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Abstract—With the popularization of small Unmanned Aerial
Vehicles (UAVs) and their usage diversification among various
fields, such as aerial mapping applications, it is important to
develop better terrain following techniques that rely solely on
the vehicle’s sensing capabilities. The objective of this paper is to
evaluate whether is possible to gather information about terrain
inclination and elevation from monocular video captured from
such aircrafts. Our approach is biologically inspired by trying
to reproduce some insects behaviour with the use of optical
flow to infer about the terrain. We built an UAV specifically
for this research which uses a gimbal stabilized down-facing
camera and flew it at a fixed Above Sea Level (ASL) altitude.
After performing preliminary analysis on sparse optical flow data
and validating the concept, we moved towards a dense optical
flow algorithm and created different descriptors to feed multiple
decision trees in order to infer about terrain characteristics. We
achieved accuracies of 77.34%, 86.75% and 91.85% depending
on the evaluated characteristic, showing that our approach is
valid.

I. INTRODUCTION

With the use of small Unmanned Aerial Vehicles (UAVs)
becoming increasingly popular quite rapidly, many new appli-
cations begin to appear, however they are still limited by the
vehicle’s degree of autonomy. One example is aerial mapping,
such applications happen in uneven terrain, such as in [1],
where it is necessary to perform terrain following flights,
however there are still very few low cost sensors capable of
estimating the height of the aircraft and their range is still
limited.

In aerial mapping applications, UAV’s typically use pre-
vious information about the terrain elevation, which allow
them to calculate the proper Above Sea Level (ASL) altitude
at each coordinates of the flight to keep themselves at the
desired Above Ground Level (AGL) altitude. However, this
information, such as data from the Shuttle Radar Topography
Mission (SRTM), is usually in low resolution, outdated or
present incorrect data. This inspired us to evaluate the pos-
sibility of using sensors commonly found on small UAVs to
gather terrain inclination and elevation information.

Since the focus of this work is on a monocular vision
approach to infer the terrain elevation and inclination, we
decided to use optical flow. Optical flow is an approximation
to the motion flow of objects in a sequence of images. While
motion flow refers to the motion of objects, optical flow is
the apparent motion of such objects, as a consequence, it
does not work well with objects without texture. The optical

flow consists of the displacement vectors of the image points
between two subsequent images.

In biology, researchers found evidence which supports that
insects use optical flow to control their flights, including the
desired characteristic of terrain following [2]-[5]. Optical flow
allows the insects to perceive relative distance to the objects
and control their AGL altitude with relation to their ground
speed.

In this work we propose a classification algorithm to
infer terrain characteristics based on information provided by
monocular vision from a RGB camera set up on a custom built
quadrotor UAV.

We captured video sequences of flight over different ter-
rains and ran sparse optical flow algorithms to translate the
video in meaningful data. We analysed histograms of the
magnitude and direction of the optical flow vectors and found
that scenes with different terrain characteristics were quite
discernible. This led us to our approach, consisting of feeding
such data into a decision tree to determine if there was a slope
or not, and if such slope was positive or negative, as well as
its direction.

Remaining sections are organized in the following manner.
Section II discusses some related works. Section III shows our
initial analysis and classification process. Section IV describes
our custom built UAV. Section V details our experiments.
Finally, Section VI shows our conclusions and further steps
of our work.

II. RELATED WORK

Several researchers studied insects and suggested they use
optical flow to control their flight. Horridge [2] pointed out
that it is a much cheaper way to compute distances and
reliable enough for insect to perform their various tasks. He
also emphasized the relevance of such discovery for robot
vision, indicating that the processing power of a computer back
then already surpassed insects’ computing capabilities. Lehrer
et. al. [3] reinforced such findings by observing trained bees
gathering food in various controlled environments. They varied
the scale of objects and found that bees completed the task
irrelevant to such changes, leading to a conclusion that they
navigate based on scale, disregarding the real size of objects.
Srinivasan et. al. [4] found that bees can estimate the distance
of a given object by analysing its motion across the retina.

In the robotics field, Franceschini et. al. [5] built a synthetic
compound eye based on the fly’s visual system and conducted



terrain-following flights of a flying robot in a controlled
environment. Their controller did not account for a desired
height, instead it was automatically regulated according to
the horizontal speed of the robot and a target optical flow
displacement. Another important finding is that in featureless
environments the absence of optical flow makes the robot fly
lower and lower until it crashes into the ground.

Chao et. al. [6] conducted a survey of optical flow tech-
niques for UAV navigation applications. They identified works
for the most diverse applications that use optical flow as the
main technique to achieve the desired goals. The examples
are: distance estimation, altitude hold, hovering, velocity esti-
mation, obstacle avoidance, vertical landing, height estimation
and terrain following.

Zufferey et. al. [7] performed a collision avoidance exper-
iment of a fixed wing UAV following a predetermined path.
The UAV used GPS to follow the path and several optical flow
sensors commonly found in computer mice to avoid trees in
the path. This demonstrates the potential of optical flow as a
mean of sensing for UAV control.

Garrat and Chahl [8] conducted field experiments of an
UAV terrain following flight using optical flow. They used a
Yamaha RMAX helicopter carrying a camera, a laser range
finder to be used as ground truth and a differential GPS unit
to account for the camera translation. In their experiments, the
flight was conducted over flat terrain and the AGL altitude was
only 2 meters. This prevented the analysis of the algorithm
behaviour at higher altitudes and at varied relief, such as a
mountain.

Differently from these approaches, our methodology is
focused on inferring certain characteristics about the terrain,
such as elevation and inclination. Which should enable us to
anticipate actions of the UAV with relation to these character-
istics in future works.

III. METHODOLOGY

Our methodology is composed of two main modules: the
optical flow computation and the classification. Each of them
will be discussed in detail in the following subsections.

A. Optical Flow

Optical flow is the measurement of displacement between
image points from two consecutive images. The technique as-
sumes that the brightness is constant between frames captured
in short intervals:

(a,y,t) = I(x +u,y +v,t+1). (D

Which expanding through its Taylor series transforms into:
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This gives us one equation (2), but that leaves us with
an underconstrained system, since the optical flow consists of
vectors defined by two independent variables.

There are several approaches to create an additional con-
straint needed to solve the system. The first one was developed

by Horn and Schunck [9] : It imposes global smoothness,
assuming that vectors from a given region of the image point
have the same direction and magnitude, which is mostly true,
but fails at edges and corners. The second approach was
developed by Lucas and Kanade [10]: It consists of finding
the displacement vector that best fits a windows of pixels,
imposing local smoothness, and is well suited for tracking
features, such as corners.

To evaluate if optical flow provided sufficient information
about the relief we first analysed data from sparse optical
flow [10] by looking for discernible histogram patterns of
the magnitude and angle of the optical flow vectors. The
magnitude histogram consists of 24 bins of fixed size while
the angle histogram consists of 180 bins of fixed size, as seen
in Figure 1.

Based on our observations the terrain types were clearly
discernible when the following assumptions were true:

e the scene is mostly static;

e there is small to no camera rotation.

After proving the concept we moved to a dense optical flow
approach to evenly distribute the vectors among the image,
since we had some issues with areas of low texture. We
chose the Farnebick algorithm (FB) [11], which is based on
an approximation of each neighborhood of both frames by
quadratic polynomials. The author presents an efficiently and
accurate approximation by using the polynomial expansion
transform, providing a fast and robust algorithm to estimate the
displacement field between two frames. In addition to the small
error of optical flow computed by FB, we can efficiently com-
pute dense flows using the CUDA implementation available at
the OpenCV library. Despite the aforementioned advantages of
FB algorithm, it also fails to find optical flow in areas with low
texture. Thus, to minimize the impact of such areas, we only
used displacement vectors with a magnitude over a minimum
threshold, which was determined empirically.

B. Classification and Feature Vector

We identified three characteristics we wanted to classify
about the terrain. The first one is whether the terrain is flat,
inclined or something else (mixed, for instance). The second
one is whether the terrain is elevating, dropping or neither
with relation to the UAV flying direction. The last one is the
direction of the inclination of the terrain, which we discretized
into eight possible values representing the direction in intervals
of 45 degrees (see Figure 2), there is an additional class
representing terrain without inclination.

We chose to use decision trees to classify our data since
they are fast to train and classify, allowing us to perform many
tests with different feature vector configurations. The decision
tree type we used is the ID3 [12], as implemented by OpenCV.
Before training the decision trees, we needed to reduce the data
from the dense optical flow algorithms. For that, we tried three
different descriptors and all possible combinations of them.

The first descriptor consisted of slicing the image in 8
triangles, each one consisting of half a quadrant. Considering
the origin as the camera center pixel, the data would be
the average of each bin (Figure 3a). The second descriptor



(a) Optical flow of flat terrain image.
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(c) Segment size and direction histograms of flat terrain

(b) Optical flow of inclined terrain image.
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Fig. 1: Sparse optical flow of a flat terrain image (a) and inclined terrain image (b) along with their respective histograms (c)
and (d). The colors of the flow vectors vary according to their size, bigger vectors are yellow and smaller vectors are red. The
histograms represent the vector magnitude (left) and direction (right), in the later, color intensity represent the distribution among
the bins, darker bins representing more vectors laying inside them. In these samples the segment direction is highly concentrated
close to 0°, however the segment size histogram show a completely different behaviour, being concentrated between 1,5 and 2
pixels in (c) and spread between 6 and 8,5 pixels in (d). This illustrates the expected difference according to the terrain.
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Fig. 2: Images showing some samples of direction of inclina-
tion.

consisted of evenly distributed square bins over the image,
forming a grid, composed of the average magnitude of each
one. Specifically, we used bins of 50 pixels in width and height
(Figure 3b). The last descriptor consisted of a history of the
10 last measures of the average magnitude of optical flow over
the entire image.

After the preprocessing we fed the data into the decision
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(a) First descriptor. (b) Second descriptor.

Fig. 3: First (a) and second (b) descriptors. They consist
of slicing the image in bins determined by the lines and
calculating the average value of each bin.



2015/03/15 16:43:04

AL
(c) Buildings

2014/12/15 15:08:27

(b) Mining site

2015/03/15 16:40:46

(d) Trees

Fig. 4: Snapshots of videos composing our dataset. (a) Represents an area of flat terrain, (b) an area of inclined terrain, (c) and

(d) areas of “other” terrain.

trees as implemented by the OpenCV library and obtained the
results presented in Section V-B.

IV. UAYV PLATFORM DESIGN

To perform our experiments we built a quadrotor UAV
(Figure 5) from off-the-shelf parts. It weights less than 2Kg
and its approximate size is 572x572x250mm, resulting in a
very popular size and weight among other quadrotor UAVs.

Our UAV frame is the DJI F450, a robust and inexpensive
one. It features four NTM 2826-1000KV motors attached to
1045 propellers powered by 3S LiPo batteries. The flight
controller is the popular ArduPilot Mega 2.6. It features an
IMU consisting of accelerometer, gyroscope, magnetometer
and barometer together with a Ublox NEO-6M GPS unit and
a 433MHz telemetry radio.

The flight controller uses the open-source ArduCopter 3.2.1
firmware, which allows us to log flight data and use the
MAVLink communication protocol to monitor and send com-
mands to the UAV. There is a ROS interface driver (roscopter)
for such applications, which allows us to override the remote
controller transmitter or send more sophisticated instructions
like waypoints, take-off and land commands.

Our camera is stabilized by an actuated gimbal (Quanum
Q-2D) with a 0.1° accuracy, its control loop runs at 1kHz,

Fig. 5: Custom Built UAV. It is based on the DJI F450 frame
and uses an ArduPilot Mega 2.6 as flight controller. In this
picture the UAV’s camera has been upgraded to a GoPro
Hero 3+ Black Edition, but at the time the experiments were
performed the vehicle was equipped with a Mobius ActionCam
Lens B, which is comparable to the GoPro Hero 3 White
Edition. It also uses a brushless motor gimbal to stabilize the
image.



the motor driving frequency is 32kHz and it is attached to
the quadrotor through four vibration dampening pads. The
camera is a Mobius ActionCam Lens B and the UAV also
features a 900MHz analogue video transmitter to allow real-
time processing outside of the vehicle.

V. EXPERIMENTS

The goal of this work is to infer about the terrain, thus we
processed the data from the camera and flight recorder offline.
The computer was a Lenovo y50-70 laptop featuring an Intel
core i5 4200H processor, a 2GB NVIDIA GeForce GTX 860M
with Maxwell architecture and 8GB 1600MHz primary RAM.
We used the OpenCV library compiled with CUDA in the
Ubuntu 14.04 64-bit environment to calculate the optical flow
more efficiently.

To compute the optical flow we downsized the video in
50% across each dimension and ran the CUDA implementation
of the Farnebick algorithm with a step of 5 frames between
comparisons, achieving a 7 FPS processing rate. Since the
decision trees classification time is negligible when compared
to the optical flow processing we did not account for it.

To perform our tests, we created a dataset from images
acquired in our experiments. Further details about the dataset
construction are described in the following subsection.

A. Dataset

The experiments we conducted consist of fixed ASL al-
titude flights over different terrain types, such as hills, flat
surfaces, over buildings and over trees (Figure 4). We planned
the flight through waypoints and performed an autonomous
mission at a configured speed of 3.5 m/s. The missions were
executed when there was little wind.

The gimbal stabilized camera features a fixed focus lens
and was configured to face down and shoot 720p video at 60
FPS with the narrowest Field Of View (FOV).

Our ground truth is based on previous knowledge of the
terrain, which was obtained through previous walks over the
flight path and manual selection and annotation of the video
scenes over different terrain types. Our dataset is composed of
948 entries as described in Tables I and II.

B. Results

We trained three different decision trees. The first one was
meant to classify whether the terrain was flat, inclined or
something else, such as over buildings or trees. The second was

TABLE I: Dataset composition for terrain inclination and
terrain elevation.

Tree | Class Amount
Flat 264
1 Inclined 324
Other 360

Elevating 192
2 Dropping 264
None 492

to classify if the terrain was going up, down or none of those.
The last one was to determine the direction of inclination.
The trees were trained using 10-fold cross-validation and 80%
of the data was used as the training set, the remaining 20%
composing the test set. The confusion matrices are shown in
Figure 6.

In the first decision tree we achieved an accuracy of 86.75%
with the combination of the first and last descriptors, with a
higher influence from the first descriptor, which is expected,
since it was designed to detect inclination.

In the second decision tree we achieved an accuracy
of 91.85% with the combination of the second and third
descriptors, where most of the influence comes from the
third descriptor. This is a consequence of the elevation being
evaluated as a function of time, and as seen in Section II,
the optical flow is able to provide height information, thus
resulting in elevation information if evaluated in subsequent
frames.

In the last decision tree we achieved an accuracy of 77.34%

TABLE II: Dataset composition for terrain inclination direc-
tion.
Class || None | 0° | 45° | 90° | 135° | 270° | 315°
Amount | 264 |36 [ 108 [ 156 [ 72 | 252 [ 60
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Fig. 6: Confusion Matrices. In (c) we omitted two classes (180°
and 225°) in which we did not have any data.



with the combination of all descriptors, however, by crossing
data from Table II and Figure 6¢, we conclude that the low
accuracy in some classes is a consequence of few data in them.
In this tree all descriptors contribute to classification, with the
last one contributing the least, but still providing valuable data
for inclination directions closer to 0° and 180°.

VI. CONCLUSION AND FUTURE WORKS

In this work we showed that it is viable to infer about the
terrain from optical flow provided by aerial videos and we
hope that this brings further improvement to terrain following
algorithms. Some benefits could be colision avoidance and
taking earlier control decisions based on terrain information
instead of waiting for optical flow to reach predetermined
thresholds,this way the UAV would behave as if it was looking
ahead.

In our dataset our experiments demonstrated promising
results, but we have yet to test the robustness of the algorithm
with data from other environments, however, since the data
analysed is the optical flow, we expect similar results as long
as there is enough texture to be tracked on the images.

As future development we are working on an algorithm to
estimate the AGL altitude of the UAV and intend to develop
better terrain following techniques with the fusion of data
provided by this study.
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