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Abstract

Recently, consolidation on virtual servers has gone frommalbmarket to a massive industry migration which
is affecting businesses across different kinds of compan&tualization can be useful to help IT organizations
to reduce complexity and costs with management, ownerahigbenergy consumption, providing a flexible envi-
ronment for the execution of IT services. In this contextiesstanding the main properties of the virtualization
overhead and also quantifying this overhead is crucial far deployment of applications in a virtual environment.
In this work, we present a performance characterizationgpligations running on the Xen environment, aiming
at identifying the most important aspects of the overhegubsad on applications by the virtual system. We use
four benchmarks which stress different aspects of thealigystem. We compare the performance of the bench-
marks on a single virtual machine (VM) against a Linux syssm study the performance interference among
VMs scaling on the same hardware platform. Our results ergioe causes of this extra overhead and show that
it can be significant.

1 Introduction

Recently, consolidation on virtual servers has gone fromallsmarket to a massive industry migration which is
affecting businesses across different kinds of compaiieact, virtualization can help IT organizations to reduce
complexity and costs with management, ownership, and gremgsumption, providing a flexible environment for
the execution of IT services [9]. The emergence of new Vidystems such as Xen [6], Denali [23], and VMWare
ESX[8], and the development of hardware support for vifaadion from Intel [13] and AMD [4] are some of the
driving forces leading virtualization toward productioysgems and Web services.

Depending on the virtualization technique, the compleaitgd cost of virtualization can change drastically. As
an example, in systems based on pure virtualization, inlwizst VMs run on the top of a host operating system
(OS) without any awareness of the underlying virtualizateyer, the virtualization overhead is much higher than
on systems based on para-virtualization, which makes thst@dS aware of virtualization.

Our main goal with this work is to understand the main prapsrof the virtualization overhead through a
performance evaluation of applications when they are rtegréo Xen, a free and open source virtual system
which adopts para-virtualization. We use four benchmarkiekstress different aspects of the virtual system and
monitor how the main architectural aspects, such as nunflestouctions retired, cycles per instruction, cache
and TLB misses are affected when we move the benchmarks fioux to Xen. Moreover, we study how these
metrics are changed as we scale virtual machines on Xen. é3ults identify the most important causes of this
overhead and show that it can be significant.



The rest of this paper is organized as follows. Next Sectiesgnts related work and Section 3 discusses aspects
of Xen as a necessary background, and also describes thnesptal environment, tools and benchmarks used in
the experiments. In Section 4, we present a performancg sfutie overhead that the Xen environment imposes
on applications, and the performance degradation thatseduen there are VMs sharing the same CPU. Finally,
Section 5 concludes the paper and presents directionstfoefwork.

2 Reated Work

Most part of the resurgence of interest on virtualizatiodus to the possibility of deployment of applications
on VMs with low performance overhead. There are several svattkich compares the performance of virtualized
applications at different virtualization platforms andaivith non-virtual system [6,7,12,15,17,23]. In common,
these studies focus on analysis of the overall applicatenfiopnance (i.e. measuring system response time or
providing a benchmark result) on the virtualized systenounwork, we compare the performance impact of the
Xen virtual environment on different benchmarks, focusimgcapturing the most important characteristics of the
Xen virtualization overhead.

There are only a limited number of studies which focuses atersianding the characteristics of the virtual
environment overhead [5, 20]. The former work presents Xerfpa system-wide statistical profiling tool able to
sample hardware events such as instructions processgdclbak cycles, hits, and misses on TLB and processor
caches. The Xenoprof work provides a case study of netwagokcapions in order to show how Xenoprof can be
used to diagnose bugs or performance problems on Xen. Thademrk uses Xenoprof to study performance
issues of a CPU intensive application (the SPECjbb200%)ingnon a single VM. Our work also uses Xenoprof,
but it explores the differences among different benchmasthewing how different workloads can cause different
levels of interference among VMs sharing the same hardwiatéopm. As a side effect of our experimental
analysis, we present a performance evaluation of Xenoprerhead, which was not provided in [20].

3 Methodology and Environment

This Section describes Xen, the virtual environment useouinanalysis, the experimental environment, the
benchmarks and tools used in our experimental evaluatiext Slection presents our results.

3.1 Xen Architecture

Xen is a free and open-source virtual machine monitor (VMM)ak allows multiple (guest) operating system
(OS) instances to run concurrently on a single physical inachlt uses para-virtualization, where the VMM
exposes a virtual machine abstraction slightly differeot the underlying hardware.

The Xen system has multiple layers. Figure 3.1 provides amnvasw of Xen architecture. The lowest and most
privileged is called VMM. Each guest OS runs on a separatealimachine called domain or guest VM. The
VMs are scheduled by the VMM to make effective use of the atal physical CPUs. Each application, running
on a guest OS, accesses hardware devices via a speciatgevivirtual machine calledolated driver domain
(IDD), which owns specific hardware devices and run their 1/O @egiivers. All other domaingyiest domains
in Xen terminology) run a simple device driver which comnuatés with the driver domain to access the real
hardware devices. The IDD can access directly the hardweuvieas it owns. However, a guest domain accesses
the hardware devices indirectly through a virtual devicanszted to the IDD. The IDD maps through bridges
or routing the physical interface to its virtual interfac@ieh communicates with the guest virtual interface. The
guest domain exchanges requests and responses with thevi@o I/O channel. In order to avoid copying,
references to page-sized buffers are transferred ovef@hehlannel instead of the actual I/O data [11].
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Figure 1. Overview of Xen Architecture

In order to improve the 1/0O mechanism of virtualization gyss, Intel is currently developing a new hardware
able to provide to VMs direct access to hardware 1/0O opamnat[@4]. We believe that the IDD overhead might be
reduced or even eliminated for machines with this kind ofihere support.

3.2 Workloads and Benchmarks

In order to compare performance of applications running mx.and Xen, we need to use benchmarks that,
each of them, execute the same task on any system.this context, we choose as benchmarks real applications
which stress different parts of the system. Particulahg, workload used in our experiments is generated by the
following benchmarks:

kernel compilation: The compilation of the source code of a kernel consists d?d itensive application, which
calls several functions, stressing system CPU. The keerslon used is 2.6.12.

Web Server (static): We use a Web server providing only static content (HTML Jilesorder to evaluate its
execution on VMs. We use httperf [21] as clients and Apachedision 2.0.55 as the Web server. The httperf is
a tool which allows generating several HTTP workloads andsueng the performance of the Web server from
the point of view of the clients. We run httperf on a client miae, sending requests to the server, measuring
throughput and server response time of the requests. THdoadrused is generated by SPECWeb99 [19] and it
does not contain dynamic content. The same workload wasing&d].

Web Server (dynamic): In order to evaluate a Web server providing dynamic contentleveloped the part of
search of an e-commerce server. Our application was deaelopPHP and it access a database (mysql version
5.0) of a bookstore characterized and detailed describgti8jn As we did for the static Web server, we use
httperf as clients and Apache hosting the e-commerce sefterworkload used to feed httperf is composed of
only search operations obtained from logs of a real e-corengerver also described in [18]. For all the exper-
iments with this benchmark we configured the database ane-toenmerce server on the same VM in order to
provide a fair comparison with the other benchmarks.

Disk: For disk intensive test, we chose not to write our, but natbeuse a copy of a file. Particularly, for all
experiments, we execute on a guest VM a copy of a 2 GB file toghes/M partition.

A standard benchmark for virtualization is under elaboratly SPEC [22]
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Figure 2. Xenoprof and Oprofile Overhead

3.3 Monitoring Framework

In order to provide a performance evaluation of virtualizggplications, we need to be able to measure the
virtualized system. As part of our monitoring framework, @eveloped an application, which we c&iéncpy to
measure CPU busy time on Xen. This tool is based on the soadseafxm toptool, provided with Xen, and was
designed aiming at the automatic execution of our scriptee CPU busy time on the Linux system, the number
of packets, and processor interrupts on both environmeaits @btained fronproc directory. In order to measure
system metrics such as number of instructions retired, Thd@ocessor cache misses, we use Xenoprof [20], a
system-wide statistical profiling tool for Xen, which calts periodic samples of performance data. The Xenoprof
code is based on a Linux tool called Oprofile [2] which have shme functionality as Xenoprof for machines
running Linux. To measure the same metrics on Linux, we usefida

In order to provide a fair comparison between Xen runningofeaf and Linux running Oprofile we define a
sample period in which Xenoprof and Oprofile do not cause h bigerhead on the system. Figure 2 compares
the CPU busy time to execute the kernel benchmark for a madhimux and running Oprofile and the same
machine using Xen and running Xenoprof. For Linux, we pl& #alues obtained running Oprofile relative to
the system without running Oprofile. For the VM environmemg, plot the values running Xenoprof relative to
the VM executing the same benchmark running with Xenoprait gmall sample periods both, Xen and Linux
starts to enter in a trashing state due the high number afrupigons caused by Oprofile and Xenoprof. The
trashing effect is more perceptive in Xen, since there areenmstructions being executed in this system due to
the virtualization. However, for a higher sample periodhbtmiols do not cause significant interference in the
system performance. For the kernel benchmark we choSas the sample period for event instructions retired.
We performed a similar study for each benchmark used and ewatyzed. Figure 2 is also useful to provide an
understanding of Xenoprof overhead, since this kind ofyaisiwas not presented previously [20].

3.4 Experimental Setup

For all experiments, we use a 64-bit two-CPU 3.2 GHz IntelXserver, with 2 GB of RAM, one disk with
7200 RPM and 8 MB of L2 cache, and two Broadcom Realtek Gigatiiernet card. The server is directly
connected to a single-CPU AMD Athlon64 3 GHz, with 2 GB of RAdMd two Realtek Gigabit Ethernet card.
We configure Xen to use i386 architecture. We use Xen versiod and the VMs runs XenoLinux derived from
Linux Debian Etch i386 distribution, kernel 2.6.16. Thesali machine also uses the same Linux distribution and
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Figure 3. Kiviat representation for each benchmark

kernel. The Linux server is configured with 1024 MB of RAM, ahé single VM is configured with 512 MB of
RAM as well as the IDD. For experiments that increase the raurnballocated VMs, each one uses 256 MB of
RAM. The credit scheduler [3] is used as the Xen schedulérvbBudo not limit the amount of CPU resources for
the VMs.

4 Performance Evaluation

This Section presents an experimental performance studppmlications running on the Xen VMM. We con-
figure the virtual environment with one IDD and one guestheame using a different CPU. The Linux system
uses a single CPU.

4.1 Overheads of Different Benchmarks

In order to demonstrate how different applications arecédfe by the Xen virtualization overhead, we compare
the four benchmarks described in Section 3.2 executing nuX.and Xen systems. Figure 3 shows four Kiviat
representations which compares CPU and disk utilizatiohioox and Xen systems for each benchmark. In a
Kiviat graph each radial line starting at the central poirmepresents one metric with maximum value 1 [16]. We
plot five metrics on this graph, namely, the CPU utilization the Linux CPU, for the IDD and for the VM, and
disk utilization on both systems. Each graph representsehmeark. For the Web server benchmarks we choose
600 requests/s and 7 requests/s as request rates for statig@amic content, respectively.

For the kernel compilation benchmark, the CPU utilizatisraimost 1 for both, Linux and the guest VM.
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Figure 4. Overhead of a single VM

Since this benchmark does not execute a representativeemuwhl/O operations, the CPU utilization on the
IDD is almost 0. Observing the Web server which provides @tétic content, we can observe the VM and
the Linux system running competitively and also note a higtu@rocessing on the IDD due to 1/O operations.
The same behavior can be observed for the dynamic Web sefher.disk activity is negligible for both Web
server benchmarks executing on Linux, but there exists lawdiization of 4% and 6% respectively for static
and dynamic Web servers. There is a high CPU activity on thHe i@ these two Web benchmarks due to the
processing of network 1/0 operations. Also, observing tis& denchmark, we can note that the disk I/O activity
is responsible for 7% of CPU utilization on the IDD.

4.2 Overhead of a Single VM

In order to decompose the main architectural factors thabhgé on a VM environment, we return to the clas-
sic equation of CPU busy time (eq. 1), which depends uporetbharacteristics: number of instructions of an
application (IC), clock cycles per instruction (CPI), aheé tlock rate.

CPU busy time = IC - CPI - Clock rate (1)

The clock rate is not interesting to the focus of these aimlisace we are dealing with the same hardware
platform. In fact, we are interested in understanding H@awand C' PI change from Linux to Xen and also
understand the causes of their increases.

Firstly, we analyze the virtualization overhead for eachdienark. Figure 4 provides a comparison of busy time
measured on the virtual environment to execute each of tebfenchmarks relative to the busy time measured
on Linux. We can see that the virtualization overhead (VM B)Dor the file copy is the highest, followed by the
dynamic and static Web server benchmarks, and then by thelkewsmpilation. We next, explore the reasons for
these differences.

We compare several metrics measured on Linux and on a singlealdo measuring the analyzed events on
the IDD. Figure 5 shows, for all analyzed benchmarks, theuoton count (IC), the CPU cycles per instruction
(CPI), the number of misses on the caches L1 and L2, and théewaof misses on the TLB of instruction and
data. These numbers are all relative to the execution oféhelimarks on the baseline Linux system.

Observing the figure of IC, note that, the difference betwegrh pair of two columns represents the amount
of instructions executed by the IDD, which is responsibleifiblermediating the hardware access for the VMs.
For the kernel compilation benchmark, the amount of insimns executed by the IDD is very small since this

6
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Figure 5. Benchmarks running on a Xen VM relative to Linux: IC , CPI, and L1 cache misses (top), L2

cache misses, instruction TLB misses, and data TLB misses (b ottom)

benchmark requires few disk and none network I/O operatibiosvever, for the other benchmarks there are more
work executed by the IDD compared to the kernel benchmarkarfesxample, the IDD is responsible for 29% of
the total number of instruction for the file copy whereas far kernel benchmark the IDD is responsible for less
than 0.2%.

We now, turn our attentions to what happens with the cyclesnséruction of both Xen components compared
with Linux. In order to compute the CPI we divided the numbkbwsy cycles to execute the benchmark by the
number of instructions executed. The number of busy cycksaalculated multiplying the processor frequency
per the CPU busy time. The average CPI on the Xen environmasiltained as the mean of the IDD and VM
CPI, weighted by their respective IC. The dynamic benchmaakes several access to a database installed inside
the VM, which are in great part operations with high CPI. Cangol with the other benchmarks, the IDD CPI of
the dynamic Web server is still high (ex. higher than theistateb server benchmark) and the VM CPI is the
highest one, given for this benchmark the first place for trexage CPI. The highest IDD CPI is for the kernel
benchmark, almost 8.6 cycles per instructions. Howevecesthe IC on the IDD is insignificant for the kernel
compilation, the average CPI is not affected by the IDD CRd, thus, it is very close to the VM CPI.

4.3 Interference Scaling VMs

This Section analyzes the interferenéeamong VMs when they share the same CPU. Decomposing the main
factors which change when we increase the number of VMsrgi#ie same CPU, we nanstruction Growth
(IG) andInstruction Dilation (I D) any increase on the IC and CPI, respectively, on a single \d#ltd other
VMs concurrently running on its same hardware platform. \&etguantify and decomposdeinto /G andI D
for the benchmarks analyzed, understanding the impaceofittualization platform on each benchmark.

Both, IG and D are responsible for interference when we run multiple VMs$hansame CPU. In this context,
our first step is to quantify, /G andI D as we increase the number of VMs. We run one kernel compilgiér
VM. We measure interference as the busy time to execute thehbeark from the point of view of a single VM
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when it is sharing the CPU with other VMs, divided by the busyetto execute the same benchmark on a single
VM when it is not sharing the CPU. We also computé and I D relative to one single VM solely occupying
the CPU. The virtual environment is configured with the IDDming on a separate CPU and the VMs sharing
the other CPU. Figure 6 (left) shows /D andIG as a function of the number of VMs running the benchmark.
There is a higher increase drfrom 1 to 2 VMs and then] starts to increase slowly reaching 3.19% for 5 VMs.
The same behavior can be observedifby, which is the main cause of interference. We can also obsesveall
increase ol G, less than 0.32% for 5 VMs.

Since the main cause of interferencel/i®, we analyze its causes. We plot level 1 (L1) and level 2 (L2)
processor cache misses, and data (DTLB) and instructidrB)JITLB misses, all relative to one single VM. We
assume L1 cache miss as the sum of the misses and hits on L&, sawte L1 cache miss is the unique measured
event which cannot be directly obtained from Xenoprof [2Bigure 6 (right) shows these hardware events as a
function of the number of VMs. Note that the L2 cache missagechas a similar behavior d9. These results
show strong evidences that an increase on L2 cache mis$esrisost important reason I for this benchmark
and, consequently, the most important cause of interferenc

5 Conclusionsand Future Work

This work presents a performance evaluation of applicatimning on the Xen environment, identifying the
most important aspects of the overhead imposed on applisaby the virtual system. Summarizing, our main
findings are:

e The virtualization overhead can be significant, specialtyapplications which relies on I/O operations.

e Interms of the cause of virtualization overhead, the CPéplexd for the IDD is higher than the VM CPI and
thus, applications which use a significant amount of IDD weses may experiment a higher virtualization
overhead due to an increase on the average CPI. Also, the I@d2mts the highest miss ratio on caches L1
and L2 compared to the VM and Linux, justifying its high CPI.

e Interference due to VMs scaling on the same CPU is causedstyation dilation/ D, which is, in most
part, caused by an increase on the number of L2 cache misses.



We believe that our findings can be used to guide the desigreohamisms able to diminish the cost of virtu-
alization. More importantly, we showed that the virtualiaa overhead can increase when VMs are sharing the

same resource. This extra overhead is usually not accoontgerformance models or considered by scheduler
parameters.

As future work we plan to extend our analysis for differenbfoguration scenarios and benchmarks. Another
interesting direction is to create a model able to predietaverhead of a workload for a large number of VMs.
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