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Abstract. We describe the development of a vision-based cooperative
localization and tracking framework for a team of small autonomous
ground robots operating in an indoor environment. The objective is to
enable a team of small mobile ground robots with limited sensing to
explore, monitor, and search for objects of interest in regions in the
workspace that may be inaccessible to larger mobile ground robots. In
this work, we describe a vision-based cooperative localization and track-
ing framework for a team of small networked ground robots. We as-
sume each robot is equipped with an LED-based identifier/marker, a
color camera, wheel encoders, and wireless communication capabilities.
Cooperative localization and tracking is achieved using the on-board
cameras and local inter-agent communication. We describe our approach
and present experimental and simulation results where a team of small
ground vehicles cooperatively track other ground robots as they move
around the workspace.
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1 Introduction

We are interested in the development of heterogeneous teams of air and ground
vehicles for exploration and mapping of three dimensional (3-D) spaces where
control and coordination strategies exploit the complementary actuation and
sensing capabilities of aerial and ground vehicles. In particular, we envision the
deployment of aerial vehicles cooperating with mobile ground robots equipped
with range finders and cameras operating in an indoor environment and oper-
ating with smaller less capable robots. The aerial vehicles, with their ability to
move in 3-D spaces, can provide information from vantage points inaccessible to
the ground robots. The larger ground vehicles, with their larger payload capacity,
can be equipped with high fidelity range sensors and cameras. Aerial and larger
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ground robots can collaboratively build 3-D maps of the environment, help local-
ize the team, and help deploy smaller ground robots. Once deployed, the smaller
ground robots can be used to explore, search, and/or provide information from
areas inaccessible to the larger robots.

We are interested in exploiting the capabilities of small ground robots to
access regions in the workspace that are inaccessible to aerial vehicles and other
larger ground robots. Examples include deploying a team of small ground robots
to search for suspicious packages concealed under tables and benches, or provide
information from vantage points inaccessible to the other robots in the team,
e.g., views through an air vent. Since these robots must be able to navigate
in small confined spaces, their payload, and therefore their sensing capabilities,
must be limited. We describe a cooperative localization and tracking strategy
for teams of ground robots. The objective is to enable localization of a target
located within the workspace that is not visible to the aerial vehicles and larger
ground vehicles. We describe a strategy where a team of small ground robots
cooperatively establish a local coordinate frame using their on-board cameras
and local inter-agent communication. Cameras on the ground vehicles are used
to observe identifying LED markers on each ground vehicle. Mutual observations
define a visibility graph that is then used to triangulate the location of the
ground vehicles in the local coordinate frame similar to [15]. Finally, assuming an
aerial vehicle or larger ground robot can visually localize at least one element of
each connected component of the small ground vehicle visibility graph, the local
coordinate frame of the team of small ground robots can then be transformed into
the global coordinate frame maintained by the aerial or larger ground vehicles.

In this work, smaller ground robots first establish a local coordinate frame
using their on-board cameras and odometry. Information from an aerial vehi-
cle is simulated using a static camera in the workspace and the estimate of the
global state for one of the ground robots is communicated via the 802.11 wire-
less network. This information is then used to determine all the global poses
for the team of ground robots within the workspace. Once localization has been
achieved, one or a subset of the ground vehicles can then be tasked to drive to
some region of interest to locate and localize a target of interest in the environ-
ment. The described approach can be scaled for teams of micro aerial vehicles
(MAVs) cooperating with a team of larger unmanned ground vehicles (UGVs)
and enables aerial vehicles to not only deploy teams of ground vehicles, but also
to serve as localization anchors that can support a multitude of small teams of
ground vehicles that can bring sensors to bear in regions inaccessible to MAVs
and larger ground robots. The ability for the smaller UGVs to localize within a
global coordinate frame enables more complex tasks such as autonomous explo-
ration and searching and tracking of persons or items of interest hidden in the
environment.

Existing work in cooperative localization [3,6] has been shown using a wide
selection of sensor combinations including range-only [17], bearing-only [14], and
a combination of the two [16,18]. Extensions of the general cooperative local-
ization to that of a distributed system has also been addressed in [12]. In our
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work, we rely on on-board cameras to extract relative orientation information
and thus the localization problem considered constitutes a bearings-only local-
ization problem. The majority of bearings-only vision-based localization in ex-
isting literature rely on known landmarks within the environment [1,2,7, 8, 10,
13]. Similar to [15], we rely on LED markers on each robot to enable a team
of small ground vehicles to establish a local coordinate frame. State estimation
and tracking is then achieved by fusing the information from the team using an
Extended Kalman Filter (EKF) similar to [2,4,5,7,9,11,13].

The remainder of this paper is organized as follows: Section 2 briefly describes
the scenario and the experimental testbed. Our Methodology is described in
Section 3. We conclude with a brief summary and discussion of our experimental
and simulation results in Section 4 and conclude in Section 5.

2 Experimental Testbed

As stated in the previous section, our objective is to develop a collaborative/cooperative
localization and tracking strategy for a team of small, sensing limited team of
ground robots for applications like exploration, target search, and providing sit-
uational awareness from vantage points inaccessible to aerial vehicles and larger
ground robots. Since the objective is to use small ground robots, our robots are
less capable than larger ground robots, i.e., an iRobot Create platform. As such,
we assume that our robots are only equipped with a single camera, odometry,
and wireless communication capabilities.

Specifically, we consider a team of mSRV-1 robots (see Figure 1). The mSRV-
1 is a differential-drive robot equipped with a 600 MHz Blackfin embedded pro-
cessor, 802.11b wireless communication, a color camera, and wheel encoders.
The robot has a footprint of approximately 10 cm x 9 e¢m. The state of each
vehicle is given by X; = [z;y;0]7 and summarized in Figure 2. Additionally,
each robot on the team is equipped with an LED marker. The LED markers can
be programmed with unique blinking patterns to enable unique identification of
the individual robots similar to those described in [15].

3 Methodology

In this section we describe the development of our cooperative localization and
tracking framework which consists of a state estimation step for estimating the
state of the robots as they move within the workspace and an image processing
step for identifying and localizing the robots within a local coordinate frame.

3.1 Extended Kalman Filtering

In our implementation, we use an Extended Kalman Filter with two independent
update steps that incorporate information from the image processing step and
from the robot odometry. As mentioned before the robot state is defined as
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Fig. 1: mSRV-1 Robot

[z, 9]

Fig.2: mSRV-1 state
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[x,y,0]. In the implementation of the EKF it is necessary to predict the system
measurements in order to determine some residual value for filtering. In the
image processing step, the primary output is a list of relative orientations to any
LED markers in the field of view of any one of the robot cameras. Included with
that are markers to denote which camera the information was taken from as well
as which robot’s LED markers are seen though this information is not directly
used in the EKF.

Predicted outputs for the image processing step depend on both the field of
view of the cameras as well as the state estimate for each of the robots. Since
the state of a robot is defined with respect to a central point, there is some offset
from this which defines the position of the camera. Figure 3 illustrates this idea.
Here [2/,y', ¢'] represent the position and relative orientation with respect to

[3327 yQ]

[11, 1]

xT

Fig. 3: Camera coordinate transformation

the camera. It is this ¢’ value that is being provided as a measurement. Since
the EKF is based on the measurement residual between expected and measured,
it is not necessary to bring this ¢’ value into the robot frame but rather the
estimated measurement value could be carried out with respect to the camera
position. The measurement prediction results in the following relationship:

yifyijsin(Qj) 70
x; — xj — Dcos(6;) !

hg(Zr) = arctan ( (1)
where D represents camera offset distance from the robot center, the ¢ compo-
nents refer to the state information of the given LED and the j components,
that of the camera.

Each robot is also equipped with wheel encoders and thus the output of the
odometry is given as a column for the total distanced traveled at each time step.

3.2 Image Processing

At each time step, each robot is tasked with acquiring an image from its camera.
In our system, we only consider the intensity of the robot LED markers in
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the images rather than the marker colors, however, our approach can be easily
extended to include color as another distinguishing feature. Given two images
obtained by robot i at time steps k and k + 1 denoted by I;(k) and I;(k + 1),
let AI; = I;(k 4+ 1) — I;(k) denote the change in intensity in the image. As a
robot moves through an image, the area where the robot was previously will
have a decreased intensity while the intensity of the new location will increase
as a result of the active LED markers. Thus, the region in Al;, denoted as R;
with intensity values greater than some threshold §; > 0 should give the new
location of the LED marker in view and thus the robot.

Given that the robot dimensions are known, to improve the identification of
the location of the LED marker in Al; and filter out false positives, we take into
account the distance of R; from the ground plane and the size of R; in relation
to the known size of the robot. We then perform an opening operation followed
by a closing operation to eliminate any smaller artifacts that may have shown
up in Al;. While both of these techniques improve the quality of the information
extracted from the images, there is still no guarantee that a point of interest is in
fact a robot. As such, the centroids of all R; in AI; whose intensities are greater
than §; and whose areas are greater than d4 > 0 are then determined. Given
the field of view of the camera, the centroid of each R; in AI; is then converted
into a relative orientation of the point with respect to the camera as follows:

d=a (“’;2’9) 2)

where ¢ represents the relative orientation of the LED marker with respect to
the camera according to the right hand convention at time step k, « is the field
of view of the camera, expressed as a +/— value with respect to the camera
normal, w is the width of the image, and p is the location within that image
that is determined to be the centroid of the region of interest.

As mentioned before there are no guarantees that a region of interest in
an image actually corresponds to a robot. Furthermore there is as of yet no
information regarding which robot a given region of interest may correspond to.
To address these issues, a vector, p, is created representing the robots that are in
view for any given camera. Figure 4 illustrates one possible scenario for a robot.

Based on the estimated position of each of the robots at the previous time
step, an estimated list of which robots are in view of Robot 0 can be created. In
our scenario, each robot can potentially obtain an initial estimate of its position
from an aerial vehicle or from another ground robot. In this instance, it is known
that Robots 1 and 2 are within the field of view of Robot 0 denoted by the dotted
lines, while Robot 3 is outside of Robot 0’s field of view. The point F' in Figure
4 represents a false positive in the image for which an orientation was provided
though it does not correspond to a known robot.

This information is combined with the relative orientation computed us-
ing each of the estimated robot poses which we denote by dAJJ(k) to create a
vector ;, such that v; for the example given in Figure 4 is given as: ¥y =
[Null, qgl, ég, Null]T where both the orientation to the robot itself and any ori-
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Fig. 4: Example case for Robot 0

entations to robots outside the field of view are given by Null. The Null values
insure that no information from these values is propagated through the system.

At this point, each ¢ given by Equation 2 is compared with each of the
entries in 1; and matched with the entry that provides the smallest difference
in orientations. This is essentially computing the residual values of the relative
orientation measured and the ones estimated between all possible robots in view
and provides an initial approximation for the image processing output. For any
given robot there may be multiple orientations provided. For instance, in the
example shown in Figure 4, ¢ would be attributed to Robot 2 as well as ¢o
since that is the closest match. Each robot is checked to ensure only one match
is found in a given image. If there are multiple matches, the match with the least
distance to the predicted orientation, based on the estimate pose, is taken to be
the correct match. Since the size of the intensity blobs in the difference image
is roughly the size of the robot itself, small errors in the position estimates at
this point are not likely to drastically change the values returned by the imaging
system, i.e., attributing an incorrect match to a robot.

With one match assigned per robot, another check is performed to make sure
that all matches are within a given threshold. For the example shown in Figure
4, if the LED marker for Robot 2 did not appear in the image and yet the F
did, ¢ would be returned as the relative orientation to Robot 2 since it was
the best and only match for that robot. However, by ignoring differences in the
relative orientation greater than that some appropriately chosen threshold, our
system returns no information for Robot 2 instead of incorrect information at
point F.

The vector 1) now represents a column vector in which each row corresponds
to a robot in the team and the entries represent relative orientations as reported
by the cameras. Since the EKF requires both the orientation as well as which
robot camera the information came from, ¢ is expanded to the matrix O for
which each row entry reflects the following information: [¢, camID,ledID]. In
our EKF implementation, camID and ledI D values are used to determine the
locations for the Jacobian blocks of the observation matrix. For the scenario
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provided the values for ¢, O, and H would be as follows:

()

where Ho represents the derivative of Equation 1, as presented in Section 3.1,
with respect to the camera states, and Hj the derivative with respect to the
LED states. Each entry shown in 5 consists of a 1 x 3 block so that each row
of H corresponds with an image system output and each column a state of the
system.

In the full system, values for O as provided by each camera are concatenated
and a single H matrix is created to include all entries provided by each camera.
For demonstration purposes the above values are assuming that Robot 0 is the
only available camera in the team.

In summary, consider the case where the team is deployed in an environment
where one or a subset of the robots is tasked to drive from their initial locations to
some goal positions in the workspace. Our collaborative localization and tracking
strategy for each robot can then be summarized as follows:

if the robot has not reached the goal location
compute desired velocities (linear and angular)
drive the robot
predict current robot state based on control inputs (EKF predict)
collect new measurements (images & odometry)
extract relative orientation information
update the state and covariance estimates (EKF update)
check if the robot has arrived
end

4 Results

In our experiments, we consider a team of 5 mSRV-1 robots where one robot was
tasked to drive from an initial position to a final goal position using the estimated
state provided by the team. Since our robots are quite resource constrained, all
image processing, state estimation, and computation was implemented on a cen-
tralized computer to ensure the experiments can be completed in a reasonable
amount of time and robots can move at a reasonable speed. The general im-
plementation of the calculations and image processing, while done on a central
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computer, was carried out as if it were on individual processors, simulating a
decentralized implementation. With demonstrated success in this manner exper-
imentally, we believe our approach can be easily decentralized once the image
processing has been successfully implemented on each robot’s embedded pro-
cessor. Furthermore, an initial state estimation for at least two of the robots is
provided by an overhead localization system. The overhead localization system
provides information that can be provided by an aerial vehicle or larger ground
robot with view of at least one of the ground robots.

In order to validate the results of our collaborative localization and state
estimation framework, several experiments were conducted where the estimated
states are compared to ground truth measurements provided by our overhead
localization system. The accuracy of our overhead localization system is ap-
proximately £20 mm. Figure 5 shows three trial runs and the predicted error
ellipses.

2000, 2000 2000

—-Actual
—Estimate
1000

1000 1000 /

0 — o — o 2

-1000 ) . -1000 -1000)

-ZQSBOO -1000 0 1000 2000 -20-8800 -1000 0 1000 2000 _20-8800 -1000 O 1000 2000

Fig.5: Three example trials. Start and end positions are shown as o and x
respectively and cameras are denoted with squares, oriented as shown. Axes
shown in mm.

The error at each time step was calculated as the 2-norm between the ground
truth and the estimated position. The mean error over the full run as well as the
standard deviation of the error is provided for each trial. A total of 12 trials were
completed with varying start and end positions comprising a total of 278 pose
estimates. The average error in position over all 278 estimates was 132 mm with
a standard deviation of 67 mm. Despite the lack of high fidelity odometry sensors
on our robots, the accuracy of our strategy is about a robot’s bodylength. Based
on the covariance matrices of the EKF it is also possible to see the assumed error
in the measurements from the robot’s perspective. The ellipses shown on Figure
5 represent the location of the robot with 80% confidence based on noise in the
measurements. As can be seen the number of robots that can see the traveling
robot as well as the direction from which the robot is seen has a large affect on
the error in the system.

In addition to evaluating the position error of the system, we considered an
example scenario where the smaller ground vehicle cannot be easily localized
by an aerial vehicle or larger ground robot. This is shown in Figure 6 where a
robot was tasked with capturing an image of a suspicious object underneath a
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low table. The view of the object is obstructed from the point of view of any
aerial vehicles. Furthermore, the low clearance means the space is inaccessible to
larger ground vehicles. Using our cooperative localization and tracking strategy
the mSRV-1 is able to infiltrate the space to localize the target.

Fig. 6: Surveillance of suspicious object under table.

Finally, the show the scalability of the proposed strategy, we simulated a
scenario where a team of five robots must simultaneously track three moving
robots. In our simulation, the error on relative orientation measurements was
assume to follow a Gaussian distribution based on errors obtained in experi-
ments. Figure 7 shows one such trial in which three robots were tasked to drive
10m towards three different goal locations. Using the methodology presented,
the two static robots were successful in providing the information necessary to

localize and track the three others.

f
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Fig. 7: Multiple driver simulation. Dashed lines represent field of view of the
robots, solid lines show the paths traveled, interim goals are shown as x, axes

are in mm.
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5 Conclusions

In this work, we presented a cooperative localization and tracking framework
specifically designed to enable small ground vehicles to operate in regions of the
workspace that is inaccessible to aerial vehicles and/or larger ground robots.
Specifically, we address the localization and navigation of small ground vehicles
in such confined spaces. An EKF-based position update scheme was presented
in which bearing information received from on-board cameras and odometry
information results in pose estimates for the team that are accurate to approxi-
mately one robot body length. One direction for future work is full distributed
implementation of the strategy on a team of robots capable of on-board image
processing. A second direction for future work includes the integration of the
approach with a team of aerial vehicles capable of providing the initial global
pose estimates for the team.

For all of the scenarios presented, the location of the static robots responsible
for tracking the moving robots were predefined. The positioning of these tracking
robots has a large effect on the accuracy of the system. As illustrated in Figure 8,
a system consisting of two robots with parallel views is much more susceptible
to large errors due to measurement noise than a system of two robots with
perpendicular views.

Fig.8: Error envelopes for different camera poses.

In Figure 8, lines are shown to represent an error envelope on the relative
orientations as provided by the cameras. This error is then extended into the
[, y] position measurements as represented by the shaded region. The position
error in the parallel view scenario is unbounded and highly undesirable. This
idea of best sensing locations is examined in [16], in which observers are directed
to move in order to reach the optimal imaging location given a target’s position.
We are interested in extending our approach to include such formation control
strategies and eliminate the need for predefining the positions of the tracking
robots.
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