UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciéncias Exatas
Programa de Pés-Graduagao em Ciéncia da Computagao

Rafael Alvarenga de Azevedo

Idempotent Backward Slices: A GSA-Based Approach to Code-Size
Reduction

Belo Horizonte
2025

Rafael Alvarenga de Azevedo

Idempotent Backward Slices: A GSA-Based Approach to Code-Size
Reduction

Final Version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Master in Com-
puter Science.

Advisor: Fernando Magno Quintao Pereira
Co-Advisor: Rodrigo Caetano de Oliveira Rocha

Belo Horizonte
2025

[Ficha Catalografica em formato PDF]

A ficha catalografica serd fornecida pela biblioteca. Ela deve estar em formato PDF e deve ser
passada como argumento do comando ppgccufmg no arquivo principal .tex, conforme o
exemplo abaixo:

\ppgccufmg{

fichacatalografica={ficha.pdf}

Lesensesa, .
S SDERAL e,
Sl e,

* Q ",

"ff&

TNV,

UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIENCIAS EXATAS _
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

FOLHA DE APROVACAO

Idempotent Backward Slices: A GSA-Based Approach to Code-Size
Reduction

RAFAEL ALVARENGA DE AZEVEDO

Disserta¢io defendida e aprovada pela banca examinadora constituida pelos Senhores

ProF. FERNANDO MAGNO QUINTAO PEREIRA - Orientador
Departamento de Ciéncia da Computagao- UFMG

Mzs@uémx‘;@%%k

Pror. RoDRIGO CAETANO DE OLIVEIRA RocHA - Coorientador
Huawei Research - Centro de Investigacion de Huawei - Edimburgo - Reino Unido

‘1,//
A@’ RiGco

Instituto de Computacao - UNICAMP

Doutor YANN HERKLOTZ
Verification and Computer Architecture Laboratory - EPFL

Belo Horizonte, 28 de novembro de 2025.

A minha familia, com todo meu amor. Agradeco por me en-
sinarem o valor do estudo e por me darem a liberdade de me

dedicar aquilo que verdadeiramente me inspira.

Acknowledgments

I would like to express my sincere thanks to the Minas Gerais State Research Founda-
tion (FAPEMIG) for the essential financial support provided through the research grant,
without which this project would not have been possible.

[am especially grateful to my advisor, Professor Fernando Magno Quintao Pereira,
whose disciplined guidance, intellectual rigor, and academic excellence were crucial for the
development of this thesis. His availability and insightful advice were invaluable.

My gratitude extends far beyond this program to every teacher and professor who
has guided me on my academic journey. From my earliest school days to my most advanced
studies, each one laid a stone in the path that has led me here. They instilled in me a
love for learning that has been my constant motivation, and for their collective wisdom

and encouragement, [am profoundly thankful.

“The day you stop learning is the day you begin decaying.”

(Isaac Asimov)

Resumo

Otimizacoes de compiladores sao cruciais para melhorar a eficiéncia de programas, es-
pecialmente para software implementado em sistemas com recursos limitados, onde o
tamanho do codigo ¢ uma preocupacao primordial. Esta dissertacao introduz uma nova
técnica para a reducao do tamanho de codigo, identificando e extraindo Program Slices
recorrentes. A nova abordagem utiliza a representacao intermedidria Gated Single As-
signment (GSA) form, que torna explicitas tanto as dependéncias de dados quanto as
de controle, para permitir a extragao precisa de légicas de programa autocontidas e exe-
cutaveis, as quais denominamos Idempotent Backward Slices. O algoritmo proposto ¢ im-
plementado como um pass completo, funcional e de cédigo aberto para a infraestrutura de
compiladores LLVM. Para avaliar sua eficdcia, conduziu-se um rigoroso estudo empirico,
compilando 2007 programas da colecao de testes de LLVM. Os resultados demonstram
que a nova técnica alcanga reducoes significativas no tamanho do cédigo em casos es-
pecificos em que outras técnicas publicadas previamente falham. Concluimos que o slic-
1ng baseado em GSA é uma ferramenta viavel, porém especializada, mais adequada para
dominios onde o tamanho do cédigo é fundamental e as bases de cédigo contém os padroes

computacionais recorrentes que nosso algoritmo foi projetado para identificar.

Palavras-chave: Otimizacao de Compiladores. Program Slices. Gated Single Assign-

ment Form.

Abstract

Compiler optimizations are critical for enhancing the efficiency of programs, particularly
for software deployed on resource-constrained systems where code size is a primary con-
cern. This thesis introduces a novel technique for code-size reduction by identifying and
outlining recurrent program slices. Our approach leverages the Gated Single Assignment
(GSA) form, an intermediate representation that makes both data and control dependen-
cies explicit, to enable the precise extraction of self-contained, executable program logic,
which we term Idempotent Backward Slices. The proposed algorithm is implemented as a
complete, functional, and open-source, out-of-tree pass for the LLVM compiler infrastruc-
ture. To evaluate its effectiveness, we conducted a rigorous empirical study, compiling
2007 programs from the LLVM Test Suite. The results demonstrates that our technique
achieves significant code-size reductions in specific, targeted cases where other optimizers
fail. We conclude that GSA-based slicing is a viable but specialized tool, best suited
for domains where code footprint is paramount and code bases contain the recurrent

computational patterns our slicer is designed to identify.

Keywords: Compiler Optimizations. Program Slices. Gated Single Assignment Form.

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

5.1
5.2
5.3
5.4
3.5
5.6
5.7
5.8
5.9

The program’s CFG in GSA form. 14
Instructions selected for the new slice. 15
An idempotent backward slice. L oL 15
Asimple CEG. e 19
Simple Dominator trees. 22
The program’s CFG in SSA form. 30
The Dominator Tree and the Program Dependency Graph. 31
Comparison of program slice, CFG, and PDG fragments. 31
The traditional function merging process. 36
The traditional function outlining process. 37
The ladder control flow graph. 38
Slice criterion’s dependencies. 38
Program slicer overview. Lo 41
The creation process of recursive slices. 47
Identification of the slice and the corresponding region to be outlined. 53
The outlined function. 54
The new original function. oL 54
The ladder graph in GSA form. 57
Slice criterion’s dependencies.o a7
Final sliced function. L 58
Compilation pipeline. 69
Build system modification steps.o 69
Code-size reduction between Daedalus, func-merging, and IROutliner. 73
Code-size growth between Daedalus, func-merging, and IROutliner. 74
Baseline cache performance profile. 76
Cache performance profile after applying Daedalus. 76
Daedalus: Compilation Time vs. Instruction Count. 80
IROutliner: Compilation Time vs. Instruction Count. 81

func-merging: Compilation Time vs. Instruction Count. 82

List of Tables

5.1
5.2
5.3
5.4
2.9
5.6

5.7
5.8

2.9

5.10

5.11

5.12

5.13
5.14

Experimental results across different metrics. 71
Number of Programs with All Metrics Positive. 71
Number of Programs with Negative Instcount and .text size. 72
Number of Programs with Positive Instcount and .text size. 72
Comparison of Code-Size Impact for activate_sps Across Passes. 74

Benchmarks with Reduced Instruction Count and .text Size but Increased
Execution Time. 77
Benchmarks with Reduced Instruction Count, .text Size, and Execution Time. 77

Benchmarks with Reduced Compilation Time and Corresponding Geometric

Mean Differences. 78
Benchmarks with Reduced Instruction Count, .text Size, and Compilation
Time. e 78
Benchmarks with Reduced Instruction Count and .text Size but Increased
Compilation Time. 78
Pearson correlation between compilation time and instruction count for each
PASS. . o e e 79
Timers for Outline Sub-Phases. 80
Timers for Daedalus Phases. 80

Comparison of metrics across different optimization pass orders. 82

Contents

1 Introduction

2 Literature Review

2.1 Definitions

2.1.1 Control Flow Graph
2.1.2 Data-flow Analysis o o
2.1.3 Dominance
2.1.4 Data and Control Dependencies
2.1.5 Static Single Assignment Form
2.1.6 Gated Single Assignment Form
2.2 Program Slice
2.3 Algorithms
2.3.1 Sparse Slicingo
2.3.2 Gating Phi-functions o000
2.3.3 Gating by Path Expressions
2.4 Optimizations
2.5 Motivating Example oo

3 Algorithms

3.1 Program Slicer
3.1.1 GSA Construction
3.1.2 Slice Identification L
3.1.3 Idempotent Backward Slice
3.1.4 Function Outlining L.

3.2 Function Merging and Simplification

3.3 Slicing Example

4 Soundness

4.1 MiniGSA: A Minimal GSA Language
411 Syntax . . .o
4.1.2 Semantics e

4.2 Soundness

5 Evaluation

13

17
17
17
18
20
23
24
25
27
28
29
32
33
35
37

40
40
41
46
o1
52
o6
26

59
59
29
60
62

66

5.1 Experimental Setup

5.2 Research Questions
6 Conclusion
References

Appendix A The MiniGSA Interpreter Implementation

84

86

89

13

Chapter 1

Introduction

Compiler optimization is a foundational area of computer science, focused on transforming
programs to improve their use of computational resources. These improvements are typ-
ically guided by a specific objective, such as minimizing execution time, reducing power
consumption, or decreasing memory footprint. In an era of ubiquitous computing, from
resource-constrained [oT devices to large-scale data centers, the efficient use of these re-
sources is key. This work focuses on space optimization, a critical concern for applications
deployed on systems with limited memory and storage.

Specifically, we address the challenge of code-size reduction by leveraging a program
analysis technique known as Program Slicing. First defined by Weiser [24], a program slice
consists of the parts of a program that potentially affect the values computed at some
point of interest, referred to as the slicing criterion. The concept has proven to be widely
applicable.

Despite decades of research, efficiently extracting precise and executable slices from
arbitrary programs remains an open challenge [3]. For instance, recent approaches in the
related field of code-size reduction are often limited to identifying contiguous instruc-
tion sequences, thereby failing to capture optimizations across semantically related but
discontiguous code fragments [18].

To address the complexities of generating executable slices, particularly in the pres-
ence of intricate control flow, we leverage the Gated Single Assignment (GSA) form [7],
which is an extension of the widely-used Static Single Assignment (SSA) [17] represen-
tation. While SSA uses ¢-functions to merge values from different control flow paths,
GSA introduces three explicit gating functions that preserve control flow information by
encoding the specific predicate governing each incoming edge. Specifically, the v-function
acts as a guarded conditional selector that assigns vy, or vqs based on a predicate p
at control-flow join points. The p-function operates at loop headers to select the initial
value v; upon entry and the loop-carried value v, for all subsequent iterations. Finally,
the n-function determines the value of a variable after loop termination by capturing the
definition v3 according to the exit predicate p. By utilizing these gating functions, both
data and control dependencies are made explicit, providing a richer substrate for program

analysis.

T = W N =

o

14

We term the resulting subprogram an Idempotent Backward Slice. It is a
backward slice because it is formed by tracing data dependencies backward from a spe-
cific instruction, known as the slicing criterion. The slice is also a pure function: it is
self-contained, has no external side effects such as memory writes, and is referentially
transparent, always producing the same output for the same inputs.

A key structural constraint applies when the slicing criterion is inside a loop. In
this case, the extracted slice is bounded by the loop’s body, capturing the computation
for a single conceptual iteration. The resulting function may still contain its own internal

loops if they are essential to compute the criterion’s value.

Example 1.0.1. We will now demonstrate the process of extracting an idempotent
backward slice. Consider the program shown in Listing 1.1 and its corresponding GSA
control-flow graph in Figure 1.1. For this example, we select the instruction s = s + 1;
(represented as s3 = s4 + 1; in GSA form) as our slicing criterion. The dependencies
for this criterion are highlighted in Figure 1.2. Finally, Figure 1.3 presents the complete
idempotent backward slice that is extracted into a new function based on these depen-

dencies.

Figure 1.1: The program’s CFG in GSA

int foo(int N) { form.

int x =
int s
int t
while

O, O =

W N B A e ve owe

+ ~ 1
LI

g88%
LT}

B

¢
+ *
nn

return u;

Listing 1.1: Example C program to
analyze.

Source: The author.

The utility of program slicing extends far beyond code-size reduction. The ability

to isolate the logic relevant to a specific computation is valuable in numerous domains:

e Debugging: Slicing is used to identify the sources of errors. A backward slice from
a variable with an incorrect value can show all the code that might have influenced

it, dramatically narrowing the search space for the bug.

15

Figure 1.3: An idempotent backward

Figure 1.2: Instructions selected for the
slice.

new slice.

BB0: BBO:
NO=...
x0=...
80=...

brBB1

br (<1 < NO) BB2, BB3

s4 = eta(1 >= NO, s1)
s3=s4+1
retumn s3

Source: The author. Source: The author.

e Parallelism: The independent nature of program slices makes them well-suited
for parallel execution on multiprocessor systems, as they can often operate without

requiring shared memory or synchronization.

e Test Case Generation: By analyzing the slice for a given program feature, one

can generate more effective and targeted test cases [24].

e Lazyfication: Slices can be used to transform function arguments into expressions

that are evaluated lazily, only when needed by the callee [6].

Our primary goal is to develop a practical and robust method for generating exe-

cutable code slices for code-size reduction. The main contributions of this thesis are:

1. The implementation of an algorithm to construct the GSA form for programs rep-
resented in LLVM Intermediate Representation (LLVM IR) in Section 3.1.1.

2. A novel program slicing algorithm that operates on the GSA form to extract Idem-

potent Backward Slices in Section 3.1.4.

3. The delivery of our implementation as an open-source, out-of-tree LLVM pass, fa-
cilitating its use and extension by the research community. The implementation is

available at https://github.com/lac-dcc/Daedalus.

4. A patch for the LLVM Test Suite, enabling rigorous and reproducible evaluation
of the pass’s effectiveness and correctness, which is available at https://tinyurl.

com/ye2a9ypt.

https://github.com/lac-dcc/Daedalus
https://tinyurl.com/ye2a9ypt
https://tinyurl.com/ye2a9ypt

16

In short, the central contribution of this work is a complete, functional, and open-
source program slicer for LLVM, based on the Gated Single Assignment form, designed
for the purpose of code-size reduction.

The remainder of this thesis is organized as follows. Chapter 2 surveys foundational
literature. Chapter 3 introduces our GSA construction and slicing algorithms. Chapter 4
formally argues for the soundness of our approach. Chapter 5 presents our empirical
evaluation, including experimental setup and benchmark results. Finally, Chapter 6 sum-

marizes our contributions and discusses future work.

17

Chapter 2

Literature Review

This chapter begins by presenting fundamental definitions from graph theory and program
analysis that are essential for understanding our approach. First, definitions of program
analysis terms are given, then we describe the classic definition of a Program Slice and
the traditional method for its computation, contrasting it with our proposed approach.
Following this, we survey recent computational approaches and present an algorithm with
a near-linear time complexity for constructing the Gated Single Assignment form for our
program slicer. Also, we portray two relevant compiler optimizations: Function Outlining
and Function Merging. The chapter concludes by identifying key gaps in the existing

literature that our research addresses.

2.1 Definitions

This section introduces the fundamental concepts of program analysis that under-
pin our work. First, we define key data structures and concepts that model its implemen-
tation, such as Control Flow Graphs, Dominance, and Data and Control Dependencies.
Next, we define what a Data-flow Analysis is. Finally, we depict two program intermedi-
ate representations: the Static Single Assignment form, and the Gated Single Assignment

form. Thus, establishing the theoretical foundation for our work.

2.1.1 Control Flow Graph

A program is represented as a directed graph, called a Control Flow Graph. For-
mally, a CFG is:

e A digraph (N, E,ng), where ng is the entry node.

2.1. Definitions 18

— N: set of program statements (nodes).
— E: directed edges representing control flow between statements.

— Start: ng, or a special node that can reach every other node, but no other

node can reach it [19].

For slicing purposes, we also define a hammock graph, which extends the concept

of a control flow graph as follows.

e A hammock graph (N, E,ng,n.) is a control flow graph with a unique exit node
ne [19].

— Exit: n., or a special node that is reachable from every other node, but does

not reach any other node.

Example 2.1.1. Consider the C program from Listing 2.1. Its corresponding Control
Flow Graph (CFG) is illustrated in Figure 2.1. In this graph, each node represents a basic
block, a sequence of instructions that executes linearly and ends with a single terminator
instruction. The directed edges indicate the flow of control between these blocks. A key
convention in our CFG representation is that every basic block must end with an explicit
terminator to define its successor(s), except the exit one. Also, most of the time we will
omit the Start and Exit blocks.

2.1.2 Data-flow Analysis

In compiler design, the backend is responsible for translating an intermediate repre-
sentation (IR) of a program into an equivalent set of instructions for a target architecture.
Before generating the final machine code, compilers perform numerous optimizations to
improve performance, so as to reduce code size.

A cornerstone of these optimizations is Data-flow Analysis, a technique used to
statically approximate the dynamic (runtime) behavior of a program. While precisely
determining a program’s runtime behavior is an undecidable problem, Data-flow Analysis
offers a sound approximation by statically modeling the program as a graph [10]. To
facilitate such modeling, the program is first transformed into a Control Flow Graph
(CFG). The choice of a high-quality, machine-independent IR is crucial for performing
effective optimizations on this graph [2].

For instance, Example 2.1.2 describes a type of data-flow analysis called Liveness

Analysis.

2.1. Definitions 19

Figure 2.1: A simple CFG.

BBO:
Xz w
y=-
br (x > 0) BBI, BB2

AN

y=1 y=2
br BB3 br BB3

\/

Z=y+3

Source: The author.

Example 2.1.2. A common optimization enabled by data-flow analysis is Liveness Anal-
ysts. This analysis is a classic backward data-flow problem, where information about vari-
able usage propagates from a point of use through the paths of the CFG backwardly [2].
The analysis is formalized using a system of data-flow equations defined for each node n

in the CFG. These equations rely on the following sets:

e use[n]: The set of variables used in node n before any definition.

e def[n]: The set of variables defined (assigned a value) in node n.

in[n]: The set of variables that are live at the entry point of node n.

out[n]: The set of variables that are live at the exit point of node n.

succ[n]: The set of successor nodes to node n in the CFG.

The use[n| and def|n], are also known as the def-use chain [21]. The relationships

between these sets are captured by the following data-flow equations:

in[n] = use[n] U (out[n] — def[n]) (2.1)

2.1. Definitions 20

out[n] = U inls] (2.2)

sesucc|n]

Equation 2.1 states that a variable is live at the entry of a block if it is either used
within that block or if it is live at the exit and not redefined by the block. Equation 2.2
states that a variable is live at the exit of a block if it is live at the entry of any of its
successors. The use of the union operator means a variable is considered live as long as
there is at least one future path where it might be used.

These equations are solved iteratively. The in and out sets for all nodes are ini-
tialized as empty and are repeatedly computed until they reach a fixed point, where an
iteration causes no further changes to any set [2]. This iterative process is demonstrated

in Algorithm 1.

Algorithm 1 Iterative solution for data-flow equations

// Initialize in and out sets for all nodes
for each node n in CFG do
in[n] < 0
out[n] < ()
end for
// Tterate until a fixed point is reached
repeat
for each node n in CFG do
in'[n] < in[n]
out'[n] < out|n]
in[n] <— use[n] U (out[n] — def[n])
out[n] < Usesueefn 115]
end for
until in'[n] = in[n| A out’[n] = out[n| for all n

Finally, it is important to emphasize that the analyses presented here are intrapro-
cedural, meaning they take into account instructions only within a single procedure or
function. This contrasts with interprocedural analysis, which considers multiple proce-
dures simultaneously to achieve higher precision. Accordingly, our slicing approach is

performed intraprocedurally, operating over the program’s def-use chain.

2.1.3 Dominance

The concepts of dominance and post-dominance are fundamental to control flow
analysis in compilers. They provide a structured way to understand the mandatory paths

of execution within a program’s CFG.

2.1. Definitions 21

Let’s consider a control flow graph G = (N, E, Start, Exit), where N is the set
of basic blocks, E is the set of directed edges representing the flow of control, and
Start, Exit € N are the unique entry and exit blocks of the graph, respectively.

A node d € N dominates a node n € N, denoted as d dom n, if every path
from the entry block, Start, to n must pass through d. A node d strictly dominates n,
denoted d sdom n, if d dom n and d # n.

For any node n other than the entry block, there are one or more strict dominators.
The immediate dominator of a node n, denoted idom(n), is the unique strict dominator
of n that is closest to n on any path from the entry. That is, idom(n) is the strict dominator
d of n such that any other strict dominator of n also dominates d. The existence and
uniqueness of the immediate dominator for every node (except the entry block) is a
foundational property [2].

This immediate dominance relationship allows us to construct the dominator

tree. This tree is a data structure where:
e The set of nodes is the same as the set of basic blocks N in the CFG.
e The parent of any node n is its immediate dominator, idom(n).
e An edge exists from node d to node n if and only if d = idom(n).

The root of the dominator tree is the CFG’s entry block, Start. This tree provides a
concise representation of the dominance relationships within the procedure.

Furthermore, post-dominance is the dual concept to dominance. It analyzes control
flow relative to the exit points of the graph. A node p € N post-dominates a node
n € N, denoted as p pdom n, if every path from n to the Exit block must pass through
p. Similarly, a node p strictly post-dominates n, denoted p spdom n, if p pdom n and
p#n.

For any node n that is not an exit block, there exists a unique immediate post-
dominator, denoted ipdom(n). This is the strict post-dominator of n that is closest
to n on any path towards the exit. The uniqueness of the immediate post-dominator is
guaranteed [2].

The immediate post-dominance relationship allows for the construction of the

post-dominator tree. In this tree:
e The set of nodes is the set of basic blocks N.
e The parent of any node n is its immediate post-dominator, ipdom(n).
e An edge exists from node p to node n if and only if p = ipdom(n).

The root of the post-dominator tree is the exit block of the CFG. This structure is crucial

for analyses such as control-dependence analysis.

2.1. Definitions 22

Example 2.1.3 shows how dominance trees are built for a given program.

Example

2.1.3. Consider the C program from Listing 2.1. The dominator tree from

Figure 2.2a, is induced by the immediate dominance relationships between blocks BBO,

BB1, BB2, and BB3. Analogously, the immediate post-dominance relation produces the

post-dominator tree (Figure 2.2b).

1

if (x > 0) {

2 y = 1;

3} else {

1 y = 2

6z =y + 3;

Listing 2.1: Example C program.
Figure 2.2: Simple Dominator trees.
(a) A simple dominator tree. (b) A simple post-dominator tree.

BBO: BB3:
X=- Z=y+3
y=-
br (x > 0) BB, BB2

AN

BBt BB2: BB3: 5‘211: EE:?; x=..
y=1 y=2 Z=y+3 y=.
br BB3 br BB3 br B83 brBB3 | | br x> 0) BB, BB2

Source: The author.

Therefore, the dominance tree allows the compiler to infer whether the CFG of a

program contains loops, while the post dominance tree permits the analyzer to tell if the

execution of an instruction depends on another [1].

2.1. Definitions 23

2.1.4 Data and Control Dependencies

When performing program analysis and transformations, we commonly use the
CFG representation of a program. However, this representation contains unnecessary
relationships computed, when we want to optimize a program with respect to the sequence
between some of its operations. For slicing purposes, we want to know which program
statements or variables depend on each other. Thus, following the definition of Ferrante

et al. [5], let the two notions of dependencies be:

Definition 1 (Data dependency). A statement j is data dependent on statement i if a

value computed at 7 is used at j in some program execution.
Definition 2 (Control dependency). A node j is control dependent on a node i if:

1. there exists a directed path P from ¢ to j such that j post-dominates every node in

P, excluding i and j, and
2. 1 is not post-dominated by j.

Both definitions are used to construct a program dependency graph, which captures
the data and control dependencies between the slice criterion and all program elements

on which it depends.

Example 2.1.4. Consider the C program in Listing 2.1. Following Definition 1, the vari-
able z is data dependent on the variable y. To analyze control dependencies, we compute
the program’s post-dominator tree, shown in Figure 2.2b. According to Definition 2, the
assignment to y is control dependent on the branch instruction br (x > 0) BB1, BB2.
This dependency exists because y’s assignment execution is determined by the path taken

at this conditional branch.

Program Dependency Graph

Following Cytron et al. [4], we define a Program Dependency Graph (PDG) in the
context of SSA form. A PDG is a directed graph G = (V| E), where V represents the
set of vertices, with one vertex corresponding to each variable in the program. The set F
consists of directed edges, where an edge (u,v) € E exists if and only if v appears on the
left-hand side of an instruction in which u appears on the right-hand side. Example 2.1.5

illustrates a PDG for a simple program.

2.1. Definitions 24

Example 2.1.5. Figure 2.4b shows an example of a program dependency graph. An edge
in this graph can be either solid or dotted. The former represents data dependencies,
while the latter represents control dependencies. For instance, in the figure, t0 is data

dependent on b2, and control dependent on wO.

2.1.5 Static Single Assignment Form

The static single assignment (SSA) form is a program representation in which
each variable is assigned exactly once [4]. Therefore, the Single Information Property
holds when the information associated with a variable v during data-flow analysis remains
invariant at every program point where it is live [17]. This property simplifies data-flow

analysis and facilitates reasoning about the behavior of a program.
In SSA form:

1. Each variable is assigned a unique name whenever it is defined.

2. If a variable is defined in multiple control flow paths, a special ¢-function is intro-

duced to merge the values from these paths.
Example 2.1.6 shows how these properties emerge in SSA-form programs.

Example 2.1.6. Consider the C code from Listing 2.1. After transforming it into SSA

form, we have the program on Listing 2.2.

1 if (x1 > 0) A
2 yl = 1;

3} else {

1 y2 = 2;

5}
6 y3
7 z1

phi(yl, y2);
y3 + 3;

Listing 2.2: Example in SSA form.

Here, the ¢-function combines the values of y1 and y2 based on the control flow.

2.1. Definitions 25

2.1.6 Gated Single Assignment Form

The Gated Single Assignment (GSA) form is an extension of the widely-used SSA
form that makes control dependencies explicit within the intermediate representation.

In a standard SSA form, distinct values for the same variable are assigned unique
names (e.g., T1, T, ...). At points where control flow paths merge, a conceptual ¢-function

is used to select the appropriate value. A typical ¢-assignment is:
T3 ¢(21, T2)

This assignment indicates that x3 will take the value of x; if control arrives from one
predecessor block, and x5 if it arrives from another. While SSA form excels at representing
data flow, the ¢-function abstracts away the crucial control-flow information, that is, which
predicate caused a particular path to be taken.

GSA remedies this by replacing the ¢-functions with explicit gating functions,
integrating control-flow predicates directly into the data-flow graph [23]. As Rastello [17]

defines, there are three gating functions:

1. The v (gamma) function: This function acts as a guarded conditional assignment,
explicitly controlled by a predicate. It is typically placed where control flow joins

(e.g., at an if-then-else statement). Its form is:

Vout < 7(p7 Vtrue Ufalse)

Here, if the predicate p evaluates to true, v, is assigned the value of v;.,.. Other-
wise, it is assigned the value of vfq.. The 7 function effectively embeds the branch

condition into the value selection process.

2. The p (mu) function: This function selects the initial and loop-carried values,

and only appears at loop headers. Its form is:

Vout — ,LL(Ul, U?)

In this case, when the loop execution starts, vy is assigned to v,y, then, for next

iterations, v, is used instead.

3. The n (eta) function: This function determines the value of a variable at the end

of a loop. It has the following form:

Vout < 77(]97 U3)

Where v3 stores the definition reaching a point after a loop exits, and p is the

predicate that controls its execution.

2.1. Definitions 26

To address the limitations of prior approaches that map control dependencies using
GSA concepts, as highlighted in Section 2.5, we introduce a formal definition for the
transitive control dependency between basic blocks. Definition 3 formalizes this concept
by leveraging the explicit, predicate-driven nature of gating functions to capture control

relationships that may span multiple blocks.

Definition 3 (Transitive Control Dependency). A basic block By, is transitively control

dependent on a predicate p; originating from a block B; if either:

1. The execution of By, is conditioned by a gating function (e.g., v or 1) that is directly
controlled by the predicate p;.

2. There exists an intermediate block B; such that:

a) The execution of B; is conditioned by a gating function controlled by p;.

b) The control flow path from B; to By, is unconditional, meaning By, is executed
under the same gating condition as B; without the influence of any intermediate

gating function.

Example 2.1.7. By using the gating functions, GSA makes both data and control de-
pendencies explicit. For instance, a traditional ¢-function at a post-dominator of an
if-then-else can be rewritten into a v function at the join point. This explicit repre-
sentation provides a richer and more precise substrate for advanced program analysis and
transformation. An illustrative example is given by extending the code in SSA form from
Listing 2.2, to GSA on Listing 2.3.

1 if (x1 > 0) {

2 yl = 1;

3 } else {

1 y2 = 2;

5 }

6 y3 = gamma(xl > 0, yl1, y2);

7 z1 y3 + 3;

Listing 2.3: Program in GSA form.

2.2. Program Slice 27

2.2 Program Slice

Weiser’s classic algorithm provides a method for approximating a program slice by
analyzing both data and control dependencies, even though finding a perfectly minimal
slice is computationally unfeasible [24]. The process works iteratively by first tracing
dependencies backward from a specific point of interest, known as the slicing criterion.
It begins by identifying the variables directly used at that point and then recursively
includes all statements throughout the program that could have influenced their values.

Alongside this data flow analysis, the algorithm also identifies control dependencies,
that is, any conditional branches or loops that determine whether a relevant statement gets
executed. The final program slice is constructed by combining these two sets: it consists
of all statements that either perform a relevant calculation or control the execution of
another statement already included in the slice.

Before computing all statements that affect a given program point, a slicing cri-
terion C = (i, V) is defined by:

e . a statement index where slicing occurs.

e 1/: a subset of variables observed at 7.

Thus, a backward traversal on the def-use chain of variables in V' starts the pro-
cess of slicing. At the end of the traversal, statements from P that does not affect the
computation of variables from the slicing criterion can be deleted.

The sliced program must have the same behavior as the original one, except for the

deleted statements. Hence, they define that a state trajectory of length k is a sequence:

(nb 51)7 <n27 52)7 R (nk7 Sk)

where each n; is a statement and each s; is a mapping of variables to values. Also,
they define that a projection function extracts only relevant information from a state
trajectory:
_ (n,s|V), ifn=i
Proj; vy (n,s) = .
X, otherwise
where s | V restricts s to the variables in V.

For a trajectory T, they apply:

PrOj (4,V) (T) = PrOj(i’V) (tl) Ce PrOj(i’V) (tn)
Formally, Weiser [24] defines that a program slice S of a program P satisfies:

1. S is obtained by deleting zero or more statements from P.

2.3. Algorithms 28

2. S produces the same projection function as P for all inputs where P terminates.

Now, following the generalization of these definitions into an algorithm, Weiser
[24] computes a program slice by executing the following steps:
Step 1 - Compute Directly Relevant Variables: Define Ro(n), the set of

relevant variables at statement n:

V, ifn=1
{v|v € USE(n) and w € DEF(n) N Rc(m)}, if m is a successor of n

This ensures that variables affecting V' at ¢ are traced back through the program.
Step 2 - Identify Control Dependencies: A statement b influences a statement

s if it controls whether s executes. Define INFL as:
INFL(b) = {n | n is on a path from b to its nearest post-dominator}.

All statements affecting any n € S¢ are included in the slice.

Step 3 - Construct the Slice: The final slice S¢ consists of all statements where:
Rc(n+ 1) NDEF(n) # 0.

The primary objective of this thesis is to present an algorithm that, for a given
slicing criterion, computes an Idempotent Backward Slice. Our approach is consistent
with Weiser’s definition but extends it with a fundamental guarantee: the resulting slice
constitutes the maximal subset of executable instructions that satisfies the idempotent
property. This guarantee ensures that when the slice is executed with a given set of
inputs, it produces the exact value that the criterion’s variable would have held at the
corresponding program point in an execution of the original program with the same inputs.

Consequently, our analysis focuses on dependencies between variables, rather than
statements. The final slice is synthesized into a self-contained function whose sole purpose

is to compute the value of the variable from the slicing criterion.

2.3 Algorithms

Weiser’s algorithm performs a dense analysis by associating relevant information
with pairs of variables and program points. However, his approach to identifying data and
control dependencies, which relies on computing consecutive sets of transitively relevant

statements, can be made more efficient through the use of alternative data structures [21].

2.3. Algorithms 29

To address the efficiency problem of a dense analysis, an algorithm was proposed
by Rodrigues et al. [19], that computes program slices using a sparse analysis, which
handles data and control dependencies more effectively. Subsequently, another slicing
approach was presented by Guimaraes and Pereira [6], that uses gates on ¢-functions to
determine control dependencies.

Nevertheless, their notion of gating is insufficient for our purposes. Instead, our
approach relies on path expressions to compute predicates. These predicates are then
used to construct the GSA form, which assists our program slicer on finding control

dependencies.

2.3.1 Sparse Slicing

A dense analysis computes data and control dependencies by associating informa-
tion with pairs of variables and program points. A program point represents a region
between two instructions in a control flow graph. Weiser’s approach has a worst-case
complexity of O(V?), where V is the number of variables. However, by leveraging the
SSA form, this quadratic complexity can be reduced to O(V') [19].

To achieve this reduction, the program must first be transformed into SSA form.
In this format, each variable is assigned a value exactly once. Consequently, all tracking
information is bound directly to the variable’s name, enabling a more efficient computation
of dependencies.

Consider the C code presented on Listing 2.4. Its SSA form is visualized within
the CFG in Figure 2.3.

To compute data and control dependencies between variables, Rodrigues et al.
[19] use the Program Dependency Graph (PDG) and the Dominator Tree (DT) data
structures. The PDG represents dependencies between program variables, while the DT

captures dominance relationships between nodes in the CFG.

1. Building the PDG: After selecting a slice criterion (e.g., a variable or program
point of interest), a traversal is performed over the PDG to identify all relevant
dependencies. The PDG is constructed by analyzing the program’s data and control

flow, linking variables and instructions based on their dependencies.

2. Building the Dominator Tree: To construct the DT, a dominance analysis over
the CFG is performed. This analysis identifies the dominance relationships between
nodes, in such a way that the resulting tree maps each of them to its immediate

dominator, enabling efficient traversal and dependency analysis.

2.3. Algorithms 30

Figure 2.3: The program’s CFG in SSA

form.
BBO:
a0=0
b0=0
br BB1
1 a = 0;
2 b = 0;
3 do { p—-—
4 while (b < 13) { o1 = phia0., a2)
br BB2
5 b =Db + 1;
6 X = x + a *x b; \‘Baz
- } b = phi(b0, b2)
! br (b1 < 13) BB3, BBS
8 a = a + 1; \
9 } while (a < 17); ?
10 use (b) ; BB3: br BB2
11 a2=al+1
br (a2 <17) BB6, BB /
Listing 2.4: Example C program. BBS:
b2=b1+1
use(b2)
10=a1"b2
BBG:
use(b) \;rse(B;)

Source: The author.

3. Influence Region: The influence region of a block B is the set of blocks dominated
by B but not post-dominated by it. This region determines which variables are

controlled by a predicate.

The program’s DT and PDG are shown in Figure 2.4a and Figure 2.4b, respectively.
These structures are used to compute backward dependencies based on the slice criterion
use (b2) (Figures 2.5¢ and 2.5b), and the resulting backward slice is shown in Figure 2.5a.

Finally, the algorithm is generalized as follows:
1. Input: A program in SSA form, represented as a dominance tree.
2. Output: A slice containing only relevant instructions.

3. Steps:

e Traverse the dominance tree to identify the influence region of each predicate.
e Link predicates to variables defined within their influence region.

e Use the PDG to compute transitive dependencies efficiently.

This algorithm improves upon Weiser’s dense analysis by first transforming the
program into SSA form. This transformation enables a sparse analysis, reducing the com-
plexity of computing program slices from O(V?) to O(V') [19]. It is also worth noting that,
unlike Ferrante et al. [5], the authors focus on tracking dependencies between variables

rather than between program statements.

2.3. Algorithms 31

Figure 2.4: The Dominator Tree and the Program Dependency Graph.
(a) The Dominator Tree. (b) The Program Dependency Graph (PDG).

BB2:

b1= phi(b0, b2)
br (b1 < 13) BB3, BB5

/[

323’m ; b2=b1+1
aZ=dl+
use(bZ
br (a2 <17) BB6, BB1 et m~) b2)
use(t0) e
br BB4
BB6:
BB4
use(bh brBB2

Source: The author.

Figure 2.5: Comparison of program slice, CFG, and PDG fragments.

(a) The outlined function. (b) The CFG fragment. (c) The PDG fragment.
BBO:
BBO: b0-0
b0=0 br BB1

br BB2

BB2
b1 = phi(o0, b2) \

br (b1 < 13) _ BBS 882
b1 = phi(b0, b2)
\ br (b1 < 13) BB3, BBS

BB4
br BB2 N

BB4:
/ brBB2

BBS:

b2=bl+1

use(b2) BBS:

br BB4 b2=bl+1
use(b2)

=]

Source: The author.

2.3. Algorithms 32

2.3.2 Gating Phi-functions

Another approach to extract program slices was proposed by Guimaraes and
Pereira [6]. Their work is not focused on program slicing, but they worked on a single-pass
algorithm to outline instructions into delegate functions, that would benefit from having
its arguments lazily evaluated. To accomplish the slicing task, they define the following
concepts: Backward Slice, Dependencies, Gates, and First Dominator. Consequently, they
illustrate how a sliced program is derived.

Similar to Rodrigues et al. [19], the authors focus on dependencies between program
variables rather than program statements. Accordingly, we restate their program slicer

definitions.

Definition 4 (Backward Slice). Given a program P, and a variable v defined at a program
point p € P, the backward slice of v at p is a subset P, of P’s program points containing
p, such that if P computes v with value n given input I, then P; also computes v with

value n given input /. The pair (p,v) is called a slice criterion.
Definition 5 (Dependencies). Variable’s dependencies are defined as follows:

1. A variable u is data dependent on a variable v if u is defined by an instruction that

uses v.

2. A variable u is control dependent on a variable v if the assignment of u depends on

a terminator (e.g., a conditional branch) controlled by v.

3. A variable u depends on a variable v if it is either data dependent or control depen-

dent on v, or if it depends on a variable w that depends on v.

Definition 6 (Gates). Let G = (V, E'U {bsiart, bena}) be a control flow graph, and let
by, b1 € V' be two basic blocks.

1. We say that by post-dominates by if every path from by to b.,q goes through b;.

2. We say that by is the immediate post-dominator of by if by post-dominates by, and

for any other node b, that post-dominates by, either b, = b; or b, post-dominates
by.

Given that a predicate p is a terminator at by, we say that p gates every ¢-function in the

basic block b; that immediately post-dominates by.

Definition 7 (First Dominator). Given a set of nodes in a slice B, and a basic block
b ¢ B, the first dominator of b (within B) is a node b, € B (with b, # b) such that b,

dominates b and b,, is the closest parent of b in the dominance tree.

2.3. Algorithms 33

Definition 8 (Sliced Program). Let a program P be represented by a CFG (V,, E,,). Let
Vs € V, be the set of basic blocks from P that belong to a backward slice created from
some slice criterion. From V; we derive a new program P = (Vi, EsU{bstart, bena }), where

E, is defined as follows:
1. If by — by € E, for some by € V; and by € V, then by — by € L.

2. If by — by € E, for some by ¢ Vi and by € V;, and by contains a use of a variable v
not defined in by, then by — by € Ej, where by is the first dominator of b; in Vj.

3. If a block b € V, contains a definition of every variable used in it, then E contains

the edge bgore — b.
4. If b contains the slice criterion, then E contains the edge b — bepgy.

In summary, the slicing procedure employed in their implementation integrates two
fundamental concepts: purity and gating of ¢-functions.

Purity ensures that extracted slices are free from side effects, excluding instructions
that store to memory, invoke impure functions, or may raise exceptions, thereby preserving
program semantics even when the execution order changes.

Gating ¢-functions, in turn, tries to augment the SSA representation with explicit
predicate dependencies, to transform control dependencies into data dependencies. This
approach constitutes an initial step toward implementing a program slicer based on the
GSA form.

Starting from a selected slice criterion, the algorithm traverses the control flow
graph backward, collecting all data and control dependencies, and outline the visited
instructions into a new function. The resulting sliced function is guaranteed to compute
the target value exactly once, without side effects, and with all dependencies explicitly

represented.

2.3.3 Gating by Path Expressions

Unlike Guimaraes and Pereira [6], which computes ¢-function gates using post-
dominance relationships, Tu and Padua [23] propose the usage of path expressions to
compute gating functions and transform a program from SSA to GSA form. A path ez-
pression is a regular expression that represents the set of paths taken in a program’s
CFG. The foundational algorithm for computing these path expressions was originally

introduced by Tarjan [20]. In their method, new symbols are introduced to construct the

2.3. Algorithms 34

path expressions that represent gating functions. This approach simplifies the identifi-
cation of which edges are traversed along a path reaching a ¢-function, which predicate

controls it, and which gating function should replace it.

1. Path Expression: Given a CFG (N, E), any path in the CFG can be treated as
a string of edges in E, but not all such strings are valid paths in CFG. A path
expression P of type (u,v) is a simple regular expression over E such that every
string in o(P) is a path from node u to node v, where o(P) denotes the set of strings
generated by the regular expression P. Every sub-expression of a path expression

is itself a path expression whose type can be determined as follows:

o If P = P, UP,, then P, and P, are path expressions of type (u,v).

o If P = P, - P,, then there exists a unique node w such that P; is a path

expression of type (u,w) and P, is a path expression of type (w,v).

e If P = P}, then u =v and P, is a path expression of type (u,v) = (u,u).

2. Path Expressions as Gating Functions: Different paths reaching a ¢-function
node are represented by path expressions. To define the symbols for edges such
that a path expression also takes the form of a gating function, only outgoing edges
from conditional statements are needed to unambiguously represent a path. The

following conventions are adopted:
e A white space symbol A represents an unconditional edge.
e A white space symbol & represents an edge not taken at a branch node.
e A v expression y(p, ey, e, ...,€,), where exactly one e; is A and all others are

&, represents the ith edge from an n-way branch statement with condition p.

Using these symbols, a path expression can be represented as a gating function

R(u,v) for a path from node u to node v. The following simplification rules apply:

;

R, if Ry = d,
Rl, 1f R2 == @,
RiURy =
7(p7 tha le) U ’7(pa R2t> RQf)a
\otherwise, yielding w(p, Ry U Ry, Rip U Rgf)
@, ifR1:®0rR2:®,
R27 lf Rl - A/\7
Rl . R2 -
Rl, lf R2 - A,
\7(17,th,le)'32, if Ry # @ = 7(p, Rit- Ra, Riy- Ro)

2.4. Optimizations 35

This formalism allows the computation of gating functions for ¢-functions, where
the gating function encodes the concatenation of conditional branches along a gating
path [23].

2.4 Optimizations

There are two compiler optimizations particularly relevant to our approach: func-
tion outlining and function merging. The former reduces code size by extracting
code fragments into new functions, while the latter combines identical or similar func-
tions into a single one. In our use case, we aim to capture both behaviors so that slicing
can contribute to reducing overall code size.

Function outlining has long been used to compact programs by isolating repeated
or structurally similar fragments into separately callable functions. Function merging,
in turn, is a complementary optimization that eliminates redundancy by consolidating
identical or near-identical functions, as performed by LLVM’s default function merging
pass [13]. Both techniques are widely studied in the literature. For instance, Lee et al. [9]
generalize these ideas to a global scope, enabling the linker to optimize functions across
different modules and even separate builds.

Example 2.4.1 demonstrates, in a high level view, the changes of a couple of given

functions, before and after the application of a function merging strategy.

Example 2.4.1. Consider LLVM’s default pass to merge similar functions mergefunc.
Their approach consists on identifying and merging functions that are semantically iden-
tical to reduce the final code size. The process begins by calculating a hash of each
function’s structure to quickly filter out dissimilar candidates. For functions with match-
ing hashes, a more detailed, instruction-by-instruction comparison is performed to confirm
they are exact equivalents. When two identical functions, say F' and G, are found, one
is chosen as the canonical version, and all calls to the other function are redirected to
it, often by replacing the duplicate function with an alias or a simple stub that calls the
canonical one [13].

For instance, consider two identical functions, func_a and func_b, each invoked by
a different caller (Figure 2.6a). A function merging pass first identifies that these functions
are equivalent. It then combines them into a single, new function named merged_func, as
depicted in Figure 2.6b. As a final step, the pass updates the original call sites, redirecting

them to the new, unified function (Figure 2.6¢) and thus reducing code size.

Another way to implement the outlining optimization for code-size reduction is de-

2.4. Optimizations 36

Figure 2.6: The traditional function merging process.

(a) Before merging. (b) Merged functions. (c) Call sites after merging.

p— BBO: BBO:
call merged_func(.) call merged_func(.)
BBO: BBo: br EXIT . -
call func_a(.) call func_b(.)
func_a: Entry func_b: Entry
br BBl br BB1
!]
BBt BB
br EXIT br EXIT

Source: The author.

scribed by Tomasevi¢ et al. [22]. Their method searches for the longest repeated sequence
of instructions within a function. As they explain, this problem is analogous to finding
the longest common substring, where basic blocks correspond to strings and instructions
to characters, and can be efficiently solved using suffix trees [8, 22].

Similarly to the function merging example, a high level view of the function out-

lining process is given on Example 2.4.2.

Example 2.4.2. The common outline strategy relies on the selection of a specific region
of code, usually an infrequently executed cold segment, is identified and moved out of
its original host function. This extracted code is placed into a new, separate function,
and the original code block is replaced with a function call to this new routine [11].
Thus, given a host function F' and its CFG on Figure 2.7a, the region highlighted in
red was identified by the compiler as a cold segment, and further extracted into function
T (Figure 2.7b). Finally, the host function contains a call to the extracted function, as

pictured on Figure 2.7c.

Our approach, however, differs fundamentally. Instead of searching for repeated
instruction patterns, we focus on the instructions that are relevant for computing a vari-
able at a given program point. Consequently, our solution requires a full traversal of
both the data and control dependencies of that variable, ensuring that the resulting slice

preserves the program’s semantics.

2.5. Motivating Example 37

Figure 2.7: The traditional function outlining process.

(a) The host F' function, with (b) The extracted T" function. (c¢) The new host function.
a highlighted cold segment.

BBO:
a0=0

BBO: b0 =0
a0=0 br BB
b0=0
br BB BB2
b1 = phi(b0, b2)
br (b1 < 13) BB3, BES :IBtphl(0.0
= a0, a
BBt \ br BB2
a1 = phia0., 62) o5t \
br BB2 br BE2 BBZ
\ call T(.)
BBZ br BB3
b1 = phib0, b2)
br (b1 < 13) BB3, BBS BB5:
b2=b1+1
AN use(b2) BA3:
BB4: t0=al°b2 a2=al+1
BB%: brBB2 Use(t0) br (a2 <17) BB6, BB
a2=al+1 br B84
br (a2 < 17) BB6, BB1

= e
use(b?)

@ w . o‘ . bz

uss®) brBB4

Source: The author.

2.5 Motivating Example

While Guimaraes and Pereira [6] implements a program slicer based on gated ¢-
functions, we extend their implementation, Wyvern, to handle programs with intricate
control flow, such as the ladder graph. The primary challenge in this setting is to extract
a slice when the slice criterion resides in the exit block (block BB9 in Figure 2.8).

During dependency traversal, Wyvern cannot reliably determine which predicate
controls implicit transitive dependencies by considering only the post-dominators of ¢-
functions. We address this limitation by encoding control dependencies as regular expres-
sions, thereby making implicit transitive dependencies explicit to our one-pass traversal
algorithm.

Let s1 = x5 << 16 be our slice criterion. The algorithm starts by traversing
backwardly s1’s def-use chain. Therefore, it will identify the instructions on Figure 2.9a
as data dependencies.

Values al, b1, and c1 are function arguments. After traversing the data depen-
dencies, the algorithm also considers the control dependencies associated with each ¢-
function. These correspond to the terminator instructions of the basic blocks that control
the execution of the incoming values to the ¢-functions. Consequently, the instructions
in Figure 2.9b determine the execution of each ¢-function in the sliced program. Specifi-

cally, instructions 1 and 3 from Figure 2.9b control instruction 1 from Figure 2.9a, while

2.5. Motivating Example 38

Figure 2.8: The ladder control flow graph.

BBO:
xl=al+ bl
br (a1 < 41), BB, BB8

/N

BB BBS:
br (b1< 33), BB2, BB7 br BB7

N/

BB2 BB7:
br (c1< 25), BB3, BB6 br BB6
BB3: BB6:
x2=x1*cl x3=x1*al
br (c1<17), BB4, BBS br BB5
BB4: BBS:
br BB9 x4 = phi(x2, x3)
\ br BB9
BB9:
x5 = phi(x2, x4)
s1=x5<<16

Source: The author.

Figure 2.9: Slice criterion’s dependencies.

(a) Data dependencies. (b) Control dependencies.
1. x5 = phi(x2, x4) 1. br (c1 < 17), BB4, BB5
2. x2 =x1 % cl 2. br (c1 < 25), BB3, BB6
3. x4 = phi(x2, x3) 3. br (al < 41), BB1, BBS
4. x1 = al + bl
5. x3 = x1 * al

Source: The author.

instructions 2 and 3 from Figure 2.9b control instruction 3 from Figure 2.9a.

Although their method for identifying which predicates control each ¢-function
is functional, it remains incomplete. When their outlining procedure constructs the slice
function with the selected instructions, it omits the branch from the BB1 block that governs
execution of BB2. This omission occurs because their gating computation does not account
for predicates that control the execution of other predicates, that is, they miss the notion

of transitive control dependencies between predicates (Definition 3). Consequently, this

2.5. Motivating Example 39

omission breaks their first dominator (Section 2.3.2) computation implementation, and
makes the creation of an invalid branch from BBO to BB9.

Unlike Wyvern, our approach captures transitive control dependencies by the use
of path expressions to represent the edges that govern the execution of ¢-functions. Our
choice is motivated by the explicit representation of edges that regular expressions provide,
while also enabling the concatenation of branches along a gating path. As a result, the
missing terminator in the given example is successfully captured by our program slicer.

A detailed example is given on section 3.3.

40

Chapter 3

Algorithms

This chapter details the core algorithms of our methodology. First, we present an algo-
rithm to convert a program from Static Single Assignment form into the Gated Single
Assignment form required by our slicer. Following this, we formalize our novel algorithm
for extracting program slices from GSA-based programs, which extends the work of Tu

and Padua [23] and Guimaraes and Pereira [6] to support our slicing objectives.

3.1 Program Slicer

Our program slicer is implemented as an out-of-source LLVM pass called Daedalus.
The source code is publicly available at https://github.com/lac-dcc/Daedalus.

To enable program slicing, we implemented the algorithm of Tu and Padua [23]
on top of LLVM’s data structures. Our pass extends LLVM’s SSA representation by
modeling gating functions as regular expressions. Given that the n function does not
contribute to the predicate computation, we restrict the mapping of regular expressions
to v and p gating functions. The transformation begins by normalizing programs into
Loop-Closed SSA form (LCSSA), where every value defined inside a loop is exclusively
used within that loop [15].

The slicing procedure begins with a single-step traversal of data dependencies to
collect all dependencies of the chosen slice criterion. If the outlined instructions do not
produce side effects in the original function, they are extracted into a new function.

After outlining all possible slices, the pass attempts to merge similar ones, removing
redundant instructions from the original function. Finally, the simplify CFG pass is applied
to the merged functions, producing the smallest possible code. An overview of the program

slicer is presented in Figure 3.1.

https://github.com/lac-dcc/Daedalus

3.1. Program Slicer 41

Figure 3.1: Program slicer overview.

Normalize IR
(LCSSA form)

l

GSA Construction

l

Slice Identification

l

Function Outlining

l

Function Merging
and Simplification

Source: The author.

3.1.1 GSA Construction

This subsection formalizes our implementation of GSA construction and the ex-
traction of controlling predicates for ¢-functions. The implementation is divided into two
stages. First, Algorithm 6 computes, for each basic block, symbolic path expressions that
summarize how control can reach that block. Each path expression is decomposed into
a non-loop-carried component v and a loop-carried component p. Second, Algorithm 7
traverses these expressions to collect the concrete LLVM predicate instructions (branch
or switch terminators) that gate each ¢-function.

To set the notation, let G = (V, E) be the CFG with a distinguished entry block,
and let DT be the dominator tree over V. For any v € V, pred(v) denotes the set of CFG

predecessors of v. Symbolic path expressions are drawn from the algebra P:
P = | AD) | edge(b,i) | pr Ups | p1 - pa,

where @ represents an unsatisfiable path, A(b) denotes an unconditional branch to block

3.1. Program Slicer 42

b, and edge(b, i) denotes following successor ¢ of block b. Union (U) and concatenation (-)
follow the simplification rules @ Up =p, @ -p =&, and A(b) - p = p.

Algorithm 6 operates by performing a single, bottom-up traversal of the dominator
tree (DT), processing nodes in reverse post-order. It employs a union-find data structure
to efficiently manage and merge path information as it moves up the tree. The core of

the algorithm is a three-phase process executed for each node u in DT:

DERIVE Phase For each child v of u, the algorithm inspects all incoming control-flow

edges w — v. Using the dominance relation, it classifies each edge:

e [f v dominates w, the edge is a back-edge. Its path expression is immediately

accumulated into the loop-carried component, i, .

e Otherwise, the edge is a forward or cross-edge. A direct merge is insufficient
here, as the full path from the current subtree root is not yet known. The path

is therefore temporarily stored in a per-child list for later processing.

MERGE Phase This phase resolves the paths from forward and cross-edges using a
fixed-point iteration. It repeatedly traverses the temporarily stored paths, prepend-
ing the path expressions from the roots of their respective sibling subtrees. This
iterative process continues until a stable state is reached, ensuring that all contribut-
ing control-flow paths from different dominator subtrees are correctly composed into
the non-loop-carried component, v,. This step is critical for handling complex, non-

nested control flow.

LINK Phase Once the path expressions for a child v are finalized, v is linked to its
parent u in the union-find structure. Its now-complete =, expression becomes the

path from u to v, enabling the next level of the bottom-up traversal.

Edge expressions are constructed by EDGEEXPR (Algorithm 4): if w has only
one successor, the expression is A(w), whereas conditional or switch terminators yield
edge(w, 7). To avoid exponential growth in structured control flow, the MERGE function
(Algorithm 5) eagerly simplifies unions and concatenations.

The complexity of Algorithm 6 is bounded by O(|E| «(|V])), where « is the inverse
Ackermann function [20]. Each CFG predecessor edge is processed once, and union-find
operations are amortized. Simplifications occur in linear time relative to the expression
size. The invariant maintained throughout the traversal is that, after processing a child
v of u in DT, the mapping R[z] for every z in the subtree of v represents the simplified

symbolic path from the union-find root to z [20].

3.1. Program Slicer 43
Algorithm 2 FIND operation (union-find with path compression)
1: function FIND(u)
2 p < Parent[u]
3 if p = u then > u is the root of the current partition
4: return u
5: end if
6 r < FIND(p) > Recursively find the root of the parent
7 Rlu] < R[p] - R[u] > Update path from root to u
8 Parent[u] < > Path compression

9: return r
10: end function

Algorithm 3 EVAL operation (compute root-to-z path)

function EVAL(u)
p < Parent[u]

if p = u then > u is the root of its partition

return (NeedsPhi[u] V IslnitialDef[u], R[u])

(¢parentapparent> — EVAL(p)

> Recurse on parent

Parent[u] « Parent|p] > Path compression (point to eventual root)
R[u] < Pparent - R[u] > Accumulate path from root to u

1:
2
3
4
5: end if
6
7
8
9

© Oneeded <= Pparent V NeedsPhifu] V IsInitialDef|u]
10: return (Pyeeded, R[u])
11: end function

Algorithm 4 EDGEEXPR constructor

1: function CREATEEDGEEXPR(w — v)
2 T,, < terminator instruction of w
3 if T}, has one successor then

4 return \(w)

5: else

6 1 < index of successor v in T,
7 return edge(T,, 1)

8 end if

9:

end function

Algorithm 5 MERGE operation (path expression simplification)

1: function MERGE(py, p2)

2 if py = @ then return p,
3 end if

4: if po = @ then return p;
5 end if

6 return p; U ps

7: end function

3.1. Program Slicer

Algorithm 6 Gated SSA path construction

Input: CFG G = (V, E), dominator tree DT, initial-def set S C V
Output: For each v € V: path expressions 7,, i, and boolean NeedsPhi,
1: Initialization:
2: for all w € V do

3: Parent[u] <— u; Rlu] — &; v, < &; pu < J; NeedsPhi[u] < false

4: IsInitialDef[u] <— (u € S)

5. end for

6: for each node u in reverse post-order of DT do

7

8: Let ListP be a map from nodes to lists of (subroot, path) pairs

9: for each child v of v in DT do

10: for each predecessor w of v do

11: if dominator tree parent of v is w then

12: Yo < MERGE(7,), CREATEEDGEEXPR(w — v)

13: else

14: (¢, pw) < EVAL(w)

15: NeedsPhi[v] <— NeedsPhi[v] V ¢

16: Ty < FIND(w)

17: P < p,, - CREATEEDGEEXPR(w — v)

18: if v dominates w then > Back-edge w — v
19: o — MERGE(p,, P)
20: else > Cross or forward edge
21: Add (block of r,, P) to ListP[v]
22: end if
23: end if
24: end for

25: end for

26: > MERGE PHASE
27: changed < true

28: while changed do

29: changed < false

30: for each child v of v in DT do

31: for each (b,, P) in ListP[v] do > Iterate over cross-paths
32: P+, - P > Prepend path from subroot’s block
33: Yo & Yo

34: Yo 4 MERGE(v,, P’)

35: if 7, # 7, then changed < true

36: end if

37: end for

38: end for

39: end while
40: > LINK PHASE
41: for each child v of v in DT do
42: R[v] < 7
43: Parent[v] < u
44: end for
45: end for

46: return { (v,) | vEV }

> DERIVE PHASE

3.1. Program Slicer 45

Once path expressions have been computed, Algorithm 7 extracts the concrete
LLVM predicates. For A(b), the gates are inherited from the unique predecessor of b. For
edge(b, 1), b’s terminator is conditional, and is recorded as a controlling predicate. Union
and concatenation of path expressions correspond to set union of gates. The result is
that, for any block v with ¢-functions, the final predicate set is the union of the gates

extracted from both ~, and p,.

Algorithm 7 Gate extraction for ¢-functions

1: function COLLECTGATES(p, Gates, VisitedExprs)

2 if p =9 or p € VisitedExprs then return

3 end if

4: Add p to VisitedExprs

5: switch type of p:

6 case edge(T},1):

7 if Ty is a conditional branch or switch instruction then
8 Add T, to Gates (as a set)

9

: end if
10: case p; U py or pp - pa:
11: COLLECTGATES(p;, Gates, VisitedExprs)
12: COLLECTGATES(po, Gates, VisitedExprs)
13: case A(b):
14: COLLECTGATES(73, Gates, VisitedExprs) > Collect from predecessor’s path
expression
15: Remove p from VisitedExprs
16: end function
17:

18: function GETGATESFORALLBLOCKS
19: Let AllGates be a map from blocks to sets of gates
20: for all v € V with predecessors do

21: G, < @; VisitedExprs < @&

22: COLLECTGATES(7,, G,, VisitedExprs)
23: COLLECTGATES(pt,,, G, VisitedExprs)
24: AllGates[v] + G,

25: end for

26: return AllGates
27: end function

In practice, these gates serve as the link between symbolic path summaries and the
actual instructions in the IR. The program slicer queries the GSA mappings to retrieve the
per-block predicate sets, which are then attached to ¢-functions. This ensures that the
slice preserves the exact control predicates determining which incoming value is selected
at each ¢-function.

From a correctness perspective, any feasible CFG path 7 into v without a back-edge
contributes a conjunct in v, symbolizing 7, while paths re-entering v from a dominated

region contribute to p,. Because the COLLECTGATES procedure distributes over union

3.1. Program Slicer 46

and concatenation and records the precise conditional terminators along these paths,
the resulting set AllGates[v] conservatively over-approximates all predicates that can

influence the incoming edge choice of a ¢-function in v.

3.1.2 Slice Identification

This section specifies the properties of program slices that are candidates for out-
lining. We then present a formalization of the single-step traversal algorithm used for
their identification and detail the precise conditions under which a slice can be extracted
into a new function.

Our implementation operates as a pass over an entire LLVM module. It iterates
through all functions, and upon visiting a binary instruction, it designates that instruc-
tion as the slicing criterion. This criterion sources the single-step dependency traversal
algorithm to identify an extractable code region. If outlining succeeds, the parent function
is modified to call the new slice, and the pass then recursively analyzes the body of the
new function for further outlining opportunities, making the creation of recursive slices
possible.

Example 3.1.1 shows how our approach create slices that have calls to other slices.

Example 3.1.1. Figure 3.2 illustrates the process of creating recursive slices, with its
labeled edges highlighting each step, and instructions described in LLVM IR syntax. The
process begins with the Original Function (F), where the instruction that defines variable
%t1 is selected as the first slicing criterion. Step 1 marks this instruction, and Step 2
outlines its backward slice into a new function, S1, while rewriting F to call it.

The process then repeats on the modified function. In Step 3, a new criterion,
%t2, is identified within the updated F. Step 4 extracts its corresponding slice into a
second function, S2. The resulting control flow is shown in Steps 5 and 6: the original
function F now calls S2, which in turn calls S1.

Finally, Step 7 indicates the data dependency of the multiplication inside S2 on
the value returned by S1, which completes the chain of a slice being derived from another

slice.

3.1. Program Slicer 47

Figure 3.2: The creation process of recursive slices.

Original Function (F)

Slicing Criterion (I1)
%t1l = add nsw 132 %t0, %b

entry:
$t0 = sub i32 %a, 5

%tl = add nsw i32 %t0, %b
$t2 = mul nsw i32 %tl, 2

define 132 @F(i32 %a, 132 %b) {
ret i32 %t2 ’

}

1
2

Modified F (after 1st slice)

New Criterion (I2)
$t2 = mul nsw i32 %tl_val, 2

First Slice (S1)
Y

define 132 @F(i32 %a, i32 %b) {
entry:

entry:
%t0 = sub i32 %a, 5

%tl = add nsw i32 %t0, %b
ret i32 stl

}

$t1l_val = call i32 @S1(i32 %a, i32 %b)
$t2 = mul nsw i32 %tl_val, 2

ret i32 %t2

}

-{de(ine i32 @S1(i32 %a, 132 %b) {

‘
‘
‘
|
|
|
3 4
‘
|
|

Second Slice (S2)

define 132 @S2(i32 %a, i32 %b) { ’-

Final Function (F)

define i32 @F(i32 %a, 32 %b) { s

%tl_val = call i32 @S1(i32 %a, i32 %b)

entry:
%t2_val = call 132 @S2(i32 %a, 32 %b)

%t2 = mul nsw i32 %tl_val, 2

ret 32 %t2_val ret i32 st2 |
)

Source: The author.

Single-step Traversal Algorithm

This subsection formalizes the single-step data dependence traversal algorithm im-
plemented in our pass. Given a slice criterion instruction I, the procedure performs a
bounded def-use expansion. The expansion collects immediate operand dependencies of
I and transitively those of newly discovered dependencies, records basic blocks that can
influence I either by defining those dependencies or by controlling ¢-functions, and classi-
fies out-of-scope operands as effective function arguments of the slice. In addition, control
dependencies at ¢-functions are injected from the per-block predicate map computed by
the GSA mappings.

To establish the setting, let I be the slice criterion instruction in basic block bb(7),
and let BB be the set of basic blocks and V' be the set of program variables. A mapping is
defined as predicates : BB — V*, where V* denotes the set of all finite sequences (lists) of
elements from V' (Algorithm 6). Let £ denote the loop containing I (if any) with header
H. The algorithm returns three sets: deps, the visited data dependencies; BBs, the basic

3.1. Program Slicer 48

blocks that define those dependencies or serve as incoming predecessors for encountered
¢-functions; and funcArgs, the operands are treated as formal parameters of the slice.
The classification of operands into expansion targets or function arguments is handled
by a scope guard. The predicate OUTSIDEORHEADER(v, £, H) (Algorithm 8) decides
whether an operand v should terminate expansion and instead be recorded as a boundary
argument: values defined outside £ or ¢-functions in the loop header are not expanded
further.

The traversal proceeds breadth-first using a FIFO queue, with a Visited set prevent-
ing redundant expansions. Each dequeued value z is added to deps. If x is an instruction,
its defining block bb(z) is added to BBs, which therefore conservatively accumulates blocks
that may need to be retained or cloned in the slice. Operand processing (Algorithm 9) is
governed by three filters: (i) globals are rejected, since slices do not track global memory;
(ii) type and visitation checks skip non-instruction values and duplicates; and (iii) the
scope guard prevents traversal beyond loop boundaries. The first and second filters are
omitted from the pseudocode in Algorithm 10 to improve readability.

When the dequeued value x is a PHINode, the algorithm records all incoming blocks
of x in BBs and injects the associated gating predicates from predicates. Each predicate
is considered for expansion unless it lies outside the current loop or in the header, or if it
resides in the same block as the slice criterion. This constraints ensures that data selection
at ¢-functions is coupled with the control conditions selecting the incoming edge, thereby
preserving the logical predicate instructions of the original program.

By construction, deps collects every value reachable by the one-step traversal under
these rules, BBs conservatively accumulates defining and incoming blocks, and funcArgs
identifies the loop boundary cut set. Because memory beyond direct operands is not
chased, alias analysis and deeper memory reasoning remain out of scope for this phase.
The injected control dependencies guarantee soundness with respect to the GSA-based
predicate over-approximation.

Finally, the traversal algorithm performs a search analogous to a Breadth-First
Search over the dependency subgraph of the slice criterion. Let this subgraph be Gg =
(Vs, Eg), where Vs is the set of variables in the slice (deps), and Ejg is the set of directed
edges where the target node is a variable that uses the source node variable.

Due to the Visited set, each vertex in Vg is enqueued and processed exactly once.
The work performed at each vertex involves iterating over its outgoing edges (operands for
instructions, predicates for ¢-functions). Therefore, the time complexity is linear in the
size of the subgraph, i.e., O(|Vs|+ |Es|). The space required is dominated by the Worklist
and Visited sets, leading to a space complexity of O(|Vs|). In practice, the bounded nature
of the slice yields a runtime that is nearly linear in the number of instructions within the

slice.

3.1. Program Slicer

49

Algorithm 8 OutsideOrHeader predicate

1: function OUTSIDEORHEADER(v, £, H)
2 if £ =@ or L is invalid then
3 return false

4: end if

5: if v is a ¢-function then
6 if bb(v) = H then
7

8

9

return true

end if
if bb(v) ¢ L then
10: return true
11: end if
12: else if v is an Instruction then
13: if bb(v) ¢ L then
14: return true
15: end if
16: end if
17: return false

18: end function

> ¢-function in loop header

> ¢-function outside loop

> instruction outside loop

Algorithm 9 ProcessOperand helper

1: function PROCESSOPERAND(v)

2 if v € Visited then

3 return true

4: end if

5: insert v into Visited

6 if OuTSIDEORHEADER(v, £, H) then
7 insert v into funcArgs

8 return true

9

end if
10: enqueue v into Worklist
11: return true

12: end function

3.1. Program Slicer 20

Algorithm 10 Single-step data-dependence traversal

Input: slice criterion instruction [; predicate map predicates; loop £ (possibly &) with
header H
Output: triplet (BBs, deps, funcArgs)
1: deps < (); BBs +— (; funcArgs < ()
2: Visited <— {I}; Worklist < (I) > FIFO worklist
3: while Worklist not empty do
4 x <— pop front of Worklist
5 insert x into deps
6: if x is an Instruction then
7 insert bb(x) into BBs
8 for all operands u of x do
9: if not PROCESSOPERAND(u) then
10: break

11: end if

12: end for

13: end if

14: if x is a ¢-function then

15: for all incoming blocks B of x do

16: insert B into BBs

17: end for

18: for all p € predicates|bb(z)| do

19: if p ¢ Visited and p is Instruction then
20: if OUTSIDEORHEADER(p, £, H) then
21: continue

22: end if

23: insert p into Visited

24: enqueue p into Worklist

25: end if

26: end for

27: end if

28: end while
29: return (BBs, deps, funcArgs)

Outline Restrictions

A slice is deemed unsuitable for outlining if it fails preliminary legality checks,
contains complex control flow such as try-catch blocks, or violates specific heuristic
thresholds. We establish constraints on the minimum and maximum number of instruc-
tions in the slice, as well as a limit on the number of parameters that would be required
for the new function, ensuring that the overhead of the function call does not outweigh

the benefits of outlining.

3.1. Program Slicer 51

Furthermore, a slice cannot be outlined if it introduces memory-related inconsis-

tencies or undefined behavior. This is determined by several critical conditions:

1. The slice contains stack allocations (alloca instructions) that are modified else-

where in the parent function, creating potential for memory corruption.

2. Any load instructions within the slice target memory locations that could be clob-
bered by other instructions in the parent function, thus violating data dependency

rules.

3. The slice includes calls to functions with unknown side effects, such as indirect calls
or external functions that are not known to be read-only. However, calls to outlined

functions created by Daedalus are allowed.

4. Any instruction within the slice cannot guarantee its return, which would disrupt
the control flow of the parent function. This includes instructions that might throw

exceptions, trap, or lead to abnormal program termination.

3.1.3 Idempotent Backward Slice

Definition 9 (Idempotent Backward Slice). Given a program P and a slicing criterion
¢ specified by an instruction I, (which may be located within a loop £ with header
H), an Idempotent Backward Slice is an executable subprogram composed of input
parameters and all instructions required to compute the value of c.

This computation follows two primary modes of interaction with the loop L: It
can be restricted to a single conceptual iteration of £, which computes ¢ directly (in this
case, the loop header acts to limit ¢’s computation); or, alternatively, ¢ may depend on
data produced by a variable updated within the loop (in which case the loop itself, or
relevant portions thereof, is considered a dependency necessary for ¢’s computation).

The components of the slice are determined by the single-step traversal (Algo-
rithm 10) of P’s CFG. First, the set Ig is the set of instructions transitively required
to compute the value defined by I., within the possible bounds of the loop £. This set

corresponds to the instructions found in the deps output of the traversal algorithm:
Is = {i € deps | i is an instruction}

Second, the input parameters V;, are variables used by instructions in Ig and by defini-
tions that lie outside £’s boundary. This set corresponds to the funcArgs output of the
algorithm:

Vin = {v € funcArgs | v is a variable}

3.1. Program Slicer 52

The resulting slice S is a subprogram Pg whose body contains the instructions Ig and
whose parameters are the variables in Vj,. This program computes the value of ¢ and is

called as a function inside the original slice criterion instruction /. in P.

3.1.4 Function Outlining

This subsection formalizes the function outlining phase, a powerful optimization
technique that automatically extracts a region of code into a new, standalone function.
The primary goal is to replace a segment of computation with a simple, equivalent function
call. This process begins with the results of our single-step data-dependence traversal,
which provides the necessary basic blocks (BBs), value dependencies (deps), and the set
of required function arguments (funcArgs).

The entire outlining procedure can be understood as a sequence of four main steps,

which we will illustrate with figures.

Step 1: Identify the Slice and Region. The process starts by targeting a specific
instruction, known as the slice criterion x6. Figure 3.3 illustrates this initial step. We
begin with the original CFG, where the instruction x6 resides (Figure 3.3a). A dependency
analysis is then performed, tracing backwards from x6 to identify all the basic blocks and
values that contribute to its result. This collection of blocks (V) and their induced CFG
edges (Eg) define the region R = (Vg, Er) to be outlined, as visually isolated in Figure
3.3b.

3.1. Program Slicer 23

Figure 3.3: Identification of the slice and the corresponding region to be outlined.

(a) The original function (b) The region R on the original function.

Region R to be outlined

_________________________________ -
BBO: BBO:

Xl=. Xl=..

X2=. X2=..

br (x1< x2), BB1, BB2 br (x1<x2), BB1, BB2

[\ [\

1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 [}
1 1
1 1
1 [}
1 1
1 [}
1 1
x3=x1+10 x4 =x2*10 : x3=x1+10 x4=x2*10 :
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 [}
1 1
1 1
1 [}
1 1
1 [}
1

BB BBZ BBt BB2
br BB3 br BB3 br BB3 br BB3
BB4: BB4:
%5 = phi(x3, x4) %5 = phi(x3, x4)
X6=x5+4 %6 = %5 +4
br BB5 br BBS
) N
BBS: BBS:
use(x6) use(x6)

Source: The author.

Step 2: Verify Legality and Define the Interface. Before modifying the code, the
pass verifies that the identified region is safe to extract. Outlining is permitted only if
the region is pure, which imposes three key conditions: the new function must be self-
contained, has no external side effects, and its output depends solely on its inputs.

Once these conditions are met, the interface for the new function, Fjjc, is con-
structed. Its arguments (funcArgs) are derived from values that are used inside the region
R but defined externally. The return type of Fyjce is set to match the type of the instruc-

tion x6.

Step 3: Outline the New Function. With the interface defined, the cloning and
repair stage begins. A new, empty function Fj;. is created, as shown in Figure 3.4.
The basic blocks from region R are then cloned into this new function. During this
process, a value map is used to remap operands: any dependencies on external values
are replaced by references to the new function’s formal parameters (p). Internal control
flow, including predicates for ¢-functions, is preserved within the cloned blocks. Finally,
a single ret instruction is added to return the cloned value x6° (the equivalent of the

original instruction x6).

3.1. Program Slicer 54

Figure 3.4: The outlined function.

BBO:

X'=.

X2 =..

br (xI < x2°), BB1, BB2

[\

BB BB2
x3'=x1'+10 x4’ =x2'*10
br BB3 br BB3
BB4:
x5' = phi(x3', x4")
X6'=x5'+4
return x6'

Source: The author.

Step 4: Replace the Region with a Call. In the final step, the pass modifies the
original function. The entire region of blocks R is removed and replaced by a single
call instruction to the newly created Fyice. The values that were previously identified as
external dependencies (p) are passed as arguments to this call. As shown in Figure 3.5,
this dramatically simplifies the original function’s CFG, abstracting away the complex

computation into a clean and reusable function.

Figure 3.5: The new original function.

BB4:
x6 = call F_sliceQ
br BBS

l

BB5:
use(x6)

Source: The author.

3.1. Program Slicer 25

First Dominator

To correctly reconstruct the control flow graph (CFG) of an outlined slice, it is
essential to manage branches inside the slice. Our approach relies on the concept of
dominance to identify the correct successor block for such branches. Let a CFG be a
directed graph G = (V, E), where V is a set of basic blocks and FE is a set of edges
representing control flow. Let S C V be the subset of blocks included in the program

slice. First, we define a key concept for our branch rerouting logic.

Definition 10 (First Dominator in Slice). For any block v € V, the first dominator in
the slice is the closest strict dominator of v that is also a member of the slice’s blocks set
S. This is found by traversing up the dominator tree from v and selecting the first node

encountered that belongs to S.

The branch rerouting procedure is applied to any edge (b, s) € E where the source
block b € S is part of the slice, but the successor block s ¢ S is not. The objective is to
find a new target block t for the branch from b within the reduced CFG. The algorithm

proceeds as follows:

1. Initiate a forward traversal of the original CFG starting from the successor block s.

2. Avoid revisiting nodes already seen during traversal. The source block b is skipped

to prevent traversing loops.
3. If the slice criterion is inside a loop, apply the following restrictions:

a) Skip traversal from the loop header, to avoid traversing invalid paths.

b) Skip blocks that are outside the current loop, preserving loop consistency and

preventing traversal beyond the loop’s scope.

4. Search for a reachable block ¢ such that its first dominator in the slice is the source

block b; or the t’s first dominator also dominates b.

5. If such a block t is found, reroute the exiting branch from b to target ¢ in the new
sliced CFG.

6. If traversal completes and no such block exists, reroute the branch from b to a
terminal block representing an unreachable or exit condition, preserving the CFG’s

integrity.

This method ensures that control flow leaving the slice is redirected to the correct
program point that is post-dominated by the exit block of the slice, while also respecting

loop structure and maintaining program semantics.

3.2. Function Merging and Simplification 26

3.2 Function Merging and Simplification

To eliminate redundancy among the newly created slices, we first employ the LLVM
mergefunc pass [13]. This pass identifies and merges semantically equivalent functions.
For each set of identical slices, it establishes a single canonical version and updates all
call sites accordingly. This process relies on a mapping from each deleted function to its
new, canonical equivalent, ensuring that all references within the module remain valid.

Once the outlined functions have been merged, the transformation is finalized
within the original parent functions. The instruction sequences that were extracted are
now replaced with call instructions targeting the new canonical functions. To conclude the
process, we execute the simplifyCFG pass [14]. This final step removes any basic blocks
or control flow structures that became redundant as a result of the outlining, ensuring

the resulting functions are as compact and efficient as possible.

3.3 Slicing Example

In contrast to Wyvern, we first map all gating functions as regular expressions,
making predicates explicit to our single-step data traversal algorithm. This ensures that
no implicit control dependency is overlooked, which makes it possible to outline a slice
function for the ladder graph case. Furthermore, we identified key limitations in the first
dominator implementation from prior work (Section 2.3.2). To address these deficiencies,
we propose and show a more robust algorithm working, from Section 3.1.4.

Let the program from Section 2.5 be the input to our algorithm. Following the
steps illustrated in Figure 3.1, we first normalize the program into LCSSA form using the
memZ2req and lcssa LLVM passes. In this example, the program is already in SSA.

For every merge point in the program, we apply Algorithm 6 to construct a regular
expression of its corresponding gating functions v and p. Figure 3.6 shows each basic block
with a merge point, annotated with the relative path expression that represents its gating
function. Colors indicate which paths are taken to reach each merge point. Finally,
a mapping between basic blocks and their controlling predicates (the blocks’ conditional
terminators) is constructed. This mapping specifies which predicate governs the execution

of each block, concluding the GSA Construction step.

3.3. Slicing Example 57

Figure 3.6: The ladder graph in GSA form.

BBO:
Xl=al+bl
br (al < 41), BB1, BB8

/N

BBL BBS:
br (b1 < 33), BB2, BB7 br BB7

av

BB2 B87 |7:((edge(BBO—+1)- (2 A(BBE))) U (edge(BBO —+ 0) - (@ - edge(BB1 —+ 1))))
br (c1< 25), BB3, BB6 brBB6 | K —
BB3: BEE o o
x2=x1*cl daxval | ((@- (@- A(BB))) U (2 - (2 - edge(BB2 —+ 1))))
br (¢1<17). B4, BB5 br BBS Bim
: B8 : N . . .
ZB;‘Bg %4 = phi(x2, ¥3) Z (_('3 (2 - A(BB6))) U (2 - (2 - edge(BB3 — 1))))
br B89
BBY:
x5 = phi(x2, x4)
§1=x5<<16

Source: The author.

As in Wyvern, we assume s1 = x5 << 16 is the slice criterion and proceed to the
Slice Identification step. Our algorithm identifies both the data dependencies listed in 3.7a
and, unlike Wywvern, the controlling predicates listed in 3.7b. It retrieves these predicates
from the mapping generated by Algorithm 7. This complete dependency information is
crucial, as it enables our corrected first dominator (Section 3.1.4) algorithm to properly
reconstruct control flow, ensuring a branch from BBO correctly targets BB1 instead of the

erroneous successor BB9. A new function is then outlined, represented in Figure 3.8.

Figure 3.7: Slice criterion’s dependencies.

(a) Data dependencies. (b) Control dependencies.
1. x5 = phi(x2, x4) 1. br (cl < 17), BB4, BB5
2. x2 =x1 % c1l 2. br (c1 < 25), BB3, BB6
3. x4 = phi(x2, x3) 3. br (c1 < 33), BB2, BB7
4. x1 = al + bl 4. br (al < 41), BB1, BBS
5. x3 = x1 * al

Source: The author.

Finally, once all outlined functions are identified, the pass attempts to merge sim-
ilar ones and simplify them. This step is carried out by leveraging the mergefunc and

simplifycfg LLVM passes within our implementation.

3.3. Slicing Example

o8

Figure 3.8: Final sliced function.

BBO:
X1=al+ bl
br (a1 < 41), BB1, BB8

/

BBt

br (b1 < 33), BB2, BB7

BB2

br (c1< 25), BB3, BB6

VAERN

BB3:
x2=x1*cl
br (c1<17), BB4, BBS

BBé:
x3=x1*al
br BB5

/ N/

BB4: BBS:

br BB9 x4 = phi(x2, x3)

br BB9

N/

BB9:
x5 = phi(x2, x4)
s1=x5<<16

Source: The

author.

29

Chapter 4

Soundness

This chapter provides a formal argument for the soundness of our program slicing algo-
rithm. We aim to prove that an extracted Idempotent Backward Slice (Definition 9) is
semantics-preserving with respect to its slicing criterion. That is, for any given program
input, the value computed for the criterion variable by the slice is identical to the value
computed by the original program.

To formalize the semantics-preserving property, we first introduce a minimal in-
termediate language that explicitly includes the Gated Single-Assignment (GSA) gating
functions central to our slicing algorithm. We then define its structural operational se-

mantics. Finally, we proceed to state and prove the soundness theorem by induction.

4.1 MiniGSA: A Minimal GSA Language

This section defines a minimal language called MiniGSA, which contains the basic

syntax necessary to explain the semantics of the Gated Static Assignment format.

4.1.1 Syntax

A program P is a map from labels L to basic blocks B, and program termination

is handled by the stop instruction Z,y.

4.1. MiniGSA: A Minimal GSA Language 60

Variables v € Var
Labels L € Label
Values z € Value
Operators ® € {+,—,%/,...}
Restart Set R C Var
Standard Instr ¢ = vy = v D vy
| Vo = Y(P; Virues Vtalse)
| Vo = M(Uinit, Uloop)
| vo = n(p; Vexit, 1)
Control Flow 7 == br L |br p, Liyue, Ltase | Zstop
Basic Blocks B ;BT
Programs P = L—B,...

4.1.2 Semantics

We define a structural operational semantics. A program configuration is a tuple
(Z; B,o), where Z is the sequence of instructions from the current basic block yet to be
executed, and o is the store. The single-step transition relation is P, Z,, - (Z; B,0) —

(I',0"). We assume a store o maps a variable v to a value o[v], or the uninitialized marker

L.

Instruction Semantics. These rules define the execution of standard instructions.
They operate within the current sequence of instructions Z, until it reaches the stop

instruction Zg,y.

4.1. MiniGSA: A Minimal GSA Language 61

z = olvy| ® ofvs]

P, Zop = (vo =01 ® v2; B,0) = (B, ofvg = 2])

olp] = True z = o[Virue]

Pa Istop - <UO = 7(])7 Vtrues Ufalse>; 87 U) — <Ba U[UO — Z]>

o[p] = False z = 0[Utase]

P, T10p F (0o = ¥(Ps Virue, Vtatse); B, 0) = (B, o[vg +— 2])

olv] = L 2z = ofvii)

p7 Istop l_ <U0 = M(’Uinitavloop); Ba 0> — <B7 U[UO — Z]>

o] # L 2= 0fvtoop]

P7 Istop H <U0 - M(Uinitavloop); Ba 0> — <B7 O[UO = Z]>

olp] = False 2z = 0[Veyit]

P, Zop = (vo = (P, Vexit, R); B,o) — (B, olvg +— 2,¥r € R.r— L])

The 7 function is defined with an additional set R of variables, which we denote
R C Var. This set R contains loop-dependent variables (i.e., u-defined variables) that
must be effectively reset to L upon loop exit. This explicit resetting of p-defined variables
ensures that if the loop is re-entered, the relevant p nodes will correctly re-select their
initial value v;,;;, thereby making the variables reusable and preserving the required single-
assignment property for subsequent loop iterations in the overall program flow. Formally,
upon p = False, the rule simultaneously assigns the exit value z to vy and maps every
variable r € R to the uninitialized value L in the store: ovy +— z,Vr € R. r — L].

Control Flow and Termination Semantics. These rules define control transfer.
They update the current sequence of instructions and replace them with the instruc-
tions from the target basic block. When the stop instruction is reached, the program

state is its output store o.

P(Lne:r;t) =B J[p] = True P<Ltrue) - Btrue
P7 Istop |_ <b1" Lnewta 0> — <Ba 0> P7 Istop |_ <bI' p; Ltruey Lfalse> U) — <Btruea U>

0[p] = False P(Lfalse) = Bfalse
P7 Istop H <bI‘ D, Ltrue7 Lfalse7 U) — <Bfalsea U> P7 Istop = <Istop; B7 U> — 0

4.2. Soundness 62

4.2 Soundness

Definition 11 (Transitive Closure for Transition Relation). The transitive closure —*
for the transition relation — over program configurations s = (Z; B, o) is the smallest

relation satisfying the following inference rules:

P7 Zstop l_ <Ist0p; 37 U) — 0
P7 Istop l_ <Istop; B70> %* g

(Termination)

P7Istop - <IvB7O-> - <B7UO>

(Base Case)
P, Ty, F(Z;B,0) =" (B, 0y)

P, Lo - (Zo; B,0g) =" (Z1; B, 01) P, Loy F (Iy; B,o1) =" (Iy; B, 02)

(Transitivity)
P> Istop l_ <107 B7 UO> —>* <1-2a Ba U2>

Thus, the full execution of a program P starting from the entry point Ly, with
initial store 0y,, and terminating at instruction Z,, with final store o,,, is formally

expressed using the transitive closure as:
*
P, Istop = <Lent1"ya Uin> — Oout

Definition 12 (CFG of a Slice). Let P be a program with CFG Gp = (Vp, Ep). Let S be
an Idempotent Backward Slice of P for a criterion ¢, as in Definition 9, with instruction

set Is. The control-flow graph of the slice subprogram Ps is Gg = (Vs, Eg), where:

1. Vs is the set of basic blocks containing at least one instruction from [Ig, plus any

blocks synthesized during the materialization of the subprogram.

2. Fg is the set of edges (u,v) where u,v € Vg that are either preserved from Gp or

are newly introduced to connect synthesized blocks.

Lemma 1 (Slice Entry as Dominator). Let S be an Idempotent Backward Slice with CFG
Gs = (Vs, Es) (Definition 12), constructed by a backward dependency traversal from a
criterion 1. in block B.. This construction process identifies a unique block, Lfmry e Vs,
that dominates every other block B € Vs within the slice CFG Gg.

Proof. The slice’s instruction set, Ig, is formed by the deps output of Algorithm 10. This
algorithm performs a bounded, transitive traversal starting from the criterion .. It col-
lects not only data dependencies (operands of instructions) but also control dependencies.

This is achieved by querying the GSA predicates map (constructed by Algorithm 6 and 7)

4.2. Soundness 63

whenever a ¢-function is encountered, adding the gating predicate instructions to the
worklist for further traversal.

This process selects a subgraph Gg, from the original program’s CFG Gp. This
subgraph contains all blocks (BBs) necessary to host the instructions in Ig and all control-
flow paths that enable the computation of the criterion. Because both data and control
dependencies are transitively included, the resulting set of blocks and the edges between
them form the subgraph Gg.

For G5 to constitute a valid computation, all such paths must originate from a
common entry context. The backward traversal, by including necessary control-flow pre-
decessors, ensures that all dependency paths eventually trace back to a common ancestral
block within the slice. This block, which we denote Lfmry, serves as the nexus for all
control flow entering the slice’s computation. By construction, every valid execution path
from the beginning of the slice’s computation to any arbitrary block B € Vg must nec-
S try- dom B).
This dominator is identified and used for CFG reconstruction via the First Dominator in
Slice logic defined in Section 3.1.4.

Therefore, the construction process naturally identifies a unique block, L? that

entry»

dominates all other blocks within the slice’s CFG. O]

This is the formal definition of dominance (L2,,,,

essarily pass through L

Theorem 1 (Every idempotent backward slice has a single entry block). Let S be an
Idempotent Backward Slice (Definition 9). Then the slice CFG Gg = (Vs, Es) has a
single entry block.

Proof. By Lemma 1, the backward dependency traversal used to construct the slice S
yields a CFG Gg, containing a block L3, that dominates all other blocks in Vg. In a

control-flow graph, a block that dominates all other blocks is, by definition, the unique

entry point of that graph. The existence of any other potential entry would imply a path
s

entry» Which would violate its

to some block within the slice that does not pass through L
dominance property.

Consequently, L?

entry

is the single entry block of the slice.

Furthermore, the construction implies a dual property: the criterion’s block, B,
S

entry

post-dominates the entry block L within Gg. This is a direct consequence of the
slice’s purpose: every valid execution path starting from the entry must eventually reach

the criterion for the computation to be meaningful. m

Corollary 1 (When does the slice entry equal the program entry?). If the construction
of Ps reuses the original entry block Ly, and retains all control required to reach every

block in Vs from it, then Lfmry = Leptry. Otherwise, Lfmry # Leniry s permitted.

Theorem 2 (Slicing Soundness). Let P be a program, I, be a slicing criterion (the in-

struction that defines variable v), and S = Slice(P, I,) be the extracted slice with single

4.2. Soundness 64

entry Leptry. The slicing algorithm is sound if for any initial store o4, and entry label
Lentry, the following holds:

If P7 Iv - <Lentryuain> _>* op

then S, I, b (Lentry, 0in) =" 05 and oglv] = oplv].

This states that if the original program P terminates by reaching I, with a final
store op, then the slice S also terminates by reaching I, with a final store og, and the

value of the criterion c is identical in both final stores.

Proof. We prove this theorem by induction on the length of the execution trace of the
original program P. Let the execution of P be a sequence of configurations sg, s1, ..., S,
such that so = (Lentry, 0in) and P, I, F s — sp41 for 0 < k < n, resulting in a final store
op.

Let S be the slice of P. We define a corresponding execution trace for S where we
only consider the instructions present in S. Let o% and o% be the stores after k steps of
the original program and the corresponding steps in the slice, respectively. Let Defs(S)
be the set of all variables appearing on the left-hand side of an assignment instruction
within the slice S. This set represents all variables whose values are computed by the
slice.

Our inductive hypothesis, H(k), is: For any variable w defined within the slice,
its value is the same in both stores after k steps. This includes the uninitialized value L.

Formally:
Vw € Defs(S), okw] = ahlw]

Base Case (k = 0): The execution of both P and S starts with the initial store ;.
For any w € Defs(5), its initial value is 0;,[w] (which may be L) in both configurations.

Thus, o9[w] = o%[w], and the hypothesis holds.

Inductive Step: Assume that the hypothesis H(k) holds for some & > 0. We need
to show that H(k + 1) also holds after the execution of the next instruction, ¢, in the
program P. Let this transition be P, I, F (t;...,0%) — (..., 0%™). We perform a case

analysis on ¢.

e Case 1: ¢ ¢ S. By definition, ¢ defines some variable v' ¢ Defs(S). The slice

execution does not change, so 0@“ = ok. For any w € Defs(S), we know w # v, so
its value is not affected by ¢. Thus, o [w] = ob[w]. By the inductive hypothesis,

ok [w] = ok[w]. Combining these, we get o' [w] = ot [w]. The hypothesis holds.

4.2. Soundness 65

e Case 2: + € S. The instruction ¢ is executed in both P and S. By the inductive

hypothesis, the values of all input variables to ¢ are identical in o% and o%, since

the definitions of those input variables must also be in S and thus their variables
are in Defs(.5).

t = (vg = v1 B vg): The definitions of operands v; and vy must be in S. By IH,
okvi] = ok[v1] and of[vy] = ok[ve]. Since @ is a deterministic operator, the
result z = o®[v)] ® ok[vy] is identical to 2’ = o&[v,] ® ok[vs]. Both stores are

updated with the same value for vy.

t = (vo = Y(P, Vrue, Viatse)): The definition of the predicate p must be in S. By
IH, o%[p] = ok[p]. If the predicate is true, the definition of v, must be in
S, and by IH, its value is the same in both stores. The same holds for v
if the predicate is false. Thus, the + function selects the same value in both

executions.

t = (vo = K(Vinit; Vioop)): The choice between vy and vy, depends on whether
olve] = L. Since vg’s definition (¢) is in S, vy € Defs(S). By IH, ok [vy] = ok [vg].
Therefore, both executions make the same choice. The chosen variable (vjy
Or Ulpep) Must also have its definition in S, so by IH its value is also the same.
The assignment to vy is identical.

t = (vg = NP, Vexit, R)): Similar to ~y, the predicate p and operand ve; must
have their definitions in S. By IH, their values are identical in % and o¥%.
Both executions will assign the same value to vg. The rule also resets variables
in R to L. For any r € R that is also in Defs(5), its value becomes L in both

ol and 0% maintaining the equivalence.

t = (br p, Lirue, Ltaise): A conditional branch is included in S if it provides
control dependence. The definition of p must be in S. By IH, ok[p] = ok[p].
Therefore, both P and S will branch to the same successor block, ensuring
that the sequence of executed blocks from the slice is the same. The same logic

applies to an unconditional branch.

In all sub-cases where ¢ € S, the update to the store for any variable in Defs(S) is
identical. The hypothesis H(k + 1) holds.

By induction, the hypothesis holds for all steps up to the termination of the pro-

gram at the stop instruction I,,. Since the definition of v is the slicing criterion itself, its

defining instruction is in S and v € Defs(S). Therefore, at the final step, the value com-

puted for the criterion variable v is the same in both stores: If P, I, = (Lentry, 0in) —* 0p,

then S, I, F (Lentry, 0in) =" 0g and og[v] = op[v]. O

Finally, we implemented an interpreter that is derived from the inference rules

from Section 4.1.2. The code is presented on Appendix A.

66

Chapter 5

Evaluation

Having established the theoretical background, this chapter presents the empirical eval-
uation of our implementation. We begin by specifying our benchmark setup and experi-
mental methodology. To assess the effectiveness of our approach, we compare its results
against two key baselines: the func-merging pass introduced by Rocha et al. [18] and the
standard IROutliner passin LLVM 17. The data gathered from these comparisons is then
used to address the following research questions, thereby demonstrating the feasibility of

our work:

RQ1: How much code-size reduction can the outlining of idempotent slices achieve, and

how does this result compare with techniques of similar goals?

RQ2: What is the impact of slice outlining on the running time of benchmarks, and how

does this impact compare with previous work?

RQ3: What is the overhead that slice outlining adds to the compilation pipeline, and

how does this overhead compare with previous work?
RQ4: What is the asymptotic behavior of the slice outlining algorithm?

RQ5: What is the time taken by the different phases of the outlining optimization pro-
posed in this paper?

RQ6: Can we observe a cumulative benefit of running the different code-size optimiza-

tions in combination?

5.1 Experimental Setup

The experiments consisted of running three transformation passes over the LLVM
Test Suite to collect statistics in four categories of metrics: number of LLVM instructions

(Instcount), size of the .text segment of the executable, execution time and compilation

5.1. Experimental Setup 67

time. For this purpose, a dedicated machine was selected, a patch for the test suite was
developed, and all baseline configurations were prepared. Once the benchmark environ-
ment was ready, we compiled 2007 programs using func-merging and IROutliner, and
compared their results against those obtained with Daedalus. Our results were obtained

using the parameter settings defined in our cost model experiment.

Hardware

The experiments were conducted on a server provided by the Compilers Laboratory
at DCC/UFMG, with the following configuration:

e CPU: AMD Ryzen Threadripper 7970X 32-Cores 4GHz

e Memory: 128 GiB RAM

This hardware was chosen primarily for its high core count, which allowed the

experiments to be executed efficiently in a multi-threaded setting.

Benchmark Environment

The experiments were conducted using baselines that required a different build
and configuration of LLVM 17. The choice of this version was motivated by compatibility
with func-merging, by the stability of IROutliner, and by the modifications necessary
to support Daedalus. The benchmark environment for each baseline is summarized as

follows:

e func-merging baseline
— Implemented as an LLVM 17 patch used by the original authors of func-merging.
e IROutliner baseline

— Implemented as an upstream LLVM 17 pass.

— Stable across LLVM versions, ensuring consistent behavior across builds.

e Daedalus

5.1. Experimental Setup 68

— The mergefunc pass in LLVM 17 was extended to support the core merge

procedure for arbitrary sets of functions.

— Daedalus source code can be found at: https://github.com/lac-dcc/Daedalus.

The specific LLVM 17 build source code is available at https://tinyurl.com/
yebbax9d. Also, all experiments were executed on the selected hardware using shell
scripts developed for this study, publicly available at https://tinyurl.com/ye26drz6.

To reproduce our experiments, one needs to build our artifact image using docker,
with the Dockerfile located at ./artifact/docker/Dockerfile within Daedalus’s repos-
itory.

Compilation Pipeline

For each program in the test corpus, metrics were collected by compiling it with
the -0s optimization flag, both before and after applying the selected pass, as illustrated
in Figure 5.1. This procedure isolates the effect of the transformation, ensuring that
any differences in the reported metrics are attributable solely to the chosen pass, thereby
minimizing external noise.

This setup is not configured by default on LLVM Test Suite (version 17). To
achieve this pipeline, the build system of the LLVM Test Suite was modified to include
a post-build pipeline that extracts, transforms, and recompiles each program in order to
evaluate the effect of an arbitrary pass. The sequence of steps integrated into the CMake
configuration is illustrated in Figure 5.2.

Programs are first compiled with Link Time Optimization (LTO) [16] flags, which
embed their fully linked bitcode into the target executable. The resulting binary is then
processed with objcopy to extract the embedded .11lvmbc section as a standalone . bc file.
This bitcode is normalized using canonicalization passes (mem2reg,lcssa) to ensure it is
in LCSSA form and suitable for further analysis. The selected pass is subsequently applied
with optional arguments, producing a transformed version of the bitcode. The optimized
bitcode is recompiled into a native executable with the -0s flag, and finally, metrics are
collected. Finally, the Test Suite patch is available on https://tinyurl.com/ye2a9ypt.

The main motivation for recompiling the programs using this method is to leverage
the existing configuration of the test suite subprojects. Each subproject already defines a
specific set of compilation flags, which makes individual modifications difficult to apply.
By operating at this level, our approach becomes scalable and simplifies the evaluation of

arbitrary passes.

https://github.com/lac-dcc/Daedalus
https://tinyurl.com/ye55ax9d
https://tinyurl.com/ye55ax9d
https://tinyurl.com/ye26drz6
https://tinyurl.com/ye2a9ypt

5.1. Experimental Setup

69

Figure 5.1: Compilation pipeline.

clang -Os program.c -0 program.opt

opt -passes=chosen-pass program.opt -0 program.opt

clang -Os program.opt -0 program

Source: The author.

Figure 5.2: Build system modification steps.

Complle program Extract LLVM bitcode
_—
(clang -fito -Os) (objcopy)
Normalize IR

(opt -passes=mem?2reg, Icssa)

Recompile program
(clang -Os)

|

Collect metrics
(Instcount, text size)

Apply chosen pass

Source: The author.

5.2. Research Questions 70

Cost Model Experiment

To achieve the greatest possible code-size reduction, we conducted a cost model
experiment in which we limited the number of arguments, instructions, and users of
an outlined function. These checks are performed during the Slice Identification step
described in Section 3.1.2.

The cost model experiment involved compiling the entire LLVM Test Suite multiple
times while varying the three parameters and their combinations. The range for the
number of arguments was [0, 20], for the number of instructions [10, 20, 40, 80, 160], and
for the number of users [10, 20, 40, 80, 160, 320, 640].

After recompiling and collecting the geometric means of the metrics across 735
runs, we concluded that the greatest reduction in the Instcount metric was achieved with
outlined functions containing at most one argument, no more than 20 instructions, and

at most 10 users.

5.2 Research Questions

The experimental results were analyzed and summarized using tables and graphs.
Each table reports the number of programs affected and the corresponding geometric
mean, where positive percentages indicate an increase in a given metric and negative
percentages indicate a decrease. Table 5.1a details the instances where metrics remained
unchanged, while Table 5.1b summarizes the overall geometric mean for each of the se-

lected metrics.

RQ1: Code-Size Reduction

This section evaluates the code-size reduction capabilities of our approach. The ef-
fectiveness of Daedalus is measured by its impact on the final executable’s .text section
size across the benchmark suite. The analysis reveals that while the technique can yield
substantial rewards in specific cases, its overall effect is more complex than a straightfor-

ward reduction, highlighting a critical trade-off between analytical precision and general

5.2. Research Questions 71

Table 5.1: Experimental results across different metrics.

(a) Programs with unchanged metrics.

Daedalus Function Merging IROutliner
Metric Count Count Count
Instcount 1865 1824 1800
text size 1874 1817 1847
Exec. Time 1846 1830 1847
Compile Time 1704 1766 1749

(b) Overall metrics.
Daedalus Function Merging IROutliner

Metric Total Geomean Total Geomean Total Geomean
Instcount 2007 -0.24% 2007 -0.35% 2007 -0.65%
text size 2007 0.11% 2007 0.39% 2007 -0.19%
Exec. Time 2007 0.06% 2007 0.25% 2007 -0.09%
Compile Time 2007 4.22% 2007 2.06% 2007 2.48%

Source: The author.

applicability.

The evaluation reveals that Daedalus has a nuanced impact on code size. Overall,
the technique resulted in a slight geometric mean increase of 0.11% across the 2007 pro-
grams in the test suite. This aggregate result, however, masks a significant trade-off
visible in the detailed breakdown. Furthermore, an analysis across all metrics reveals
that none of the evaluated passes were able to reduce every metric for any single pro-
gram. Conversely, in a few specific cases, each pass increased all metrics, as outlined in

Table 5.2.

Table 5.2: Number of Programs with All Metrics Positive.

Metric Name Daedalus func-merging IROutliner
(+) Instcount 14 26 0

(+) .text size
(4+) Exec. Time
(+) Comp. Time

Source: The author.

The optimization is highly targeted, leaving the .text section size of 1874 programs
entirely unchanged (Table 5.1a). This indicates that the specific, recurrent patterns of
Idempotent Backward Slices that Daedalus identifies are not prevalent in most of the
benchmark programs.

When the optimization was applicable, its effects were pronounced but mixed:

5.2. Research Questions 72

e Effective Reductions: In 23 programs, Daedalus achieved a substantial average
.text size reduction of -8.39%, and -9.96% in Instcount. This demonstrates
that for programs with suitable structures, the algorithm can be highly effective at

compacting code.

e Size Increases: Conversely, the pass led to a size increase in a larger set of 57

programs, with an average code-size increase of 2.09% in .text size.

Tables 5.4 and 5.3 detail the number of programs where both the instruction count
and .text section size metrics concurrently increased or decreased, respectively. A posi-

tive value indicates an increase, while a negative value indicates a reduction.

Table 5.3: Number of Programs with Negative Instcount and .text size.

Metric Name | Daedalus func-merging IROutliner
(-) Instcount 23 30 105

(-) .text size

Diff Geomean -8.39% -10.72% -4.65%

Source: The author.

Table 5.4: Number of Programs with Positive Instcount and .text size.

Metric Name | Daedalus func-merging IROutliner
(+) Instcount 57 56 10

(+) .text size

Diff Geomean 2.09% 6.02% 3.37%

Source: The author.

When analyzing the programs that Daedalus successfully reduces, it consistently
and significantly outperforms the baseline techniques. Figure 5.3 illustrates this trend
across the programs where Daedalus achieved a code-size decrease. In nearly all these in-
stances, Daedalus (blue bars) provides a substantial reduction, while IROutliner (green
rhombus) offers only minimal savings, and func-merging (red triangles) frequently in-
creases the code size.

A representative example of this performance gap is the IndirectAddressing-dbl.test

program. For this test case:
e Daedalus achieved a remarkable code-size reduction of -9.32%.
e IROutliner provided a negligible reduction of only -0.35%.

e func-merging actually increased the code size by 1.07%.

5.2. Research Questions 73

Figure 5.3: Code-size reduction between Daedalus, func-merging, and IROutliner.

20.00%

A
15.00%
< 10.00%
= A
z A A
e 5.00%
E A A A 4 4
£ A A A A A
2 A A A
T O000% g ow @
(2}
N
7
4
T -5.00%
)
-10.00%
-15.00%
XN XN XN Y X XN XN X X X XN X XN Y XN XN XN X Y
& 0\27 %1@? \36% & \.@’ \g? R \..@% R & o \@% \Se% & E &@% \‘;-@v
& \OQQ 4\;\@ (\Sc %,So ©$° CSO %60 g$° %80 QG,S° < » 0}0 N QG,SO %,So X %So O,S° &
. . . o . &) N
S é‘o\\ & '«\‘p\ & \,°°Q &\°\b & g® ;‘”\\\J'\»‘“& ~o°\\° & 65@‘0 s N
KON R RO R SN X & & QT &
“\\Q;" 66Q4i‘4»\¢)<\‘@&\\\ <<ng\0‘b bbb%QQ'\‘&efp Q@e‘%@
(X O LGP S) NS NN NS N
S ETFE SIS F S+ &
K »
\)& S s \\& &

m Diff .text size Daedalus A Diff .text size func-merging @ Diff .text size IROutliner

Source: The author.

This specific case highlights the core strength of our approach. While more broadly
applicable algorithms failed to find meaningful savings, the precision of GSA-based slicing
allowed Daedalus to identify and eliminate a significant redundancy.

This disparity is a direct result of the overhead from a new function’s prologue,
epilogue, and call-site instructions, which can easily negate the savings from outlining a
small code fragment. To address this, our approach is guided by the cost model described
in Section 5.1, which we specifically tuned to minimize this overhead.

The trade-offs inherent in our approach are particularly evident in programs where
Daedalus increases code size. Figure 5.4 compares the code-size impact of Daedalus
against the baselines for these cases.

The 1decod.test program serves as a clear example of this trade-off:
e Daedalus increased the code size by 1.97%.
e IROutliner achieved a small code-size reduction of -0.53%.

e func-merging yielded a significant code-size reduction of -2.5%.

5.2. Research Questions 74

Figure 5.4 presents the programs detailed in Table 5.4, where each pass increased

both the binary’s .text section size and the number of LLVM IR instructions.

Figure 5.4: Code-size growth between Daedalus, func-merging, and IROutliner.

30.00%

20.00% A
A

A A
— A
T 10.00% A A A
= A A A 4 4 A
T I TV SO TP SPPPTTY L
2 0000 SV SO VY) 211 11111
5 0.00% o 'y %002055”%0 00”5“0 5555%“505055 N . .
S A A
2 . o
g -10.00% o
o
N
7
2 -20.00% ~
O
-30.00%

-40.00%

m Diff .text size Daedalus A Diff .text size func-merging @ Diff .text size IROutliner

Source: The author.

The difference in code-size impact among the passes stems from the trade-off be-
tween pattern granularity and recurrence. Daedalus operates on highly specific, fine-
grained data-flow patterns that may not recur often enough to amortize call overhead. In
contrast, IROutliner and func-merging target larger, more frequently occurring code
segments, generally increasing optimization opportunities. This contrast is evident in the

analysis of activate_sps function from ldecod.test described on Table 5.5.

Table 5.5: Comparison of Code-Size Impact for activate_sps Across Passes.

Pass Final Size (B) A (B) # Fns New Fn Sizes (B) Total Calls Granularity / Recurrence
Original 3007 0 0 - - Baseline

Daedalus 3052 3052 — 3007 2 9,9 2 Fine / Low
IROutliner 3200 3200 — 3007 2 174, 180 9 Medium / Moderate
func-merging 2963 2963 — 3007 6 211, 514, 303, 314, 515, 1145 24 Coarse / High

Source: The author.

Daedalus increased the size of activate_sps from 3007 to 3052 bytes. It produced

two very small slice functions (9 and 9 bytes), each used once within this function (2 total

5.2. Research Questions 75

calls), so prologue/epilogue overhead dominated the minimal savings from outlining fine-
grained, non-recurrent patterns.

IROutliner also led to a local size increase, reaching 3200 bytes. Although it
identified two larger, recurrent regions (174 and 180 bytes; 9 total calls), the added call-
site complexity in this function prevented a net reduction.

By contrast, func-merging reduced the function to 2963 bytes. It captured the
broadest and most varied set of optimizable regions, replacing original code with 24 calls to
six merged functions (211-1145 bytes). In this case, the coarse-grained, highly recurrent

transformations amortized call overhead and delivered the best compaction.

RQ2: Running Time

An essential requirement of any compiler optimization is that it must not degrade
the runtime performance of the transformed program. This section examines this as-
pect by evaluating the execution time of the benchmark suite after being processed by
Daedalus. The results show that the structural transformations introduced by slice out-
lining exert opposing effects on performance, which ultimately balance out to a neutral
overall impact.

Across all benchmarks, the effect of Daedalus on execution time is negligible. The
geometric mean of runtime variation shows a change of only 0.06% (Table 5.1b), and the
vast majority of programs (1846, see Table 5.1a) exhibited no measurable difference in
runtime performance.

For the smaller subset of programs that were affected, performance variations were

nearly symmetrical:

e Slowdown: Among programs that experienced a reduction in both instruction
count and .text section size, 14 exhibited a runtime increase of 4.48% on average
(Table 5.6). This behavior is consistent with expectations, as outlining introduces

additional function call overhead for logic that was previously inlined.

e Speedup: Conversely, 7 benchmarks showed an average runtime decrease of -3.39%
(Table 5.7). These cases, though less frequent, likely benefit from improved instruc-
tion cache locality: consolidating duplicated code into a single outlined function

allows the processor’s instruction cache to be used more efficiently.

Cache Performance Analysis A comparison of hardware performance counters be-

tween the baseline and Daedalus-optimized executions reveals a clear shift in cache behav-

5.2. Research Questions 76

ior, suggesting improved instruction locality and more efficient cache utilization, despite
a slight increase in control-flow complexity. Figures 5.5 and 5.6 illustrate the relevant

hardware event distributions before and after applying the pass.

Figure 5.5: Baseline cache performance profile.

Ll-icache-load-misses - 163
B - “

Event Type

branch-load-misses

e _ "

0 1000 2000 3000 4000 5000 6000
Sample Count

Source: The author.

Figure 5.6: Cache performance profile after applying Daedalus.

Ll-icache-load-misses

1011

I §

Ll-icache-loads

Event Type

branch-load-misses 1870

branch-loads 5661

1000 2000 3000 4000 5000 6000
Sample Count

o

Source: The author.

In the baseline configuration (Figure 5.5), hardware counters recorded 6027 branch
loads and 2165 branch-load misses, alongside 1736 L1 instruction cache loads and 1163
misses. After applying Daedalus (Figure 5.6), these values shifted to 5661 branch loads,
1870 branch-load misses, and 1011 L1 instruction cache loads with 600 misses.

The optimization improved microarchitectural performance. The branch miss ra-
tio decreased from 35.92% to 33.03%, indicating more predictable control flow. More
substantially, the L1 data cache miss ratio fell from 66.99% to 59.35%. This reduction
points to enhanced temporal and spatial data locality, meaning frequently accessed data

remained resident in the cache for longer during execution.

5.2. Research Questions 7

These results suggest that the fine-grained outlining and code reorganization per-
formed by Daedalus improve the reuse of frequently executed instruction sequences. The
restructuring leads to tighter clustering of related code in memory, thereby reducing
instruction fetch latency and minimizing cache thrashing. In addition to the modest de-
crease in branch mispredictions, the overall memory access pattern becomes more cache-
efficient. Consequently, Daedalus enhances instruction cache locality without introducing

significant control-flow penalties.

Table 5.6: Benchmarks with Reduced Instruction Count and .text Size but Increased
Execution Time.

Metric Daedalus func-merging IROutliner
(-) Instcount 14 6 29

(-) .text size
(+) Exec. Time
Diff Geomean 4.48% 19.96% 6.67%

Source: The author.

Table 5.7: Benchmarks with Reduced Instruction Count, .text Size, and Execution Time.

Metric Daedalus func-merging IROutliner
(-) Instcount 7 6 27

(-) .text size
(-) Exec. Time
Diff Geomean -3.39% -15.16% -8.34%

Source: The author.

RQ3: Compilation Overhead

The practicality of a compiler optimization depends not only on its benefits but
also on its computational cost, particularly in terms of compilation time. This section
quantifies the overhead introduced by Daedalus. As shown in Table 5.1b, the advanced
analysis required for GSA-based slicing incurs a noticeable compile-time penalty. On
average, Daedalus introduces a geometric mean compilation time increase of 4.22% across
all benchmarks.

For the subset of programs that exhibited reductions in both Instcount and .text
size, Daedalus did not yield faster compilation times (Table 5.9). Instead, it added an
average overhead of 80.65% for these 23 benchmarks (Table 5.10).

5.2. Research Questions

78

Table 5.8: Benchmarks with Reduced Compilation Time and Corresponding Geometric

Mean Differences.

Metric Daedalus func-merging IROutliner
(-) Comp. Time 9 11 5
Diff Geomean -19.81% -17.25% -17.51%

Source: The author.

Table 5.9: Benchmarks with Reduced Instruction Count, .text Size, and Compilation

Time.

Metric Daedalus func-merging IROutliner
(-) Instcount 0 1 1

(-) .text size

(-) Comp. Time

Diff Geomean - -8.57% -1.61%

Source: The author.

Table 5.10: Benchmarks with Reduced Instruction Count and .text Size but Increased

Compilation Time.

Metric Daedalus func-merging IROutliner
(-) Instcount 23 19 82

(-) .text size

(+) Comp. Time

Diff Geomean 80.65% 24.31% 22.35%

Source: The author.

This overhead is an inherent consequence of the analyses employed by our tech-

nique. The Daedalus pass performs several computationally intensive operations not

present in traditional outlining approaches:

1. The pass operates recursively: after identifying and outlining a slice function for a

given criterion, it reanalyzes the original function to detect further slicing opportu-

nities.

2. A custom function outliner was implemented (Section 3.1.4), since existing LLVM

utilities such as CodeExtractor [12] cannot outline semantically defined regions

derived from dependency graphs.

3. The pass explicitly removes original instructions from the parent function after a

slice has been outlined and merged, rather than relying on subsequent dead-code

elimination passes.

5.2. Research Questions 79

While these steps enable more precise and semantically aware slicing, they also

increase compile-time costs relative to standard outlining algorithms.

RQ4: Daedalus Asymptotic Behavior

In this section, we detail the experiment conducted to measure the asymptotic
behavior of the Daedalus pass. We selected the 100 largest programs from the test suite
and measured the Pearson correlation between the number of LLVM IR instructions and
the absolute time each transformation took to execute. Finally, we plotted a graph for
each pass to visualize its asymptotic behavior.

A complexity analysis of the algorithms implemented by the Daedalus, IROutliner,
and func-merging passes suggests linear behavior as the input size increases. To verify
this empirically, we selected the 100 largest programs from the 2007 programs in our test
suite. As shown in Table 5.11, the compilation time is highly correlated with program
size. Furthermore, scatter plots of instruction count (X-axis) versus compilation time
(Y-axis) reveal a linear trend line for all three passes, as shown in Figures 5.7, 5.8, and
5.9.

Table 5.11: Pearson correlation between compilation time and instruction count for each
pass.

Pass Pearson Correlation
Daedalus 0.837392779
func-merging 0.940710506
IROutliner 0.918238062

Source: The author.

Therefore, Daedalus exhibits linear performance scaling with input size and shows

compilation times competitive with IROutliner and func-merging.

RQ5: Time of Daedalus Phases

In this section, we break down the transformation steps of Daedalus and measure

the time taken by each phase for a given input program.

5.2. Research Questions 80

Figure 5.7: Daedalus: Compilation Time vs. Instruction Count.

35.00

30.00 -

25.00
o 20.00
&
“ 15.00 -

L]
L]
10.00
L[]
5.00 n
e L
ey
000 S

0 20000 40000 60000 80000 100000 120000 140000 160000
Instcount

Source: The author.

The Daedalus pass is composed of four phases: Outlining, Merging Slices, Remov-
ing Instructions, and Simplification. As depicted in Figure 3.1, the GSA Construction,
Slice Identification, and Function Qutlining steps are encapsulated within the Outlining
Phase. The Function Merging and Simplification step corresponds to its own dedicated
phase. The Remove Instructions Phase is responsible for deleting instructions from the
original function that become redundant after being moved into a newly merged function.

To perform this analysis, we ran Daedalus on all 2007 tested programs, collecting
the percentage of execution time spent in each phase. We then computed the geometric
mean of these percentages across all programs. The results are presented in Table 5.13,
which summarizes the main phases of Daedalus, and Table 5.12, which provides a detailed

breakdown of the Outline phase.

Name Wall Time Name Wall Time
Slice Identification Phase Timer 42.389% Outline Phase Timer 48.434%
canOutline Phase Timer 32.581% Merge Phase Timer 22.885%
Function Outline Phase Timer 11.541% Remove Instructions Phase Timer 18.744%
GSA Construction Phase Timer 34.350% Simplify Phase Timer 18.383%

Table 5.12: Timers for Outline Sub-Phases. Table 5.13: Timers for Daedalus Phases.

The column Name, identifies the phase being measured, while column Wall Time

5.2. Research Questions 81

Figure 5.8: IROutliner: Compilation Time vs. Instruction Count.

35.00
30.00 .
25.00

© 20.00

c

Comp. Tim

15.00
10.00

5.00
o

0g-
°
0.4 '.,
Y
000
0 20000 40000 60000 80000 100000 120000 140000 160000
Instcount

Source: The author.

indicates the real elapsed time, including any waiting or synchronization delays. Per-
centages denote each phase’s relative contribution to the overall compilation time. Given
the results in Tables 5.12 and 5.13, we conclude that the OQutline Phase is the most
time-consuming stage. Additionally, breaking down the Outline Phase, Daedalus’s Slice
Identification and canOutline sub-phases expends significant time analyzing instruction’s
dependencies, and memory loads and stores. The latter analysis is required to account
for potential memory clobbering through various levels of indirection, which is essential

for verifying that a candidate function is side-effect-free before it can be outlined.

RQ6: Passes combinations’ metrics

We conducted an experiment to determine if combining Daedalus, IROutliner,
and func-merging could yield a better code compression ratio. To this end, we applied six
different pass sequences to the 2007 programs in the test suite and collected performance

metrics.

5.2. Research Questions 82

Figure 5.9: func-merging: Compilation Time vs. Instruction Count.

50.00
40.00
30.00

20.00

Comp. Time

10.00

000 ofeSSe
0000 40000 60000 80000 100000 120000 140000 160000

=S
[)

-10.00
Instcount

Source: The author.

Table 5.14 summarizes the overall geometric mean for each metric across the differ-
ent pass sequences. Each sequence is identified by a compound name indicating the order

of pass application. The passes are abbreviated as follows: Daedalus (ded), IROutliner
(iro), and func-merging (fum).

Table 5.14: Comparison of metrics across different optimization pass orders.

Metric Name ded-iro-fum fum-ded-iro ded-fum-iro fum-iro-ded iro-ded-fum iro-fum-ded

Instcount -1.22% -1.01% -1.07% -0.98% -1.19% -1.16%
text size 0.43% 0.33% 0.38% 0.33% 0.41% 0.39%
Exec. Time 0.28% 0.28% 0.37% 0.39% 0.16% 0.29%
Comp. Time 5.57% 5.31% 5.49% 5.20% 5.50% 5.09%

Source: The author.

The compilation time overhead is consistent across all pass sequences. Similarly,
program execution time is affected, but the overhead is small. Given the nature of these
outlining passes, the .text section size also increases consistently. We attribute this to
the cumulative function call overhead introduced by the three passes, each identifying
different patterns to outline. Finally, the number of LLVM IR instructions is reduced

effectively, with the best pass configuration (ded-iro-fum) achieving a -1.22% reduction.

5.2. Research Questions 83

Summary

The empirical evaluation demonstrates the specific trade-offs of Daedalus. While
it can achieve significant code-size reductions in targeted cases (RQ1), its narrow applica-
bility results in a slight average size increase across the benchmark suite. This precision
comes at the cost of a noticeable, albeit linear, compilation time overhead (RQ3, RQ4),
primarily concentrated in the complex analysis of the Outline Phase (RQ5). Encourag-
ingly, these transformations have a negligible net effect on program runtime, as the costs of
function call overhead are balanced by gains in cache locality (RQ2). Furthermore, com-
bining Daedalus with other outlining techniques does not yield further size reductions,
highlighting its distinct optimization strategy (RQ6). We conclude that Daedalus is not
a general-purpose size-reduction tool but rather a specialized optimization. Its value is
most pronounced in domains where codebases feature the fine-grained, recurrent dataflow

patterns that its GSA-based slicing is uniquely capable of identifying and eliminating.

84

Chapter 6

Conclusion

This thesis addressed the persistent challenge of code-size reduction in compiler optimiza-
tion, a critical concern for software deployed on resource-constrained systems. We focused
on the program slicing paradigm, a powerful but complex technique for isolating relevant
program logic. While the concept, introduced by Weiser, has been influential for decades,
the efficient generation of precise, executable slices remains an open problem. Our work
confronted this challenge by leveraging the Gated Single Assignment (GSA) form to pro-
vide a richer semantic foundation for program analysis, enabling a more robust slicing
methodology.

The central thesis of this work was that the explicit control-dependency informa-
tion embedded in the GSA form could be used to generate self-contained, executable
Idempotent Backward Slices.

To validate this thesis, our contributions progressed from foundational theory to
practical implementation and evaluation. We began by successfully designing and imple-
menting a robust algorithm to convert programs from the standard LLVM Intermediate
Representation into the GSA form. Upon this foundation, we developed a novel program
slicing algorithm that operates on that representation to extract Idempotent Backward
Slices for code-size reduction. To ensure our work is reproducible and extensible, we
delivered this implementation as an open-source out-of-tree LLVM pass, complete with a
corresponding patch for the LLVM Test Suite to facilitate rigorous, standardized evalua-
tion.

Summary of Results The empirical evaluation in Chapter 5 demonstrates the
specific trade-offs of our approach. While Daedalus can achieve significant code-size
reductions in targeted cases (RQ1), its narrow applicability results in a slight average
size increase across the benchmark suite. Encouragingly, these transformations have a
negligible net effect on program runtime, as the costs of function call overhead are balanced
by gains in cache locality (RQ2). This precision, however, comes at the cost of a noticeable,
albeit linear, compilation time overhead (RQ3, RQ4), which is primarily concentrated in
the complex analysis of the Outline Phase (RQ5). Furthermore, combining Daedalus with
other outlining techniques does not yield further size reductions, highlighting its distinct

optimization strategy (RQ6). We conclude that Daedalus is not a general-purpose size-

85

reduction tool but rather a specialized optimization. Its value is most pronounced in
domains where codebases feature the fine-grained, recurrent dataflow patterns that its
GSA-based slicing is uniquely capable of identifying and eliminating.

Limitations This study has several limitations. First, the effectiveness of our
technique is highly dependent on a program’s structure. The empirical data shows that
the recurrent patterns it targets are rare in general-purpose software, limiting its impact.
Finally, our implementation was developed and tested against LLVM 17, and its compat-
ibility with other versions of the framework is not guaranteed without further engineering
effort.

Future Work The contributions and limitations of this thesis open several promis-
ing avenues for future research. A primary direction would be to develop an algorithm
for identifying promising slice candidates, which could make the pass more practical for
production compilers. Another valuable extension would be to adapt the concept of Idem-
potent Backward Slices for other applications beyond code-size reduction, such as targeted
debugging, security analysis, or program parallelization. Finally, extending the slicer to
handle more complex constructs, like inter-procedural slicing and exception handling,

would significantly broaden its applicability.

86

References

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, editors. Compilers:
principles, techniques, & tools. Pearson Addison-Wesley, Boston Munich, 2. ed.,
pearson internat. ed edition, 2007. ISBN 9780321486813 9780321491695.

Andrew W. Appel and Maia Ginsburg. Modern compiler implementation in C.
Cambridge Univ. Press, Cambridge, new, expanded textbook edition, 2004. ISBN
9780521583909 9780521607650.

Sandrine Blazy, Andre Maroneze, and David Pichardie. Verified validation of pro-
gram slicing. In Proceedings of the 2015 Conference on Certified Programs and
Proofs, pages 109-117, Mumbai India, January 2015. ACM. ISBN 9781450332965.
doi: 10.1145/2676724.2693169. URL https://dl.acm.org/doi/10.1145/2676724.
2693169.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control depen-
dence graph. ACM Transactions on Programming Languages and Systems, 13(4):
451-490, October 1991. ISSN 0164-0925, 1558-4593. doi: 10.1145/115372.115320.
URL https://dl.acm.org/doi/10.1145/115372.115320.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming Languages
and Systems, 9(3):319-349, July 1987. ISSN 0164-0925, 1558-4593. doi: 10.1145/
24039.24041. URL https://dl.acm.org/doi/10.1145/24039.24041.

Breno Campos Ferreira Guimaraes and Fernando Magno Quintao Pereira. Lazy
evaluation for the lazy: automatically transforming call-by-value into call-by-need.
In Proceedings of the 32nd ACM SIGPLAN International Conference on Compiler
Construction, pages 239-249, Montréal QC Canada, February 2023. ACM. ISBN
9798400700880. doi: 10.1145/3578360.3580270. URL https://dl.acm.org/doi/
10.1145/3578360.3580270.

Yann Herklotz, Delphine Demange, and Sandrine Blazy. Mechanised semantics for
gated static single assignment. In Proceedings of the 12th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs, pages 182196, Boston MA
USA, January 2023. ACM. ISBN 9798400700262. doi: 10.1145/3573105.3575681.
URL https://dl.acm.org/doi/10.1145/3573105.3575681.

https://dl.acm.org/doi/10.1145/2676724.2693169
https://dl.acm.org/doi/10.1145/2676724.2693169
https://dl.acm.org/doi/10.1145/115372.115320
https://dl.acm.org/doi/10.1145/24039.24041
https://dl.acm.org/doi/10.1145/3578360.3580270
https://dl.acm.org/doi/10.1145/3578360.3580270
https://dl.acm.org/doi/10.1145/3573105.3575681

REFERENCES 87

8]

[10]

[11]

[12]

[13]

[14]

Shuo Jiang, Zhanhao Liang, Hanming Sun, Wenhan Shang, Bifeng Tong, Mengting
Yuan, Chun (Jason) Xue, Jiang Ma, and Qingan Li. Lightweight Code Outlining for
Android Applications. ACM Transactions on Architecture and Code Optimization,
page 3776753, November 2025. ISSN 1544-3566, 1544-3973. doi: 10.1145/3776753.
URL https://dl.acm.org/doi/10.1145/3776753.

Kyungwoo Lee, Manman Ren, and Ellis Hoag. Optimistic and scalable global func-
tion merging. In Proceedings of the 25th ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Systems, LCTES
2024, pages 46-57, New York, NY, USA, June 2024. Association for Comput-
ing Machinery. ISBN 979-8-4007-0616-5. doi: 10.1145/3652032.3657575. URL
https://dl.acm.org/doi/10.1145/3652032.3657575.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program
analysis. Springer, Berlin, softcover version of original hardcover edition 1999 edition,
2010. ISBN 9783642084744.

Peng Zhao and J.N. Amaral. Function Outlining and Partial Inlining. In 17th In-
ternational Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD’05), pages 101-108, Rio de Janeiro, RJ, Brazil, 2005. IEEE. ISBN
9780769524467. doi: 10.1109/CAHPC.2005.26. URL http://ieeexplore.ieee.
org/document/1592562/.

LLVM Project. LLVM: llvm::CodeExtractor Class Reference, 2025. URL https:
//1lvm.org/doxygen/classllvm_1_1CodeExtractor.html.

LLVM Project. MergeFunctions pass, how it works — LLVM 17.0.1 documentation,
2025. URL https://releases.llvm.org/17.0.1/docs/MergeFunctions.html.

LLVM Project. LLVM: llvm::SimplifyCFGPass Class Reference, 2025. URL https:
//11lvm.org/doxygen/classllvm_1_1SimplifyCFGPass.html.

LLVM Project. Loop terminology (and canonical forms) — llvm 22.0.0git documen-
tation, 2025. URL https://11lvm.org/docs/LoopTerminology.html.

LLVM Project. Link time optimization: design and implementation — llvm 22.0.0git
documentation, 2025. URL https://1lvm.org/docs/LinkTime0ptimization.
html.

Fabrice Rastello. SSA-based compiler design. Springer International Publishing AG,
Cham, 1st ed edition, 2022. ISBN 9783030805159.

Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, and Hugh
Leather. Effective function merging in the ssa form. In Proceedings of the 41st ACM

https://dl.acm.org/doi/10.1145/3776753
https://dl.acm.org/doi/10.1145/3652032.3657575
http://ieeexplore.ieee.org/document/1592562/
http://ieeexplore.ieee.org/document/1592562/
https://llvm.org/doxygen/classllvm_1_1CodeExtractor.html
https://llvm.org/doxygen/classllvm_1_1CodeExtractor.html
https://releases.llvm.org/17.0.1/docs/MergeFunctions.html
https://llvm.org/doxygen/classllvm_1_1SimplifyCFGPass.html
https://llvm.org/doxygen/classllvm_1_1SimplifyCFGPass.html
https://llvm.org/docs/LoopTerminology.html
https://llvm.org/docs/LinkTimeOptimization.html
https://llvm.org/docs/LinkTimeOptimization.html

REFERENCES 88

[20]

[23]

[24]

SIGPLAN Conference on Programming Language Design and Implementation, pages
854-868, London UK, June 2020. ACM. ISBN 9781450376136. doi: 10.1145/3385412.
3386030. URL https://dl.acm.org/doi/10.1145/3385412.3386030.

Bruno Rodrigues, Fernando Magno Quintao Pereira, and Diego F. Aranha. Sparse
representation of implicit flows with applications to side-channel detection. In Pro-
ceedings of the 25th International Conference on Compiler Construction, pages 110—
120, Barcelona Spain, March 2016. ACM. ISBN 9781450342414. doi: 10.1145/
2892208.2892230. URL https://dl.acm.org/doi/10.1145/2892208.2892230.

Robert Endre Tarjan. Fast algorithms for solving path problems. Journal of the ACM,
28(3):594-614, July 1981. ISSN 0004-5411, 1557-735X. doi: 10.1145/322261.322273.
URL https://dl.acm.org/doi/10.1145/322261.322273.

Frank Tip. A survey of program slicing techniques. J. Program. Lang., 3, 1994. URL
https://api.semanticscholar.org/CorpusID:9882901.

Vojislav. Tomasevi¢, Dorde Todorovi¢, and Maja Vukasovi¢. Implementation of
the debugging support for the llvm outlining optimization. In Proceedings of
the International Scientific Conference - Sinteza 2025, pages 233240, Beograd,
Serbia, 2025. Singidunum University. ISBN 978-86-7912-841-6. doi: 10.15308/
Sinteza-2025-233-240. URL http://portal.sinteza.singidunum.ac.rs/paper/
1041.

Peng Tu and David Padua. Efficient building and placing of gating functions. In
Proceedings of the ACM SIGPLAN 1995 conference on Programming language design
and implementation, pages 47-55, La Jolla California USA, June 1995. ACM. ISBN
9780897916974. doi: 10.1145/207110.207115. URL https://dl.acm.org/doi/10.
1145/207110.207115.

Mark Weiser. Program slicing. IEFE Transactions on Software Engineering, SE-10
(4):352-357, July 1984. ISSN 0098-5589, 1939-3520, 2326-3881. doi: 10.1109/TSE.
1984.5010248. URL https://ieeexplore.ieee.org/document/5010248/.

https://dl.acm.org/doi/10.1145/3385412.3386030
https://dl.acm.org/doi/10.1145/2892208.2892230
https://dl.acm.org/doi/10.1145/322261.322273
https://api.semanticscholar.org/CorpusID:9882901
http://portal.sinteza.singidunum.ac.rs/paper/1041
http://portal.sinteza.singidunum.ac.rs/paper/1041
https://dl.acm.org/doi/10.1145/207110.207115
https://dl.acm.org/doi/10.1145/207110.207115
https://ieeexplore.ieee.org/document/5010248/

89

Appendix A

The MiniGSA Interpreter

Implementation

This appendix presents the complete Python source code for the interpreter of the MiniGSA
language, which was formally introduced in Chapter 4. This implementation serves as a

concrete, executable counterpart to the Structural Operational Semantics (SOS) defined

therein. It is designed to adhere strictly to the semantic rules for each instruction, acting

as an executable specification that clarifies the behavior of the GSA gating functions (v,

i,) and control flow constructs.

The interpreter was used to verify the behavior of program on Listing 1.1 from Ex-
ample 1.0.1. Thus ensuring our formal analysis is grounded in a practical and operational
model.

The full commented version of the python code can be found at https://tinyurl.
com/ms4epnej.

I import operator
2 from collections import defaultdict

3 from dataclasses import dataclass, field

| from typing import Dict, List, Any, Union, Set

6 Value = Unionl[int, bool, None]
7 Store = Dict[str, Valuel

8 Program = Dict[str, List[’Instruction’]]

10 class Instruction:

11 pass

3 @dataclass
14 class BinOp(Instruction):
15 dest: str

16 opl: Union[str, Value]
17 op: str
18 op2: Union[str, Value]

20 @dataclass

21 class Gamma(Instruction):

https://tinyurl.com/ms4epnej
https://tinyurl.com/ms4epnej

90

dest: str
pred: str
v_true: str

v_false: str

@dataclass

class Mu(Instruction):
dest: str
v_init: str

v_loop: str

@dataclass

class Eta(Instruction):
dest: str
pred: str

v_exit: str

restart_set: Set[str] = field(default_factory=set)

@dataclass
class Branch(Instruction):

target: str

@dataclass

class ConditionalBranch(Instruction):
pred: str
l_true: str

1l_false: str

@dataclass
class Stop(Instruction):

pass

class Interpreter:
def __init__(self, program: Program):
self .program = program
self .operators = {
’+’: operator.add,

’-’: operator.sub,

’>*’: operator.mul,
>/’ : operator.truediv,
’<’: operator.lt,
’>>’: operator.gt,

’<=’: operator.le,
’>=7: operator.ge,

’==’: operator.eq,

93
94
95
96
97

98

91

def _evaluate(self, operand: Any, store: Store) -> Value:
if isinstance (operand, str):
return store.get (operand)

return operand

def run(self, entry_label: str, initial_store: Store) -> Store:
instruction_stream = list(self.program[entry_labell])
store = initial_store.copy()
max_steps = 1000
for step_count in range(max_steps):
if not instruction_stream:
raise RuntimeError ("Execution fell off the end of a
basic block without a terminator.")
current_inst = instruction_stream.pop (0)
if isinstance(current_inst, Stop):
print (£"--- Program Halted in {step_count+1} steps ---")
return store
if isinstance(current_inst, BinOp):
vall = self._evaluate(current_inst.opl, store)
val2 = self._evaluate(current_inst.op2, store)
if vall is None or val2 is None:
raise ValueError (f"Attempted to use uninitialized
variable in BinOp: {current_inst}")
op_func = self.operators.get(current_inst.op)
if not op_func:
raise ValueError (f"Unknown operator: {current_inst.
opt™)
result = op_func(vall, val2)
store[current_inst.dest] = result
elif isinstance(current_inst, Gamma):
predicate_val = self._evaluate(current_inst.pred, store)
if predicate_val is None:
raise ValueError (f"Predicate ’{current_inst.pred}’
is uninitialized.")

if predicate_val:

value = self._evaluate(current_inst.v_true, store)
else:

value = self._evaluate(current_inst.v_false, store)
store[current_inst.dest] = value

elif isinstance(current_inst, Mu):

if current_inst.dest not in store:

value = self._evaluate(current_inst.v_init, store)
else:

value = self._evaluate(current_inst.v_loop, store)
store[current_inst.dest] = value

elif isinstance (current_inst, Eta):

predicate_val = self._evaluate(current_inst.pred, store)

112
113

122
123
124
125

92

if

if predicate_val is None:
raise ValueError (f"Predicate ’{current_inst.pred}’
is uninitialized.")
if not predicate_val:
value = self._evaluate(current_inst.v_exit, store)
store[current_inst.dest] = value
for r_var in current_inst.restart_set:
if r_var in store:
del storel[r_var]
elif isinstance(current_inst, Branch):
instruction_stream = list(self.program[current_inst.
target])
elif isinstance (current_inst, ConditionalBranch):
predicate_val = self._evaluate(current_inst.pred, store)
if predicate_val is None:
raise ValueError (f"Predicate ’{current_inst.pred}’
is uninitialized.")

if predicate_val:

target_label = current_inst.l_true
else:

target_label = current_inst.l_false
instruction_stream = list(self.program[target_labell)

else:
raise TypeError (f"Unknown instruction type: {type(
current_inst)}")

raise RuntimeError ("Maximum execution steps exceeded.")

__name__ == ’__main__":
example_program: Program = {
>entry’: [
Branch (’BB17)
1,
’BB1’: [
Mu(’x1’, ’x0°, ’x27),
Mu(’s1’, ’s0’, ’s27),
Mu(’t1’, ’t0’, ’t27),
BinOp(’p0°’, ’x1’, ’<’, ’n0’),
ConditionalBranch(’p0’, ’BB2’, ’BB3’)
1,
’BB2’: [
BinOp (’x2°, ’x1°’, ’+°, 1),
BinOp(’s2’, ’sl1’, ’%x’, 2),
BinOp(’t2’, ’t1’, ’+’, 3),
Branch(’BB17)
1,

’BB3’: [

93

Eta(’s4’, ’p0’, ’sl’, restart_set={’x2’,’s2’,°t2’,’p0’}),
BinOp(’s3’, ’s4’, ’+’, 1),
BinOp(’uO’, ’s37, Y+, t17),

Stop ()

]
}
initial_values: Store = {

’n0’: 10,

’x07’: 0,

’s0’: 1,

’t0’: O
}
interpreter = Interpreter (example_program)
final_store = interpreter.run(’entry’, initial_values)
print ("\n--- Final Store (Original Program) ---")

for var, val in sorted(final_store.items()):
print (£"{var}: {vall}")
expected_var_val = 2 **x final_store[’n0’] + 1
print (f"\nExpected final values: For n0=10 -> s3={expected_var_vall,

u0={expected_var_val + final_store[’t1’]}")

example_program_slice: Program = {
>entry’: [
Branch(’BB17’)
1,
’BB1°’: [
Mu(’x1’, ’x0°, ’x27),
Mu(’s1’, ’s0’, ’s27),
BinOp(’p0°’, ’x1°’, ’<’, ’n0’),
ConditionalBranch(’p0O’, ’BB2’, ’BB3’)
1,
’BB2°: [
BinOp(’x2’, ’x1’, ’+’, 1),
BinOp(’s2’, ’s1’, ’x’, 2),
Branch(’BB1’)
1,
’BB3’: [
Eta(’s4’, ’p0’, ’sl1’, restart_set={’x2’,’s2’,°p0’}),
BinOp(’s3’, ’s4’, ’+’, 1),
Stop)
]
}
initial_values_slice: Store = {
’n0’: 10,
’x0’: 0,
’s0’: 1,

94

interpreter = Interpreter (example_program_slice)
final_store = interpreter.run(’entry’, initial_values_slice)
print ("\n--- Final Store (Sliced Program) ---")

for var, val in sorted(final_store.items()):
print (£"{var}: {vall}")
out_var_val = 2 *%x final_store[’n0’] + 1
print (f"\nExpected final values: For n0=10 -> s3={out_var_val} (is

equal to original output? {expected_var_val == out_var_vall})")

Listing A.1: Python Interpreter for MiniGSA

	Introduction
	Literature Review
	Definitions
	Control Flow Graph
	Data-flow Analysis
	Dominance
	Data and Control Dependencies
	Static Single Assignment Form
	Gated Single Assignment Form

	Program Slice
	Algorithms
	Sparse Slicing
	Gating Phi-functions
	Gating by Path Expressions

	Optimizations
	Motivating Example

	Algorithms
	Program Slicer
	GSA Construction
	Slice Identification
	Idempotent Backward Slice
	Function Outlining

	Function Merging and Simplification
	Slicing Example

	Soundness
	MiniGSA: A Minimal GSA Language
	Syntax
	Semantics

	Soundness

	Evaluation
	Experimental Setup
	Research Questions

	Conclusion
	References
	The MiniGSA Interpreter Implementation

