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Abstract—Cooperative localization allows groups of robots to
improve their overall localization by sharing position estimates
within the team. In Swarm Robotics a large number of very
simple agents is used to perform different types of tasks, however,
this simplicity may have a direct impact on the estimated
localization. In this work, we consider the use of a single robot
(leader) with improved localization capability (e.g. GPS) which
will be used to enhance the position estimates of the rest of
the group. By using a potential function, we are able to place
the leader in the region (near the center) that best benefits its
position broadcasting and also to execute a coordinated and
continuous movement of the entire group by controlling only this
unity. Numerous trials in a simulated environment were executed,
providing statistical examination of the final results.

I. INTRODUCTION

Robotic Swarms have been used in different types of tasks,
such as covering large areas, search-and-rescue and patrolling
([1], [2]). In some of them, the swarm should navigate to
specific locations while maintaining its cohesion to perform
a given task. Many of these tasks are performed in places
deprived of global localization systems. Consequently, it is
necessary to provide the group with some cooperative ca-
pability to allow each robot to track its initial localization
information.

Cooperative Localization (CL) techniques have been applied
in various situations to provide a way of tracking the localiza-
tion of a group of robots. These methods allow each robot to
use other robots in the group as beacons or landmarks in order
to update its own pose belief. A way to do this is to generate a
joint estimate of all robots’ poses in the group, by getting their
individual pose estimations. In spite of possibly generating
optimal estimates, this strategy needs to use all robots in the
group, making it unfeasible when dealing with a large group of
robots. To deal with this, approximate cooperative localization
techniques have been employed in such a way that each robot
uses only the pose of a part of the group to update its belief.

In [3], we have shown that it is possible to reach good
individual localization levels when the robots use a limited
number of neighbors as landmarks. For this, some members
of the group must be kept stationary while the others are
in motion. By doing this, the static robots can maintain low
levels of uncertainty and act as localization providers. A group

coordination mechanism instructed the robots to change their
roles (stationary and in motion) allowing the group to advance
in the environment while maintaining the uncertainty bounded.
In spite of the good results, this strategy may compromise the
group performance due to the intermittent movement.

In systems where the robots move continually, the quality
of localization (position tracking) generally degrades with
the distance traveled. This happens because of the lack of
static landmarks providing good localization information. In
this paper, we investigate the use of heterogeneous robots to
perform cooperative localization in a swarm. A robot with
global localization capabilities is placed inside the swarm and
is used to provide good localization estimates and to guide the
others during the continuous motion. The group movement
is done in a cohesive way and only local sensing is used
to maintain the group together. Furthermore, each robot uses
only the neighbor with the lowest uncertainty as a landmark
to improve its own localization estimates. The use of only a
small set of neighbors for cohesion and localization makes this
method scalable, which is a fundamental requirement when
dealing with swarms. The results show that the method is
capable of propagating good localization estimates through
the group such that all robots in the swarm can reach good
individual localization estimates during navigation.

This paper is organized as follows. Next section discusses
some related works regarding cooperative localization. Section
III presents our methodology, describing the mechanisms used
for positioning the heterogeneous robots, keeping cohesion
during navigation and performing the cooperative localization.
Simulations are presented in Section IV, and Section V brings
the conclusion.

II. RELATED WORK

In multi-robot teams, individual localization estimates can
be corrected based on the teammates’ positions instead of
environment landmarks. The first works to use robots as
landmarks to perform cooperative localization are [4] and [5].
In these works, the motion of the robots is coordinated in such
a way that in each moment a group of robots is stationary
in order to serve as landmarks for others. These stationary
robots observe (or are observed by) the others, promoting



a more accurate position estimate than the one provided by
proprioceptive sensors (e.g. odometry) only.

A more general approach to the cooperative localization
problem is presented in [6], in which a joint estimate of
the robots’ poses in a group is generated by implementing
an Extended Kalman Filter (EKF) [7]. The navigation of
all robots is not coordinated and they are able to move
continuously. The robots act individually and exchange in-
formation when they meet each other. In the decentralized
approach, each robot performs the prediction step of the filter
individually while the update step is done by exchanging
information with others via communication and exteroceptive
sensors. The localization interdependence is considered and its
representation (cross-correlation terms) is stored by all robots
and explicitly propagated to the teammates. Using these terms,
a robot is capable of estimating its pose by considering the
shared knowledge associated with previous meetings. In spite
of having the best estimate, this strategy has the disadvantage
of requiring a previous knowledge about the group size and
presents a complexity that precludes its use for large groups
of robots, such as swarms.

To deal with this drawback, some works have proposed
approximate strategies to perform the belief update, such as
[8] and [9]. These approaches use only part of the group
to calculate the robot’s estimate and propose strategies to
deal with the partial knowledge. In [9] the belief update is
performed by using the Covariance Intersection Algorithm
(CI) [10], which is a consistent method to fuse estimates
of same quantity with unknown cross-correlation terms. The
approach presented in [9] allows each robot to maintain only
its own state-covariance estimate with a cost to generate a
new estimate of O(n). The concept of dependency tree is
introduced in [8], which prevents a circular reasoning in
the update step of the beliefs. These two approaches avoid
the overly optimistic position estimates that occurs when the
localization interdependence is ignored.

In spite of these and other works in the context of cooper-
ative localization, its use in robotic swarms is still incipient.
In large groups of robots, the complexity in space and time
necessary to deal with the complete measurement graph in
order to generate a joint estimate presents a challenge in
the area. In a swarm, occlusions are very common and limit
the robots’ observations. Moreover, the robots have limited
capabilities that constrains each one in dealing with only local
information.

Very few works have investigated the influence of the group
size in relation to the quality of the group localization. The ev-
idences presented in [3] show that good individual localization
levels can be reached even when robots use a limited number
of neighbors as landmarks. These evidences are supported by a
coordinated motion strategy that let some robots with accurate
beliefs to act as static landmarks. However, the localization
quality is preserved at the expense of motion performance.

Many works have exploited the use of heterogeneous sen-
sors aboard some team members of a group. By cooperatively
sharing sensor information, the robots with limited capabilities

have their shortages counterbalanced by their teammates. In
[11], for example, a group of two robots equipped with
different absolute positioning sensors assist each other in
situations where the sensors’ information have deteriorate or
failed. When a failure occurs, the group performs cooperative
localization. Another example is presented in [12], where a
group of heterogeneous robots perform a 3D mapping task:
a more specialized robot (master) controls two simpler ones
(slaves) and use them to perform cooperative localization. In
this way, the master robot is able to scan its surroundings
and, using its accurate location, to transform the information
caught by the laser range finder to the world coordinates
and map the environment. On another approach, Bailey et
al. [13] demonstrate that it is possible to transfer pose in-
formation from a well-localized robot to others that do not
have localization capabilities. They use three robots, being
one with sensors to measure absolute positioning, and all of
them can share information with the others. Thus, a robot
can directly access the information provided by the robot
with accurate localization. These works show the advantages
of using heterogeneous robots, but the scope of them is
restricted to small groups of robots that can share localization
information with all members of the group.

In this work we propose a methodology to tackle the
aforementioned problems related to cooperative localization
in swarms. Our methodology considers a single robot (leader)
with improved localization capability (e.g. GPS) which will
be used to enhance the position estimates of the rest of
group. A motion strategy is also presented, which allows the
swarm to execute a coordinated and continuous movement by
controlling only the leader.

III. METHODOLOGY

Our methodology can be summarized as follows: initially, a
leader robot, which has a good position estimate (for example,
through the use of a Global Position System (GPS)), is
autonomously positioned near the center of the swarm estab-
lishing an initial formation, as will be explained in Section
III-A. At this moment, we consider that each robot has access
to a good estimate of its initial position in a common frame
and uses this initial information to start the motion. The leader
has knowledge of the position of some waypoints that it uses
to guide the group in the environment. The entire group is
able to navigate as a unit by using the swarm motion strategy
described in the Section III-B. Finally, during the motion,
each robot uses proprioceptive sensors to estimate its pose.
When the belief of a robot accumulates a certain amount of
uncertainty, it tries to update such belief by using some of
the robots inside its neighborhood as landmarks. The process
is completely decentralized: each robot estimates its relative
distance and orientation with respect to a landmark robot, and
uses the pose information disseminated by it to correct its
own pose (see Section III-C). In this way, the more accurate
estimates of the leader are propagated through the swarm,
allowing individual members to have a better estimation of
their own pose.



We consider that robots are able to identify and measure
relative ranges and bearings to their neighbors and exchange
information with them. Also, robots are equipped with propri-
oceptive sensors that allow them to measure their own motion.
Since we are using holonomic robots, we do not consider the
robot orientation in the estimation process, and we assume
the availability of this information with low uncertainty, such
as those provided by a compass. Also, we assume that all
sensor measurements are subjected to white Gaussian noise,
but communication is performed without errors.

A. Initial Swarm Formation

In this work, we consider a swarm of heterogeneous robots,
in which a leader has an enhanced position estimate through
the use of a Global Positioning Systems (GPS). In this first
step, the robots use global information (position of all other
robots) to form a cohesive group. During this formation, the
leader is positioned near the center of the swarm. After that,
only local information is necessary to the group to perform
the navigation.

Having a set of fully actuated mobile robots with dynamics
given by

ṗi = vi and v̇i = ui, (1)

in which pi ∈ R2, vi ∈ R2, and ui ∈ R2 are the position, ve-
locity, and control input of robot i (Ri), respectively. The par-
tition τ = {τ1, τ2}, with each τk ⊂ R = {R1,R2, . . . ,Rη}
containing all agents of type k, models the heterogeneity of
the system. We assume that ∀j, l : j 6= l → τj ∩ τl = ∅, i.e.,
each robot is uniquely assigned to a single type. In this work
we consider unbalanced partitions, in which τ1 has only one
member (the leader) while τ2 has the other robots.

The control law used in this work was proposed in [14] as
follows:

ui = −
∑
j 6=i

∇pi
Uij(‖pij‖)−

∑
j 6=i

(vi − vj), (2)

in which Uij(‖pij‖) is an artificial potential function that
rules the interaction between agents i and j, ‖pij‖ is the
Euclidean norm of the vector pi−pj , and ∇pi

is the gradient
with respect to the coordinates of agent i. The first term
represents the interactions of robot i with all other agents, and
the second term forces robots to match their velocities. This
control law causes a group of robots to asymptotically flock
as well aggregate or segregate, according to the dij parameter
values (more details in the following).

The artificial potential field Uij is a function of the relative
distance between a pair of agents, i.e.,

Uij(‖pij‖) = α

(
1

2
(‖pij‖ − dij)2 + ln ‖pij‖+

dij
‖pij‖

)
,

(3)
in which α ∈ R+ is a scalar control gain, and dij is a positive
parameter that controls the group behavior.

The behavior of the group can be changed when we
suitably choose the dij parameter. This parameter is a way
of implementing the differential potential concept [15], which

states that pairs of agents experience different magnitudes of
potential when they have different types. So, as described
in [14], the parameter dij of (3) is based on the local type
partition iτ , such that:

dij(
iτ) =

{
dAA, if i ∈ τk and j ∈ τk
dAB , if i ∈ τk and j 6∈ τk

. (4)

Equation (4) asserts that interactions among similar and dis-
similar types of robots are ruled by dAA and dAB , respectively,
and by construction these constants relate to the pairwise inter-
agent distance at the stable state.

As described in [14], a segregative behavior can be achieved
when the parameters assume values considering the following
rule:

0 < dAA < dAB . (5)

On the other hand, it is shown in [16] that it is possible to
achieve an aggregative behavior by defining the dij parameter
as follows:

0 < dAB < dAA = dBB . (6)

These two rules, expressed by (5) and (6), can be com-
bined in order to position an entire group inside another. So,
we compound the aggregative and segregative behaviors by
adjusting the dij parameter in such a way that

0 < dAA < dAB < dBB . (7)

In this work, we use (7) to automatically position the leader
near the center of the group. As said earlier, in this work we
use only two groups and the first one has only one member
(the leader). Because of this, the parameter related to this
group (dAA) is not important and we use only the parameter
associated to the second group (dBB). So, for this work, the
relevant part of (7) is:

0 < dAB < dBB . (8)

Figure 1 shows a sequence of pictures that illustrates the
motion of a robot (the blue one) towards the center of the
other group (red one) by applying the rules described in (8).
As can be seen, the group forms a circular organization around
the center. In this organization, the distances between robots
that are farther from the center are greater then the distances
between robots that are nearer to the center. This unbalanced
formation can degrade the relative measurements taken by
robots that are located farther from the center more strongly
than the robots that are nearer. To deal with this, we slightly
changed the control law in such a way that a robot is influenced
only by its neighbors:

ui = −
∑
j 6=i
j∈Ni

∇pi
Uij(‖pij‖)−

∑
j 6=i
j∈Ni

(vi − vj), (9)

in which Ni represents the group of robots that are accessible
by robot i.

A neighborhood Ni consists of a circular region of radius
ε around the current position of robot i. Thus, we can define



Figure 1. Snapshots of the motion of the leader (blue circle) towards the center of the swarm (marked as a blue target). In the sequence, the first and fifth
images represent the initial and final configuration, respectively.

N = {N1,N2, . . . ,Nη} as the set of calculated neighbor-
hoods, all with the same radius. We assume that robot i
can exchange information and measure relative range ρ and
bearing φ of all robots inside its neighborhoodNi. Moreover, it
is assumed that robots inside a neighborhood Ni can uniquely
be identified by the exteroceptive sensor of robot i.

By using (9), the circular formation is made local and all
robots present similar distances between each other. Although
the artificial potential field (3) remains the same, the param-
eters dij are modified to achieve the aggregative behavior so
that

0 < dAB = dAA. (10)

At the first phase of the group formation, the robots use
the global control law (2). In that phase, a robot needs to
calculate the distances to all robots. By doing this, the leader
can be automatically positioned near the center of the group
by applying the rule (8). However, it is necessary to define a
condition for all robots to change their control law from (2) to
(9). In this work, being the leader responsible for doing this,
it sends a broadcast message for all robots after reaching a
position near the center.

B. Swarm Motion Strategy

In this work, after the swarm reaches an initial formation
by using the steps described in the previous section, some
virtual targets are defined in the environment to be used by
the leader to guide the whole group. So, the leader guides the
group through the environment by using an attractive potential
to these targets. The control law (9) used in the previous stage
by the robots is slightly changed to incorporate the attractive
potential to a virtual target as:

ui = −
∑
j 6=i
j∈Ni

∇pi
Uij(‖pij‖)−

∑
j 6=i
j∈Ni

(vi−vj)−δil∇pi
Uit(‖pit‖),

(11)
where Uit(pi) is the artificial attractive potential function
that guides the leader towards the target, pt is the location
of the target, ‖pit‖ is the Euclidean distance norm of the
vector pi − pt, and ∇pi

is the gradient with respect to the
coordinates of the agent i. The parameter δil is the Kronecker
delta function described by

δil =

{
1, if i = l

0, if i 6= l,

where l represents the index of the leader robot.
The artificial attractive potential field Uit is a function of

the relative distance between the leader and the target

Uit(‖pit‖) =
1

2
β‖pit‖2, (12)

in which β is a gain used to control the intensity of the
potential. The adequate adjustment of this gain allows the
group to maintain the formation during the motion. Despite
the assumption of the knowledge of the target locations by
the leader, the whole motion is performed using local sensing.

As can be seen, for a robot that is not a leader the equations
(9) and (11) are the same. Then, only the leader needs to
change its control law to put the group in motion, which can
be done in a decentralized way. As said earlier, the control
law (2) applied to swarms generates a formation that is not
uniform: robots located near the center of the group are closer
to its neighbors than robots that are farther from the center.
Consequently, the leader is not equidistant of their immediate
neighbors of dAB . By using this fact, the leader puts the group
in motion when its distance to each immediate neighbor has
converged to values close to dAB .

C. Cooperative Swarm Localization

Consider a scenario where a swarm R of η holonomic
robots must navigate in a static 2D environment. In the time-
step k, the vectors pki = [xki y

k
i ]>, vki = [vxki vy

k
i ]> and

uki = [axki ay
k
i ]> represent the true position of the i-th robot

(Ri) in a common global frame W , the velocities, and the
control action, respectively.

The state xki of Ri at time-step k is defined by its position,
i.e., xki = pki . The discrete-time motion model of robot i is
expressed by:

vk+1
i = f(vki ,u

k
i ), i = 1, . . . , η

= vki + uki ∆k,

xk+1
i = f(xki ,v

k+1
i ),

= xki + vk+1
i ∆k.

(13)

The true measurements (range and bearing) taken by Ri
of Rj at time-step k are respectively denoted by ρki,j and
φki,j

1 (i, j = 1, . . . , η, i 6= j, j ∈ Ni). Thus, the true range and

1The notation ∗ki,j is used to express that a certain value related to Ri was
obtained using information or measurements from Rj at time-step k.



bearing taken at time-step k by robot i of robot j, is given by
h(xki ,x

k
j ), where

h(xki ,x
k
j )=

[
ρki,j

φki,j

]
=

√(xkj − xki )2 + (ykj − yki )2

atan2(ykj − yki , xkj − xki )

 . (14)

The measurement model zk+1
i,j = [ρ̂k+1

i,j φ̂k+1
i,j ] at time-step

k + 1, when Ri gets a relative position measurement of Rj ,
is given by

zk+1
i,j = h(xk+1

i ,xk+1
j ) + nk+1

i,j , (15)

where nk+1
i,j is the zero-mean white Gaussian measurement

noise with covariance Rk+1
i,j added to the true relative mea-

surements given by h(xk+1
i ,xk+1

j ).
In this work, the swarm motion is coordinated such that the

group moves as a unit (see Section III-B). The robots use only
local information and, individually, each robot i maintains only
its own state estimate x̂ki and covariance Pki . This permit us
to deal with the costs of processing and communication when
cooperatively localizing a large group of robots.

The cooperative localization is performed as follows. Robots
with uncertainty level lower than a prespecified value act as
landmarks and broadcast messages composed of their state and
covariance to its neighbors. After reaching the prespecified
value of uncertainty, a robot is not considered a landmark
anymore and stop to broadcast messages. During the motion,
after a robot has accumulated a given level of uncertainty,
it tries to localize itself by processing the relative range
and bearing measurements zi,j together with the information
received from its landmark neighbors. Because of the uniform
formation generated by (9), the landmark selection is basically
done based only upon the uncertainty level of the information
received. This way, the neighbor with the lowest uncertainty
level is selected, and its data are fused with the robot’s
predicted state x̂

k+1|k
i and covariance P

k+1|k
i estimates2 to

generate the new state x̂k+1|k+1
i and covariance Pk+1|k+1

i esti-
mates. The mathematical details of this procedure is presented
as follows.

The propagation of a robot’s state is performed by using the
discrete-time motion model described in (13), such as:

x̂
k+1|k
i = f(x̂

k|k
i , v̂k+1

i ), i = 1, . . . , η, (16)

which consists of a function f that considers the previous
state x̂ki and the velocity v̂k+1

i = v̂ki + ûki ∆k. The input
ûki = uki + wk

i = [âx
k
i ây

k
i ]> is basically the commanded

accelerations uki augmented with additive zero-mean white
Gaussian noise wk

i , with covariance Qk
i . During the motion,

each robot individually evolves this model with time-steps of
length ∆k.

Using an EKF [7], the respective covariance propagation for
Ri is given by:

P
k+1|k
i = ΦkiP

k|k
i (Φki )> + Gk

iQ
k
i (Gk

i )>, (17)

2Similar notation to [9] is used here: ŷl|m denotes the estimate of the
random variable y at time-step l, given the measurements up to time-step m.

where Φki is a 2× 2 identity matrix (I2) and Gk
i is this same

matrix multiplied by the time-step ∆k.
When Ri is trying to localize itself, it fuses the best data

among those received by its neighbors with the respective
relative measurement zk+1

i,j taken. This way, Ri can generate
an estimate of its own state as if such estimate had been
calculated by the robot Rj , as illustrated in the following
equation:

x̂k+1
i,j = x̂

k+1|k+1
j − g(zk+1

i,j ), (18)

where

g(zk+1
i,j ) =

[
ρ̂k+1
i,j cos(φ̂k+1

i,j )

ρ̂k+1
i,j sin(φ̂k+1

i,j )

]
.

The approach used here is similar to [17] which is based
on [18]. The uncertainty Rk+1

i,j tied to the measurement zk+1
i,j

can be converted to the common frame W by the means of
the jacobian Jk+1

i,j , as follows:

Jk+1
i,j = ∇xkg(zk+1

i,j )
∣∣
xk
i =x̂

k+1|k
i ,xk

i,j=x̂k+1
i,j

=

[
cos(φ̂k+1

i,j ) −ρ̂k+1
i,j sin(φ̂k+1

i,j )

sin(φ̂k+1
i,j ) ρ̂k+1

i,j cos(φ̂k+1
i,j )

]
.

(19)

The jacobian J relates the deviation of the original [∆ρ̂ ∆φ̂]>

and the transformed [∆x̂ ∆ŷ]> variables, which represent the
distances fromRi andRj in x and y coordinates, respectively,
calculated as: [

∆x̂
∆ŷ

]
= J

[
∆ρ̂

∆φ̂

]
. (20)

The covariance of the measurement z in the common frame
is defined by multiplying both sides of Equation (20) by their
respective transposes and taking the expectation of the result.
This transformation represents an adequate linear approxima-
tion when the variables are represented by Gaussians with
small variances, as stated in [18]. The uncertainty Pk+1

i,j related
to the x̂k+1

i,j estimate is generated by the combination of the
covariance matrices:

Pk+1
i,j = P

k+1|k
i + Jk+1

i,j Rk+1
i,j (Jk+1

i,j )>. (21)

In the update step of the EKF, the estimates x̂
k+1|k
i and

x̂k+1
i,j are combined to generate a new state x̂

k+1|k+1
i and

covariance P
k+1|k+1
i . These represent the actual belief of the

robot, and are used in the next prediction phase of the filter.

IV. SIMULATIONS

We performed a series of experiments to show the ef-
fectiveness of the proposed methodology. Specifically, we
analyzed the quality of the localization obtained using the
Cooperative Localization and the cohesive navigation. The
experiments were executed considering a swarm with 100
holonomic small robots. The group navigates in an obstacle-
free static environment of approximately two hundred square
meters (15 m × 15 m). Swarm motion is directed by a series
of waypoints, which define virtual targets to be reached by the
group. The location of these targets is used in (11) to calculate



the last term of the equation, which generates a control action
that guides the leader, and consequently the others, to specific
regions of the environment. The controller generated accelera-
tion is subjected to additive zero-mean Gaussian noise with a
standard deviation of 10% of the true value. Each simulation
takes approximately 56300 time-steps, where ∆k = 10 ms is
the duration of each time-step. The total length of the traveled
distance is about 35.5 m.

Following the methodology, the robots are initially assem-
bled together, and the leader is located in a random position.
By using (2), the leader is guided towards the center of the
group (see Figure 1). In this phase, the dAB parameter was set
to 0.5, while the dAA was set to 1. The localization algorithm
(Section III-C) uses relative measurements between pairs of
robots in the group. Because of this, the non uniformity of
the formation generated by (2) faster degrades the localization
quality of the robots that are farther from the center of the
swarm. To deal with this, the local control law (9) is applied
to generate a more uniform formation, while the usage of (11)
allows the robots to move by using only local information.
In these control laws, the parameters used by the potential
function (3) were set to: dAA = dAB = 0.2. The radius ε was
defined as 0.266 m (1.33× dAB), which makes each robot to
have access only to robots that are located next to it.

Figure 2 presents an example of a path executed by the
swarm in the environment. The large gray circles depict the
regions that the swarm needs to visit, while their centers define
the targets (waypoints). The position of the robots is presented
over time as dots. The blue one characterizes the robot leader
while the red ones represent the other robots. We also highlight
the robots’ positions in five distinct moments during the swarm
motion. It is possible to see that the swam maintains the
formation during the motion.

Figure 2. A path executed by the swarm. The blue color denotes the leader
robot while the red one indicates the other robots.

In the following, we show the results of three types of
experiments: (i) the localization is done such that each robot
uses only its proprioceptive sensors (without cooperation);
(ii) the cooperative localization is performed but no robot is

equipped with GPS; and (iii) a leader equipped with GPS is
used as the best estimate of the group and propagates this
information to its neighbors. When using cooperative localiza-
tion, each robot localizes itself by using only its best neighbor
(lower uncertainty) as landmark. In these experiments, the
range and bearing noise were defined proportional to the actual
measurements and were set considering a standard deviation
of 5% of the true measurements.

In this analysis, each experiment was performed 30 times
and the RMSE error was calculated. The objective is to
compare the localization error of robots based on the distance
that they are from the leader. To help the analysis of this
error, the swarm was divided in six groups of robots by using
the k-means clustering method. The criterion used to assign
a robot to the group i (Gi) was the actual distance of such
robot to the leader. Figure 3 shows the division performed
when using k = 6. The circles represent the robots and each
color characterize a group. The leader is represented by the
white color and was considered as the reference point in the
clustering process.

 

 
G1
G2
G3
G4
G5
G6

Figure 3. Clustering used for analysis purposes only. The leader (white circle)
is located at the center of the group while each other robot is assigned to a
group (G1 to G6) based on its actual distance to the leader.

The RMSE localization error was performed considering
these groups. Figure 4 shows the error for the three types
of experiments. It is possible to note the increasing in the
localization quality when using cooperation (CL without GPS).
Moreover, the usage of only one robot equipped with GPS
increases significantly the quality of the individual localization
(CL with GPS (leader)). Despite not shown in this figure,
we also observed in the experiments that the localization
error increases much faster when not using cooperation (no
cooperation).

Figure 5 presents an analysis of the error related to the
experiments in which the leader was equipped with GPS and
made use of cooperative localization. The G1 group was used
as reference because its proximity with the leader. So, each bar
shows the proportion of the group error in relation to G1, i.e.
Gi/G1. It is possible to note the tendency of increasing in the
error when a group is farther from G1. The localization error of
G6 is almost fifty percent worst than the localization of group
G1. In Figure 4, the groups error in cooperative localization
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Figure 4. Localization error considering three different types of experiments.

when no robots was equipped with GPS (CL without GPS)
are almost the same.
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Figure 5. Cooperative localization error with a robot equipped with GPS (CL
with GPS (leader)). Each group Gi is defined by the distance of its robots to
the leader (less i value means closer to the leader).

Table I summarizes the cooperation performed during co-
operative localization (CL with GPS (leader)). It shows the
proportions (averaged over the 30 runs) in which a group made
use of the others. For example, we can see that robots in Group
G2 used robots in G1 in 53% of the localization updates, G2
in 26% and G3 in 21%. It is important to note that robots
that are part of G1 corrected their position using the leader,
which is illustrated by the value 0 in all groups. As said before,
the radius ε was defined in such a way that each robot can
only exchange information with robots that are adjacent to it.
Consequently, a group is associated only with groups that are
near it. Moreover, we can observe that each group, most of the
time, uses its neighboring group that is nearer to the leader.

The importance of the leader positioning is shown in Figure
6. As said earlier, robots that are farther from the leader
accumulate more error. So, when only one robot with GPS
is used in the swarm, its best location is near the center of the
group. In this figure, the light circle depicts the location of
the leader, while the darker ones represent the higher errors.

Table I
INTERGROUP COOPERATION

Groups
G1 G2 G3 G4 G5 G6

G
ro

up
s

G1 0 0 0 0 0 0
G2 0.53 0.26 0.21 0 0 0
G3 0 0.43 0.32 0.25 0 0
G4 0 0 0.42 0.28 0.28 0.02
G5 0 0 0.02 0.43 0.25 0.30
G6 0 0 0 0.08 0.63 0.29

In Figure 6(b), in which the leader is not at the center, it is
possible to note that robots located in the opposite side of the
group have higher error than robots located in the vicinity of
the leader.

(a) (b)

Figure 6. Analysis of the influence of the leader position in the overall
localization quality. The light circle represents the leader location: (a) at
center; (b) in a frontier of the group. The colors depict the intensity of the
localization error. Higher errors are represented by darker circles.

To help the analysis of the localization deterioration related
to the distance of a robot to the leader, we changed the number
of clusters used when the leader is positioned in the frontier
of the group (white circle). The position errors of the robots
located in one of the fifteen clusters (see Figure 7) were
averaged and associated with the distance of the respective
cluster to the leader, which is presented in Figure 8. As
can be seen, the tendency of increasing discussed earlier is
maintained. Figure 8 suggests that in larger swarms only one
robot with absolute positioning may not be enough to maintain
all members of the group with good level of localization and
that the position of this robot is a key factor.

V. CONCLUSION AND FUTURE WORK

In this paper we dealt with the cooperative localization
problem applied to a swarm of robots. Considering the sensory
and computational limitations of the robots usually used in
swarms, we proposed the use of a special type of agent (leader)
equipped with a GPS, with the objective of providing good
position estimates to the rest of the group. The leader is placed
among the swarm, enabling the robots to cooperatively localize
themselves using local information through an approximate
decentralized algorithm.

Despite the fact that the use of cooperation improves the
localization of the group, the continuous motion based solely
on proprioceptive sensors degrades the localization quality
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Figure 7. Increased number of clusters used to analyze the impact of the
distance to the leader (white circle) for the localization.
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Figure 8. Localization error related to the distance of a robot in a certain
group to the leader.

with the distance traveled. Heterogeneity, in the context of
cooperative localization, is an option to deal with this problem
and we show here that even using only a single robot with
special localization capabilities in a swarm can further improve
the localization. However, to take the maximum advantage of
this robot, it is important to choose a good position to place it.
In this work, we presented a way of automatically positioning
this robot in the group and, moreover, to maintain the group
formation.

Here we have obtained evidences that only one robot with
improved sensory capabilities may not be enough in larger
groups. Therefore, future directions include the extension of
the proposed methodology to deal with more than one leader
robot equipped with sensors that may increase the quality in
the position estimate. Also, we intend to study strategies to
automatically position these leaders in the group. The increase
in the number of such robots may also benefit the robustness
of the approach.
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