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Abstract

The use of large groups of robots in the execution of complex tasks has received much

attention in recent years. Generally called robotic swarms, these systems employ a large

number of simple agents to perform different types of tasks. A basic requirement for most

robotic swarms is the ability for safe navigation in shared environments. Particularly, two

desired behaviors are to keep robots close to their kin and to avoid merging with distinct

groups. These are respectively called cohesion and segregation, which are observed in several

biological systems. In this paper, we investigate two different approaches that allow swarms

of robots to navigate in a cohesive fashion while being segregated from other groups of agents.

Our first approach is based on artificial potential fields and hierarchical abstractions. However,

this method has one drawback: it needs a central entity which is able to communicate with

all robots. To cope with this problem, we introduce a distributed mechanism that combines

hierarchical abstractions, flocking behaviors, and an efficient collision avoidance mechanism.

We perform simulated and real experiments in order to study the feasibility and effectiveness

of our methods. Results show that both approaches ensure cohesion and segregation during

swarm navigation.

1 Introduction

Swarm systems generally employ a large number of simple agents to perform complex tasks.

Specially in robotics, tasks such as surveillance, transportation, and exploration and mapping
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of unknown environments can benefit from the use of large groups of robots. In recent years,

such systems have been receiving much attention because of current advances in technology,

which have been allowing the mass production of increasingly smaller robots.

Basic requirements for most robotic swarms include the ability for safe and efficient naviga-

tion. In other words, robots must be able to reach specific goals in a minimum amount of time

while avoiding collisions with obstacles, teammates, and other groups of agents. One possible

strategy is to keep robots close to their kin and avoid merging with other groups, since this

behavior may reduce possible interferences among distinct groups during navigation [36, 42].

Two related and important properties of this strategy are cohesion and segregation. The former

leads groups of robots to behave as a team, whereas the latter prevents them from mingling

with different groups. These properties are naturally observed in several biological systems

such as flocks of birds and schools of fishes.

In this paper, we investigate two different approaches that allow swarms of robots to navi-

gate in a cohesive fashion while being segregated from other groups. The first one is based on

artificial potential fields and hierarchical abstractions, being originally applied in [42] to avoid

congestion in robot navigation. We revisit this method focusing on cohesion and segregation

in a more general setting. In spite of being able to successfully keep groups segregated, the

controller relies on a central unit that oversees the swarm, which may compromise the scala-

bility of the system. To cope with this problem, we investigate a second approach based on

velocity obstacles and flocking behaviors. We introduce the Virtual Group Velocity Obstacle:

a set of forbidden velocities that can lead an agent of a particular cluster to mingle with other

clusters. Furthermore, we present a series of simulated and real experiments in order to show

the robustness of both approaches, and we analyze the results using a metric that measures

the segregative behavior of the system along its execution [31].

This paper is organized as follows: Section 2 reviews related work in the fields of collision
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avoidance, swarm control, and hierarchical abstractions. Sections 3 and 4 present our two

methodologies on cohesion and segregation. Finally, Section 5 discusses our experiments and

results, and Section 6 concludes the work providing suggestions for future work.

2 Related Work

Reynolds [40] was one of the first researchers who tackled the problem of realistically simulating

the movement of a swarm of agents; more specifically a flock of birds known as boids. Basically,

his approach relies on local interactions among agents within a neighboring area, which define

an emergent behavior for the whole flock. Such interactions can be modeled as a special case

of the social potential field method [39], an extension of the artificial potential field technique

[28] that specifically deals with multi-agent systems.

Several works have focused on using artificial potential fields in conjunction with flocking

rules in order to obtain specific behaviors, such as moving in formation [4], converging into

shapes [9, 24], area coverage [23], shepherding [33], and so on. However, it is known that meth-

ods based on potential fields are not oscillation-free and suffer from local minima problems [30],

which is an intrinsic property that can arise from the combination of potentials, especially in

unknown environments.

Alternative techniques have been developed that are guaranteed to be collision-free and

oscillation-free [20, 43, 46], even under nonholonomic constraints [2, 3]. They rely on the

concept of Velocity Obstacles [16], an extension of the Configuration Space Obstacle [34] to a

time-varying system. A Velocity Obstacle defines the set of velocities that would result in a

collision between an agent and an obstacle moving at a given velocity. Thus, the robot can

perform an avoidance maneuver by selecting velocities that do not belong to this set. Such

approach has been widely used and extended for multi-agent navigation [1, 20, 46], even when

considering uncertainties in position, shape, and velocity of the obstacles [12, 17, 43]. An

3



important extension was the development of the Reciprocal Velocity Obstacle by van den Berg

et al. [45], who acknowledged that most works on collision avoidance had not taken into account

the reciprocity that arises when obstacles are in fact other agents that can also react according

to the robot’s behavior. Another extension was recently proposed for the case in which a

single agent should avoid a group as a whole [21]. Despite relying on a virtual obstacle in a

similar manner as our Virtual Group Velocity Obstacle, which will be explained in Section 4,

the method does not focus on segregation since it is restricted to a single agent instead of a

group of robots.

A different paradigm considers the whole group as a single entity in a hierarchical fashion.

These entities are sometimes called virtual structures as they embody the pose and shape of

a team of robots [44]. In this case, steering control laws are applied to the virtual structure

in order to maneuver the robotic swarm. For instance, works presented in [15] and [44] define

controllers that converge and maintain a group of robots in a rigid formation according to a

known structure. Nevertheless, such methods are not easily scalable to large groups because

each distance constraint among a pair of robots must be explicitly stated in order to achieve

a desired formation, and these fixed geometric relations may hinder formation changes during

navigation.

To address these problems, deformable structures were presented in [5] and [26] together

with artificial potential fields to group and control swarms of robots. In the former, controllers

were designed in order to converge the swarm into a known elliptical region, which was used

to escort a vehicle convoy, whereas in the latter, Probabilistic Roadmaps [27] were used to

plan paths for the structure in an environment with obstacles. Instead of considering a single

deformable structure, some studies employed a set of structures to increase group cohesion

and to simplify the path planning problem. For instance, in [32] a hierarchical sphere tree

was proposed to control “crowds of robots”, and in [25] the path planned for a single agent is
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extended to a corridor using the clearance along the path. Hence, it is possible to control a

swarm that navigates through the corridor by changing its characteristics in a desired way.

Belta and Kumar [6] proposed a formal abstraction that allows decoupled control of the

pose and shape of a team of robots. It is based on a mapping of the swarm’s configuration

space to a lower dimensional manifold, whose dimension is independent of the number of robots.

This work was extended in [37] to account for three dimensional swarms, and in [22] a dynamic

control model was introduced for similar abstractions. Another extension was developed by

Chaimowicz and Kumar [8], who studied cooperation mechanisms between multiple unmanned

aerial and ground vehicles. In their work, UAVs estimated the configuration of the ground

robots and sent control messages to them. Furthermore, merging and splitting behaviors were

studied, since sometimes these maneuvers are necessary to overcome obstacles. Nevertheless,

interactions among groups with different goals were not addressed.

Some works have specifically tackled segregation in robotic swarms: Kumar et al. [31]

proposed a distributed controller that is based on the Differential Adhesion Hypothesis from

cellular biology, and introduced a metric that measured segregation quantitatively. Another

segregation algorithm, presented in [19], allowed mobile robots to self-organize into annular

structures. A distributed controller considered robots as having different virtual sizes, and

local interactions made the “larger” robots move outwards. The procedure was inspired by a

granular convection phenomenon known as the Brazil Nut Effect. This work was later extended

to consider real e-puck robots [10]. In spite of the interesting results, these works did not focus

on the cohesion and segregation of different groups during navigation, which is the main topic

of this paper. Furthermore, to the best of our knowledge, there are no other approaches that

solely focus in this topic.
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3 Cohesion and Segregation using Hierarchical Abstractions

We consider a set of fully actuated individual robots with dynamic model given by ṗi = vi,

v̇i = ui, in which pi = [xi, yi]
T is the position of robot i, vi its velocity, and ui its control

input. Different groups of robots are assembled into a set Γ, in which a group j ∈ Γ is modeled

by a pair (Pj ,Sj) that comprises its pose and shape, respectively. For each group, this pair

constitutes a control abstraction Aj that we parametrize as

Aj = (Pj ,Sj),

Pj = (µxj , µ
y
j , θj) ∈ SE(2), (1)

Sj = (sxj , s
y
j ) ∈ R2.

This abstraction can be implicitly defined by the level set CAj (x, y) = 0, which is an ellipse

centered at (µxj , µ
y
j ) with orientation θj whose principal axes have length sxj and syj . Note that

these superscripts relate a specific parameter with its corresponding axis. Thus, we specify a

group j ∈ Γ as the set of all robots which satisfy the constraint CAj (pi) < 0. Therefore, the

curve CAj (x, y) = 0 can be seen as a border that limits and defines a group.

In the following paragraphs, we will define two distinct control laws: the first is used

by each individual robot to stay on the inside of its group and avoid collisions with nearby

teammates, and the second controls the parameters of abstraction Aj , such as its position while

maneuvering to avoid other groups. We start by explaining the former and then we move the

discussion on to the latter.
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3.1 Robot’s Control Law

Given a function φ(pi,Aj) that maps pi to its radial distance from the border of group j, the

normal function

f(pi,Aj) = e−γφ
2(pi,Aj) (2)

produces the artificial potential field, shown in Figure 1, whose maxima are located at the curve

CAj (x, y) = 0. In other words, it forms a bowl-like surface, with γ being inversely proportional

to the thickness of its walls. Based on this potential, we define the following control law for

each robot:

ui = −k1

∑
j∈Γ

∇f(pi,Aj)− k2ṗi +
∑
k∈Ni

Fr(pi,pk). (3)
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Figure 1: Artificial potential field f(pi,Aj) with sxj = 5 and syj = 8 for distinct values of γ.

Constants k1 and k2 are positive. The first term in 3 is a summation of forces that repels

robots from the border of all groups. The second term is a damping force which improves

stability, and the third represents a local repulsive force that prevents collisions among robots

in a given neighborhood. The set Ni consists of every robot k that is within a certain distance

limit δ from robot i. Notice that the first summation can be restricted to a subset of Γ, since

robot i may not be influenced by the potentials of distant groups.

3.2 Abstraction’s Control Law

In order to move, rotate, and reshape groups, simple linear controllers can be applied to each

component of Aj . These controllers along with the ones defined by (3) establish a hierarchy in

7



which robots are implicitly controlled according to the high level abstractions. In the following

discussion, we present a hierarchical controller that maintains distinct groups segregated during

navigation.

In the beginning, it is important to note that controller (3) forces agents to avoid any

intersection areas among groups, given that robots do not initially lie in these areas. For

example, this behavior can be better understood when a collision between two groups takes

place: the robots within a group will be repelled by the border of the other group. Thus, we

exploit this feature in order to keep robots segregated.

The general idea of the segregation algorithm is to take advantage of the geometric features

of the virtual structure CAj (x, y) = 0 to create repulsive forces among groups in order to divert

them from possible areas where merging may happen.

Given two groups m,n ∈ Γ, let c be the centroid of the intersection points between the

curves CAm(x, y) = 0 and CAn(x, y) = 0. The repulsive force Frep among groups should be

directly proportional to the penetration depth of c in relation to each group. For Am, this

depth is simply given by the radial distance φ(c,Am), and the force acting on this group can

be written as

Frep(Am,An) =


0, if there are no intersection points;

φ(c,Am)
(µm − c)

‖µm − c‖
, otherwise;

(4)

in which µm = [µxm, µ
y
m]T .

Equation (4) tries to minimize the intersection area between the two groups. However,

if they are moving in opposite directions, it is possible that these forces may cancel out the

force that drives abstraction Aj towards its goal. Therefore, we employ an artificial vortex

field [13] in order to steer them away during a collision, i.e., a rotational force Frot is defined

such that it is perpendicular to Frep. Since (4) defines a vector field Frep = (Fx, Fy), we simply
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set Frot = (−Fy, Fx) to satisfy the orthogonality constraint. Thus, we express the force that

deviates group Am from An as

D(Am,An) = Frep(Am,An) + Frot(Am,An). (5)

We also consider a simple dynamic model for each abstraction, in which we control only its

position µ. In other words, orientations and scalings remain constant throughout all time

steps.

µ̈m = k3

∑
n∈Γ

D(Am,An)− k4µ̇m + Fgoal(µm) (6)

Equation 6 requires an attractive force Fgoal(µm) that drives the group toward its goal position,

such as the usual quadratic potential [11]. In Figure 2, we show the overall behavior of

controllers (3) and (6) when coupled together. Note that the norm of Frot must be set to zero

when group m is near its goal, otherwise an endless loop of circular motion can occur if another

group tries to stop at the same place simultaneously.

(a) (b) (c)

Figure 2: Execution steps of the segregation algorithm using hierarchical abstractions.

This approach requires a central unit which controls and broadcasts the virtual abstractions’

parameters to all robots. This can be obtained, for instance, through the use of a small group

of aerial robots that control these abstractions and communicate with ground agents, as it was

proposed in [8]. Although this type of architecture was shown to be feasible [7], a distributed

approach would be a better suited solution in order to avoid errors in the central unit that

could lead to a complete system failure.
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4 Cohesion and Segregation using Velocity Obstacles

As an alternative to the centralized hierarchical abstraction method, we propose a distributed

approach that relies on velocity obstacles. We start by briefly reviewing its core concepts and

then we introduce our methodology.

4.1 Velocity Obstacles

Let A and B be two robots moving on the plane. The velocity obstacle V OAB(vB) of B to A

is defined in the velocity space of A as the set of all velocities that will result in a collision

between robots A and B at some instant in time [16]. To formally define it, we specify λ(p,v)

as a ray starting at p heading in the direction of v and B ⊕ −A as the Minkowski sum of B

and −A, in which −A represents robot A reflected about its reference point.

λ(p,v) = {p + tv | t ≥ 0}. (7)

With these definitions, we can say that a velocity vA ∈ V OAB(vB) if and only if the ray starting

at pA heading in the direction vA− vB intersects B⊕−A. Therefore, the full set of velocities

that specifies a Velocity Obstacle can be denoted as

VOA
B(vB) = {v |λ(pA,v − vB) ∩ (B ⊕−A) 6= ∅}. (8)

This set has an interesting property: if A selects a velocity outside the V OAB(vB) and B

maintains its current velocity, it is guaranteed that a collision will not occur between them [16].

We show in Figure 3(a) a diagram of the Velocity Obstacle in a system with two circular mobile

robots. As it can be seen, VOA
B(vB) is a cone with its apex at (vB).

The use of velocity obstacles can lead to oscillation issues when dealing with multi-robot

systems. To address this problem, the Reciprocal Velocity Obstacle was developed [45]. Es-
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sentially, the RVO comprises all velocities that are the average of the robot’s current velocity

and a velocity within its Velocity Obstacle. Formally, we have

RVOA
B(vB,vA) = {v | 2v − vA ∈ VOA

B(vB)}, (9)

which can be seen as the cone VOA
B(vB) translated such that its apex lies at the mean of

vA and vB, as shown in Figure 3(b). Assuming that B behaves reciprocally, if A selects a

velocity outside the set RVOA
B(vB,vA), that is the closest to its prior velocity, then navigation

is guaranteed to be collision-free and oscillation-free [45].

(a) (b)

Figure 3: (a) Velocity Obstacle VOA
B(vB). (b) Reciprocal Velocity Obstacle RVOA

B(vB,vA).
(Adapted from [45]).

4.2 Virtual Group Velocity Obstacle

Our main objective is to safely navigate large groups of robots in a shared environment while

maintaining cohesion and segregation among groups. In this section, we extend the Velocity

Obstacle framework with flocking behaviors and hierarchical abstractions to achieve our goal.

At first, we need to redefine what we mean by a group. In Section 3, we specified it as

the set of robots that lie inside the closed curve CAj (x, y) = 0. Generally, this means that an

agent may belong to more than one group if it is located in areas where these curves overlap.

In this section, we consider that robots are assembled together into a set of disjoint groups
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Γ = Γ1 ∪ Γ2 ∪ ... ∪ ΓN , in which ∀j, k : j 6= k → Γj ∩ Γk = ∅. Furthermore, we assume that a

robot can infer the respective group of any other agent. This can be done by using onboard

sensors such as cameras or by broadcasting identifiers. Alternatively, groups can be formed by

any kind of clustering algorithm.

Let Φk ⊆ τk be the set of robots belonging to group τk that are within the neighborhood

Ni such that i 6∈ τk, i.e., all agents of a particular group that are inside the sensing radius of

robot i. Furthermore, we declare p(Φk) and v(Φk) as the average position and the average

velocity of group Φk, respectively. In order to achieve segregation, we introduce a virtual

Velocity Obstacle that is responsible for blocking velocities which may lead groups to merge.

Specifically, we denote this virtual obstacle as the Virtual Group Velocity Obstacle (VGVO),

which is shown in Figure 4.

Figure 4: The Virtual Group Velocity Obstacle VGVOi
Φk

(v(Φk)).

The VGVO is a simple concept: robot i senses the presence of every robot j within the

neighborhood Ni and builds the shape of each group of robots, with the exception of its own.

These shapes are considered as virtual obstacles in the workspace of robot i that move with the

respective average velocity of the group that has been used during the building process. Thus,
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a virtual Velocity Obstacle can be built for each shape in order to define the set of velocities

that will lead the robot to merge with a different group, assuming that the latter maintains

its current average velocity.

The Virtual Group Velocity Obstacle of robot i induced by group Φk can be written as

VGVOi
Φk

(v(Φk)) = {v |λ(pi,v − v(Φk)) ∩ C(pi,Φk) 6= ∅}, (10)

C(pi,Φk) = Shape(
⋃
j∈Φk

R(pj))⊕−R(pi), (11)

in which Shape(Q) is the shape of the set of points Q, and R(pi) denote the set of points which

represent robot i in its workspace. The former can be represented as the smallest enclosing

disc, the convex hull, or the more general class of α-shapes [14].

Equation (11) refers to the idea of the hierarchical abstraction paradigm (Sections 2 and 3),

in which the whole group is considered as a single entity. In this case, we abstract a whole group

as a single entity that moves according to the average velocities of its underlying robots. Thus,

single robots navigate using the RVO in conjunction with the VGVO. The former guarantees

a collision-free navigation, and the latter maintains the segregative behavior. However, these

two mechanisms cannot ensure cohesion, i.e., the ability of agents to stay together as a team.

We will account for this using flocking rules during the velocity selection phase, as we will

discuss in the next section.

4.3 Velocity Selection

An optimization problem must be solved to select inputs when dealing with Velocity Obstacles,

and several distinct approaches have been developed [16, 20, 43, 45, 46]. In this work, we achieve

cohesion by extending the velocity selection process presented in [45] to account for flocking

rules. Basically, the method fast samples the set of admissible velocities and selects the best

one according to an utility function. Although other methods have been developed to improve
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cohesion [29], flocking rules are widely employed in swarm systems and it is interesting to

couple them with the velocity obstacle framework.

Let vpref
i be the preferred velocity of robot i, such as the vector pointing in the direction

of its goal with magnitude equal to the maximum allowed speed. In each iteration, velocities

are sampled using an uniform distribution from the set of admissible velocities

AV i(vi) = {(v | ‖v‖ < vmaxi ) ∧ (‖v − vi‖ < amaxi ∆t)}, (12)

in which vmaxi and amaxi are the maximum speed and maximum acceleration of robot i, respec-

tively, and ∆t is the time step of the system. This set comprises all reachable velocities from

pi given the robot’s kinematic and dynamic constraints.

Among the sampled set of admissible velocities, robot i should be able to selected a velocity

vnew
i that lies outside the union of all VGVOs and RVOs, as shown in Figure 5. However, as

the environment may become crowded to the point that no admissible velocities exist, the

robot is allowed to selected a velocity that belongs to a velocity obstacle, but the choice is

penalized according to the following function:

vflock
i = vpref

i + α(v(Φk)− vi) + β(p(Φk)− pi) (13)

Pi(v) =
w

Ti(v)
+
∥∥∥vflock

i − v
∥∥∥ , (14)

with i ∈ Γk. In the above equation, α weighs the alignment of the new velocity to the average

velocity of teammates, β weighs convergence of robot i to the centroid of its group, and w

regulates the avoidance behavior between sluggishness and aggressiveness. Function Ti(v) is

the expected time to collision, which is computed by minimizing the solutions of the set of

ray intersection equations induced by (8) and (9). Thus, robot i selects the velocity vnew
i that
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minimizes the penalty function Pi over the sampled set S ⊆ AV i(vi).

vnew
i = argmin

v∈S
Pi(v) (15)

Figure 5: Sampling-based velocity selection. Admissible velocities which were sampled are
represented by small circles. The red sample is chosen as it minimizes the penalty function.

5 Experiments

In this section, we compare the hierarchical abstraction (Section 3) to the virtual group velocity

obstacle (Section 4) in terms of their segregative behavior as well as the time taken by each

group to reach their destination. We evaluate both of these using a metric that compares the

average distances among robots in different groups of the swarm [31].

Additionally, we present experiments with two other methodologies for swarm navigation:

basic attractive/repulsive potential fields [28] and reciprocal velocity obstacles [45]. The basic

artificial potential field approach consists in each robot being attracted towards its goal while

being repelled by nearby robots. In our implementation, we have employed potential functions

such as the ones presented in [11]. Furthermore, we implemented the RVO algorithm according

to its description in Section 4.1, in which the mechanism of Section 4.3 was used to select
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velocities at each iteration, and flocking behaviors were inhibited by setting constants α and

β to zero. We use these methods in order to show how the chosen metric reflects the behavior

of controllers that do not consider segregation. More detailed comparisons of these two with

our proposed controllers can be found in [41] and [42].

5.1 Simulations

Each simulation consists of a scenario where robots are evenly partitioned into distinct groups.

Initially, agents are randomly positioned according to a normal distribution into a circular

area around the initial position of their group. Afterwards, groups are commanded to swap

their positions. All robots have a limited sensing range as well as restrictions concerning their

maximum speeds and accelerations. Although our hierarchical controller requires a centralized

unit that broadcasts the abstraction’s parameters, robots avoid collisions among themselves

by solely relying on local sensing. Moreover, in order to properly reflect the mathematical

definition of the VGVO, we have used α-shapes [14] as a shape descriptor of each group.

However, the aperture of the VGVO can be completely described by the positions of the two

agents that maximize their radial distance from each other in the frame of reference of robot

i. This can be easily seen in Figure 4, in which the VGVO would have the same aperture if

the middle agent were removed from the depicted group. Therefore, this characteristic can be

used to optimize the implementation.

Figure 6 shows two groups of one hundred robots swapping their positions using all four

presented methods. As can be seen, the hierarchical abstraction (6(c)) and the VGVO (6(d))

are capable of maintaining cohesion and segregation. On the other hand, neither potential

fields (6(a)) nor RVOs (6(b)) achieve segregation since these methods were not developed with

this intent. In this specific scenario, we can observe that navigation based on the RVO tends

to form lines of robots, whereas the VGVO, in conjunction with flocking behaviors, stretches

groups into elongated formations. Similarly, the use of repulsive/attractive potential fields

16



(a) Attractive/Repulsive Artificial Potential Field.

(b) Reciprocal Velocity Obstacle.

(c) Hierarchical Abstraction.

(d) Virtual Group Velocity Obstacle.

Figure 6: Behavioral comparison among controllers with two hundred robots evenly distributed
into two groups using local sensing.

leads groups to directly crash into each other, while the hierarchical abstraction, in spite of

moving a group toward another, prevents agents from mingling with distinct groups as a result

of the avoidance behavior of its virtual structure.

As mentioned, a formal way of measuring segregation among groups of agents has recently

been proposed [31]. Two groups ΓA and ΓB are said to be segregated if the average distance

among robots in the same group is less than the average distance among robots in distinct

groups. In other words, the following restriction must hold

(dAAavg < dABavg) ∧ (dBBavg < dABavg), (16)
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Figure 7: Segregative behavior analysis for two hundred robots evenly distributed into two
groups that swap positions. (a) Attractive/Repulsive Artificial Potential Field. (b) Reciprocal
Velocity Obstacle. (c) Hierarchical Abstraction. (d) Virtual Group Velocity Obstacle.

in which dABavg is the average distance among robots in group ΓA and ΓB.

In Figure 7, we depict these average distances with regards to the presented simulations. As

can be seen in 7(c) and 7(d), our controllers have successfully achieved the segregative property

in the sense of constraint (16). On the other hand, in Figures 7(a) and 7(b) segregation is not

achieved: the constraint is violated since there are intersection points between the curves dABavg

and dBBavg .

Another important piece of information that can be extracted from Figure 7 is the total

amount of time required to complete the task. When curve dABavg returns to its initial value,

it means that both groups have swapped their average positions. In other words, the total

navigation time is related to the concavity of this curve. Hence, we can consider that robots

complete their task when the latter is met, instead of requiring that all goals are reached. This
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condition is interesting because, in its terms, the convergence to the goal does not interfere

with cohesion and segregation during navigation, which are the focus of our analysis. With

this in mind, we can see that the RVO is the fastest approach, followed by the hierarchical

abstraction, artificial potential fields, and the VGVO. The performance loss of the VGVO

happens because the second and third terms of (13) play a damping role. Additionally, robots

have a tendency to select safer velocities when maintaining the flock, i.e., they prioritize slower

speeds during the velocity selection specified by (15).

We complement these results by presenting another set of simulations in a similar sce-

nario, where we partitioned two hundred robots into four groups. Figure 8 illustrates these

experiments. In 8(a) a large cluster is formed in the center of the environment, which slowly

dissipates as robots reach their target. We observe the same behavior in the use of RVO,

but its cluster tends to move around. A symmetrical avoidance behavior was achieved in the

experiment of Figure 8(c) because we have used circles as the shapes of the virtual structures.

Both simulations 8(c) and 8(d) have achieved cohesion and segregation in the sense of (16).

We do not show the average distance plots for these experiments since the combination of all

groups would result in an excessive 10 curves per figure. Nevertheless, results were similar to

the ones obtained in Figure 7, i.e., both the hierarchical abstraction and the VGVO achieved

segregation, and robots took a longer time to finish the task with the latter than with the

former.

5.2 Real Robots

We have also validated our results in proof-of-concept experiments with real robots. Such

experiments are important in order to show the feasibility of the algorithms in real scenarios,

where all uncertainties caused by sensing and actuation errors may have an important role on

results. We used a set of twelve e-puck robots [38], which are small-sized differential robots

equipped with a ring of 8 IR sensors for proximity sensing and a set of LEDs for displaying
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(a) Attractive/Repulsive Artificial Potential Field.

(b) Reciprocal Velocity Obstacle.

(c) Hierarchical Abstraction.

(d) Virtual Group Velocity Obstacle.

Figure 8: Behavioral comparison among controllers with two hundred robots evenly distributed
into four groups using local sensing.

status. A bluetooth wireless interface allows local communication among robots and also with

a remote computer. We controlled these robots through Player [18], a well known framework

for robot simulation and programming.

In order to estimate the configuration of all robots, we used a swarm localization architec-

ture based on fiduciary markers and overhead cameras. Computers process the captured images

from these cameras and determine the position of all robots in a common frame of reference.

Afterwards, control inputs are calculated according to our approaches and broadcast to the

swarm. Additionally, we implemented a virtual sensor to detect neighboring agents because

the e-puck’s IR sensors have a very small range. Furthermore, to account for nonholonomic

constraints, we transformed input velocities according to the approach presented in [35].
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(a) Two robotic groups.

(b) Four robotic groups.

Figure 9: Real execution of the hierarchical abstraction algorithm with different group sizes.

(a) Two robotic groups.

(b) Four robotic groups.

Figure 10: Real execution of the VGVO algorithm with different group sizes.

Figures 9 and 10 show snapshots from executions of the hierarchical abstraction and VGVO

approaches, respectively. We can visually inspect that the experimental results are similar

to the simulations, i.e., robots maintain cohesion and segregation during navigation. We

observed that average distances follow the trend shown in Figure 7: the average distance

between robots of same groups is always less than the average distance among robots of distinct

groups. Although these experiments indicate that our controllers may work reasonably well

to ensure cohesion and segregation, we emphasize that they are proof-of-concepts only, and

more experiments are needed in order to fully evaluate the proposed approach in real swarm

systems.

5.3 Discussion

Both of our algorithms require careful tuning of constants. Regarding the hierarchical ab-

straction, values must be adjusted so that the virtual ellipses respect the speed and velocity

constraints of the ground robots. Also, constants k1 and γ must be adjusted according to the
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repulsion forces among agents, in a way that their summation will not cause robot i to leave

its group. Additionally, the φ function explicitly defines the shape of the group, so it can be

changed to account for other structures, such as a triangle or a rectangle. Finally, constants k3

and k4 must be tuned in order to ensure that the abstraction does not surpass robots during

its movement.

The Velocity Obstacle framework is known for allowing high-speed navigation in multi-

robot scenarios, but, when trying to ensure cohesion using flocking rules, we have seen that

robots tend to select slower speeds with our method, as evidenced in Figure 7(d). Thus, this

result directly impacts the tuning process of all constants in our approach. For example, given

a high value for α in (13), robots will quickly align their velocities to the average velocity

of their neighbors, which in turn can lead to overshoot goal positions as well as increase the

chances of collisions with single agents moving in high-speeds. Similarly, a high value for β can

lead robots into tightly aggregated groups, which makes agents prefer slower speeds because

most higher speeds will be inside the velocity obstacles. Moreover, by setting α = β = 0, the

velocity selection scheme is reduced to the original RVO method [45], as the flocking behavior

is discarded.

We can see evidence of these discussed problems in Figure 7(b), in which there is a noticeable

overshoot of the average distance among robots in different groups. The same has happened

in the experiment of Figure 7(d), but it is not shown since this could visually skew the total

navigation time comparison, which is one of our main concerns besides segregation. For both

algorithms, this issue arises because there is no damping over the robot’s input. Moreover, the

velocity matching term of (13) actually worsens the problem, and it is easy to see that agents

may leave the goal when trying to match their velocities. Therefore, parameters α and β must

be chosen with care since higher values can compromise the swarm behavior over the individual

behavior, i.e., matching velocities over convergence to the goal. An interesting approach would
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be to completely dismiss the group behavior as soon as a robot is close to its goal.

Finally, for reference value, we present in Table 1 the values of all constants used in the

simulated experiments shown in Figure 6.

α β w vmax
i amax

i ∆t

1 0.2 35 6 120 0.01

k1 k2 k3 k4 γ δ vmax
i amax

i ∆t

5000 0.8 0.01 0.8 0.8 20 6 120 0.01

Table 1: Constants used in the experiments shown in Figure 6.

6 Conclusion

In this work, we have proposed two different methods that allow swarms of robots to navigate

in a cohesive fashion while maintaining segregation. We based our first method on a high-

level abstraction that groups robots using artificial potential fields. In this manner, individual

robots are implicitly controlled by changing the parameters of this abstraction. By considering

its geometrical features, which define a virtual structure, we maintained robot segregation by

relying on virtual forces generated from the intersection points between a pair of structures. In

our second technique, we have introduced a novel concept: the Virtual Group Velocity Obstacle,

a virtual obstacle that prevents single agents from mingling into other robotic groups, which

in turn ensures segregation. Particularly, the VGVO resembles ideas from the hierarchical

abstraction paradigm, in which groups are abstracted into single entities. We have maintained

group cohesion by coupling the velocity obstacle framework with flocking behaviors. More

specifically, we biased the robot’s preferred velocity in order to account for flocking rules by

choosing a proper utility function during the velocity selection phase.

We performed several experiments in simulated and real scenarios, and the results demon-

strate the effectiveness of the proposed approaches. In spite of this evidence, there are still

opportunities for improvements. For instance, abstractions could employ complex avoidance
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behaviors, such as expansions, contractions, and rotations, as these maneuvers may decrease

the total navigation time and possibly allow us to deal with static obstacles. Furthermore,

one of the downsides of our second approach is its performance in relation to time. This may

be improved by properly balancing the shared effort among groups, in the same manner as

the ORCA [46] algorithm does for a single pair of robots, or by relying on different methods

for preferred velocity biasing [21] or achieving cohesion [29]. Further investigation along these

lines may lead to interesting results that could further extend the velocity obstacle framework.
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