint packages. Next, both packages are placed as
child nodes of the root node. Then, the process is recursively
applied to every child node that has more than one target.
Robots can bid on any package in this tree, and the winner
determination problem is solved with the same algorithm
used in [18]. Computational experiments showed that this is
the best strategy among those studied in that work.

In this paper, we propose three new different strategies to
improve combinatorial auctions in multi-robot exploration
tasks. The C-REG and C-TSP are package-tree strategies
and are presented in Section III. They use package-trees
in a similar way as [19], but are based on heuristics for
the Traveling Salesman Problem (TSP) [21] for constructing
the package tree. The C-SORT is a sorting strategy and



is presented in Section IV. As far as we know, this is
the first work in the literature to propose an item sorting
based combinatorial auction to perform the target-to-robot
allocation.

III. PACKAGE TREES

The first strategy, called C-REG, is a top-down approach
that builds a package tree from the root to the leafs. It is
based on the region partition method proposed in [22] and
used in [23] to heuristically solve the TSP. It builds a binary
package-tree as follows. The root node has all the targets
being auctioned. Next, the smallest rectangle that contains
all the targets in this node is computed. Then, this rectangle
is divided into two smaller rectangles with the same area.
The items in one of these rectangles are placed in one of
the child nodes of the current node, and those in the other
rectangle are placed in the other child node. The process
is recursively applied to the new sub-nodes that have more
than one target. Figure 1 shows some of the steps of this
algorithm.

Fig. 1. Building a package tree using C-REG: as the region is being
partitioned, new nodes are created.

The second strategy, called C-TSP, is a bottom-up ap-
proach that builds a package tree from the leaf to the
root node. It builds a binary package-tree as follows. Let
G = (V,E) be a complete weighted graph, where targets
are represented by the vertices in V , and the edge weights
are the distances between the targets. Initially, each target is
a leaf node on the package tree. The algorithm iteratively
tries to group targets in order to create larger packages in
the tree. In each iteration, there is a threshold that limits
which targets can be grouped according the TSP cost formed
by these targets. This cost is computed using the Farthest
Insertion (FI) heuristic [24]. If some targets, when grouped
in a package, presents a TSP cost bellow the threshold, the
method creates a new node in the package tree containing
all clustered targets, and the targets become child nodes of
the new one. When no package can be further grouped,
the threshold is incremented and a new iteration begins.
The algorithm tries to group smaller packages into larger
packages according to the TSP. The process continues until
the TSP threshold allows the clustering of all targets in the
environment, and this group is the root of the package tree.
Figure 2 shows the execution of this algorithm.

After the creation of the package tree using one of these
two strategies, robots can bid on any package in the tree. The
bid value for a package is the TSP cost to visit all targets
in the package. This cost is computed with the FI Heuristic
for the TSP. The winner determination is performed in two
steps. In the first step, the auction process decides which are
the winner bids for each package individually. In the second
step, a recursive algorithm decides which packages are more
profitable. The algorithm works as follows. The base case is a
leaf package, which is considered to be the most profitable.
To decide on a non-leaf package, the algorithm compares
the bid value for the package and the sum of bids for its
children. If the bids for children nodes are more profitable
than the parent package, the children packages are marked
as allocated. Otherwise, the parent package is marked as
allocated. The procedure continues recursively until deciding
between the root node and its children. At the end, the
packages marked as allocated will be effectively allocated
to the robots that bid on them.

IV. TARGET SORTING

The third strategy, called C-SORT, is a sorting strategy
also based on the FI heuristic for TSP. It sorts the targets
and builds a matrix of bids for each consecutive interval of
items as follows. Let G = (V,E) be a complete weighted
graph, where targets are represented by the vertices in V , and
the edge weights are the distances between the targets. First,
C-SORT builds a TSP cycle with all the targets in V using
FI. Next, it converts this cycle into an item permutation by
removing one edge arbitrarily. Once the targets are sorted,
robots create a bid matrix, formulating bids for each of the
n2/2 possible consecutive combination of targets that obey
that order. Figure 3 shows an example of this matrix for a
sequence of 8 targets {t1, t2, t3, t4, t5, t6, t7, t8}. In the first
line of the matrix there are bids for the intervals with just



Fig. 2. Building a package tree using C-TSP: targets are incrementally
clustered according to the cost of a TSP circuit.

one target, such as [t1, t1] = {t1}, [t2, t2] = {t2}, [t3, t3] =
{t3}, and so on. In the second line of the matrix there are
bids for intervals with two targets, such as [t1, t2] = {t1, t2},
[t2, t3] = {t2, t3}. In the next line, there are bids for intervals
with three targets, such as [t1, t3] = {t1, t2, t3}, and [t2, t4]
= {t2, t3, t4}, for example. This process continues until the
last line, in which there is a bid for all the targets, [t1, t8] =
{t1, t2, t3, t4, t5, t6, t7, t8}.

Each robot in the team computes its bid matrix and
broadcasts it to all the robots. The winner determination
occurs in two phases. First, the auction decides which are the
winner bids for each interval represented by a matrix cell. For
each cell on the bid matrix, the auctioneer just compare the
bid values on each corresponding matrix cell sent by robots.
A new matrix is generated containing only the winner bid and
the respective winner robot for each matrix cell. Then, the
winner determination problem is to decide which packages

Fig. 3. Example of a bid matrix used in the C-Sort Algorithm.

corresponding to each matrix cell will be assigned to robots
based on the generated matrix. This decision can be done by
a dynamic programming algorithm proposed in [17].

V. EXPERIMENTAL RESULTS

The coordination approaches based on Single-Item Auc-
tion (SI) [13], Sequential Single-Item Auction (SSI) [7],
the graph-cut combinatorial auction (C-MAX) [19], and
those proposed in this paper: C-REG, C-TSP, and C-SORT
were implemented in C++ and compiled with g++ version
4.4.5. The simulations were performed in the Player/Stage
Simulator version 4.0.1 running on an Intel Core i5 machine
with 4 GB of DDR3 RAM memory. The implemented
auctions are fully distributed, in the sense that there is no
central auctioneer responsible for receiving bids from each
robot and compute the winners. Each robot acts as bidder
and auctioneer, sending its bids to all other teammates and
computing the winners individually and locally. For this, we
consider a perfect communication scenario.

Due to the limited space, we only show here results for
simulations performed on six different scenarios. In the first
three scenarios, 40 targets are uniformly distributed in an
environment with size of 282x282m, and the number of
robots was 3, 5, and 9, respectively. In the other three
scenarios, the 40 targets are non-uniformly distributed in
the environment, and the number of robots was 3, 5, and 9,
respectively. The non-uniform distribution works as follows.
Firstly, the environment is divided into 16 squares of the
same size. Next, five of these squares are selected at random.
Then, one fifth of the total number of targets were uniformly
distributed inside each of the five selected squares. For
each scenario, 30 runs of each coordination approach were
performed, varying the seed of the random number generator
used to distribute the targets in the environment.

Figures 4 and 5 show the box plots that summarize
the results of the simulations for the six coordination ap-
proaches on the first three scenarios (those with uniformly
distributed targets) and the last three scenarios (those with
non-uniformly distributed targets), respectively. Each box
plot shows, from bottom to top, the smallest sum of traveled
distances, the lower quartile, the median, the upper quartile,
and the largest sum of traveled distances observed over the
30 runs. It can be seen that the best results were obtained



with combinatorial auctions C-TSP and C-SORT, as they
displayed the smallest medians and the smaller quartiles on
all scenarios. C-TSP was slightly better than C-SORT in the
scenarios with non-uniformly distributed targets, while the
opposite happened in the other there scenarios. It can also
be seen that C-MAX obtained similar (some times worse)
results than SI and SSI auctions. Besides, C-TSP and C-
SORT clearly outperformed C-MAX in all scenarios.

Figures 6 and 7 show the average computation time (in
log scale) consumed by the six coordination approaches on
the first three scenarios and the last three scenarios, respec-
tively. It can be seen that single-item and sequential single-
item auctions had the shortest execution times, while the
combinatorial auction C-SORT had the longest computation
times. This is due to the fact that robots need to compute
bids for O(n2) packages in the bid matrix, while the other
combinatorial auctions compute bids only for O(n) packages
in the package tree. Besides, the larger was the number
of robots in the system, the larger was the running time,
since there are more bids to process during the winner
determination.

VI. CONCLUSIONS

In this work, we investigated the use of combinatorial
auctions to target-to-robot allocation in exploration missions.
We proposed new coordination approaches based on market-
oriented combinatorial auctions. We proposed two package-
tree based auction mechanisms, one top-down (C-REG) and
the other bottom-up (C-TSP). Besides, we proposed an
auction mechanism (C-SORT) based on sorted sequences of
targets obtained with a TSP heuristic. As far as we know, this
is the first work in the literature to propose an item sorting
based combinatorial auction to perform the target-to-robot
allocation.

Simulations were performed to compare these approaches
with other approaches based on single-item auctions, sequen-
tial auctions, and other combinatorial auction mechanisms
found in the literature. Experimental results showed that C-
TSP achieved better results than the other approaches in
the scenarios where targets are grouped in some regions of
the environment. Besides, they showed that in the scenarios
where targets are uniformly distributed, C-SORT outper-
formed C-TSP and the other approaches. However, the exper-
iments also showed that C-SORT has the largest computation
times among the coordination approaches studied in this
work.

Future works can apply the combinatorial auctions pro-
posed here for more complex exploration problems, or pro-
pose new combinatorial auction mechanisms that are more
efficient or more flexible than those proposed in this paper.
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Fig. 4. Sum of traveled distances by robots in an environment with 40 targets uniformly distributed.

Fig. 5. Sum of traveled distances by robots in an environment with 40 targets non-uniformly distributed.

Fig. 6. Time consumed by the auctions to compute the allocations in scenarios with 40 targets uniformly distributed.

Fig. 7. Time consumed by the auctions to compute the allocations in scenarios with 40 targets nun-uniformly distributed.


