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Abstract—The ability to build reliable maps of un-
known environments is important for improving au-
tonomy in robotic systems. Moreover, when multiple
robots are able to coordinate themselves to explore
different areas of the environment, the exploration
efficiency can be greatly improved. In this paper, we
propose a novel multi-robot Integrated Exploration
technique based on distance cost and frontier explo-
ration. We use a utility function that considers both
distance cost and coordination of each robot. Our dis-
tance cost technique is based on a function that can be
adapted for each environment size and the coordination
is integrated with the utility function. Experiments
performed with simulated robots show that our ap-
proach can significantly reduce the exploration time
when compared with other distance cost approaches.

I. Introduction

The ability to build reliable maps of unknown envi-
ronments is important for improving autonomy in robotic
systems. While exploring unknown environments is a hard
task, due to lack of information, SLAM algorithms address
this problem with good results. However, if the exploration
is performed at random, the efficiency can be reduced.
An alternative to that is to use Integrated Exploration
techniques to guide the robots during the exploration.

Integrated Exploration techniques add a planning stage
to the SLAM algorithm that is responsible to analyze the
robot’s status and the estimated map and calculate the
best action for the robot. These techniques often face a
trade-off between visiting already mapped areas in order to
improve the map quality and pose estimation or to explore
new areas, increasing the covered area to the detriment of
the SLAM results.

Since the environment is unknown, the planning stage
needs to infer some information about the environment to
explore it. One technique uses the distance of the robot to
possible goals as a factor to choose the best action. Usually,
the distance is treated as the cost to reach a goal, allowing
this cost to be different even though the distance is the
same, for example, if the robot is at the same position,
but facing different angles.

Distance cost is a good choice for Integrated Explo-
ration techniques since it requires only a map, the robots
estimated pose and a set of goals, all three available on

most SLAM algorithms. Being so, the technique needs
only to be able to identify goals and calculate the cost
to reach them. The most common distance cost technique
is the “frontier exploration” [1]. It consists on finding
regions on the map that are on the frontier of explored
and unexplored areas to behave as goals. The robot, then,
explores the frontier that is closest to its position. For this
reason, it is called Near-Frontier Exploration (NFE).

Multi-robot system improves the efficiency of almost
every robotic task. When multiple robots explore an
unknown environment, they can individually, explore a
different area of the environment. But, without any co-
ordination, robots can end up exploring the same area,
blocking each other, interfering on sensor readings, etc,
resulting on a waste of exploration effort and time. Thus,
being able to coordinate the robots is important in order
to obtain maximum exploration efficiency.

In this paper, we propose a novel multi-robot Inte-
grated Exploration technique based on distance cost and
frontier exploration. We use a utility function that con-
siders both distance cost and coordination of each robot.
Our distance cost technique is based on a function that
can be adapted for each environment size, allowing a more
efficient exploration. We also use a decentralized coordina-
tion mechanism, where robots exchange information only
when they meet and avoid exploring redundant regions by
reducing the utility of frontiers.

This paper is organized as follows. Section II brings a
brief literature review on multi-robot exploration. Section
III gives an overview of our approach, detailing each part of
the system. Experimental results are presented in Section
IV, while Section V brings the conclusion and directions
for future work.

II. Related Work

The first author to propose an Integrated Exploration
technique for multi-robot system was Yamauchi [2]. On
its work, Yamauchi [2] control the exploration by using
the NFE technique on every robot. Since there is no
coordination, robots can explore the same frontier. Aware
of this problem, Burgard et al. [3] used a utility function
that would reduce the utility of frontier that were assigned
for other robots to explore. Although, this seems a simple
solution, it requires that the robots share a common map



and can communicate at every point of the exploration.
On [4], this issue is addressed by keeping a list of the last
known position of each robot, and reducing the utility of
frontiers based on this list.

Fox et al. [5] proposed a new technique where every
robot explores the environment individually, while actively
tries to meet with other robots. They use a method to
consistently estimate the position of other robots and only
exchange information when they meet. When exploring
individually, the robots use the NFE to choose the next
frontier to explore, but when the encounter happens, the
coordination is performed by one of the robots that assigns
for each robot on the encounter, a frontier to explore.

The objective of using multiple robots to explore an
unknown environment is to spread the robots through
the entire environment. To achieve this, Bautin et al. [6]
proposes that a robot should only explore a frontier if it
is the closest to it. By doing so, if two robots are close to
the same frontier, only one will be assigned to it, the other
will be assigned to a frontier somewhere else. To reduce
the time of calculating distances, a wavefront is started
from the frontiers toward the robots. Using this same idea,
Kaperski et al. [7] coordinates the robots by segmenting
the environment, so that each robot can only explore inside
its own segment. The segmentation is done bys starting a
wavefront from the robots toward the frontiers. Whenever
two wavefronts collide, they stop growing to that direction.
Although both techniques successfully spread the robots,
they depend on a shared map and a centralized planning.
Holz et al. [8] also segment the environment for a single
robot exploration, but use a Voronoi diagram to segment
the environment.

There are some techniques that use potential fields
as a cost metric. These approaches consider frontiers as
regions that attract the robots, the closer to a frontier,
the higher is the attractive force. Being so, they are NFE-
like techniques. Prestes et al. [9] apply the Boundary Value
Problem Path Planners (BVP) [10] to create the potential
fields. Maffei et al.[11] uses the BVP, but adds a time
variant to the potential field.

Other approach to distance cost technique was pro-
posed by Faigl et al. [12]: each robot is assigned to a
frontier based on a heuristic that solves the travel salesman
problem. They compare their approach using different
distance calculation methods for the exploration of the
nearest frontier.

It is common on the literature to combine more than
one factor to guide the exploration. Juliá et al [13] com-
pares different strategies that combine distance cost with
other factors. They compare the strategy from [2] and
[3] with [14] that combines distance cost with a utility
based on the size of each frontier, Zlot et al. [15] which
coordinates the strategy of [14] using market-based algo-
rithms, Makarenko et al. [16] that combines a distance
cost together with a utility for the robot localization, and
[17] that use behaviors to control the robots. Juliá et
al. [13] also state that the best strategy depends on the
application.

Our main contribution is to propose a novel distance

cost technique based on a utility that leverages some of
these approaches in order to improve the quality and
efficiency of multi-robot exploration. Robots map the envi-
ronment individually and only exchange information when
they meet each other. For this, a map merging technique is
developed. Thus, by combining these ideas, we are able to
coordinate a team of robots in a exploration task, where
each robot is individually controlled using a utility function
based on distance cost and only exchanges information
when it meets other robots.

III. Methodology

As mentioned in Section I, our objective is to develop
a novel multi-robot exploration system based on distance
cost. In our approach, each robot navigates on the environ-
ment building its own map, initially without information
about other robots. When two robots meet, they exchange
information, merge their respective maps together and use
this joint information to coordinate.

The exploration is based on a utility function that
analyzes the cost to navigate to a frontier. The utility
function also coordinates the robots by penalizing frontiers
that are close to where other robots were detected. The
utility function can be described as:

U(fi) = Dist(fi) − Coord(fi) (1)

where, fi is the ith frontier, U is the utility value, Dist
is the distance cost factor and Coord is the coordination
factor. The next sections will explain these factors in
details.

A. Distance Cost

The idea of exploring the closest frontier, although
simple and vastly used, is not always the best solution.
By exploring only frontiers close to the robot, little new
information about the environment is added to the map.
On smaller environments this may be enough, but as the
environment size increases, exploring the closest frontier
can be a problem. Also, when exploring the closest frontier,
the robot tends to never revisit already visited areas, what
can cause localization errors.

Taking into account the nature of the application,
Distance Cost can have different meanings. For instance,
a holonomic robot and a differential robot on the same
pose can have different costs to explore the same frontier.
In the same way, calculating the cost for a free-obstacle
environment can be done using euclidean distance, but for
a maze-like environment, this method can be proved to be
very ineffective.

To solve these issues, we propose a strategy that uses
a function that allows us to choose the best distance
cost for each situation. By applying this function to a
normalized wavefront [18] starting at the robot’s pose
towards frontiers, we are able to adapt the distance cost
to different environments. This function can be described
as:

Dist(fi) = wave(fi)
(α−1) × (1 − wave(fi))

(β−1) (2)



where, fi is the ith frontier, Dist is the distance cost,
wave is the normalized wavefront and the pair (α, β)
are variables that allow changing the function form. By
changing the value of these two variables, we are able to
modify the robots behavior regarding the cost of exploring
a given frontier. For instance, if the robot is using pair
(2, 9), it will more likely explore a closer frontier than other
robot with the pair (9, 2). Figure 1 illustrates the shape of
function Dist for different pairs (α, β).
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alpha = 2, beta = 9
alpha = 9, beta = 2
alpha = 3, beta = 5
alpha = 5, beta = 3
alpha = 3, beta = 3
alpha = 7, beta = 7

Fig. 1: Distance function for different values of (α, β)

Another effect of the distance cost function can be seem
on Figure 1, specially for pairs (3, 3) and (7, 7). Both pairs
have their highest value for the frontier that stands on
the middle distance from the robot, but they treat the
frontiers near this distance differently. If there is no frontier
on the middle distance, pair (3, 3) will treat frontiers with
normalized distance ≈ (0.3, 0.7) with practically the same
behavior, while pair (7, 7) is more restrictive to which
distance is more important.

B. Coordination

So far, the utility function only takes into account the
robot individually, but ignoring other robots can reduce de
exploration efficiency. Since we do not have any centralized
coordination, the robots must be able to perceive others
and coordinate themselves autonomously. To do so, we add
a new factor to the utility function that penalizes frontiers
near other robots.

When a robot perceives another, this may indicate that
the region around the other robot was already explored,
and, probably, other regions that are unknown to the
robot. Being so, if the robot knows where other robot is,
it should merge its own map with the other robot’s map
and choose to explore a frontier that is far from the other
robot. The merging process is explained on Section III-C.

When a robot r2 is perceived, we calculate its position
on robot’s r1 map. At this pose, a wavefront is propagated
toward the frontiers. This wavefront differs from the one
on Section III-A by the fact that it decreases its value as
the wave propagates. For this reason, we call it negative
wavefront.

The main objective of this negative wavefront is to
decrease the utility of a frontier that is close to other robot.
This way, on a situation where the best frontier r1 is likely
to explore is next to r2, we can successfully guide r1 to
explore other frontier, since r2 will probably explore it.

Figure 2 illustrates the negative wavefront. On Figure
2a there is an estimated map with the pose of another
robot detected on it. On Fig. 2b there is the negative
wavefront, calculated for that situation, where the brighter
the red, the higher the negative value is.

(a) (b)

Fig. 2: (a) The estimated map with the other robot pose
and (b) the resulting negative wavefront. Green cells are
far from the robot and have lower values, while red cell are
close to the robot and have higher values.

C. Map Merge

Our approach does not use the concept of a shared map
between robots. When two robots detect each other, it is
necessary to merge their estimated maps. To perceive each
other, the robots are equipped with image sensors that
can detect markers attached on the robots. There are four
markers indicating the front, back and sides of the robots.
Thus, when a robot spots another, it can infer its relative
position and orientation.

When robot r1 detects robot r2, they first exchange
two pieces of information: their pose, (r1xr1 ,

r1 yr1 ,
r1 θr1)

and (r2xr2 ,
r2 yr2 ,

r2 θr2), and estimated maps, mapr1 and
mapr2 . Robot r1 can, also, calculate the pose of r2,
(r1xr2 ,

r1 yr2 ,
r1 θr2) on mapr1 , based on the detected

marker.

As r1 has no information about r2 starting pose, we
need to calculate it in order to transform mapr2 to the
same frame of mapr1 . To do so, we rotate mapr2 to mapr1
orientation. Basically, we calculate an angle φ that aligns
both maps into the same orientation. To calculate φ we use
both robots’ orientations (r1θr1 and r2θr2) and the relative
orientation between robots (r1θr2).

φ =r1 θr1 +r2 θr2 +r1 θr2 . (3)

Every robot’s starting pose is defined at the center of the
map, so, after rotating mapr2 by φ, we need to translate
it, so that the cells on mapr2 correspond to the cells on
mapr1 . To do so, we use the pose where we r2 was detected



(r1xr2 ,
r1 yr2) and r2 actual pose (r2xr2 ,

r2 yr2) to calculate
a translation matrix that is applied to mapr2.

Now that mapr2 is translated and rotated, every cell
on mapr2 correspond to the same cell on mapr1 . Thus, to
merge the maps, all that we need to do is to stitch mapr2
to mapr1 . We do this by keeping all free and occupied cells
on mapr1 and replacing every unknown cell with free and
occupied cells on mapr2 . Figure 3 illustrates this process.

(a) (b) (c)

(d) (e)

Fig. 3: (a) mapr1 and (b) mapr2 , respectively. (c) mapr2
rotated and on (d) translated. (e) resulting map after the
merging process.

IV. Experiments and Results

In order to compare the efficiency of our approach, we
compared it with the classical Nearest-Frontier Explorer
[2] and MinPOS [6]. The first one only guides the robots
to the nearest frontier, without any coordination, but every
robot has its own individual map, and only exchanges
information when they meet each other. The second ap-
proach guides the robots to a frontier, only if it is the
closest one to that frontier. This approach uses a shared
map and every robot knows each other positions. All three
approaches were implemented using the idea of frontier
clustering from [8], which clusters frontiers that are close
to each other and the robots are assigned to the center of
mass of those frontier clusters.

To run experiments we used ROS/Gazebo, simulating
two Pioneer-3AT with Sick laser range finder. We used
two different environments shown on Fig. 4. On Fig.
4a the environment has 394m2 and will be called small
environment and on Fig. 4b the environment has 812m2

and will be called large environment.

We compared all three approaches by the time they
needed to fully explore the environment. The exploration
is considered complete when one of the robots do not have
a valid frontier to explore. A valid frontier is one that can
be accessed by the robot and that has a minimal size.

In the experiments, we varied the distance cost function
to reflect different frontier’s distance, by altering the pair

(a) (b)

Fig. 4: (a) Small Environment (b) Large Environment.

(α, β). Both values were varied from 1 to 9 in order to
prioritize different distances. Every pair was tested 20
times, with random start locations for the robots, and
the results presented here are the average of these 20
runs. Since this generates too much information, we also
calculated the quality of the estimated map and used it
as a ranking mechanism. The map quality metric is based
on the work of [13]. First, the estimated map is aligned
with a ground truth map of the environment. Then, the
maps are subtracted from each other and their differences
are counted. This metric indicates the number of cells that
have errors on the estimated map, so, the smaller the value,
the better is the map quality. The best pairs are the ones
with the best (map quality x exploration time) indicator.
Since we aim for the lowest exploration time and estimated
map error, this indicator is calculated by the distance of
the pair to the point (0, 0). Only the best three pairs are
shown on the results.

A. Small Environment

In the small environment, the best pairs (α, β) were:
(3, 3), (3, 5) and (5, 9). Figure 5 shows where these config-
urations stand against NFE and MinPOS when comparing
the (map quality x exploration time). The figure shows
that the map quality variation is practically irrelevant, so
the best pairs are the ones with the lowest exploration
time. All three pairs are faster than our implementations
of NFE and MinPOS.

In order to see the map exploration percentage during
the exploration, Figure 6 shows the average of exploration
percentage over time. These results show that exploring
the nearest frontier for a small environment is not the best
solution for reducing the exploration time. It is best to
explore the frontiers that are not too close to the robot,
but not too far as well.

B. Large Environment

In the large environment, the best pairs were: (3, 3),
(3, 5) and (3, 7). Figure 7 illustrates where these pairs
stand when comparing (map quality x exploration time)
and shows that for the large environment, these pairs had
a faster exploration than NFE and MinPOS. Again, the
map quality variation was irrelevant when comparing the
three pairs with the other two strategies.

Figure 8 shows the map exploration percentage by
time. Similarly to the results of the small environment,
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Fig. 6: Map Exploration percentage by the exploration
time on the small environment.
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Fig. 7: Exploration Time × Map Quality for the large
environment.

the pair (3, 7), which was the faster on both environments,
starts with lower exploration percentage than the others
and suddenly increases it. This can be explained by the
nature of the exploration provided by this pair. It privileges
exploring frontiers close to the robot, but not too close
and not too far. The idea of exploring the closest frontier
emerges form the fact that it is better to make short plans
and continuously re-plan, than to plan for long periods of
time [16]. By using the pair (3, 7), the robot can make
short plans, but still explore a more significant part of the
environment than exploring the closest frontier. Finally,
when the robots meet, their exchange of information is
more significant than the others methods, giving a higher
exploration percentage.
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Fig. 8: Map Exploration percentage by the exploration
time on the large environment.

To illustrate how the distance cost function behaves
for the best pairs, Figure 9 presents the distance cost
function for every possible normalized wavefront value.
The Figure shows that for pair (3, 7), the robot will choose,
preferably, a frontier that is closer to it, but not too
close, and not too far. The pair (3, 5) will make the robot
choose a frontier that is slightest far from the robot than
(3, 7) and, also, this pair is a little more distributed to
other distances. Pair (5, 9) is a midterm between (3, 7)
and (3, 5), since it prioritizes frontiers distance like the
second and really focus on that distance, like the first.
Finally, pair (3, 3) was good for the large environment as it
aims frontiers that are on middle distance from the robot,
but with a higher distribution. This shows that, for large
environments, being flexible around the frontiers distance
is also important.

V. Conclusion

This paper presented a novel approach for Integrated
Exploration with a multi-robot system. By combining both
planning and coordination of robots on a single Utility
Function, robots are able to explore the environment indi-
vidually, with low information exchange, and still be able
to coordinate themselves. The Utility function combines
a function to calculate the distance cost of exploring a
frontier and a coordination factor.
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Fig. 9: Distance function for the best pairs (α, β)

We proposed a novel function to calculate the distance
cost of frontiers that can adapt for different scenarios. By
using the relative distance to the frontier and using a func-
tion that can prioritize different distance costs, we were
able to efficiently explore the environment. Also, by using
a coordination factor directly into the utility function, the
robots could explore the environment individually, without
the need for a shared map, and still be able to successfully
coordinate themselves and merge their maps together.

We compared our approach with the classical NFE and
MinPOS. The first one does not have any coordination,
only exchanges information when robots meet and explores
the closest frontier to the robot. By the results, it is clear
that using coordination to the exploration task can result
on a faster exploration.

The second one, MinPOS, uses a a centralized coordi-
nation system with a shared map for all robots and tries
to spread the robots through the environment by making
robots explore only frontiers that they are the closest. The
results show that using a centralized coordination does not
necessarily provides a faster exploration. This is probably
due to the time that is needed to the coordination problem.
If robots can coordinate themselves individually, this time
can be avoided.

Also, the experiments show that planning to explore
frontiers that are not too close and not too far from the
robot is better than exploring the closest one. This is
so, because both are greedy approaches, but the first one
can explore a more significant part of the map before re-
planning the exploration.

As future work, we intend to apply our coordination
method to [6]’s approach. This will reduce the coordination
overload and we expect to increase the exploration speed.
We intend to test our approach with more robots to see
how the exploration time behaves.
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