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ABSTRACT
The exploration of unknown environments is an important
task for autonomous robots. When multiple robots are able
to coordinate themselves to explore different areas of the
environment, the exploration efficiency can be greatly im-
proved. In this paper, we present a decentralized approach
for multi-robot exploration that leverages the classical fron-
tier based methods. We propose a utility function that takes
into consideration the information gain and the distance
costs of the frontiers to guide the exploration. Moreover, by
exchanging information and merging maps, robots are able
to better coordinate and avoid the exploration of redundant
areas. Experiments performed with both simulated and real
robots demonstrate the effectiveness of this approach.

CCS Concepts
•Computing methodologies→Robotic planning; Multi-
agent planning; Planning under uncertainty;

Keywords
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1. INTRODUCTION
When exploring unknown environments, an autonomous ro-
bot can use Simultaneous Localization and Mapping (SLAM)
techniques to build a reliable map of the environment. But
exploring this environment at random, can reduce the ex-
ploration efficiency and the map quality. Thus, the use of a
planning stage capable of keeping the balance between map
quality and exploration efficiency, in conjunction with the
SLAM algorithm, can be an alternative to this. This is nor-
mally called integrated exploration.

The most common integrated exploration technique used in
the literature is the “frontier exploration” [13]. It consists in
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finding regions on the map that are on the frontier between
explored and unexplored spaces. By exploring these fron-
tiers, the robot is able to cover the entire environment. In
[13], the exploration strategy is to choose the nearest fron-
tier from the robot’s position. For this reason, it is called
Near-Frontier Exploration (NFE).

The use of a multi-robot system can improve the efficiency
of almost every robotic task, including the exploration of un-
known environments. When robots are able to coordinate
themselves to explore different areas of the environment, the
performance can be greatly improved. But the use of multi-
ple robots can impose new challenges in the planning stage,
such as sensor interference, obstructed paths, etc. Also,
without any coordination, more than one robot can decide
to explore the same area, resulting in a waste of exploration
effort and time. Thus, in order to obtain the maximum
exploration efficiency on a multi-robot system, the planning
stage must be able to coordinate the robots, preferably with-
out the need of a centralized coordination.

In this paper, we propose a multi-robot exploration ap-
proach based not only on the frontier’s distance, but also
on the amount of information that can be added by explor-
ing a frontier. By analyzing the occupancy grid map from
the SLAM algorithm, we are able to find frontiers with more
information to be explored, and by using this information
together with the frontier distance, we manage to compute
a suitable utility value for each frontier on the map. We use
a decentralized coordination mechanism, by which robots
exchange information when they meet and avoid exploring
redundant regions. This is done by penalizing the utility of
frontiers on regions potentially explored by other robots.

This paper is organized as follows. Section 2 brings a brief
literature review on multi-robot exploration. Section 3 gives
an overview of our approach, detailing each part of the sys-
tem. Experimental results are presented in Section 4, while
Section 5 brings conclusions and directions for future work.

2. RELATED WORK
Integrated exploration strategies can be based on a vari-
ety of factors, such as information gain, distance costs, etc.
Several works in the literature have tackled these factors in
different ways. Some use only the distance of the frontiers
[14, 2, 4] to decide the best region to explore. Yamauchi et
al. [14], for instance, proposed a multi-robot integrated ex-
ploration strategy based on the Near-Frontier Exploration.



They applied the NFE to every robot with no coordination,
which could result on more than one robot exploring the
same frontier. Burgard et al. [2] noticed this problem and
proposed a coordination mechanism that reduces the utility
of frontiers that are close to other robots.

Since the method on [2] demands robots to share a common
map, it may be difficult to implement on the real world due
to need of knowing every robot poses at all times. Thus,
Bugard et al. [3] proposed an approach where each robot
keeps a list of the last known pose of every robot so that,
if it loses the connection with other robots, it continues the
exploration assuming the last pose of each robot. It uses a
utility function that is based on the distance to the frontier
and the presence of other robots near that frontier. Fox et
al. [6] avoid the limitation of knowing other robots poses by
making every robot capable of mapping individually while
constantly trying to meet other robots to exchange informa-
tion. They use a NFE approach when a robot is exploring
alone and centralized coordination when robots meet.

Some approaches try to maximize the information of the sys-
tem by analyzing the status of the map and predicting the
frontier which would increase the knowledge of the environ-
ment [5, 11]. Stachniss et al. [12], for example, proposed an
integrated exploration strategy based on information gain.
For them, information gain means reducing the entropy of
the system. So, the robot always takes the action that would
reduce localization errors and map entropy.

Another approach for the integrated exploration problem
was proposed by Juliá et al.[9]. On that work, the robots use
a hybrid controller that is active when the robot is close to a
obstacle and is based on behaviors to decide where to explore
next. On [8] the authors compared this approach with other
strategies, like classic NFE [13], the method proposed in [3],
among others, and realized that the best strategy depends
directly on the application.

The work of Faigl et al. [4] proposed an approach for the
multi-robot exploration task where each robot is assigned to
a frontier based on a heuristic that solves the travel salesman
problem. They compare their approach using different dis-
tance calculation methods for the exploration of the nearest
frontier.

Instead of analyzing the whole map, Holz et al. [7] claimed
that segmenting the environment and assigning robots to
frontiers inside the segments can improve the exploration.
Following this idea, Bautin et al. [1] proposed a multi-robot
exploration approach, called MinPos, in which a robot only
explores a frontier if it is the closest one to that frontier.
This is done by using wavefronts that start on each frontier
until they reach the robot. Then, if the robot is the closest
to that frontier it is assigned to it. This results on spreading
the robots on the environment. Also, Kaperski et al. [10]
proposed a novel approach where a wavefront is started from
the robot towards the frontiers. They compared it with the
MinPos approach and the near-frontier exploration, showing
similar results to both.

Our main contribution is to leverage and combine some of
these approaches in order to improve the quality and effi-
ciency of multi-robot exploration. Similarly to [12], we use
the concept of information gain but augmented with func-

tions that take into consideration the distance to the fron-
tiers and the multi-robot coordination. Also, inspired by
the work of Fox et al. [6], robots map the environment in-
dividually and only exchange information when they meet
each other. For this, a map merging technique is developed.
Thus, by combining these ideas, we are able to coordinate
a team of robots in an exploration task, where each robot
is individually controlled using a utility function based on
information gain and distance cost and only exchanges in-
formation when it meets other robots.

3. METHODOLOGY
As mentioned on Section 1, our objective is to develop a
multi-robot exploration system based on the information
and the distance to a frontier. In our approach, each robot
explores the environment building its own map, initially
without information about other robots. When two robots
meet, they exchange information, merge their maps together
and use this joint information to coordinate.

The exploration is based on a utility function that analyzes
the information and the distance of every frontier on the
map. We also coordinate the robots so they do not explore
the same frontier by adding a penalizing factor to the utility
function on regions that other robots are already exploring.
The utility function is described as:

U(f) = Inf(f) + Dist(f)− Coord(f) (1)

where, f is a frontier in the estimated map, U is the utility
value, Inf is the information factor, Dist is the distance
factor and Coord is the coordination factor of the utility
function. The next sections will explain these three factors
in details.

3.1 Information Factor
Usually, SLAM algorithms represent the environment map
using an occupancy grid. Each cell on an occupancy grid
has a value that represents the probability of that particu-
lar cell being occupied. If this value is 1, then the cell is
occupied, if it is 0, then the cell is free, if it is between 0
and 1, then the cell has some uncertainty that needs to be
resolved. Our approach considers that cells with uncertainty
and cells that have not been mapped yet contain valuable
information about the environment since we can not be sure
if they are occupied or free. In this context, information
gain means exploring regions where there are a large con-
centration of cells with uncertainty and cells that have not
been mapped yet.

In order to compute the information factor on each frontier,
a window of n × n is scanned across the occupancy grid,
calculating the importance of each cell and the cell inter-
actions in a frontier. Firstly, the concept of Information
Potential (IP) must be introduced. The IP of a cell gives
an estimate of the exploration potential that cell carries, in-
stead of how much information that cell carries as calculated
by Entropy. Basically, the idea is that cells with probability
of being occupied close to 0.5 have higher exploration po-
tential, which decreases as cell probabilities approach 0 or
1. Thus, IP is modeled as a non-normalized Gaussian func-
tion centered on 0.5. Although they have different semantic



values, for the IP computation unknown cells are treated as
a cell with 0.5 probability.

In the next step, we evaluate the interaction between a cell
c and its neighbors. We consider that the IP of a neighbor
cell gives us information about c, for example, if a neighbor
cell is free, c have a high probability of being free as well. By
analyzing how each cell interacts with its neighbors, we are
able to find the frontier that can provide the most informa-
tion gain to the system. Thus, to have an estimation of the
information potential considering the cell interaction, the IP
of each cell is summed with the IP of its direct neighbors.
We call this value IP (c), for each cell c of the frontier.

The final step is to discover the total information of a fron-
tier f . This is done by adding all interactions calculated
on the previous step, as can be seen on Equation 3. Basi-
cally, this operation informs how much information can be
gained by exploring that particular cell. By scanning the
window through the whole occupancy grid, calculating the
information potential of the frontiers, it is possible to build
an Information Map, where each cell value consists of the
information evaluated on the window for that cell. Fig. 1
shows an estimated map on (a) and the respective Informa-
tion Map on (b). Green areas indicate regions with higher
information a good place to explore.

IP(c) = G(c) +
∑
ni∈N

G(ni) (2)

where, N is the set of all c’s neighbors, ni is the ith neighbor
an G(ni) is the Gaussian function value for the cell proba-
bility.

Inf(f) =
∑
c∈f

IP(c) (3)

(a) (b)

Figure 1: (a) Estimated Map (b) Information Map.

3.2 Distance Factor
The distance of a frontier to the robot can influence the out-
come of the exploration. For instance, if the robot explores
only nearby frontiers, it can explore while keeping a good
estimation of its localization, but the amount of map explo-
ration percentage gain has the tendency of being low, since
the robot has already explored other frontiers close to that
one. On the other hand, if the robot chooses to explore a
very far frontier, the amount of map exploration percentage
tends to be higher, but the robot tends to spend a consid-
erable amount of time navigating through already mapped
areas and the localization estimation can be lowered. In or-
der to improve the exploration efficiency, it is interesting to

have the possibility to weight the importance of a frontier
based on its distance.

To do so, we propose an approach that uses a function that
computes a utility based on the frontier’s distance. To com-
pute this, a wavefront is started on the map, from the robot
towards the frontiers. This computes the distance from the
robot to each frontier cell. Then, all frontier cells distances
are normalized between [0,1], and each one is given an im-
portance based on a function, described as:

Dist(f) = wavefront(f)α−1 × (1− wavefront(f))β−1 (4)

where, f is a frontier, Dist is the distance factor value for
that frontier, wavefront(f) is the normalized distance of
the frontier and α, β are variables that allow to change the
function form. By changing the value of these two variables,
we give more importance to a frontier close to the robot or
to one that is far away. It is also possible to spread the
importance for more distances or to focus on only one.

The use of the distance function together with the informa-
tion function allows the robot to explore the environment
based on both the distance and the information potential
of the frontier. When examining both functions together,
it is possible to observe the best combination of distance ×
information potential. Fig. 2 illustrates two (α, β) config-
urations: on Fig. 2a the robot will prefer to explore closer
frontiers and on Fig. 2b more distant frontiers. The infor-
mation factor is always crescent, since we aim to maximize
the information gain.

(a)

(b)

Figure 2: Utility of a single frontier for (a) α = 4, β =
9 (b) α = 9, β = 4.

3.3 Coordination Factor



So far, the Utility Function chooses the best frontier con-
sidering a single robot, but ignoring other robots can reduce
the exploration efficiency. Without any coordination, robots
can end up exploring the same frontier, which could result
on a waste of resources. Since we do not have a central-
ized coordination, each robot must be able to explore and
coordinate itself autonomously. To do so, we propose a co-
ordination strategy that adds a new factor to the Utility
Function.

If a robot knows where another robot is, it should choose to
explore regions far from the other. To do so, when another
robot is spotted, firstly both estimated maps are merged and
the Utility Function is calculated for the distance and the
information factor, resulting on discovering the frontier with
the highest utility. Then, a wavefront, here called negative
wavefront, is started on the merged map, from the other
robot’s pose, towards the frontiers.

The main objective of this negative wavefront is to decrease
the importance of a frontier that is close to the other robot.
The cell where the other robot was detected receives the
highest value and as the negative wavefront moves the val-
ues start to decrease. Then, the negative wavefront is nor-
malized and its value is subtracted from the utility function
of each frontier.

Fig. 3 illustrates the negative wavefront. On Fig. 3a, there
is an estimated map with the pose of another robot detected
in it. On Fig. 3b, there is the negative wavefront, calculated
for that situation, where the brighter the red, the higher the
negative value is. And on Fig. 3c there is the utility of each
cell, where the closer to green a frontier cell is, the better
for exploration it is.

(a) (b) (c)

Figure 3: (a) The estimated map with the other
robot pose (b) The negative wave (c) The resulting
importance for each cell.

3.4 Map Merge
When two robots detect each other, they must merge their
respective estimated maps. Each robot is equipped with a
camera that detects markers located over the robots. This
way, when a robot spots a marker, it assumes that another
robot was found. There are four markers indicating the
front, back and sides of the robots. Thus, when a robot
spots another, it can infer the other robot relative position
and orientation.

When robot r1 detects robot r2, first, they exchange two

pieces of information: their pose (r1xr1,
r1 yr1,

r1 θr1) 1 and
(r2xr2,

r2 yr2,
r2 θr2), and estimated maps mapr1 and mapr2.

Robot r1 also calculates the pose of r2 (r1xr2,
r1 yr2,

r1 θr2)
on mapr1.

Since we have no information about the other robot starting
pose, we need to calculate it in order to transform mapr2 to
the same frame of mapr1. To do so, first we rotate mapr2
to the same orientation as mapr1. Basically, we are try-
ing to find an angle φ that aligns the maps into the same
orientation. To calculate φ we use both robots’ orientations
(r1θr1 and r2θr2) and the relative orientation between robots
(r1θr2).

φ =r1 θr1 +r2 θr2 +r1 θr2. (5)

Every robot’s starting pose is defined at the center of the
map, so, after rotating mapr2 by φ, we need to translate it,
so that both maps are on the same origin frame. To do so,
we use the pose where we detected r2 (r1xr2,

r1 yr2) and r2’s
pose (r2xr2,

r2 yr2) to calculate a translation matrix that is
applied to mapr2.

Now that we have the mapr2 translated and rotated, every
cell on mapr2 corresponds to the same cell on mapr1. Thus,
to merge the maps, all that we need to do is to stitch mapr2
to mapr1. Since r1 have no other information about r2,
but its map and pose, and these informations can be highly
uncentain, r1 have higher trust on its own map. Being so,
the map stitching is done by replacing only unknown cells
on mapr1 by correspondent non-unknown cells on mapr2.

4. EXPERIMENTS AND RESULTS
In order to evaluate our approach, we performed a series of
experiments using simulated and real robots.

4.1 Simulated Experiments
To run the simulated experiments we used ROS/Gazebo,
simulating two Pioneer-3AT with a Sick laser range finder.
We used two different environments shown on Fig. 4. On
Fig. 4a the environment has 394m2 and will be called sim-
ple environment and on Fig. 4b the environment has
812m2 and will be called complex environment. Our

(a) (b)

Figure 4: (a) Simple Environment (b) Complex En-
vironment.

approach was compared with three other. The first one is
the classical Near-Frontier Exploration (NFE) adapted to
a multi-robot system with a simple coordination strategy:

1For instance, r1xr1 means the x pose of robot 1 on robot’s 1
map frame and r2xr1 means the x pose of robot 1 on robot’s
2 map frame.



when robots met, they would avoid exploring frontiers near
each other. The second one uses a utility function that cal-
culates the information gain of a frontier using the entropy of
the occupancy grid cell probability of being occupied, similar
as [2, 12] and the coordination proposed on Section 3.3. And,
the third approach is MinPos [1], that guides the robots to
a frontier, only if it is the closest one to that frontier. This
approach uses a shared map and every robot knows each
other positions.

In order to compare the approaches, we used three metrics:
i) the exploration time, ii) the quality of the estimated map
and iii) the map exploration percentage by time. The ex-
ploration time measures how long it takes for the robots to
explore the whole environment. The exploration is finished
when one robot can not identify any valid frontier to ex-
plore. The map quality metric is based on the work of Juliá
et al. [8]. First, the estimated map is aligned with a ground
truth map of the environment. Then, the maps are sub-
tracted from each other and their differences are counted.
This metric indicates the number of cells that have errors
on the estimated map, so, the smaller the value, the better
is the map quality. The map exploration percentage by time
metric evaluates the map exploration percentage by the ex-
ploration time. We only consider that a cell is fully explored
if its value is either 0, which means that it is a free cell, or
if its value is 1, which means a occupied cell. Cells with un-
certainty are not considered for the exploration percentage.
We use the size of the ground truth map to determine the
exploration percentage.

In the experiments, we varied the distance factor to reflect
different importance of frontier’s distance, by altering the
values of α and β. Both values were varied from 1 to 9 in
order to prioritize different distances. Since this generates
too much information and it would be difficult to show all
results, only the three best (α, β) configurations are shown
here. The best configurations are the ones with the best pair
(map quality x exploration time) indicator. Every configu-
ration was tested 20 times, with random start locations for
the robots, and the results presented here are the average of
these 20 runs.

4.1.1 Simple Environment Results
In the simple environment, the best (α, β) configurations
were: (5, 9), (3, 9) and (8, 8). Fig. 5 shows where these con-
figurations stand against the other approaches when com-
paring the pair (map quality x exploration time). The fig-
ure shows that the configuration (5, 9) produces better maps
and is faster than the NFE, while (3, 9) is even faster than
(5, 9), but has a slightly worse map quality. Configuration
(8, 8) produces the better quality maps, but is also slower
than the NFE. MinPos and Entropy were both slower than
the others.

Regarding the information gain of the system, Fig. 6 shows
how each approach behaves during the exploration. The
curves presented on this figure are the average of both robots
information. It is interesting to observe that the configu-
ration (8, 8) increases the information gain on an approxi-
mately constant rate. It can be explained by the fact that
this configuration balances equally the distance factor and
the information factor, resulting in a smoother exploration.
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Figure 5: Exploration time × Quality for the simple
environment.

The other two configurations, the NFE and MinPos prior-
itize exploration over map quality, which causes the esti-
mated map to have a lot of cells with uncertainty. Since we
only count as mapped cells that have probability either 0 or
1, this results on the map exploration percentage increasing
slowly. When the robots merge their maps, cells with un-
certainty are resolved, which causes big jumps on the explo-
ration percentage. By using only Entropy in the utility func-
tion, we are performing a greedy exploration based only on
the information gain, disregarding the distance to a frontier.
This can lead the robot to continuously navigate through al-
ready visited areas, increasing the exploration time.
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Figure 6: Information Gain by the exploration time
on the simple environment.

These results indicate that exploring frontiers that are not
too close, nor too far from the robot is better than the closest
frontier, if the priority is exploration time. If the priority is
map quality, it is better to explore frontiers on the medium
distance. They also show that it is better to focus on one
distance than spreading the importance to various distances.

4.1.2 Complex Environment Results
For the complex environment, the best (α, β) configurations
were (5, 9), (5, 5) and (8, 8). Fig. 7 demonstrates where
these configurations stand against the other approaches when
comparing the pair (map quality x exploration time). The



figure shows that the configuration (5, 9) produces better
maps, but configuration (8, 8) is faster.

As this environment is larger, the robots encounters are re-
duced. This explains why the other configuration, (5, 9), and
the NFE are slower than the (8, 8) configuration. Since the
robots encounters are more sparse they have less chances to
resolve the cells with uncertainty, which causes them to have
a longer exploration time. This also explains why MinPos
was the second fastest. Since it has a global map, the num-
ber of encounters does not influence the exploration time.
Regarding the information gain of the system, Fig. 8 shows
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Figure 7: Exploration time × Quality for the com-
plex environment.

how each configuration and the other approaches behave
during the exploration. The curves presented on this figure
are the average of both robots information. It is interest-
ing to observe that configurations (8, 8) and (5, 5) have the
same behavior as the (8, 8) configuration had on the simple
environment, balancing the distance factor and the informa-
tion factor. But, the (5, 5) configuration is slower because it
spreads the importance for more distances instead of focus-
ing on one, which can make the robot go to closer or farther
frontiers also. These results indicate that, for large environ-
ments, exploring the medium distance frontier is better than
closer or farther frontiers. It also informs that it is better
to focus on one distance than spreading the importance to
various distances.

4.2 Real Experiments
We also performed experiments with real robots to test the
effectiveness of our system. These tests were performed in-
side our laboratory using two Pioneers 3AT equipped with
sick laser range finder and a webcam. We used ROS frame-
work to the control and communication of the robots.

The main goal of the real experiments was to test the per-
formance of the map merging together with our exploration
approach. Since the environment is small and the results
on Sec. 4.1.1 indicates that exploring farther frontiers is
recommended for small environments, we used α = 9 and
β = 4 for the distance cost function. Fig. 10 shows one
experiment where two robots started on opposite points of
the laboratory, not seeing each other. Fig 10a depicts the
map of robot 1 and its starting position. Fig. 10b illustrates
the same as Fig. 10a, but for robot 2. Fig. 11 illustrates
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Figure 8: Information Gain by the exploration time
on the complex environment.

Figure 9: Real robots set up.

progress of the exploration for robot 1 point of view. On Fig.
11a and 11b robot 1 is starting to explore. Its trajectory is
represented by the blue arrows. In Fig. 11c robot 1 detects
robot 2. Since both maps are on the robots’ frame, we rotate
and translate robot’s 2 map to merge with robot’s 1 map.
Fig. 11d depicts the resulting map. At this point, robot 1
evaluates the utility of the frontiers on the new merged map
and decides to explore the frontier marked with a red circle
on Fig. 11e. It is interesting to note that all three factors
(information, distance and coordination) conducts the robot
to the chosen frontier. Fig. 11f is the final map, when robot
1 decides there is no other frontiers to explore. Robot 1 did
not had to explore the whole environment to successfully
map it. The information added by merging robot’s 2 map
into its own was enough to complete the bottom part of the
map.

5. CONCLUSIONS AND FUTURE WORK
This paper presented a novel approach to the multi-robot

(a) (b)

Figure 10: Real robots experiments: (a) robot 1
initial map and (b) robot 2 initial map.



(a) (b) (c) (d) (e) (f)

Figure 11: Real robots experiments. Blue arrows indicates robot’s poses and orientations through time. In
(a) and (b) robot 1 is starting to explore. On (c) it detects robot 2 and on (d) merges its own map with
robot’s 2 map. In (e) robot 1 decides to explore a frontier on the top left part of the map, marked by a red
circle. And in (f) the final map of the environment.

exploration task. By combining both planning and coordi-
nation of robots on a single Utility Function, robots are able
to explore an environment individually, with low information
exchange, and still be able to coordinate themselves. The
utility function combines a factor for measuring information
gain, a factor that takes into consideration the distance cost
and a factor for coordination of robots.

We presented a novel approach to measure information gain
on exploration based on the information potential of the oc-
cupancy grid cells. We also proposed a novel function for
measuring distance cost to frontier exploration that can be
modified to be used on different scenarios. And we proposed
a coordination strategy that is completely decentralized, re-
sulting on a fast coordination and low information exchange.

We compared our approach with three other approaches.
Results show that our approach can improve the multi-robot
exploration in terms of map quality, exploration time and
information gain. We also tested our system on real robots
to ensure it can be used on a real scenario.

For future work, we intend to test our approach on different
environment sizes, with more than two robots. We intend to
analyze the possibility of varying the distance cost dynami-
cally to reflect the estimated map state. Also, we intend to
analyze the information factor window and the possibility of
expanding or reducing its size during the exploration.
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