
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Rafael Alvarenga de Azevedo

Idempotent Backward Slices: A GSA-Based Approach to Code-Size
Reduction

Belo Horizonte
2025



Rafael Alvarenga de Azevedo

Idempotent Backward Slices: A GSA-Based Approach to Code-Size
Reduction

Final Version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Master in Com-
puter Science.

Advisor: Fernando Magno Quintão Pereira
Co-Advisor: Rodrigo Caetano de Oliveira Rocha

Belo Horizonte
2025



[Ficha Catalográfica em formato PDF]

A ficha catalográfica será fornecida pela biblioteca. Ela deve estar em formato PDF e deve ser
passada como argumento do comando ppgccufmg no arquivo principal .tex, conforme o

exemplo abaixo:

\ppgccufmg{

...

fichacatalografica={ficha.pdf}

}



"#$
)�����%�&�$'(������� �����	���
��
� �����

��

�

������������
�
����� ��	������ �� �� ����
�� �� ��� ����
��
�����	�� ��� �� ������
�	
� ������������
�������	
����������������

��	���
��
�

�
�
����������	

-��.�$)��	��Z����$	�Z��Z���	)Z��&�)Z
��)*�*-* Z��Z��S���	)Z�0	*	)Z

"$ �$	�	Z��Z"T)��$	�-	RP Z��Z��S���	Z�	Z� �"-*	RP Z

���
���������������


���������*�������*�������*�*	��������*��������*��*�������!�*
��� �����*

������������
	�������������

�<FF7DG2VUBZ678@6<62Z7Z2CDBJ262ZC7=2Z42@52Z7L2?<@26BD2Z5B@FG<GHX62ZC7=BFZ)7@;BD7F�Z

"%!��Z��(
��!Z�
��!Z#IE�+Q!Z"�%��'Z�Z D<7@G26BDZ
�7C2DG2?7@GBZ67Z�<W@5<2Z62Z�B?CHG2VUBZ�Z-���Z

"%!��Z$!�%��!Z�
�,�!Z��Z ��/��'Z$!
�
Z�Z�BBD<7@G26BDZ
�H2K7<Z$7F72D5;Z�Z�7@GDBZ67Z>AJ7FG<:25<Y@Z67Z�H37<Z�Z�6<?4HD:BZ�ZZ$7<@BZ-@<6BZ

"%!��Z)
��%!Z$��!Z
�@FG<GHGBZ67Z�B?CHG2VUBZ�Z-���	�"Z

�BHGBDZMZ
��Z��%��!+1Z
.Z7D<952G<B@Z2@6Z�B?CHG7DZ	D5;<G75GHD7Z�24BD2GBDNZ�Z�"��Z

�7=BZ�BD<OB@G7�Z��Z67Z@BJ7?4DBZ67Z�����Z



À minha famı́lia, com todo meu amor. Agradeço por me en-

sinarem o valor do estudo e por me darem a liberdade de me

dedicar àquilo que verdadeiramente me inspira.



Acknowledgments

I would like to express my sincere thanks to the Minas Gerais State Research Founda-

tion (FAPEMIG) for the essential financial support provided through the research grant,

without which this project would not have been possible.

I am especially grateful to my advisor, Professor Fernando Magno Quintão Pereira,

whose disciplined guidance, intellectual rigor, and academic excellence were crucial for the

development of this thesis. His availability and insightful advice were invaluable.

My gratitude extends far beyond this program to every teacher and professor who

has guided me on my academic journey. From my earliest school days to my most advanced

studies, each one laid a stone in the path that has led me here. They instilled in me a

love for learning that has been my constant motivation, and for their collective wisdom

and encouragement, I am profoundly thankful.



“The day you stop learning is the day you begin decaying.”

(Isaac Asimov)



Resumo

Otimizações de compiladores são cruciais para melhorar a eficiência de programas, es-

pecialmente para software implementado em sistemas com recursos limitados, onde o

tamanho do código é uma preocupação primordial. Esta dissertação introduz uma nova

técnica para a redução do tamanho de código, identificando e extraindo Program Slices

recorrentes. A nova abordagem utiliza a representação intermediária Gated Single As-

signment (GSA) form, que torna expĺıcitas tanto as dependências de dados quanto as

de controle, para permitir a extração precisa de lógicas de programa autocontidas e exe-

cutáveis, as quais denominamos Idempotent Backward Slices. O algoritmo proposto é im-

plementado como um pass completo, funcional e de código aberto para a infraestrutura de

compiladores LLVM. Para avaliar sua eficácia, conduziu-se um rigoroso estudo emṕırico,

compilando 2007 programas da coleção de testes de LLVM. Os resultados demonstram

que a nova técnica alcança reduções significativas no tamanho do código em casos es-

pećıficos em que outras técnicas publicadas previamente falham. Conclúımos que o slic-

ing baseado em GSA é uma ferramenta viável, porém especializada, mais adequada para

domı́nios onde o tamanho do código é fundamental e as bases de código contêm os padrões

computacionais recorrentes que nosso algoritmo foi projetado para identificar.

Palavras-chave: Otimização de Compiladores. Program Slices. Gated Single Assign-

ment Form.



Abstract

Compiler optimizations are critical for enhancing the efficiency of programs, particularly

for software deployed on resource-constrained systems where code size is a primary con-

cern. This thesis introduces a novel technique for code-size reduction by identifying and

outlining recurrent program slices. Our approach leverages the Gated Single Assignment

(GSA) form, an intermediate representation that makes both data and control dependen-

cies explicit, to enable the precise extraction of self-contained, executable program logic,

which we term Idempotent Backward Slices. The proposed algorithm is implemented as a

complete, functional, and open-source, out-of-tree pass for the LLVM compiler infrastruc-

ture. To evaluate its effectiveness, we conducted a rigorous empirical study, compiling

2007 programs from the LLVM Test Suite. The results demonstrates that our technique

achieves significant code-size reductions in specific, targeted cases where other optimizers

fail. We conclude that GSA-based slicing is a viable but specialized tool, best suited

for domains where code footprint is paramount and code bases contain the recurrent

computational patterns our slicer is designed to identify.

Keywords: Compiler Optimizations. Program Slices. Gated Single Assignment Form.



List of Figures

1.1 The program’s CFG in GSA form. . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Instructions selected for the new slice. . . . . . . . . . . . . . . . . . . . . . . 15

1.3 An idempotent backward slice. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 A simple CFG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Simple Dominator trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 The program’s CFG in SSA form. . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 The Dominator Tree and the Program Dependency Graph. . . . . . . . . . . . 31

2.5 Comparison of program slice, CFG, and PDG fragments. . . . . . . . . . . . . 31

2.6 The traditional function merging process. . . . . . . . . . . . . . . . . . . . . . 36

2.7 The traditional function outlining process. . . . . . . . . . . . . . . . . . . . . 37

2.8 The ladder control flow graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 Slice criterion’s dependencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Program slicer overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 The creation process of recursive slices. . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Identification of the slice and the corresponding region to be outlined. . . . . . 53

3.4 The outlined function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 The new original function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 The ladder graph in GSA form. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Slice criterion’s dependencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.8 Final sliced function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Compilation pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Build system modification steps. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Code-size reduction between Daedalus, func-merging, and IROutliner. . . . . . 73

5.4 Code-size growth between Daedalus, func-merging, and IROutliner. . . . . . . 74

5.5 Baseline cache performance profile. . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Cache performance profile after applying Daedalus. . . . . . . . . . . . . . . . 76

5.7 Daedalus: Compilation Time vs. Instruction Count. . . . . . . . . . . . . . . . 80

5.8 IROutliner: Compilation Time vs. Instruction Count. . . . . . . . . . . . . . . 81

5.9 func-merging: Compilation Time vs. Instruction Count. . . . . . . . . . . . . 82



List of Tables

5.1 Experimental results across different metrics. . . . . . . . . . . . . . . . . . . . 71

5.2 Number of Programs with All Metrics Positive. . . . . . . . . . . . . . . . . . 71

5.3 Number of Programs with Negative Instcount and .text size. . . . . . . . . . . 72

5.4 Number of Programs with Positive Instcount and .text size. . . . . . . . . . . 72

5.5 Comparison of Code-Size Impact for activate sps Across Passes. . . . . . . . 74

5.6 Benchmarks with Reduced Instruction Count and .text Size but Increased

Execution Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7 Benchmarks with Reduced Instruction Count, .text Size, and Execution Time. 77

5.8 Benchmarks with Reduced Compilation Time and Corresponding Geometric

Mean Differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.9 Benchmarks with Reduced Instruction Count, .text Size, and Compilation

Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.10 Benchmarks with Reduced Instruction Count and .text Size but Increased

Compilation Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.11 Pearson correlation between compilation time and instruction count for each

pass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.12 Timers for Outline Sub-Phases. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.13 Timers for Daedalus Phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.14 Comparison of metrics across different optimization pass orders. . . . . . . . . 82



Contents

1 Introduction 13

2 Literature Review 17

2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Control Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2 Data-flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 Dominance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.4 Data and Control Dependencies . . . . . . . . . . . . . . . . . . . . 23

2.1.5 Static Single Assignment Form . . . . . . . . . . . . . . . . . . . . 24

2.1.6 Gated Single Assignment Form . . . . . . . . . . . . . . . . . . . . 25

2.2 Program Slice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Sparse Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Gating Phi-functions . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.3 Gating by Path Expressions . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Algorithms 40

3.1 Program Slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 GSA Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.2 Slice Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.3 Idempotent Backward Slice . . . . . . . . . . . . . . . . . . . . . . 51

3.1.4 Function Outlining . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Function Merging and Simplification . . . . . . . . . . . . . . . . . . . . . 56

3.3 Slicing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Soundness 59

4.1 MiniGSA: A Minimal GSA Language . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Evaluation 66



5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Conclusion 84

References 86

Appendix A The MiniGSA Interpreter Implementation 89



13

Chapter 1

Introduction

Compiler optimization is a foundational area of computer science, focused on transforming

programs to improve their use of computational resources. These improvements are typ-

ically guided by a specific objective, such as minimizing execution time, reducing power

consumption, or decreasing memory footprint. In an era of ubiquitous computing, from

resource-constrained IoT devices to large-scale data centers, the efficient use of these re-

sources is key. This work focuses on space optimization, a critical concern for applications

deployed on systems with limited memory and storage.

Specifically, we address the challenge of code-size reduction by leveraging a program

analysis technique known as Program Slicing. First defined by Weiser [24], a program slice

consists of the parts of a program that potentially affect the values computed at some

point of interest, referred to as the slicing criterion. The concept has proven to be widely

applicable.

Despite decades of research, efficiently extracting precise and executable slices from

arbitrary programs remains an open challenge [3]. For instance, recent approaches in the

related field of code-size reduction are often limited to identifying contiguous instruc-

tion sequences, thereby failing to capture optimizations across semantically related but

discontiguous code fragments [18].

To address the complexities of generating executable slices, particularly in the pres-

ence of intricate control flow, we leverage the Gated Single Assignment (GSA) form [7],

which is an extension of the widely-used Static Single Assignment (SSA) [17] represen-

tation. While SSA uses ϕ-functions to merge values from different control flow paths,

GSA introduces three explicit gating functions that preserve control flow information by

encoding the specific predicate governing each incoming edge. Specifically, the γ-function

acts as a guarded conditional selector that assigns vtrue or vfalse based on a predicate p

at control-flow join points. The µ-function operates at loop headers to select the initial

value v1 upon entry and the loop-carried value v2 for all subsequent iterations. Finally,

the η-function determines the value of a variable after loop termination by capturing the

definition v3 according to the exit predicate p. By utilizing these gating functions, both

data and control dependencies are made explicit, providing a richer substrate for program

analysis.



14

We term the resulting subprogram an Idempotent Backward Slice. It is a

backward slice because it is formed by tracing data dependencies backward from a spe-

cific instruction, known as the slicing criterion. The slice is also a pure function: it is

self-contained, has no external side effects such as memory writes, and is referentially

transparent, always producing the same output for the same inputs.

A key structural constraint applies when the slicing criterion is inside a loop. In

this case, the extracted slice is bounded by the loop’s body, capturing the computation

for a single conceptual iteration. The resulting function may still contain its own internal

loops if they are essential to compute the criterion’s value.

Example 1.0.1. We will now demonstrate the process of extracting an idempotent

backward slice. Consider the program shown in Listing 1.1 and its corresponding GSA

control-flow graph in Figure 1.1. For this example, we select the instruction s = s + 1;

(represented as s3 = s4 + 1; in GSA form) as our slicing criterion. The dependencies

for this criterion are highlighted in Figure 1.2. Finally, Figure 1.3 presents the complete

idempotent backward slice that is extracted into a new function based on these depen-

dencies.

1 int foo(int N) {

2 int x = 0;

3 int s = 1;

4 int t = 0;

5 while (x < N) {

6 x += 1;

7 s *= 2;

8 t += 3;

9 }

10 s = s + 1;

11 u = s = t;

12 return u;

13 }

14

Listing 1.1: Example C program to
analyze.

Figure 1.1: The program’s CFG in GSA
form.

BB0:

N0 = ...

x0 = ...

s0 = ...

t0 = ...

br BB1

BB1:

x1 = mu(x0, x2)

s1 = mu(s0, s2)

t1 = mu(t0, t2)

br (x1 < N0) BB2, BB3

BB2:

x2 = x1 + 1

s2 = s1 * 2

t2 = t1 + 3

br BB1

BB3:

s4 = eta(x1 >= N0, s1)

s3 = s4 + 1

u0 = s3 + t1

return u0

Source: The author.

The utility of program slicing extends far beyond code-size reduction. The ability

to isolate the logic relevant to a specific computation is valuable in numerous domains:

• Debugging: Slicing is used to identify the sources of errors. A backward slice from

a variable with an incorrect value can show all the code that might have influenced

it, dramatically narrowing the search space for the bug.



15

Figure 1.2: Instructions selected for the
new slice.

BB0:

N0 = ...

x0 = ...

s0 = ...

t0 = ...

br BB1

BB1:

x1 = mu(x0, x2)

s1 = mu(s0, s2)

t1 = mu(t0, t2)

br (x1 < N0) BB2, BB3

BB2:

x2 = x1 + 1

s2 = s1 * 2

t2 = t1 + 3

br BB1

BB3:

s4 = eta(x1 >= N0, s1)

s3 = s4 + 1

u0 = s3 + t1

return u0

Source: The author.

Figure 1.3: An idempotent backward
slice.

BB0:

N0 = ...

x0 = ...

s0 = ...

br BB1

BB1:

x1 = mu(x0, x2)

s1 = mu(s0, s2)

br (x1 < N0) BB2, BB3

BB2:

x2 = x1 + 1

s2 = s1 * 2

br BB1

BB3:

s4 = eta(x1 >= N0, s1)

s3 = s4 + 1

return s3

Source: The author.

• Parallelism: The independent nature of program slices makes them well-suited

for parallel execution on multiprocessor systems, as they can often operate without

requiring shared memory or synchronization.

• Test Case Generation: By analyzing the slice for a given program feature, one

can generate more effective and targeted test cases [24].

• Lazyfication: Slices can be used to transform function arguments into expressions

that are evaluated lazily, only when needed by the callee [6].

Our primary goal is to develop a practical and robust method for generating exe-

cutable code slices for code-size reduction. The main contributions of this thesis are:

1. The implementation of an algorithm to construct the GSA form for programs rep-

resented in LLVM Intermediate Representation (LLVM IR) in Section 3.1.1.

2. A novel program slicing algorithm that operates on the GSA form to extract Idem-

potent Backward Slices in Section 3.1.4.

3. The delivery of our implementation as an open-source, out-of-tree LLVM pass, fa-

cilitating its use and extension by the research community. The implementation is

available at https://github.com/lac-dcc/Daedalus.

4. A patch for the LLVM Test Suite, enabling rigorous and reproducible evaluation

of the pass’s effectiveness and correctness, which is available at https://tinyurl.

com/ye2a9ypt.

https://github.com/lac-dcc/Daedalus
https://tinyurl.com/ye2a9ypt
https://tinyurl.com/ye2a9ypt


16

In short, the central contribution of this work is a complete, functional, and open-

source program slicer for LLVM, based on the Gated Single Assignment form, designed

for the purpose of code-size reduction.

The remainder of this thesis is organized as follows. Chapter 2 surveys foundational

literature. Chapter 3 introduces our GSA construction and slicing algorithms. Chapter 4

formally argues for the soundness of our approach. Chapter 5 presents our empirical

evaluation, including experimental setup and benchmark results. Finally, Chapter 6 sum-

marizes our contributions and discusses future work.



17

Chapter 2

Literature Review

This chapter begins by presenting fundamental definitions from graph theory and program

analysis that are essential for understanding our approach. First, definitions of program

analysis terms are given, then we describe the classic definition of a Program Slice and

the traditional method for its computation, contrasting it with our proposed approach.

Following this, we survey recent computational approaches and present an algorithm with

a near-linear time complexity for constructing the Gated Single Assignment form for our

program slicer. Also, we portray two relevant compiler optimizations: Function Outlining

and Function Merging. The chapter concludes by identifying key gaps in the existing

literature that our research addresses.

2.1 Definitions

This section introduces the fundamental concepts of program analysis that under-

pin our work. First, we define key data structures and concepts that model its implemen-

tation, such as Control Flow Graphs, Dominance, and Data and Control Dependencies.

Next, we define what a Data-flow Analysis is. Finally, we depict two program intermedi-

ate representations: the Static Single Assignment form, and the Gated Single Assignment

form. Thus, establishing the theoretical foundation for our work.

2.1.1 Control Flow Graph

A program is represented as a directed graph, called a Control Flow Graph. For-

mally, a CFG is:

• A digraph (N,E, n0), where n0 is the entry node.



2.1. Definitions 18

– N : set of program statements (nodes).

– E: directed edges representing control flow between statements.

– Start: n0, or a special node that can reach every other node, but no other

node can reach it [19].

For slicing purposes, we also define a hammock graph, which extends the concept

of a control flow graph as follows.

• A hammock graph (N,E, n0, ne) is a control flow graph with a unique exit node

ne [19].

– Exit: ne, or a special node that is reachable from every other node, but does

not reach any other node.

Example 2.1.1. Consider the C program from Listing 2.1. Its corresponding Control

Flow Graph (CFG) is illustrated in Figure 2.1. In this graph, each node represents a basic

block, a sequence of instructions that executes linearly and ends with a single terminator

instruction. The directed edges indicate the flow of control between these blocks. A key

convention in our CFG representation is that every basic block must end with an explicit

terminator to define its successor(s), except the exit one. Also, most of the time we will

omit the Start and Exit blocks.

2.1.2 Data-flow Analysis

In compiler design, the backend is responsible for translating an intermediate repre-

sentation (IR) of a program into an equivalent set of instructions for a target architecture.

Before generating the final machine code, compilers perform numerous optimizations to

improve performance, so as to reduce code size.

A cornerstone of these optimizations is Data-flow Analysis, a technique used to

statically approximate the dynamic (runtime) behavior of a program. While precisely

determining a program’s runtime behavior is an undecidable problem, Data-flow Analysis

offers a sound approximation by statically modeling the program as a graph [10]. To

facilitate such modeling, the program is first transformed into a Control Flow Graph

(CFG). The choice of a high-quality, machine-independent IR is crucial for performing

effective optimizations on this graph [2].

For instance, Example 2.1.2 describes a type of data-flow analysis called Liveness

Analysis.



2.1. Definitions 19

Figure 2.1: A simple CFG.

BB0:
x = ...
y = ...
br (x > 0) BB1, BB2

BB1:
y = 1
br BB3

BB3:
z = y + 3

BB2:
y = 2
br BB3

Source: The author.

Example 2.1.2. A common optimization enabled by data-flow analysis is Liveness Anal-

ysis. This analysis is a classic backward data-flow problem, where information about vari-

able usage propagates from a point of use through the paths of the CFG backwardly [2].

The analysis is formalized using a system of data-flow equations defined for each node n

in the CFG. These equations rely on the following sets:

• use[n]: The set of variables used in node n before any definition.

• def [n]: The set of variables defined (assigned a value) in node n.

• in[n]: The set of variables that are live at the entry point of node n.

• out[n]: The set of variables that are live at the exit point of node n.

• succ[n]: The set of successor nodes to node n in the CFG.

The use[n] and def [n], are also known as the def-use chain [21]. The relationships

between these sets are captured by the following data-flow equations:

in[n] = use[n] ∪ (out[n]− def [n]) (2.1)



2.1. Definitions 20

out[n] =
⋃

s∈succ[n]

in[s] (2.2)

Equation 2.1 states that a variable is live at the entry of a block if it is either used

within that block or if it is live at the exit and not redefined by the block. Equation 2.2

states that a variable is live at the exit of a block if it is live at the entry of any of its

successors. The use of the union operator means a variable is considered live as long as

there is at least one future path where it might be used.

These equations are solved iteratively. The in and out sets for all nodes are ini-

tialized as empty and are repeatedly computed until they reach a fixed point, where an

iteration causes no further changes to any set [2]. This iterative process is demonstrated

in Algorithm 1.

Algorithm 1 Iterative solution for data-flow equations

// Initialize in and out sets for all nodes
for each node n in CFG do

in[n]← ∅
out[n]← ∅

end for
// Iterate until a fixed point is reached
repeat

for each node n in CFG do
in′[n]← in[n]
out′[n]← out[n]
in[n]← use[n] ∪ (out[n]− def [n])
out[n]←

⋃
s∈succ[n] in[s]

end for
until in′[n] = in[n] ∧ out′[n] = out[n] for all n

Finally, it is important to emphasize that the analyses presented here are intrapro-

cedural, meaning they take into account instructions only within a single procedure or

function. This contrasts with interprocedural analysis, which considers multiple proce-

dures simultaneously to achieve higher precision. Accordingly, our slicing approach is

performed intraprocedurally, operating over the program’s def-use chain.

2.1.3 Dominance

The concepts of dominance and post-dominance are fundamental to control flow

analysis in compilers. They provide a structured way to understand the mandatory paths

of execution within a program’s CFG.



2.1. Definitions 21

Let’s consider a control flow graph G = (N,E, Start,Exit), where N is the set

of basic blocks, E is the set of directed edges representing the flow of control, and

Start,Exit ∈ N are the unique entry and exit blocks of the graph, respectively.

A node d ∈ N dominates a node n ∈ N , denoted as d dom n, if every path

from the entry block, Start, to n must pass through d. A node d strictly dominates n,

denoted d sdom n, if d dom n and d ̸= n.

For any node n other than the entry block, there are one or more strict dominators.

The immediate dominator of a node n, denoted idom(n), is the unique strict dominator

of n that is closest to n on any path from the entry. That is, idom(n) is the strict dominator

d of n such that any other strict dominator of n also dominates d. The existence and

uniqueness of the immediate dominator for every node (except the entry block) is a

foundational property [2].

This immediate dominance relationship allows us to construct the dominator

tree. This tree is a data structure where:

• The set of nodes is the same as the set of basic blocks N in the CFG.

• The parent of any node n is its immediate dominator, idom(n).

• An edge exists from node d to node n if and only if d = idom(n).

The root of the dominator tree is the CFG’s entry block, Start. This tree provides a

concise representation of the dominance relationships within the procedure.

Furthermore, post-dominance is the dual concept to dominance. It analyzes control

flow relative to the exit points of the graph. A node p ∈ N post-dominates a node

n ∈ N , denoted as p pdom n, if every path from n to the Exit block must pass through

p. Similarly, a node p strictly post-dominates n, denoted p spdom n, if p pdom n and

p ̸= n.

For any node n that is not an exit block, there exists a unique immediate post-

dominator, denoted ipdom(n). This is the strict post-dominator of n that is closest

to n on any path towards the exit. The uniqueness of the immediate post-dominator is

guaranteed [2].

The immediate post-dominance relationship allows for the construction of the

post-dominator tree. In this tree:

• The set of nodes is the set of basic blocks N .

• The parent of any node n is its immediate post-dominator, ipdom(n).

• An edge exists from node p to node n if and only if p = ipdom(n).

The root of the post-dominator tree is the exit block of the CFG. This structure is crucial

for analyses such as control-dependence analysis.



2.1. Definitions 22

Example 2.1.3 shows how dominance trees are built for a given program.

Example 2.1.3. Consider the C program from Listing 2.1. The dominator tree from

Figure 2.2a, is induced by the immediate dominance relationships between blocks BB0,

BB1, BB2, and BB3. Analogously, the immediate post-dominance relation produces the

post-dominator tree (Figure 2.2b).

1 if (x > 0) {

2 y = 1;

3 } else {

4 y = 2;

5 }

6 z = y + 3;

7

Listing 2.1: Example C program.

Figure 2.2: Simple Dominator trees.

(a) A simple dominator tree.

BB0:
x = ...
y = ...
br (x > 0) BB1, BB2

BB1:
y = 1
br BB3

BB3:
z = y + 3

BB2:
y = 2
br BB3

(b) A simple post-dominator tree.

BB0:
x = ...
y = ...
br (x > 0) BB1, BB2

BB1:
y = 1
br BB3

BB3:
z = y + 3

BB2:
y = 2
br BB3

Source: The author.

Therefore, the dominance tree allows the compiler to infer whether the CFG of a

program contains loops, while the post dominance tree permits the analyzer to tell if the

execution of an instruction depends on another [1].



2.1. Definitions 23

2.1.4 Data and Control Dependencies

When performing program analysis and transformations, we commonly use the

CFG representation of a program. However, this representation contains unnecessary

relationships computed, when we want to optimize a program with respect to the sequence

between some of its operations. For slicing purposes, we want to know which program

statements or variables depend on each other. Thus, following the definition of Ferrante

et al. [5], let the two notions of dependencies be:

Definition 1 (Data dependency). A statement j is data dependent on statement i if a

value computed at i is used at j in some program execution.

Definition 2 (Control dependency). A node j is control dependent on a node i if:

1. there exists a directed path P from i to j such that j post-dominates every node in

P , excluding i and j, and

2. i is not post-dominated by j.

Both definitions are used to construct a program dependency graph, which captures

the data and control dependencies between the slice criterion and all program elements

on which it depends.

Example 2.1.4. Consider the C program in Listing 2.1. Following Definition 1, the vari-

able z is data dependent on the variable y. To analyze control dependencies, we compute

the program’s post-dominator tree, shown in Figure 2.2b. According to Definition 2, the

assignment to y is control dependent on the branch instruction br (x > 0) BB1, BB2.

This dependency exists because y’s assignment execution is determined by the path taken

at this conditional branch.

Program Dependency Graph

Following Cytron et al. [4], we define a Program Dependency Graph (PDG) in the

context of SSA form. A PDG is a directed graph G = (V,E), where V represents the

set of vertices, with one vertex corresponding to each variable in the program. The set E

consists of directed edges, where an edge (u, v) ∈ E exists if and only if v appears on the

left-hand side of an instruction in which u appears on the right-hand side. Example 2.1.5

illustrates a PDG for a simple program.



2.1. Definitions 24

Example 2.1.5. Figure 2.4b shows an example of a program dependency graph. An edge

in this graph can be either solid or dotted. The former represents data dependencies,

while the latter represents control dependencies. For instance, in the figure, t0 is data

dependent on b2, and control dependent on w0.

2.1.5 Static Single Assignment Form

The static single assignment (SSA) form is a program representation in which

each variable is assigned exactly once [4]. Therefore, the Single Information Property

holds when the information associated with a variable v during data-flow analysis remains

invariant at every program point where it is live [17]. This property simplifies data-flow

analysis and facilitates reasoning about the behavior of a program.

In SSA form:

1. Each variable is assigned a unique name whenever it is defined.

2. If a variable is defined in multiple control flow paths, a special ϕ-function is intro-

duced to merge the values from these paths.

Example 2.1.6 shows how these properties emerge in SSA-form programs.

Example 2.1.6. Consider the C code from Listing 2.1. After transforming it into SSA

form, we have the program on Listing 2.2.

1 if (x1 > 0) {

2 y1 = 1;

3 } else {

4 y2 = 2;

5 }

6 y3 = phi(y1, y2);

7 z1 = y3 + 3;

8

Listing 2.2: Example in SSA form.

Here, the ϕ-function combines the values of y1 and y2 based on the control flow.



2.1. Definitions 25

2.1.6 Gated Single Assignment Form

The Gated Single Assignment (GSA) form is an extension of the widely-used SSA

form that makes control dependencies explicit within the intermediate representation.

In a standard SSA form, distinct values for the same variable are assigned unique

names (e.g., x1, x2, . . . ). At points where control flow paths merge, a conceptual ϕ-function

is used to select the appropriate value. A typical ϕ-assignment is:

x3 ← ϕ(x1, x2)

This assignment indicates that x3 will take the value of x1 if control arrives from one

predecessor block, and x2 if it arrives from another. While SSA form excels at representing

data flow, the ϕ-function abstracts away the crucial control-flow information, that is, which

predicate caused a particular path to be taken.

GSA remedies this by replacing the ϕ-functions with explicit gating functions,

integrating control-flow predicates directly into the data-flow graph [23]. As Rastello [17]

defines, there are three gating functions :

1. The γ (gamma) function: This function acts as a guarded conditional assignment,

explicitly controlled by a predicate. It is typically placed where control flow joins

(e.g., at an if-then-else statement). Its form is:

vout ← γ(p, vtrue, vfalse)

Here, if the predicate p evaluates to true, vout is assigned the value of vtrue. Other-

wise, it is assigned the value of vfalse. The γ function effectively embeds the branch

condition into the value selection process.

2. The µ (mu) function: This function selects the initial and loop-carried values,

and only appears at loop headers. Its form is:

vout ← µ(v1, v2)

In this case, when the loop execution starts, v1 is assigned to vout, then, for next

iterations, v2 is used instead.

3. The η (eta) function: This function determines the value of a variable at the end

of a loop. It has the following form:

vout ← η(p, v3)

Where v3 stores the definition reaching a point after a loop exits, and p is the

predicate that controls its execution.



2.1. Definitions 26

To address the limitations of prior approaches that map control dependencies using

GSA concepts, as highlighted in Section 2.5, we introduce a formal definition for the

transitive control dependency between basic blocks. Definition 3 formalizes this concept

by leveraging the explicit, predicate-driven nature of gating functions to capture control

relationships that may span multiple blocks.

Definition 3 (Transitive Control Dependency). A basic block Bk is transitively control

dependent on a predicate pi originating from a block Bi if either:

1. The execution of Bk is conditioned by a gating function (e.g., γ or η) that is directly

controlled by the predicate pi.

2. There exists an intermediate block Bj such that:

a) The execution of Bj is conditioned by a gating function controlled by pi.

b) The control flow path from Bj to Bk is unconditional, meaning Bk is executed

under the same gating condition as Bj without the influence of any intermediate

gating function.

Example 2.1.7. By using the gating functions, GSA makes both data and control de-

pendencies explicit. For instance, a traditional ϕ-function at a post-dominator of an

if-then-else can be rewritten into a γ function at the join point. This explicit repre-

sentation provides a richer and more precise substrate for advanced program analysis and

transformation. An illustrative example is given by extending the code in SSA form from

Listing 2.2, to GSA on Listing 2.3.

1 if (x1 > 0) {

2 y1 = 1;

3 } else {

4 y2 = 2;

5 }

6 y3 = gamma(x1 > 0, y1 , y2);

7 z1 = y3 + 3;

8

Listing 2.3: Program in GSA form.



2.2. Program Slice 27

2.2 Program Slice

Weiser’s classic algorithm provides a method for approximating a program slice by

analyzing both data and control dependencies, even though finding a perfectly minimal

slice is computationally unfeasible [24]. The process works iteratively by first tracing

dependencies backward from a specific point of interest, known as the slicing criterion.

It begins by identifying the variables directly used at that point and then recursively

includes all statements throughout the program that could have influenced their values.

Alongside this data flow analysis, the algorithm also identifies control dependencies,

that is, any conditional branches or loops that determine whether a relevant statement gets

executed. The final program slice is constructed by combining these two sets: it consists

of all statements that either perform a relevant calculation or control the execution of

another statement already included in the slice.

Before computing all statements that affect a given program point, a slicing cri-

terion C = (i, V ) is defined by:

• i: a statement index where slicing occurs.

• V : a subset of variables observed at i.

Thus, a backward traversal on the def-use chain of variables in V starts the pro-

cess of slicing. At the end of the traversal, statements from P that does not affect the

computation of variables from the slicing criterion can be deleted.

The sliced program must have the same behavior as the original one, except for the

deleted statements. Hence, they define that a state trajectory of length k is a sequence:

(n1, s1), (n2, s2), . . . , (nk, sk)

where each ni is a statement and each si is a mapping of variables to values. Also,

they define that a projection function extracts only relevant information from a state

trajectory:

Proj(i,V )(n, s) =

(n, s | V ), if n = i

X, otherwise

where s | V restricts s to the variables in V .

For a trajectory T , they apply:

Proj(i,V )(T ) = Proj(i,V )(t1) . . .Proj(i,V )(tn).

Formally, Weiser [24] defines that a program slice S of a program P satisfies:

1. S is obtained by deleting zero or more statements from P .



2.3. Algorithms 28

2. S produces the same projection function as P for all inputs where P terminates.

Now, following the generalization of these definitions into an algorithm, Weiser

[24] computes a program slice by executing the following steps:

Step 1 - Compute Directly Relevant Variables: Define RC(n), the set of

relevant variables at statement n:

RC(n) =

V, if n = i

{v | v ∈ USE(n) and w ∈ DEF(n) ∩RC(m)}, if m is a successor of n

This ensures that variables affecting V at i are traced back through the program.

Step 2 - Identify Control Dependencies: A statement b influences a statement

s if it controls whether s executes. Define INFL as:

INFL(b) = {n | n is on a path from b to its nearest post-dominator}.

All statements affecting any n ∈ SC are included in the slice.

Step 3 - Construct the Slice: The final slice SC consists of all statements where:

RC(n+ 1) ∩DEF(n) ̸= ∅.

The primary objective of this thesis is to present an algorithm that, for a given

slicing criterion, computes an Idempotent Backward Slice. Our approach is consistent

with Weiser’s definition but extends it with a fundamental guarantee: the resulting slice

constitutes the maximal subset of executable instructions that satisfies the idempotent

property. This guarantee ensures that when the slice is executed with a given set of

inputs, it produces the exact value that the criterion’s variable would have held at the

corresponding program point in an execution of the original program with the same inputs.

Consequently, our analysis focuses on dependencies between variables, rather than

statements. The final slice is synthesized into a self-contained function whose sole purpose

is to compute the value of the variable from the slicing criterion.

2.3 Algorithms

Weiser’s algorithm performs a dense analysis by associating relevant information

with pairs of variables and program points. However, his approach to identifying data and

control dependencies, which relies on computing consecutive sets of transitively relevant

statements, can be made more efficient through the use of alternative data structures [21].



2.3. Algorithms 29

To address the efficiency problem of a dense analysis, an algorithm was proposed

by Rodrigues et al. [19], that computes program slices using a sparse analysis, which

handles data and control dependencies more effectively. Subsequently, another slicing

approach was presented by Guimarães and Pereira [6], that uses gates on ϕ-functions to

determine control dependencies.

Nevertheless, their notion of gating is insufficient for our purposes. Instead, our

approach relies on path expressions to compute predicates. These predicates are then

used to construct the GSA form, which assists our program slicer on finding control

dependencies.

2.3.1 Sparse Slicing

A dense analysis computes data and control dependencies by associating informa-

tion with pairs of variables and program points. A program point represents a region

between two instructions in a control flow graph. Weiser’s approach has a worst-case

complexity of O(V 2), where V is the number of variables. However, by leveraging the

SSA form, this quadratic complexity can be reduced to O(V ) [19].

To achieve this reduction, the program must first be transformed into SSA form.

In this format, each variable is assigned a value exactly once. Consequently, all tracking

information is bound directly to the variable’s name, enabling a more efficient computation

of dependencies.

Consider the C code presented on Listing 2.4. Its SSA form is visualized within

the CFG in Figure 2.3.

To compute data and control dependencies between variables, Rodrigues et al.

[19] use the Program Dependency Graph (PDG) and the Dominator Tree (DT) data

structures. The PDG represents dependencies between program variables, while the DT

captures dominance relationships between nodes in the CFG.

1. Building the PDG: After selecting a slice criterion (e.g., a variable or program

point of interest), a traversal is performed over the PDG to identify all relevant

dependencies. The PDG is constructed by analyzing the program’s data and control

flow, linking variables and instructions based on their dependencies.

2. Building the Dominator Tree: To construct the DT, a dominance analysis over

the CFG is performed. This analysis identifies the dominance relationships between

nodes, in such a way that the resulting tree maps each of them to its immediate

dominator, enabling efficient traversal and dependency analysis.



2.3. Algorithms 30

1 a = 0;

2 b = 0;

3 do {

4 while (b < 13) {

5 b = b + 1;

6 x = x + a * b;

7 }

8 a = a + 1;

9 } while (a < 17);

10 use(b);

11

Listing 2.4: Example C program.

Figure 2.3: The program’s CFG in SSA
form.

BB0:
a0 = 0
b0 = 0
br BB1

BB1:
a1 = phi(a0 , a2)
br BB2

BB5:
b2 = b1 + 1
use(b2)
t0 = a1 * b2
use(t0)
br BB4

BB3:
a2 = a1 + 1
br (a2 < 17) BB6, BB1

BB2:
b1 = phi(b0, b2)
br (b1 < 13) BB3, BB5

BB6:
use(b1)

BB4:
br BB2

Source: The author.

3. Influence Region: The influence region of a block B is the set of blocks dominated

by B but not post-dominated by it. This region determines which variables are

controlled by a predicate.

The program’s DT and PDG are shown in Figure 2.4a and Figure 2.4b, respectively.

These structures are used to compute backward dependencies based on the slice criterion

use(b2) (Figures 2.5c and 2.5b), and the resulting backward slice is shown in Figure 2.5a.

Finally, the algorithm is generalized as follows:

1. Input: A program in SSA form, represented as a dominance tree.

2. Output: A slice containing only relevant instructions.

3. Steps:

• Traverse the dominance tree to identify the influence region of each predicate.

• Link predicates to variables defined within their influence region.

• Use the PDG to compute transitive dependencies efficiently.

This algorithm improves upon Weiser’s dense analysis by first transforming the

program into SSA form. This transformation enables a sparse analysis, reducing the com-

plexity of computing program slices from O(V 2) to O(V ) [19]. It is also worth noting that,

unlike Ferrante et al. [5], the authors focus on tracking dependencies between variables

rather than between program statements.



2.3. Algorithms 31

Figure 2.4: The Dominator Tree and the Program Dependency Graph.

(a) The Dominator Tree.

BB0:
a0 = 0
b0 = 0
br BB1

BB1:
a1 = phi(a0 , a2)
br BB2

BB5:
b2 = b1 + 1
use(b2)
t0 = a1 * b2
use(t0)
br BB4

BB3:
a2 = a1 + 1
br (a2 < 17) BB6, BB1

BB2:
b1 = phi(b0, b2)
br (b1 < 13) BB3, BB5

BB6:
use(b1)

BB4:
br BB2

(b) The Program Dependency Graph (PDG).

a0

a1

a2

t0

b2

b1

b0

(a2 < 17)

(b1 < 13)

use(t0)

use(b1)

use(b2)

Source: The author.

Figure 2.5: Comparison of program slice, CFG, and PDG fragments.

(a) The outlined function.

BB0:
b0 = 0
br BB2

BB5:
b2 = b1 + 1
use(b2)
br BB4

BB2:
b1 = phi(b0, b2)
br (b1 < 13) _, BB5

BB4:
br BB2

(b) The CFG fragment.

BB0:
a0 = 0
b0 = 0
br BB1

BB1:
a1 = phi(a0 , a2)
br BB2

BB5:
b2 = b1 + 1
use(b2)
t0 = a1 * b2
use(t0)
br BB4

BB3:
a2 = a1 + 1
br (a2 < 17) BB6, BB1

BB2:
b1 = phi(b0, b2)
br (b1 < 13) BB3, BB5

BB6:
use(b1)

BB4:
br BB2

(c) The PDG fragment.

b2

b1

b0

(b1 < 13)

use(b2)

Source: The author.



2.3. Algorithms 32

2.3.2 Gating Phi-functions

Another approach to extract program slices was proposed by Guimarães and

Pereira [6]. Their work is not focused on program slicing, but they worked on a single-pass

algorithm to outline instructions into delegate functions, that would benefit from having

its arguments lazily evaluated. To accomplish the slicing task, they define the following

concepts: Backward Slice, Dependencies, Gates, and First Dominator. Consequently, they

illustrate how a sliced program is derived.

Similar to Rodrigues et al. [19], the authors focus on dependencies between program

variables rather than program statements. Accordingly, we restate their program slicer

definitions.

Definition 4 (Backward Slice). Given a program P , and a variable v defined at a program

point p ∈ P , the backward slice of v at p is a subset Ps of P ’s program points containing

p, such that if P computes v with value n given input I, then Ps also computes v with

value n given input I. The pair (p, v) is called a slice criterion.

Definition 5 (Dependencies). Variable’s dependencies are defined as follows:

1. A variable u is data dependent on a variable v if u is defined by an instruction that

uses v.

2. A variable u is control dependent on a variable v if the assignment of u depends on

a terminator (e.g., a conditional branch) controlled by v.

3. A variable u depends on a variable v if it is either data dependent or control depen-

dent on v, or if it depends on a variable w that depends on v.

Definition 6 (Gates). Let G = (V,E ∪ {bstart , bend}) be a control flow graph, and let

b0, b1 ∈ V be two basic blocks.

1. We say that b1 post-dominates b0 if every path from b0 to bend goes through b1.

2. We say that b1 is the immediate post-dominator of b0 if b1 post-dominates b0, and

for any other node bp that post-dominates b0, either bp = b1 or bp post-dominates

b1.

Given that a predicate p is a terminator at b0, we say that p gates every ϕ-function in the

basic block b1 that immediately post-dominates b0.

Definition 7 (First Dominator). Given a set of nodes in a slice B, and a basic block

b /∈ B, the first dominator of b (within B) is a node bn ∈ B (with bn ̸= b) such that bn

dominates b and bn is the closest parent of b in the dominance tree.



2.3. Algorithms 33

Definition 8 (Sliced Program). Let a program P be represented by a CFG (Vp, Ep). Let

Vs ⊆ Vp be the set of basic blocks from P that belong to a backward slice created from

some slice criterion. From Vs we derive a new program Ps = (Vs, Es∪{bstart , bend}), where
Es is defined as follows:

1. If b0 → b1 ∈ Ep for some b0 ∈ Vs and b1 ∈ Vs, then b0 → b1 ∈ Es.

2. If b0 → b1 ∈ Ep for some b0 /∈ Vs and b1 ∈ Vs, and b1 contains a use of a variable v

not defined in b1, then bf → b1 ∈ Es, where bf is the first dominator of b1 in Vs.

3. If a block b ∈ Vs contains a definition of every variable used in it, then Es contains

the edge bstart → b.

4. If b contains the slice criterion, then Es contains the edge b→ bend .

In summary, the slicing procedure employed in their implementation integrates two

fundamental concepts: purity and gating of ϕ-functions.

Purity ensures that extracted slices are free from side effects, excluding instructions

that store to memory, invoke impure functions, or may raise exceptions, thereby preserving

program semantics even when the execution order changes.

Gating ϕ-functions, in turn, tries to augment the SSA representation with explicit

predicate dependencies, to transform control dependencies into data dependencies. This

approach constitutes an initial step toward implementing a program slicer based on the

GSA form.

Starting from a selected slice criterion, the algorithm traverses the control flow

graph backward, collecting all data and control dependencies, and outline the visited

instructions into a new function. The resulting sliced function is guaranteed to compute

the target value exactly once, without side effects, and with all dependencies explicitly

represented.

2.3.3 Gating by Path Expressions

Unlike Guimarães and Pereira [6], which computes ϕ-function gates using post-

dominance relationships, Tu and Padua [23] propose the usage of path expressions to

compute gating functions and transform a program from SSA to GSA form. A path ex-

pression is a regular expression that represents the set of paths taken in a program’s

CFG. The foundational algorithm for computing these path expressions was originally

introduced by Tarjan [20]. In their method, new symbols are introduced to construct the



2.3. Algorithms 34

path expressions that represent gating functions. This approach simplifies the identifi-

cation of which edges are traversed along a path reaching a ϕ-function, which predicate

controls it, and which gating function should replace it.

1. Path Expression: Given a CFG (N,E), any path in the CFG can be treated as

a string of edges in E, but not all such strings are valid paths in CFG. A path

expression P of type (u, v) is a simple regular expression over E such that every

string in σ(P ) is a path from node u to node v, where σ(P ) denotes the set of strings

generated by the regular expression P . Every sub-expression of a path expression

is itself a path expression whose type can be determined as follows:

• If P = P1 ∪ P2, then P1 and P2 are path expressions of type (u, v).

• If P = P1 · P2, then there exists a unique node w such that P1 is a path

expression of type (u,w) and P2 is a path expression of type (w, v).

• If P = P ∗
1 , then u = v and P1 is a path expression of type (u, v) = (u, u).

2. Path Expressions as Gating Functions: Different paths reaching a ϕ-function

node are represented by path expressions. To define the symbols for edges such

that a path expression also takes the form of a gating function, only outgoing edges

from conditional statements are needed to unambiguously represent a path. The

following conventions are adopted:

• A white space symbol Λ represents an unconditional edge.

• A white space symbol ∅ represents an edge not taken at a branch node.

• A γ expression γ(p, e1, e2, . . . , en), where exactly one ei is Λ and all others are

∅, represents the ith edge from an n-way branch statement with condition p.

Using these symbols, a path expression can be represented as a gating function

R(u, v) for a path from node u to node v. The following simplification rules apply:

R1 ∪R2 =



R2, if R1 = ∅,

R1, if R2 = ∅,

γ(p,R1t, R1f ) ∪ γ(p,R2t, R2f ),

otherwise, yielding γ
(
p, R1t ∪R2t, R1f ∪R2f

)

R1 ·R2 =



∅, if R1 = ∅ or R2 = ∅,

R2, if R1 = Λ,

R1, if R2 = Λ,

γ(p,R1t, R1f ) ·R2, if R2 ̸= ∅ ⇒ γ
(
p, R1t ·R2, R1f ·R2

)



2.4. Optimizations 35

This formalism allows the computation of gating functions for ϕ-functions, where

the gating function encodes the concatenation of conditional branches along a gating

path [23].

2.4 Optimizations

There are two compiler optimizations particularly relevant to our approach: func-

tion outlining and function merging. The former reduces code size by extracting

code fragments into new functions, while the latter combines identical or similar func-

tions into a single one. In our use case, we aim to capture both behaviors so that slicing

can contribute to reducing overall code size.

Function outlining has long been used to compact programs by isolating repeated

or structurally similar fragments into separately callable functions. Function merging,

in turn, is a complementary optimization that eliminates redundancy by consolidating

identical or near-identical functions, as performed by LLVM’s default function merging

pass [13]. Both techniques are widely studied in the literature. For instance, Lee et al. [9]

generalize these ideas to a global scope, enabling the linker to optimize functions across

different modules and even separate builds.

Example 2.4.1 demonstrates, in a high level view, the changes of a couple of given

functions, before and after the application of a function merging strategy.

Example 2.4.1. Consider LLVM’s default pass to merge similar functions mergefunc.

Their approach consists on identifying and merging functions that are semantically iden-

tical to reduce the final code size. The process begins by calculating a hash of each

function’s structure to quickly filter out dissimilar candidates. For functions with match-

ing hashes, a more detailed, instruction-by-instruction comparison is performed to confirm

they are exact equivalents. When two identical functions, say F and G, are found, one

is chosen as the canonical version, and all calls to the other function are redirected to

it, often by replacing the duplicate function with an alias or a simple stub that calls the

canonical one [13].

For instance, consider two identical functions, func_a and func_b, each invoked by

a different caller (Figure 2.6a). A function merging pass first identifies that these functions

are equivalent. It then combines them into a single, new function named merged_func, as

depicted in Figure 2.6b. As a final step, the pass updates the original call sites, redirecting

them to the new, unified function (Figure 2.6c) and thus reducing code size.

Another way to implement the outlining optimization for code-size reduction is de-



2.4. Optimizations 36

Figure 2.6: The traditional function merging process.

(a) Before merging.

BB0:
call func_a(...)
...

BB1:
br EXIT

EXIT

func_a: Entry
br BB1

Caller 1

BB0:
call func_b(...)
...

BB1:
br EXIT

EXIT

func_b: Entry
br BB1

Caller 2

(b) Merged functions.

BB1:
br EXIT

EXIT

merged_func: Entry
br BB1

(c) Call sites after merging.

BB0:
call merged_func(...)
...

Caller 1

BB0:
call merged_func(...)
...

Caller 2

Source: The author.

scribed by Tomašević et al. [22]. Their method searches for the longest repeated sequence

of instructions within a function. As they explain, this problem is analogous to finding

the longest common substring, where basic blocks correspond to strings and instructions

to characters, and can be efficiently solved using suffix trees [8, 22].

Similarly to the function merging example, a high level view of the function out-

lining process is given on Example 2.4.2.

Example 2.4.2. The common outline strategy relies on the selection of a specific region

of code, usually an infrequently executed cold segment, is identified and moved out of

its original host function. This extracted code is placed into a new, separate function,

and the original code block is replaced with a function call to this new routine [11].

Thus, given a host function F and its CFG on Figure 2.7a, the region highlighted in

red was identified by the compiler as a cold segment, and further extracted into function

T (Figure 2.7b). Finally, the host function contains a call to the extracted function, as

pictured on Figure 2.7c.

Our approach, however, differs fundamentally. Instead of searching for repeated

instruction patterns, we focus on the instructions that are relevant for computing a vari-

able at a given program point. Consequently, our solution requires a full traversal of

both the data and control dependencies of that variable, ensuring that the resulting slice

preserves the program’s semantics.



2.5. Motivating Example 37

Figure 2.7: The traditional function outlining process.

(a) The host F function, with
a highlighted cold segment.

BB0:
a0 = 0
b0 = 0
br BB1

BB1:
a1 = phi(a0 , a2)
br BB2

BB5:
b2 = b1 + 1
use(b2)
t0 = a1 * b2
use(t0)
br BB4

BB3:
a2 = a1 + 1
br (a2 < 17) BB6, BB1

BB2:
b1 = phi(b0, b2)
br (b1 < 13) BB3, BB5

BB6:
use(b1)

BB4:
br BB2

(b) The extracted T function. (c) The new host function.

BB0:
a0 = 0
b0 = 0
br BB1

BB1:
a1 = phi(a0 , a2)
br BB2

BB3:
a2 = a1 + 1
br (a2 < 17) BB6, BB1

call T(...)

BB6:
use(b1)

Source: The author.

2.5 Motivating Example

While Guimarães and Pereira [6] implements a program slicer based on gated ϕ-

functions, we extend their implementation, Wyvern, to handle programs with intricate

control flow, such as the ladder graph. The primary challenge in this setting is to extract

a slice when the slice criterion resides in the exit block (block BB9 in Figure 2.8).

During dependency traversal, Wyvern cannot reliably determine which predicate

controls implicit transitive dependencies by considering only the post-dominators of ϕ-

functions. We address this limitation by encoding control dependencies as regular expres-

sions, thereby making implicit transitive dependencies explicit to our one-pass traversal

algorithm.

Let s1 = x5 << 16 be our slice criterion. The algorithm starts by traversing

backwardly s1’s def-use chain. Therefore, it will identify the instructions on Figure 2.9a

as data dependencies.

Values a1, b1, and c1 are function arguments. After traversing the data depen-

dencies, the algorithm also considers the control dependencies associated with each ϕ-

function. These correspond to the terminator instructions of the basic blocks that control

the execution of the incoming values to the ϕ-functions. Consequently, the instructions

in Figure 2.9b determine the execution of each ϕ-function in the sliced program. Specifi-

cally, instructions 1 and 3 from Figure 2.9b control instruction 1 from Figure 2.9a, while



2.5. Motivating Example 38

Figure 2.8: The ladder control flow graph.

BB0:
x1 = a1 + b1
br (a1 < 41), BB1, BB8

BB1:
br (b1 < 33), BB2, BB7

BB2:
br (c1 < 25), BB3, BB6

BB3:
x2 = x1 * c1
br (c1 < 17), BB4, BB5

BB4:
br BB9

BB9:
x5 = phi(x2, x4)
s1 = x5 << 16

BB8:
br BB7

BB7:
br BB6

BB5:
x4 = phi(x2, x3)
br BB9

BB6:
x3 = x1 * a1
br BB5

Source: The author.

Figure 2.9: Slice criterion’s dependencies.

(a) Data dependencies.

1. x5 = phi(x2, x4)

2. x2 = x1 * c1

3. x4 = phi(x2, x3)

4. x1 = a1 + b1

5. x3 = x1 * a1

(b) Control dependencies.

1. br (c1 < 17), BB4, BB5

2. br (c1 < 25), BB3, BB6

3. br (a1 < 41), BB1, BB8

Source: The author.

instructions 2 and 3 from Figure 2.9b control instruction 3 from Figure 2.9a.

Although their method for identifying which predicates control each ϕ-function

is functional, it remains incomplete. When their outlining procedure constructs the slice

function with the selected instructions, it omits the branch from the BB1 block that governs

execution of BB2. This omission occurs because their gating computation does not account

for predicates that control the execution of other predicates, that is, they miss the notion

of transitive control dependencies between predicates (Definition 3). Consequently, this



2.5. Motivating Example 39

omission breaks their first dominator (Section 2.3.2) computation implementation, and

makes the creation of an invalid branch from BB0 to BB9.

Unlike Wyvern, our approach captures transitive control dependencies by the use

of path expressions to represent the edges that govern the execution of ϕ-functions. Our

choice is motivated by the explicit representation of edges that regular expressions provide,

while also enabling the concatenation of branches along a gating path. As a result, the

missing terminator in the given example is successfully captured by our program slicer.

A detailed example is given on section 3.3.



40

Chapter 3

Algorithms

This chapter details the core algorithms of our methodology. First, we present an algo-

rithm to convert a program from Static Single Assignment form into the Gated Single

Assignment form required by our slicer. Following this, we formalize our novel algorithm

for extracting program slices from GSA-based programs, which extends the work of Tu

and Padua [23] and Guimarães and Pereira [6] to support our slicing objectives.

3.1 Program Slicer

Our program slicer is implemented as an out-of-source LLVM pass called Daedalus.

The source code is publicly available at https://github.com/lac-dcc/Daedalus.

To enable program slicing, we implemented the algorithm of Tu and Padua [23]

on top of LLVM’s data structures. Our pass extends LLVM’s SSA representation by

modeling gating functions as regular expressions. Given that the η function does not

contribute to the predicate computation, we restrict the mapping of regular expressions

to γ and µ gating functions. The transformation begins by normalizing programs into

Loop-Closed SSA form (LCSSA), where every value defined inside a loop is exclusively

used within that loop [15].

The slicing procedure begins with a single-step traversal of data dependencies to

collect all dependencies of the chosen slice criterion. If the outlined instructions do not

produce side effects in the original function, they are extracted into a new function.

After outlining all possible slices, the pass attempts to merge similar ones, removing

redundant instructions from the original function. Finally, the simplifyCFG pass is applied

to the merged functions, producing the smallest possible code. An overview of the program

slicer is presented in Figure 3.1.

https://github.com/lac-dcc/Daedalus


3.1. Program Slicer 41

Figure 3.1: Program slicer overview.

 Normalize IR
(LCSSA  form)

GSA Construction

Slice Identification

Function Outlining

Function Merging
and Simplification

Source: The author.

3.1.1 GSA Construction

This subsection formalizes our implementation of GSA construction and the ex-

traction of controlling predicates for ϕ-functions. The implementation is divided into two

stages. First, Algorithm 6 computes, for each basic block, symbolic path expressions that

summarize how control can reach that block. Each path expression is decomposed into

a non-loop-carried component γ and a loop-carried component µ. Second, Algorithm 7

traverses these expressions to collect the concrete LLVM predicate instructions (branch

or switch terminators) that gate each ϕ-function.

To set the notation, let G = (V,E) be the CFG with a distinguished entry block,

and let DT be the dominator tree over V . For any v ∈ V , pred(v) denotes the set of CFG

predecessors of v. Symbolic path expressions are drawn from the algebra P :

P ::= ∅ | λ(b) | edge(b, i) | p1 ∪ p2 | p1 · p2,

where ∅ represents an unsatisfiable path, λ(b) denotes an unconditional branch to block



3.1. Program Slicer 42

b, and edge(b, i) denotes following successor i of block b. Union (∪) and concatenation (·)
follow the simplification rules ∅ ∪ p = p, ∅ · p = ∅, and λ(b) · p = p.

Algorithm 6 operates by performing a single, bottom-up traversal of the dominator

tree (DT), processing nodes in reverse post-order. It employs a union-find data structure

to efficiently manage and merge path information as it moves up the tree. The core of

the algorithm is a three-phase process executed for each node u in DT:

DERIVE Phase For each child v of u, the algorithm inspects all incoming control-flow

edges w → v. Using the dominance relation, it classifies each edge:

• If v dominates w, the edge is a back-edge. Its path expression is immediately

accumulated into the loop-carried component, µv.

• Otherwise, the edge is a forward or cross-edge. A direct merge is insufficient

here, as the full path from the current subtree root is not yet known. The path

is therefore temporarily stored in a per-child list for later processing.

MERGE Phase This phase resolves the paths from forward and cross-edges using a

fixed-point iteration. It repeatedly traverses the temporarily stored paths, prepend-

ing the path expressions from the roots of their respective sibling subtrees. This

iterative process continues until a stable state is reached, ensuring that all contribut-

ing control-flow paths from different dominator subtrees are correctly composed into

the non-loop-carried component, γv. This step is critical for handling complex, non-

nested control flow.

LINK Phase Once the path expressions for a child v are finalized, v is linked to its

parent u in the union-find structure. Its now-complete γv expression becomes the

path from u to v, enabling the next level of the bottom-up traversal.

Edge expressions are constructed by EdgeExpr (Algorithm 4): if w has only

one successor, the expression is λ(w), whereas conditional or switch terminators yield

edge(w, i). To avoid exponential growth in structured control flow, the MERGE function

(Algorithm 5) eagerly simplifies unions and concatenations.

The complexity of Algorithm 6 is bounded by O(|E|α(|V |)), where α is the inverse

Ackermann function [20]. Each CFG predecessor edge is processed once, and union-find

operations are amortized. Simplifications occur in linear time relative to the expression

size. The invariant maintained throughout the traversal is that, after processing a child

v of u in DT, the mapping R[x] for every x in the subtree of v represents the simplified

symbolic path from the union-find root to x [20].



3.1. Program Slicer 43

Algorithm 2 FIND operation (union-find with path compression)

1: function FIND(u)
2: p← Parent[u]
3: if p = u then ▷ u is the root of the current partition
4: return u
5: end if
6: r ← FIND(p) ▷ Recursively find the root of the parent
7: R[u]← R[p] · R[u] ▷ Update path from root to u
8: Parent[u]← r ▷ Path compression
9: return r

10: end function

Algorithm 3 EVAL operation (compute root-to-x path)

1: function EVAL(u)
2: p← Parent[u]
3: if p = u then ▷ u is the root of its partition
4: return (NeedsPhi[u] ∨ IsInitialDef[u],R[u])
5: end if
6: (ϕparent, pparent)← EVAL(p) ▷ Recurse on parent
7: Parent[u]← Parent[p] ▷ Path compression (point to eventual root)
8: R[u]← pparent · R[u] ▷ Accumulate path from root to u
9: ϕneeded ← ϕparent ∨ NeedsPhi[u] ∨ IsInitialDef[u]

10: return (ϕneeded,R[u])
11: end function

Algorithm 4 EDGEEXPR constructor

1: function CreateEdgeExpr(w → v)
2: Tw ← terminator instruction of w
3: if Tw has one successor then
4: return λ(w)
5: else
6: i← index of successor v in Tw

7: return edge(Tw, i)
8: end if
9: end function

Algorithm 5 MERGE operation (path expression simplification)

1: function MERGE(p1, p2)
2: if p1 = ∅ then return p2
3: end if
4: if p2 = ∅ then return p1
5: end if
6: return p1 ∪ p2
7: end function



3.1. Program Slicer 44

Algorithm 6 Gated SSA path construction

Input: CFG G = (V,E), dominator tree DT, initial-def set S ⊆ V
Output: For each v ∈ V : path expressions γv, µv and boolean NeedsPhiv
1: Initialization:
2: for all u ∈ V do
3: Parent[u]← u; R[u]← ∅; γu ← ∅; µu ← ∅; NeedsPhi[u]← false
4: IsInitialDef[u]← (u ∈ S)
5: end for
6: for each node u in reverse post-order of DT do
7: ▷ DERIVE PHASE
8: Let ListP be a map from nodes to lists of (subroot, path) pairs
9: for each child v of u in DT do

10: for each predecessor w of v do
11: if dominator tree parent of v is w then
12: γv ←MERGE(γv),CreateEdgeExpr(w → v)
13: else
14: (ϕ, pw)← EVAL(w)
15: NeedsPhi[v]← NeedsPhi[v] ∨ ϕ
16: rw ← FIND(w)
17: P ← pw ·CreateEdgeExpr(w → v)
18: if v dominates w then ▷ Back-edge w → v
19: µv ←MERGE(µv, P )
20: else ▷ Cross or forward edge
21: Add (block of rw, P ) to ListP[v]
22: end if
23: end if
24: end for
25: end for
26: ▷ MERGE PHASE
27: changed← true
28: while changed do
29: changed← false
30: for each child v of u in DT do
31: for each (br, P ) in ListP[v] do ▷ Iterate over cross-paths
32: P ′ ← γbr · P ▷ Prepend path from subroot’s block
33: γ′

v ← γv
34: γv ←MERGE(γv, P

′)
35: if γv ̸= γ′

v then changed← true
36: end if
37: end for
38: end for
39: end while
40: ▷ LINK PHASE
41: for each child v of u in DT do
42: R[v]← γv
43: Parent[v]← u
44: end for
45: end for
46: return { (γv, µv) | v ∈ V }



3.1. Program Slicer 45

Once path expressions have been computed, Algorithm 7 extracts the concrete

LLVM predicates. For λ(b), the gates are inherited from the unique predecessor of b. For

edge(b, i), b’s terminator is conditional, and is recorded as a controlling predicate. Union

and concatenation of path expressions correspond to set union of gates. The result is

that, for any block v with ϕ-functions, the final predicate set is the union of the gates

extracted from both γv and µv.

Algorithm 7 Gate extraction for ϕ-functions

1: function CollectGates(p, Gates, VisitedExprs)
2: if p = ∅ or p ∈ VisitedExprs then return
3: end if
4: Add p to VisitedExprs
5: switch type of p:
6: case edge(Tb, i):
7: if Tb is a conditional branch or switch instruction then
8: Add Tb to Gates (as a set)
9: end if
10: case p1 ∪ p2 or p1 · p2:
11: CollectGates(p1, Gates, VisitedExprs)
12: CollectGates(p2, Gates, VisitedExprs)
13: case λ(b):
14: CollectGates(γb, Gates, VisitedExprs) ▷ Collect from predecessor’s path

expression
15: Remove p from VisitedExprs
16: end function
17:

18: function GetGatesForAllBlocks
19: Let AllGates be a map from blocks to sets of gates
20: for all v ∈ V with predecessors do
21: Gv ← ∅; VisitedExprs ← ∅
22: CollectGates(γv, Gv, VisitedExprs)
23: CollectGates(µv, Gv, VisitedExprs)
24: AllGates[v]← Gv

25: end for
26: return AllGates
27: end function

In practice, these gates serve as the link between symbolic path summaries and the

actual instructions in the IR. The program slicer queries the GSA mappings to retrieve the

per-block predicate sets, which are then attached to ϕ-functions. This ensures that the

slice preserves the exact control predicates determining which incoming value is selected

at each ϕ-function.

From a correctness perspective, any feasible CFG path π into v without a back-edge

contributes a conjunct in γv symbolizing π, while paths re-entering v from a dominated

region contribute to µv. Because the CollectGates procedure distributes over union



3.1. Program Slicer 46

and concatenation and records the precise conditional terminators along these paths,

the resulting set AllGates[v] conservatively over-approximates all predicates that can

influence the incoming edge choice of a ϕ-function in v.

3.1.2 Slice Identification

This section specifies the properties of program slices that are candidates for out-

lining. We then present a formalization of the single-step traversal algorithm used for

their identification and detail the precise conditions under which a slice can be extracted

into a new function.

Our implementation operates as a pass over an entire LLVM module. It iterates

through all functions, and upon visiting a binary instruction, it designates that instruc-

tion as the slicing criterion. This criterion sources the single-step dependency traversal

algorithm to identify an extractable code region. If outlining succeeds, the parent function

is modified to call the new slice, and the pass then recursively analyzes the body of the

new function for further outlining opportunities, making the creation of recursive slices

possible.

Example 3.1.1 shows how our approach create slices that have calls to other slices.

Example 3.1.1. Figure 3.2 illustrates the process of creating recursive slices, with its

labeled edges highlighting each step, and instructions described in LLVM IR syntax. The

process begins with the Original Function (F), where the instruction that defines variable

%t1 is selected as the first slicing criterion. Step 1 marks this instruction, and Step 2

outlines its backward slice into a new function, S1, while rewriting F to call it.

The process then repeats on the modified function. In Step 3, a new criterion,

%t2, is identified within the updated F. Step 4 extracts its corresponding slice into a

second function, S2. The resulting control flow is shown in Steps 5 and 6: the original

function F now calls S2, which in turn calls S1.

Finally, Step 7 indicates the data dependency of the multiplication inside S2 on

the value returned by S1, which completes the chain of a slice being derived from another

slice.



3.1. Program Slicer 47

Figure 3.2: The creation process of recursive slices.

Original Function (F)

Modified F (after 1st slice) First Slice (S1)

Final Function (F) Second Slice (S2)

define i32 @F(i32 %a, i32 %b) {
 entry:
 %t0 = sub i32 %a, 5
 %t1 = add nsw i32 %t0, %b
 %t2 = mul nsw i32 %t1, 2
 ret i32 %t2
}

Slicing Criterion (I1)
%t1 = add nsw i32 %t0, %b

define i32 @F(i32 %a, i32 %b) {
 entry:
 %t1_val = call i32 @S1(i32 %a, i32 %b)
 %t2 = mul nsw i32 %t1_val, 2
 ret i32 %t2
}

1

define i32 @S1(i32 %a, i32 %b) {
 entry:
 %t0 = sub i32 %a, 5
 %t1 = add nsw i32 %t0, %b
 ret i32 %t1
}

2

New Criterion (I2)
%t2 = mul nsw i32 %t1_val, 2

define i32 @F(i32 %a, i32 %b) {
 entry:
 %t2_val = call i32 @S2(i32 %a, i32 %b)
 ret i32 %t2_val
}

3

define i32 @S2(i32 %a, i32 %b) {
 entry:
 %t1_val = call i32 @S1(i32 %a, i32 %b)
 %t2 = mul nsw i32 %t1_val, 2
 ret i32 %t2
}

4

7

5
6

Source: The author.

Single-step Traversal Algorithm

This subsection formalizes the single-step data dependence traversal algorithm im-

plemented in our pass. Given a slice criterion instruction I, the procedure performs a

bounded def-use expansion. The expansion collects immediate operand dependencies of

I and transitively those of newly discovered dependencies, records basic blocks that can

influence I either by defining those dependencies or by controlling ϕ-functions, and classi-

fies out-of-scope operands as effective function arguments of the slice. In addition, control

dependencies at ϕ-functions are injected from the per-block predicate map computed by

the GSA mappings.

To establish the setting, let I be the slice criterion instruction in basic block bb(I),

and let BB be the set of basic blocks and V be the set of program variables. A mapping is

defined as predicates : BB → V ∗, where V ∗ denotes the set of all finite sequences (lists) of

elements from V (Algorithm 6). Let L denote the loop containing I (if any) with header

H. The algorithm returns three sets: deps, the visited data dependencies; BBs, the basic



3.1. Program Slicer 48

blocks that define those dependencies or serve as incoming predecessors for encountered

ϕ-functions; and funcArgs, the operands are treated as formal parameters of the slice.

The classification of operands into expansion targets or function arguments is handled

by a scope guard. The predicate OutsideOrHeader(v,L, H) (Algorithm 8) decides

whether an operand v should terminate expansion and instead be recorded as a boundary

argument: values defined outside L or ϕ-functions in the loop header are not expanded

further.

The traversal proceeds breadth-first using a FIFO queue, with a Visited set prevent-

ing redundant expansions. Each dequeued value x is added to deps. If x is an instruction,

its defining block bb(x) is added to BBs, which therefore conservatively accumulates blocks

that may need to be retained or cloned in the slice. Operand processing (Algorithm 9) is

governed by three filters: (i) globals are rejected, since slices do not track global memory;

(ii) type and visitation checks skip non-instruction values and duplicates; and (iii) the

scope guard prevents traversal beyond loop boundaries. The first and second filters are

omitted from the pseudocode in Algorithm 10 to improve readability.

When the dequeued value x is a PHINode, the algorithm records all incoming blocks

of x in BBs and injects the associated gating predicates from predicates. Each predicate

is considered for expansion unless it lies outside the current loop or in the header, or if it

resides in the same block as the slice criterion. This constraints ensures that data selection

at ϕ-functions is coupled with the control conditions selecting the incoming edge, thereby

preserving the logical predicate instructions of the original program.

By construction, deps collects every value reachable by the one-step traversal under

these rules, BBs conservatively accumulates defining and incoming blocks, and funcArgs

identifies the loop boundary cut set. Because memory beyond direct operands is not

chased, alias analysis and deeper memory reasoning remain out of scope for this phase.

The injected control dependencies guarantee soundness with respect to the GSA-based

predicate over-approximation.

Finally, the traversal algorithm performs a search analogous to a Breadth-First

Search over the dependency subgraph of the slice criterion. Let this subgraph be GS =

(VS, ES), where VS is the set of variables in the slice (deps), and ES is the set of directed

edges where the target node is a variable that uses the source node variable.

Due to the Visited set, each vertex in VS is enqueued and processed exactly once.

The work performed at each vertex involves iterating over its outgoing edges (operands for

instructions, predicates for ϕ-functions). Therefore, the time complexity is linear in the

size of the subgraph, i.e., O(|VS|+ |ES|). The space required is dominated by the Worklist

and Visited sets, leading to a space complexity of O(|VS|). In practice, the bounded nature

of the slice yields a runtime that is nearly linear in the number of instructions within the

slice.



3.1. Program Slicer 49

Algorithm 8 OutsideOrHeader predicate

1: function OutsideOrHeader(v,L, H)
2: if L = ∅ or L is invalid then
3: return false
4: end if
5: if v is a ϕ-function then
6: if bb(v) = H then
7: return true ▷ ϕ-function in loop header
8: end if
9: if bb(v) /∈ L then

10: return true ▷ ϕ-function outside loop
11: end if
12: else if v is an Instruction then
13: if bb(v) /∈ L then
14: return true ▷ instruction outside loop
15: end if
16: end if
17: return false
18: end function

Algorithm 9 ProcessOperand helper

1: function ProcessOperand(v)
2: if v ∈ Visited then
3: return true
4: end if
5: insert v into Visited
6: if OutsideOrHeader(v,L, H) then
7: insert v into funcArgs
8: return true
9: end if
10: enqueue v into Worklist
11: return true
12: end function



3.1. Program Slicer 50

Algorithm 10 Single-step data-dependence traversal

Input: slice criterion instruction I; predicate map predicates; loop L (possibly ∅) with
header H

Output: triplet (BBs, deps, funcArgs)
1: deps← ∅; BBs← ∅; funcArgs← ∅
2: Visited← {I}; Worklist← ⟨I⟩ ▷ FIFO worklist
3: while Worklist not empty do
4: x← pop front of Worklist
5: insert x into deps
6: if x is an Instruction then
7: insert bb(x) into BBs
8: for all operands u of x do
9: if not ProcessOperand(u) then
10: break
11: end if
12: end for
13: end if
14: if x is a ϕ-function then
15: for all incoming blocks B of x do
16: insert B into BBs
17: end for
18: for all p ∈ predicates[bb(x)] do
19: if p /∈ Visited and p is Instruction then
20: if OutsideOrHeader(p,L, H) then
21: continue
22: end if
23: insert p into Visited
24: enqueue p into Worklist
25: end if
26: end for
27: end if
28: end while
29: return

(
BBs, deps, funcArgs

)

Outline Restrictions

A slice is deemed unsuitable for outlining if it fails preliminary legality checks,

contains complex control flow such as try-catch blocks, or violates specific heuristic

thresholds. We establish constraints on the minimum and maximum number of instruc-

tions in the slice, as well as a limit on the number of parameters that would be required

for the new function, ensuring that the overhead of the function call does not outweigh

the benefits of outlining.



3.1. Program Slicer 51

Furthermore, a slice cannot be outlined if it introduces memory-related inconsis-

tencies or undefined behavior. This is determined by several critical conditions:

1. The slice contains stack allocations (alloca instructions) that are modified else-

where in the parent function, creating potential for memory corruption.

2. Any load instructions within the slice target memory locations that could be clob-

bered by other instructions in the parent function, thus violating data dependency

rules.

3. The slice includes calls to functions with unknown side effects, such as indirect calls

or external functions that are not known to be read-only. However, calls to outlined

functions created by Daedalus are allowed.

4. Any instruction within the slice cannot guarantee its return, which would disrupt

the control flow of the parent function. This includes instructions that might throw

exceptions, trap, or lead to abnormal program termination.

3.1.3 Idempotent Backward Slice

Definition 9 (Idempotent Backward Slice). Given a program P and a slicing criterion

c specified by an instruction Ic (which may be located within a loop L with header

H), an Idempotent Backward Slice is an executable subprogram composed of input

parameters and all instructions required to compute the value of c.

This computation follows two primary modes of interaction with the loop L: It

can be restricted to a single conceptual iteration of L, which computes c directly (in this

case, the loop header acts to limit c’s computation); or, alternatively, c may depend on

data produced by a variable updated within the loop (in which case the loop itself, or

relevant portions thereof, is considered a dependency necessary for c’s computation).

The components of the slice are determined by the single-step traversal (Algo-

rithm 10) of P ’s CFG. First, the set IS is the set of instructions transitively required

to compute the value defined by Ic, within the possible bounds of the loop L. This set

corresponds to the instructions found in the deps output of the traversal algorithm:

IS = {i ∈ deps | i is an instruction}

Second, the input parameters Vin are variables used by instructions in IS and by defini-

tions that lie outside L’s boundary. This set corresponds to the funcArgs output of the

algorithm:

Vin = {v ∈ funcArgs | v is a variable}



3.1. Program Slicer 52

The resulting slice S is a subprogram PS whose body contains the instructions IS and

whose parameters are the variables in Vin. This program computes the value of c and is

called as a function inside the original slice criterion instruction Ic in P .

3.1.4 Function Outlining

This subsection formalizes the function outlining phase, a powerful optimization

technique that automatically extracts a region of code into a new, standalone function.

The primary goal is to replace a segment of computation with a simple, equivalent function

call. This process begins with the results of our single-step data-dependence traversal,

which provides the necessary basic blocks (BBs), value dependencies (deps), and the set

of required function arguments (funcArgs).

The entire outlining procedure can be understood as a sequence of four main steps,

which we will illustrate with figures.

Step 1: Identify the Slice and Region. The process starts by targeting a specific

instruction, known as the slice criterion x6. Figure 3.3 illustrates this initial step. We

begin with the original CFG, where the instruction x6 resides (Figure 3.3a). A dependency

analysis is then performed, tracing backwards from x6 to identify all the basic blocks and

values that contribute to its result. This collection of blocks (VR) and their induced CFG

edges (ER) define the region R = (VR, ER) to be outlined, as visually isolated in Figure

3.3b.



3.1. Program Slicer 53

Figure 3.3: Identification of the slice and the corresponding region to be outlined.

(a) The original function.

BB0:
x1 = ...
x2 = ...
br (x1 < x2), BB1, BB2

BB1:
x3 = x1 + 10
br BB3

BB2:
x4 = x2 * 10
br BB3

BB4:
x5 = phi(x3, x4)
x6 = x5 + 4
br BB5

BB5:
use(x6)

(b) The region R on the original function.

BB0:
x1 = ...
x2 = ...
br (x1 < x2), BB1, BB2

BB1:
x3 = x1 + 10
br BB3

Region R to be outlined

BB2:
x4 = x2 * 10
br BB3

BB4:
x5 = phi(x3, x4)
x6 = x5 + 4
br BB5

BB5:
use(x6)

Source: The author.

Step 2: Verify Legality and Define the Interface. Before modifying the code, the

pass verifies that the identified region is safe to extract. Outlining is permitted only if

the region is pure, which imposes three key conditions: the new function must be self-

contained, has no external side effects, and its output depends solely on its inputs.

Once these conditions are met, the interface for the new function, Fslice, is con-

structed. Its arguments (funcArgs) are derived from values that are used inside the region

R but defined externally. The return type of Fslice is set to match the type of the instruc-

tion x6.

Step 3: Outline the New Function. With the interface defined, the cloning and

repair stage begins. A new, empty function Fslice is created, as shown in Figure 3.4.

The basic blocks from region R are then cloned into this new function. During this

process, a value map is used to remap operands: any dependencies on external values

are replaced by references to the new function’s formal parameters (p⃗). Internal control

flow, including predicates for ϕ-functions, is preserved within the cloned blocks. Finally,

a single ret instruction is added to return the cloned value x6’ (the equivalent of the

original instruction x6).



3.1. Program Slicer 54

Figure 3.4: The outlined function.

BB0:
x1' = ...
x2' = ...
br (x1' < x2'), BB1, BB2

BB1:
x3' = x1' + 10
br BB3

BB2:
x4' = x2' * 10
br BB3

BB4:
x5' = phi(x3', x4')
x6' = x5' + 4
return x6'

Source: The author.

Step 4: Replace the Region with a Call. In the final step, the pass modifies the

original function. The entire region of blocks R is removed and replaced by a single

call instruction to the newly created Fslice. The values that were previously identified as

external dependencies (p⃗) are passed as arguments to this call. As shown in Figure 3.5,

this dramatically simplifies the original function’s CFG, abstracting away the complex

computation into a clean and reusable function.

Figure 3.5: The new original function.

BB4:
x6 = call F_slice()
br BB5

BB5:
use(x6)

Source: The author.



3.1. Program Slicer 55

First Dominator

To correctly reconstruct the control flow graph (CFG) of an outlined slice, it is

essential to manage branches inside the slice. Our approach relies on the concept of

dominance to identify the correct successor block for such branches. Let a CFG be a

directed graph G = (V,E), where V is a set of basic blocks and E is a set of edges

representing control flow. Let S ⊆ V be the subset of blocks included in the program

slice. First, we define a key concept for our branch rerouting logic.

Definition 10 (First Dominator in Slice). For any block v ∈ V , the first dominator in

the slice is the closest strict dominator of v that is also a member of the slice’s blocks set

S. This is found by traversing up the dominator tree from v and selecting the first node

encountered that belongs to S.

The branch rerouting procedure is applied to any edge (b, s) ∈ E where the source

block b ∈ S is part of the slice, but the successor block s /∈ S is not. The objective is to

find a new target block t for the branch from b within the reduced CFG. The algorithm

proceeds as follows:

1. Initiate a forward traversal of the original CFG starting from the successor block s.

2. Avoid revisiting nodes already seen during traversal. The source block b is skipped

to prevent traversing loops.

3. If the slice criterion is inside a loop, apply the following restrictions:

a) Skip traversal from the loop header, to avoid traversing invalid paths.

b) Skip blocks that are outside the current loop, preserving loop consistency and

preventing traversal beyond the loop’s scope.

4. Search for a reachable block t such that its first dominator in the slice is the source

block b; or the t’s first dominator also dominates b.

5. If such a block t is found, reroute the exiting branch from b to target t in the new

sliced CFG.

6. If traversal completes and no such block exists, reroute the branch from b to a

terminal block representing an unreachable or exit condition, preserving the CFG’s

integrity.

This method ensures that control flow leaving the slice is redirected to the correct

program point that is post-dominated by the exit block of the slice, while also respecting

loop structure and maintaining program semantics.



3.2. Function Merging and Simplification 56

3.2 Function Merging and Simplification

To eliminate redundancy among the newly created slices, we first employ the LLVM

mergefunc pass [13]. This pass identifies and merges semantically equivalent functions.

For each set of identical slices, it establishes a single canonical version and updates all

call sites accordingly. This process relies on a mapping from each deleted function to its

new, canonical equivalent, ensuring that all references within the module remain valid.

Once the outlined functions have been merged, the transformation is finalized

within the original parent functions. The instruction sequences that were extracted are

now replaced with call instructions targeting the new canonical functions. To conclude the

process, we execute the simplifyCFG pass [14]. This final step removes any basic blocks

or control flow structures that became redundant as a result of the outlining, ensuring

the resulting functions are as compact and efficient as possible.

3.3 Slicing Example

In contrast to Wyvern, we first map all gating functions as regular expressions,

making predicates explicit to our single-step data traversal algorithm. This ensures that

no implicit control dependency is overlooked, which makes it possible to outline a slice

function for the ladder graph case. Furthermore, we identified key limitations in the first

dominator implementation from prior work (Section 2.3.2). To address these deficiencies,

we propose and show a more robust algorithm working, from Section 3.1.4.

Let the program from Section 2.5 be the input to our algorithm. Following the

steps illustrated in Figure 3.1, we first normalize the program into LCSSA form using the

mem2reg and lcssa LLVM passes. In this example, the program is already in SSA.

For every merge point in the program, we apply Algorithm 6 to construct a regular

expression of its corresponding gating functions γ and µ. Figure 3.6 shows each basic block

with a merge point, annotated with the relative path expression that represents its gating

function. Colors indicate which paths are taken to reach each merge point. Finally,

a mapping between basic blocks and their controlling predicates (the blocks’ conditional

terminators) is constructed. This mapping specifies which predicate governs the execution

of each block, concluding the GSA Construction step.



3.3. Slicing Example 57

Figure 3.6: The ladder graph in GSA form.

BB0:
x1 = a1 + b1
br (a1 < 41), BB1, BB8

BB1:
br (b1 < 33), BB2, BB7

BB2:
br (c1 < 25), BB3, BB6

BB3:
x2 = x1 * c1
br (c1 < 17), BB4, BB5

BB4:
br BB9

BB9:
x5 = phi(x2, x4)
s1 = x5 << 16

BB8:
br BB7

BB7:
br BB6

BB5:
x4 = phi(x2, x3)
br BB9

BB6:
x3 = x1 * a1
br BB5

Source: The author.

As in Wyvern, we assume s1 = x5 << 16 is the slice criterion and proceed to the

Slice Identification step. Our algorithm identifies both the data dependencies listed in 3.7a

and, unlike Wyvern, the controlling predicates listed in 3.7b. It retrieves these predicates

from the mapping generated by Algorithm 7. This complete dependency information is

crucial, as it enables our corrected first dominator (Section 3.1.4) algorithm to properly

reconstruct control flow, ensuring a branch from BB0 correctly targets BB1 instead of the

erroneous successor BB9. A new function is then outlined, represented in Figure 3.8.

Figure 3.7: Slice criterion’s dependencies.

(a) Data dependencies.

1. x5 = phi(x2, x4)

2. x2 = x1 * c1

3. x4 = phi(x2, x3)

4. x1 = a1 + b1

5. x3 = x1 * a1

(b) Control dependencies.

1. br (c1 < 17), BB4, BB5

2. br (c1 < 25), BB3, BB6

3. br (c1 < 33), BB2, BB7

4. br (a1 < 41), BB1, BB8

Source: The author.

Finally, once all outlined functions are identified, the pass attempts to merge sim-

ilar ones and simplify them. This step is carried out by leveraging the mergefunc and

simplifycfg LLVM passes within our implementation.



3.3. Slicing Example 58

Figure 3.8: Final sliced function.

BB0:
x1 = a1 + b1
br (a1 < 41), BB1, BB8

BB1:
br (b1 < 33), BB2, BB7

BB2:
br (c1 < 25), BB3, BB6

BB3:
x2 = x1 * c1
br (c1 < 17), BB4, BB5

BB4:
br BB9

BB9:
x5 = phi(x2, x4)
s1 = x5 << 16

BB5:
x4 = phi(x2, x3)
br BB9

BB6:
x3 = x1 * a1
br BB5

Source: The author.



59

Chapter 4

Soundness

This chapter provides a formal argument for the soundness of our program slicing algo-

rithm. We aim to prove that an extracted Idempotent Backward Slice (Definition 9) is

semantics-preserving with respect to its slicing criterion. That is, for any given program

input, the value computed for the criterion variable by the slice is identical to the value

computed by the original program.

To formalize the semantics-preserving property, we first introduce a minimal in-

termediate language that explicitly includes the Gated Single-Assignment (GSA) gating

functions central to our slicing algorithm. We then define its structural operational se-

mantics. Finally, we proceed to state and prove the soundness theorem by induction.

4.1 MiniGSA: A Minimal GSA Language

This section defines a minimal language called MiniGSA, which contains the basic

syntax necessary to explain the semantics of the Gated Static Assignment format.

4.1.1 Syntax

A program P is a map from labels L to basic blocks B, and program termination

is handled by the stop instruction Istop .



4.1. MiniGSA: A Minimal GSA Language 60

Variables v ∈ Var

Labels L ∈ Label

Values z ∈ Value

Operators ⊕ ∈ {+,−, ∗, /, . . . }
Restart Set R ⊆ Var

Standard Instr ι ::= v0 = v1 ⊕ v2

| v0 = γ(p, vtrue, vfalse)

| v0 = µ(vinit, vloop)

| v0 = η(p, vexit, R)

Control Flow τ ::= br L | br p, Ltrue, Lfalse | Istop
Basic Blocks B ::= ι;B | τ
Programs P ::= L 7→ B, . . .

4.1.2 Semantics

We define a structural operational semantics. A program configuration is a tuple

⟨I;B, σ⟩, where I is the sequence of instructions from the current basic block yet to be

executed, and σ is the store. The single-step transition relation is P, Istop ⊢ ⟨I;B, σ⟩ →
⟨I ′, σ′⟩. We assume a store σ maps a variable v to a value σ[v], or the uninitialized marker

⊥.

Instruction Semantics. These rules define the execution of standard instructions.

They operate within the current sequence of instructions I, until it reaches the stop

instruction Istop .



4.1. MiniGSA: A Minimal GSA Language 61

z = σ[v1]⊕ σ[v2]

P, Istop ⊢ ⟨v0 = v1 ⊕ v2;B, σ⟩ → ⟨B, σ[v0 7→ z]⟩

σ[p] = True z = σ[vtrue]

P, Istop ⊢ ⟨v0 = γ(p, vtrue, vfalse);B, σ⟩ → ⟨B, σ[v0 7→ z]⟩

σ[p] = False z = σ[vfalse]

P, Istop ⊢ ⟨v0 = γ(p, vtrue, vfalse);B, σ⟩ → ⟨B, σ[v0 7→ z]⟩

σ[v0] = ⊥ z = σ[vinit]

P, Istop ⊢ ⟨v0 = µ(vinit, vloop);B, σ⟩ → ⟨B, σ[v0 7→ z]⟩

σ[v0] ̸= ⊥ z = σ[vloop]

P, Istop ⊢ ⟨v0 = µ(vinit, vloop);B, σ⟩ → ⟨B, σ[v0 7→ z]⟩

σ[p] = False z = σ[vexit]

P, Istop ⊢ ⟨v0 = η(p, vexit, R);B, σ⟩ → ⟨B, σ[v0 7→ z,∀r ∈ R. r 7→ ⊥]⟩

The η function is defined with an additional set R of variables, which we denote

R ⊆ Var. This set R contains loop-dependent variables (i.e., µ-defined variables) that

must be effectively reset to ⊥ upon loop exit. This explicit resetting of µ-defined variables

ensures that if the loop is re-entered, the relevant µ nodes will correctly re-select their

initial value vinit , thereby making the variables reusable and preserving the required single-

assignment property for subsequent loop iterations in the overall program flow. Formally,

upon p = False, the rule simultaneously assigns the exit value z to v0 and maps every

variable r ∈ R to the uninitialized value ⊥ in the store: σ[v0 7→ z,∀r ∈ R. r 7→ ⊥].

Control Flow and Termination Semantics. These rules define control transfer.

They update the current sequence of instructions and replace them with the instruc-

tions from the target basic block. When the stop instruction is reached, the program

state is its output store σ.

P (Lnext) = B

P, Istop ⊢ ⟨br Lnext, σ⟩ → ⟨B, σ⟩

σ[p] = True P (Ltrue) = Btrue

P, Istop ⊢ ⟨br p, Ltrue, Lfalse, σ⟩ → ⟨Btrue, σ⟩

σ[p] = False P (Lfalse) = Bfalse

P, Istop ⊢ ⟨br p, Ltrue, Lfalse, σ⟩ → ⟨Bfalse, σ⟩ P, Istop ⊢ ⟨Istop ;B, σ⟩ → σ



4.2. Soundness 62

4.2 Soundness

Definition 11 (Transitive Closure for Transition Relation). The transitive closure→∗

for the transition relation → over program configurations s = ⟨I;B, σ⟩ is the smallest

relation satisfying the following inference rules:

P, Istop ⊢ ⟨Istop ;B, σ⟩ → σ

P, Istop ⊢ ⟨Istop ;B, σ⟩ →∗ σ
(Termination)

P, Istop ⊢ ⟨I;B, σ⟩ → ⟨B, σ0⟩

P, Istop ⊢ ⟨I;B, σ⟩ →∗ ⟨B, σ0⟩
(Base Case)

P, Istop ⊢ ⟨I0;B, σ0⟩ →∗ ⟨I1;B, σ1⟩ P, Istop ⊢ ⟨I1;B, σ1⟩ →∗ ⟨I2;B, σ2⟩

P, Istop ⊢ ⟨I0;B, σ0⟩ →∗ ⟨I2;B, σ2⟩
(Transitivity)

Thus, the full execution of a program P starting from the entry point Lentry with

initial store σin , and terminating at instruction Istop with final store σout , is formally

expressed using the transitive closure as:

P, Istop ⊢ ⟨Lentry , σin⟩ →∗ σout

Definition 12 (CFG of a Slice). Let P be a program with CFG GP = (VP , EP ). Let S be

an Idempotent Backward Slice of P for a criterion c, as in Definition 9, with instruction

set IS. The control-flow graph of the slice subprogram PS is GS = (VS, ES), where:

1. VS is the set of basic blocks containing at least one instruction from IS, plus any

blocks synthesized during the materialization of the subprogram.

2. ES is the set of edges (u, v) where u, v ∈ VS that are either preserved from GP or

are newly introduced to connect synthesized blocks.

Lemma 1 (Slice Entry as Dominator). Let S be an Idempotent Backward Slice with CFG

GS = (VS, ES) (Definition 12), constructed by a backward dependency traversal from a

criterion Ic in block Bc. This construction process identifies a unique block, LS
entry ∈ VS,

that dominates every other block B ∈ VS within the slice CFG GS.

Proof. The slice’s instruction set, IS, is formed by the deps output of Algorithm 10. This

algorithm performs a bounded, transitive traversal starting from the criterion Ic. It col-

lects not only data dependencies (operands of instructions) but also control dependencies.

This is achieved by querying the GSA predicates map (constructed by Algorithm 6 and 7)



4.2. Soundness 63

whenever a ϕ-function is encountered, adding the gating predicate instructions to the

worklist for further traversal.

This process selects a subgraph GS, from the original program’s CFG GP . This

subgraph contains all blocks (BBs) necessary to host the instructions in IS and all control-

flow paths that enable the computation of the criterion. Because both data and control

dependencies are transitively included, the resulting set of blocks and the edges between

them form the subgraph GS.

For GS to constitute a valid computation, all such paths must originate from a

common entry context. The backward traversal, by including necessary control-flow pre-

decessors, ensures that all dependency paths eventually trace back to a common ancestral

block within the slice. This block, which we denote LS
entry , serves as the nexus for all

control flow entering the slice’s computation. By construction, every valid execution path

from the beginning of the slice’s computation to any arbitrary block B ∈ VS must nec-

essarily pass through LS
entry . This is the formal definition of dominance (LS

entry dom B).

This dominator is identified and used for CFG reconstruction via the First Dominator in

Slice logic defined in Section 3.1.4.

Therefore, the construction process naturally identifies a unique block, LS
entry , that

dominates all other blocks within the slice’s CFG.

Theorem 1 (Every idempotent backward slice has a single entry block). Let S be an

Idempotent Backward Slice (Definition 9). Then the slice CFG GS = (VS, ES) has a

single entry block.

Proof. By Lemma 1, the backward dependency traversal used to construct the slice S

yields a CFG GS, containing a block LS
entry that dominates all other blocks in VS. In a

control-flow graph, a block that dominates all other blocks is, by definition, the unique

entry point of that graph. The existence of any other potential entry would imply a path

to some block within the slice that does not pass through LS
entry , which would violate its

dominance property.

Consequently, LS
entry is the single entry block of the slice.

Furthermore, the construction implies a dual property: the criterion’s block, Bc,

post-dominates the entry block LS
entry within GS. This is a direct consequence of the

slice’s purpose: every valid execution path starting from the entry must eventually reach

the criterion for the computation to be meaningful.

Corollary 1 (When does the slice entry equal the program entry?). If the construction

of PS reuses the original entry block Lentry and retains all control required to reach every

block in VS from it, then LS
entry = Lentry . Otherwise, L

S
entry ̸= Lentry is permitted.

Theorem 2 (Slicing Soundness). Let P be a program, Iv be a slicing criterion (the in-

struction that defines variable v), and S = Slice(P, Iv) be the extracted slice with single



4.2. Soundness 64

entry Lentry. The slicing algorithm is sound if for any initial store σin and entry label

Lentry, the following holds:

If P, Iv ⊢ ⟨Lentry , σin⟩ →∗ σP

then S, Iv ⊢ ⟨Lentry , σin⟩ →∗ σS and σS[v] = σP [v].

This states that if the original program P terminates by reaching Iv with a final

store σP , then the slice S also terminates by reaching Iv with a final store σS, and the

value of the criterion c is identical in both final stores.

Proof. We prove this theorem by induction on the length of the execution trace of the

original program P . Let the execution of P be a sequence of configurations s0, s1, . . . , sn

such that s0 = ⟨Lentry , σin⟩ and P, Iv ⊢ sk → sk+1 for 0 ≤ k < n, resulting in a final store

σP .

Let S be the slice of P . We define a corresponding execution trace for S where we

only consider the instructions present in S. Let σk
P and σk

S be the stores after k steps of

the original program and the corresponding steps in the slice, respectively. Let Defs(S)

be the set of all variables appearing on the left-hand side of an assignment instruction

within the slice S. This set represents all variables whose values are computed by the

slice.

Our inductive hypothesis, H(k), is: For any variable w defined within the slice,

its value is the same in both stores after k steps. This includes the uninitialized value ⊥.
Formally:

∀w ∈ Defs(S), σk
S[w] = σk

P [w]

Base Case (k = 0): The execution of both P and S starts with the initial store σin .

For any w ∈ Defs(S), its initial value is σin [w] (which may be ⊥) in both configurations.

Thus, σ0
S[w] = σ0

P [w], and the hypothesis holds.

Inductive Step: Assume that the hypothesis H(k) holds for some k ≥ 0. We need

to show that H(k + 1) also holds after the execution of the next instruction, ι, in the

program P . Let this transition be P, Iv ⊢ ⟨ι; . . . , σk
P ⟩ → ⟨. . . , σk+1

P ⟩. We perform a case

analysis on ι.

• Case 1: ι /∈ S. By definition, ι defines some variable v′ /∈ Defs(S). The slice

execution does not change, so σk+1
S = σk

S. For any w ∈ Defs(S), we know w ̸= v′, so

its value is not affected by ι. Thus, σk+1
P [w] = σk

P [w]. By the inductive hypothesis,

σk
P [w] = σk

S[w]. Combining these, we get σk+1
P [w] = σk+1

S [w]. The hypothesis holds.



4.2. Soundness 65

• Case 2: ι ∈ S. The instruction ι is executed in both P and S. By the inductive

hypothesis, the values of all input variables to ι are identical in σk
P and σk

S, since

the definitions of those input variables must also be in S and thus their variables

are in Defs(S).

– ι ≡ (v0 = v1⊕ v2): The definitions of operands v1 and v2 must be in S. By IH,

σk
P [v1] = σk

S[v1] and σk
P [v2] = σk

S[v2]. Since ⊕ is a deterministic operator, the

result z = σk
P [v1] ⊕ σk

P [v2] is identical to z′ = σk
S[v1] ⊕ σk

S[v2]. Both stores are

updated with the same value for v0.

– ι ≡ (v0 = γ(p, vtrue, vfalse)): The definition of the predicate p must be in S. By

IH, σk
P [p] = σk

S[p]. If the predicate is true, the definition of vtrue must be in

S, and by IH, its value is the same in both stores. The same holds for vfalse

if the predicate is false. Thus, the γ function selects the same value in both

executions.

– ι ≡ (v0 = µ(vinit, vloop)): The choice between vinit and vloop depends on whether

σ[v0] = ⊥. Since v0’s definition (ι) is in S, v0 ∈ Defs(S). By IH, σk
P [v0] = σk

S[v0].

Therefore, both executions make the same choice. The chosen variable (vinit

or vloop) must also have its definition in S, so by IH its value is also the same.

The assignment to v0 is identical.

– ι ≡ (v0 = η(p, vexit, R)): Similar to γ, the predicate p and operand vexit must

have their definitions in S. By IH, their values are identical in σk
P and σk

S.

Both executions will assign the same value to v0. The rule also resets variables

in R to ⊥. For any r ∈ R that is also in Defs(S), its value becomes ⊥ in both

σk+1
P and σk+1

S , maintaining the equivalence.

– ι ≡ (br p, Ltrue, Lfalse): A conditional branch is included in S if it provides

control dependence. The definition of p must be in S. By IH, σk
P [p] = σk

S[p].

Therefore, both P and S will branch to the same successor block, ensuring

that the sequence of executed blocks from the slice is the same. The same logic

applies to an unconditional branch.

In all sub-cases where ι ∈ S, the update to the store for any variable in Defs(S) is

identical. The hypothesis H(k + 1) holds.

By induction, the hypothesis holds for all steps up to the termination of the pro-

gram at the stop instruction Iv. Since the definition of v is the slicing criterion itself, its

defining instruction is in S and v ∈ Defs(S). Therefore, at the final step, the value com-

puted for the criterion variable v is the same in both stores: If P, Iv ⊢ ⟨Lentry , σin⟩ →∗ σP ,

then S, Iv ⊢ ⟨Lentry , σin⟩ →∗ σS and σS[v] = σP [v].

Finally, we implemented an interpreter that is derived from the inference rules

from Section 4.1.2. The code is presented on Appendix A.



66

Chapter 5

Evaluation

Having established the theoretical background, this chapter presents the empirical eval-

uation of our implementation. We begin by specifying our benchmark setup and experi-

mental methodology. To assess the effectiveness of our approach, we compare its results

against two key baselines: the func-merging pass introduced by Rocha et al. [18] and the

standard IROutliner pass in LLVM 17. The data gathered from these comparisons is then

used to address the following research questions, thereby demonstrating the feasibility of

our work:

RQ1: How much code-size reduction can the outlining of idempotent slices achieve, and

how does this result compare with techniques of similar goals?

RQ2: What is the impact of slice outlining on the running time of benchmarks, and how

does this impact compare with previous work?

RQ3: What is the overhead that slice outlining adds to the compilation pipeline, and

how does this overhead compare with previous work?

RQ4: What is the asymptotic behavior of the slice outlining algorithm?

RQ5: What is the time taken by the different phases of the outlining optimization pro-

posed in this paper?

RQ6: Can we observe a cumulative benefit of running the different code-size optimiza-

tions in combination?

5.1 Experimental Setup

The experiments consisted of running three transformation passes over the LLVM

Test Suite to collect statistics in four categories of metrics: number of LLVM instructions

(Instcount), size of the .text segment of the executable, execution time and compilation



5.1. Experimental Setup 67

time. For this purpose, a dedicated machine was selected, a patch for the test suite was

developed, and all baseline configurations were prepared. Once the benchmark environ-

ment was ready, we compiled 2007 programs using func-merging and IROutliner, and

compared their results against those obtained with Daedalus. Our results were obtained

using the parameter settings defined in our cost model experiment.

Hardware

The experiments were conducted on a server provided by the Compilers Laboratory

at DCC/UFMG, with the following configuration:

• CPU: AMD Ryzen Threadripper 7970X 32-Cores 4GHz

• Memory: 128 GiB RAM

This hardware was chosen primarily for its high core count, which allowed the

experiments to be executed efficiently in a multi-threaded setting.

Benchmark Environment

The experiments were conducted using baselines that required a different build

and configuration of LLVM 17. The choice of this version was motivated by compatibility

with func-merging, by the stability of IROutliner, and by the modifications necessary

to support Daedalus. The benchmark environment for each baseline is summarized as

follows:

• func-merging baseline

– Implemented as an LLVM 17 patch used by the original authors of func-merging.

• IROutliner baseline

– Implemented as an upstream LLVM 17 pass.

– Stable across LLVM versions, ensuring consistent behavior across builds.

• Daedalus



5.1. Experimental Setup 68

– The mergefunc pass in LLVM 17 was extended to support the core merge

procedure for arbitrary sets of functions.

– Daedalus source code can be found at: https://github.com/lac-dcc/Daedalus.

The specific LLVM 17 build source code is available at https://tinyurl.com/

ye55ax9d. Also, all experiments were executed on the selected hardware using shell

scripts developed for this study, publicly available at https://tinyurl.com/ye26drz6.

To reproduce our experiments, one needs to build our artifact image using docker,

with the Dockerfile located at ./artifact/docker/Dockerfile within Daedalus’s repos-

itory.

Compilation Pipeline

For each program in the test corpus, metrics were collected by compiling it with

the -Os optimization flag, both before and after applying the selected pass, as illustrated

in Figure 5.1. This procedure isolates the effect of the transformation, ensuring that

any differences in the reported metrics are attributable solely to the chosen pass, thereby

minimizing external noise.

This setup is not configured by default on LLVM Test Suite (version 17). To

achieve this pipeline, the build system of the LLVM Test Suite was modified to include

a post-build pipeline that extracts, transforms, and recompiles each program in order to

evaluate the effect of an arbitrary pass. The sequence of steps integrated into the CMake

configuration is illustrated in Figure 5.2.

Programs are first compiled with Link Time Optimization (LTO) [16] flags, which

embed their fully linked bitcode into the target executable. The resulting binary is then

processed with objcopy to extract the embedded .llvmbc section as a standalone .bc file.

This bitcode is normalized using canonicalization passes (mem2reg,lcssa) to ensure it is

in LCSSA form and suitable for further analysis. The selected pass is subsequently applied

with optional arguments, producing a transformed version of the bitcode. The optimized

bitcode is recompiled into a native executable with the -Os flag, and finally, metrics are

collected. Finally, the Test Suite patch is available on https://tinyurl.com/ye2a9ypt.

The main motivation for recompiling the programs using this method is to leverage

the existing configuration of the test suite subprojects. Each subproject already defines a

specific set of compilation flags, which makes individual modifications difficult to apply.

By operating at this level, our approach becomes scalable and simplifies the evaluation of

arbitrary passes.

https://github.com/lac-dcc/Daedalus
https://tinyurl.com/ye55ax9d
https://tinyurl.com/ye55ax9d
https://tinyurl.com/ye26drz6
https://tinyurl.com/ye2a9ypt


5.1. Experimental Setup 69

Figure 5.1: Compilation pipeline.

clang -Os program.c -o program.opt

clang -Os program.opt -o program

Source: The author.

Figure 5.2: Build system modification steps.

Extract LLVM bitcode
          (objcopy)

Compile program
 (clang -flto -Os)

               Normalize IR
(opt -passes=mem2reg, lcssa)

Recompile program
        (clang -Os)

     Collect metrics
(instcount, .text size)

Apply chosen pass

Source: The author.



5.2. Research Questions 70

Cost Model Experiment

To achieve the greatest possible code-size reduction, we conducted a cost model

experiment in which we limited the number of arguments, instructions, and users of

an outlined function. These checks are performed during the Slice Identification step

described in Section 3.1.2.

The cost model experiment involved compiling the entire LLVM Test Suite multiple

times while varying the three parameters and their combinations. The range for the

number of arguments was [0, 20], for the number of instructions [10, 20, 40, 80, 160], and

for the number of users [10, 20, 40, 80, 160, 320, 640].

After recompiling and collecting the geometric means of the metrics across 735

runs, we concluded that the greatest reduction in the Instcount metric was achieved with

outlined functions containing at most one argument, no more than 20 instructions, and

at most 10 users.

5.2 Research Questions

The experimental results were analyzed and summarized using tables and graphs.

Each table reports the number of programs affected and the corresponding geometric

mean, where positive percentages indicate an increase in a given metric and negative

percentages indicate a decrease. Table 5.1a details the instances where metrics remained

unchanged, while Table 5.1b summarizes the overall geometric mean for each of the se-

lected metrics.

RQ1: Code-Size Reduction

This section evaluates the code-size reduction capabilities of our approach. The ef-

fectiveness of Daedalus is measured by its impact on the final executable’s .text section

size across the benchmark suite. The analysis reveals that while the technique can yield

substantial rewards in specific cases, its overall effect is more complex than a straightfor-

ward reduction, highlighting a critical trade-off between analytical precision and general



5.2. Research Questions 71

Table 5.1: Experimental results across different metrics.

(a) Programs with unchanged metrics.

Daedalus Function Merging IROutliner

Metric Count Count Count

Instcount 1865 1824 1800
.text size 1874 1817 1847
Exec. Time 1846 1830 1847
Compile Time 1704 1766 1749

(b) Overall metrics.

Daedalus Function Merging IROutliner

Metric Total Geomean Total Geomean Total Geomean

Instcount 2007 -0.24% 2007 -0.35% 2007 -0.65%
.text size 2007 0.11% 2007 0.39% 2007 -0.19%
Exec. Time 2007 0.06% 2007 0.25% 2007 -0.09%
Compile Time 2007 4.22% 2007 2.06% 2007 2.48%

Source: The author.

applicability.

The evaluation reveals that Daedalus has a nuanced impact on code size. Overall,

the technique resulted in a slight geometric mean increase of 0.11% across the 2007 pro-

grams in the test suite. This aggregate result, however, masks a significant trade-off

visible in the detailed breakdown. Furthermore, an analysis across all metrics reveals

that none of the evaluated passes were able to reduce every metric for any single pro-

gram. Conversely, in a few specific cases, each pass increased all metrics, as outlined in

Table 5.2.

Table 5.2: Number of Programs with All Metrics Positive.

Metric Name Daedalus func-merging IROutliner
(+) Instcount 14 26 0
(+) .text size
(+) Exec. Time
(+) Comp. Time

Source: The author.

The optimization is highly targeted, leaving the .text section size of 1874 programs

entirely unchanged (Table 5.1a). This indicates that the specific, recurrent patterns of

Idempotent Backward Slices that Daedalus identifies are not prevalent in most of the

benchmark programs.

When the optimization was applicable, its effects were pronounced but mixed:



5.2. Research Questions 72

• Effective Reductions: In 23 programs, Daedalus achieved a substantial average

.text size reduction of -8.39%, and -9.96% in Instcount. This demonstrates

that for programs with suitable structures, the algorithm can be highly effective at

compacting code.

• Size Increases: Conversely, the pass led to a size increase in a larger set of 57

programs, with an average code-size increase of 2.09% in .text size.

Tables 5.4 and 5.3 detail the number of programs where both the instruction count

and .text section size metrics concurrently increased or decreased, respectively. A posi-

tive value indicates an increase, while a negative value indicates a reduction.

Table 5.3: Number of Programs with Negative Instcount and .text size.

Metric Name Daedalus func-merging IROutliner
(-) Instcount 23 30 105
(-) .text size
Diff Geomean -8.39% -10.72% -4.65%

Source: The author.

Table 5.4: Number of Programs with Positive Instcount and .text size.

Metric Name Daedalus func-merging IROutliner
(+) Instcount 57 56 10
(+) .text size
Diff Geomean 2.09% 6.02% 3.37%

Source: The author.

When analyzing the programs that Daedalus successfully reduces, it consistently

and significantly outperforms the baseline techniques. Figure 5.3 illustrates this trend

across the programs where Daedalus achieved a code-size decrease. In nearly all these in-

stances, Daedalus (blue bars) provides a substantial reduction, while IROutliner (green

rhombus) offers only minimal savings, and func-merging (red triangles) frequently in-

creases the code size.

A representative example of this performance gap is the IndirectAddressing-dbl.test

program. For this test case:

• Daedalus achieved a remarkable code-size reduction of -9.32%.

• IROutliner provided a negligible reduction of only -0.35%.

• func-merging actually increased the code size by 1.07%.



5.2. Research Questions 73

Figure 5.3: Code-size reduction between Daedalus, func-merging, and IROutliner.

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

C
o

d
e-

si
ze

 r
ed

u
ct

io
n

/g
ro

w
th

 (
-/

+
%

)

Diff .text size Daedalus Diff .text size func-merging Diff .text size IROutliner

Source: The author.

This specific case highlights the core strength of our approach. While more broadly

applicable algorithms failed to find meaningful savings, the precision of GSA-based slicing

allowed Daedalus to identify and eliminate a significant redundancy.

This disparity is a direct result of the overhead from a new function’s prologue,

epilogue, and call-site instructions, which can easily negate the savings from outlining a

small code fragment. To address this, our approach is guided by the cost model described

in Section 5.1, which we specifically tuned to minimize this overhead.

The trade-offs inherent in our approach are particularly evident in programs where

Daedalus increases code size. Figure 5.4 compares the code-size impact of Daedalus

against the baselines for these cases.

The ldecod.test program serves as a clear example of this trade-off:

• Daedalus increased the code size by 1.97%.

• IROutliner achieved a small code-size reduction of -0.53%.

• func-merging yielded a significant code-size reduction of -2.5%.



5.2. Research Questions 74

Figure 5.4 presents the programs detailed in Table 5.4, where each pass increased

both the binary’s .text section size and the number of LLVM IR instructions.

Figure 5.4: Code-size growth between Daedalus, func-merging, and IROutliner.

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

C
o

d
e-

si
ze

 r
ed

u
ct

io
n

/g
ro

w
th

 (
-/

+
%

)

Diff .text size Daedalus Diff .text size func-merging Diff .text size IROutliner

Source: The author.

The difference in code-size impact among the passes stems from the trade-off be-

tween pattern granularity and recurrence. Daedalus operates on highly specific, fine-

grained data-flow patterns that may not recur often enough to amortize call overhead. In

contrast, IROutliner and func-merging target larger, more frequently occurring code

segments, generally increasing optimization opportunities. This contrast is evident in the

analysis of activate sps function from ldecod.test described on Table 5.5.

Table 5.5: Comparison of Code-Size Impact for activate sps Across Passes.

Pass Final Size (B) ∆ (B) # Fns New Fn Sizes (B) Total Calls Granularity / Recurrence
Original 3007 0 0 – – Baseline
Daedalus 3052 3052− 3007 2 9, 9 2 Fine / Low
IROutliner 3200 3200− 3007 2 174, 180 9 Medium / Moderate
func-merging 2963 2963− 3007 6 211, 514, 303, 314, 515, 1145 24 Coarse / High

Source: The author.

Daedalus increased the size of activate sps from 3007 to 3052 bytes. It produced

two very small slice functions (9 and 9 bytes), each used once within this function (2 total



5.2. Research Questions 75

calls), so prologue/epilogue overhead dominated the minimal savings from outlining fine-

grained, non-recurrent patterns.

IROutliner also led to a local size increase, reaching 3200 bytes. Although it

identified two larger, recurrent regions (174 and 180 bytes; 9 total calls), the added call-

site complexity in this function prevented a net reduction.

By contrast, func-merging reduced the function to 2963 bytes. It captured the

broadest and most varied set of optimizable regions, replacing original code with 24 calls to

six merged functions (211–1145 bytes). In this case, the coarse-grained, highly recurrent

transformations amortized call overhead and delivered the best compaction.

RQ2: Running Time

An essential requirement of any compiler optimization is that it must not degrade

the runtime performance of the transformed program. This section examines this as-

pect by evaluating the execution time of the benchmark suite after being processed by

Daedalus. The results show that the structural transformations introduced by slice out-

lining exert opposing effects on performance, which ultimately balance out to a neutral

overall impact.

Across all benchmarks, the effect of Daedalus on execution time is negligible. The

geometric mean of runtime variation shows a change of only 0.06% (Table 5.1b), and the

vast majority of programs (1846, see Table 5.1a) exhibited no measurable difference in

runtime performance.

For the smaller subset of programs that were affected, performance variations were

nearly symmetrical:

• Slowdown: Among programs that experienced a reduction in both instruction

count and .text section size, 14 exhibited a runtime increase of 4.48% on average

(Table 5.6). This behavior is consistent with expectations, as outlining introduces

additional function call overhead for logic that was previously inlined.

• Speedup: Conversely, 7 benchmarks showed an average runtime decrease of -3.39%

(Table 5.7). These cases, though less frequent, likely benefit from improved instruc-

tion cache locality: consolidating duplicated code into a single outlined function

allows the processor’s instruction cache to be used more efficiently.

Cache Performance Analysis A comparison of hardware performance counters be-

tween the baseline and Daedalus-optimized executions reveals a clear shift in cache behav-



5.2. Research Questions 76

ior, suggesting improved instruction locality and more efficient cache utilization, despite

a slight increase in control-flow complexity. Figures 5.5 and 5.6 illustrate the relevant

hardware event distributions before and after applying the pass.

Figure 5.5: Baseline cache performance profile.

0 1000 2000 3000 4000 5000 6000
Sample Count

branch-loads

branch-load-misses

L1-icache-loads

L1-icache-load-misses

Ev
en

t T
yp

e

 6027

 2165

 1736

 1163

Source: The author.

Figure 5.6: Cache performance profile after applying Daedalus.

0 1000 2000 3000 4000 5000 6000
Sample Count

branch-loads

branch-load-misses

L1-icache-loads

L1-icache-load-misses

Ev
en

t T
yp

e

 5661

 1870

 1011

 600

Source: The author.

In the baseline configuration (Figure 5.5), hardware counters recorded 6027 branch

loads and 2165 branch-load misses, alongside 1736 L1 instruction cache loads and 1163

misses. After applying Daedalus (Figure 5.6), these values shifted to 5661 branch loads,

1870 branch-load misses, and 1011 L1 instruction cache loads with 600 misses.

The optimization improved microarchitectural performance. The branch miss ra-

tio decreased from 35.92% to 33.03%, indicating more predictable control flow. More

substantially, the L1 data cache miss ratio fell from 66.99% to 59.35%. This reduction

points to enhanced temporal and spatial data locality, meaning frequently accessed data

remained resident in the cache for longer during execution.



5.2. Research Questions 77

These results suggest that the fine-grained outlining and code reorganization per-

formed by Daedalus improve the reuse of frequently executed instruction sequences. The

restructuring leads to tighter clustering of related code in memory, thereby reducing

instruction fetch latency and minimizing cache thrashing. In addition to the modest de-

crease in branch mispredictions, the overall memory access pattern becomes more cache-

efficient. Consequently, Daedalus enhances instruction cache locality without introducing

significant control-flow penalties.

Table 5.6: Benchmarks with Reduced Instruction Count and .text Size but Increased
Execution Time.

Metric Daedalus func-merging IROutliner
(-) Instcount 14 6 29
(-) .text size
(+) Exec. Time
Diff Geomean 4.48% 19.96% 6.67%

Source: The author.

Table 5.7: Benchmarks with Reduced Instruction Count, .text Size, and Execution Time.

Metric Daedalus func-merging IROutliner
(-) Instcount 7 6 27
(-) .text size
(-) Exec. Time
Diff Geomean -3.39% -15.16% -8.34%

Source: The author.

RQ3: Compilation Overhead

The practicality of a compiler optimization depends not only on its benefits but

also on its computational cost, particularly in terms of compilation time. This section

quantifies the overhead introduced by Daedalus. As shown in Table 5.1b, the advanced

analysis required for GSA-based slicing incurs a noticeable compile-time penalty. On

average, Daedalus introduces a geometric mean compilation time increase of 4.22% across

all benchmarks.

For the subset of programs that exhibited reductions in both Instcount and .text

size, Daedalus did not yield faster compilation times (Table 5.9). Instead, it added an

average overhead of 80.65% for these 23 benchmarks (Table 5.10).



5.2. Research Questions 78

Table 5.8: Benchmarks with Reduced Compilation Time and Corresponding Geometric
Mean Differences.

Metric Daedalus func-merging IROutliner
(-) Comp. Time 9 11 5
Diff Geomean -19.81% -17.25% -17.51%

Source: The author.

Table 5.9: Benchmarks with Reduced Instruction Count, .text Size, and Compilation
Time.

Metric Daedalus func-merging IROutliner
(-) Instcount 0 1 1
(-) .text size
(-) Comp. Time
Diff Geomean - -8.57% -1.61%

Source: The author.

Table 5.10: Benchmarks with Reduced Instruction Count and .text Size but Increased
Compilation Time.

Metric Daedalus func-merging IROutliner
(-) Instcount 23 19 82
(-) .text size
(+) Comp. Time
Diff Geomean 80.65% 24.31% 22.35%

Source: The author.

This overhead is an inherent consequence of the analyses employed by our tech-

nique. The Daedalus pass performs several computationally intensive operations not

present in traditional outlining approaches:

1. The pass operates recursively : after identifying and outlining a slice function for a

given criterion, it reanalyzes the original function to detect further slicing opportu-

nities.

2. A custom function outliner was implemented (Section 3.1.4), since existing LLVM

utilities such as CodeExtractor [12] cannot outline semantically defined regions

derived from dependency graphs.

3. The pass explicitly removes original instructions from the parent function after a

slice has been outlined and merged, rather than relying on subsequent dead-code

elimination passes.



5.2. Research Questions 79

While these steps enable more precise and semantically aware slicing, they also

increase compile-time costs relative to standard outlining algorithms.

RQ4: Daedalus Asymptotic Behavior

In this section, we detail the experiment conducted to measure the asymptotic

behavior of the Daedalus pass. We selected the 100 largest programs from the test suite

and measured the Pearson correlation between the number of LLVM IR instructions and

the absolute time each transformation took to execute. Finally, we plotted a graph for

each pass to visualize its asymptotic behavior.

A complexity analysis of the algorithms implemented by the Daedalus, IROutliner,

and func-merging passes suggests linear behavior as the input size increases. To verify

this empirically, we selected the 100 largest programs from the 2007 programs in our test

suite. As shown in Table 5.11, the compilation time is highly correlated with program

size. Furthermore, scatter plots of instruction count (X-axis) versus compilation time

(Y-axis) reveal a linear trend line for all three passes, as shown in Figures 5.7, 5.8, and

5.9.

Table 5.11: Pearson correlation between compilation time and instruction count for each
pass.

Pass Pearson Correlation
Daedalus 0.837392779
func-merging 0.940710506
IROutliner 0.918238062

Source: The author.

Therefore, Daedalus exhibits linear performance scaling with input size and shows

compilation times competitive with IROutliner and func-merging.

RQ5: Time of Daedalus Phases

In this section, we break down the transformation steps of Daedalus and measure

the time taken by each phase for a given input program.



5.2. Research Questions 80

Figure 5.7: Daedalus: Compilation Time vs. Instruction Count.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0 20000 40000 60000 80000 100000 120000 140000 160000

C
o
m

p
. 
T

im
e

Instcount

Source: The author.

The Daedalus pass is composed of four phases: Outlining, Merging Slices, Remov-

ing Instructions, and Simplification. As depicted in Figure 3.1, the GSA Construction,

Slice Identification, and Function Outlining steps are encapsulated within the Outlining

Phase. The Function Merging and Simplification step corresponds to its own dedicated

phase. The Remove Instructions Phase is responsible for deleting instructions from the

original function that become redundant after being moved into a newly merged function.

To perform this analysis, we ran Daedalus on all 2007 tested programs, collecting

the percentage of execution time spent in each phase. We then computed the geometric

mean of these percentages across all programs. The results are presented in Table 5.13,

which summarizes the main phases of Daedalus, and Table 5.12, which provides a detailed

breakdown of the Outline phase.

Name Wall Time
Slice Identification Phase Timer 42.389%
canOutline Phase Timer 32.581%
Function Outline Phase Timer 11.541%
GSA Construction Phase Timer 34.350%

Table 5.12: Timers for Outline Sub-Phases.

Name Wall Time
Outline Phase Timer 48.434%
Merge Phase Timer 22.885%
Remove Instructions Phase Timer 18.744%
Simplify Phase Timer 18.383%

Table 5.13: Timers for Daedalus Phases.

The column Name, identifies the phase being measured, while column Wall Time



5.2. Research Questions 81

Figure 5.8: IROutliner: Compilation Time vs. Instruction Count.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0 20000 40000 60000 80000 100000 120000 140000 160000

C
o
m

p
. 
T

im
e

Instcount

Source: The author.

indicates the real elapsed time, including any waiting or synchronization delays. Per-

centages denote each phase’s relative contribution to the overall compilation time. Given

the results in Tables 5.12 and 5.13, we conclude that the Outline Phase is the most

time-consuming stage. Additionally, breaking down the Outline Phase, Daedalus’s Slice

Identification and canOutline sub-phases expends significant time analyzing instruction’s

dependencies, and memory loads and stores. The latter analysis is required to account

for potential memory clobbering through various levels of indirection, which is essential

for verifying that a candidate function is side-effect-free before it can be outlined.

RQ6: Passes combinations’ metrics

We conducted an experiment to determine if combining Daedalus, IROutliner,

and func-merging could yield a better code compression ratio. To this end, we applied six

different pass sequences to the 2007 programs in the test suite and collected performance

metrics.



5.2. Research Questions 82

Figure 5.9: func-merging: Compilation Time vs. Instruction Count.

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

0 20000 40000 60000 80000 100000 120000 140000 160000

C
o
m

p
. 
T

im
e

Instcount

Source: The author.

Table 5.14 summarizes the overall geometric mean for each metric across the differ-

ent pass sequences. Each sequence is identified by a compound name indicating the order

of pass application. The passes are abbreviated as follows: Daedalus (ded), IROutliner

(iro), and func-merging (fum).

Table 5.14: Comparison of metrics across different optimization pass orders.

Metric Name ded-iro-fum fum-ded-iro ded-fum-iro fum-iro-ded iro-ded-fum iro-fum-ded
Instcount -1.22% -1.01% -1.07% -0.98% -1.19% -1.16%
.text size 0.43% 0.33% 0.38% 0.33% 0.41% 0.39%
Exec. Time 0.28% 0.28% 0.37% 0.39% 0.16% 0.29%
Comp. Time 5.57% 5.31% 5.49% 5.20% 5.50% 5.09%

Source: The author.

The compilation time overhead is consistent across all pass sequences. Similarly,

program execution time is affected, but the overhead is small. Given the nature of these

outlining passes, the .text section size also increases consistently. We attribute this to

the cumulative function call overhead introduced by the three passes, each identifying

different patterns to outline. Finally, the number of LLVM IR instructions is reduced

effectively, with the best pass configuration (ded-iro-fum) achieving a -1.22% reduction.



5.2. Research Questions 83

Summary

The empirical evaluation demonstrates the specific trade-offs of Daedalus. While

it can achieve significant code-size reductions in targeted cases (RQ1), its narrow applica-

bility results in a slight average size increase across the benchmark suite. This precision

comes at the cost of a noticeable, albeit linear, compilation time overhead (RQ3, RQ4),

primarily concentrated in the complex analysis of the Outline Phase (RQ5). Encourag-

ingly, these transformations have a negligible net effect on program runtime, as the costs of

function call overhead are balanced by gains in cache locality (RQ2). Furthermore, com-

bining Daedalus with other outlining techniques does not yield further size reductions,

highlighting its distinct optimization strategy (RQ6). We conclude that Daedalus is not

a general-purpose size-reduction tool but rather a specialized optimization. Its value is

most pronounced in domains where codebases feature the fine-grained, recurrent dataflow

patterns that its GSA-based slicing is uniquely capable of identifying and eliminating.



84

Chapter 6

Conclusion

This thesis addressed the persistent challenge of code-size reduction in compiler optimiza-

tion, a critical concern for software deployed on resource-constrained systems. We focused

on the program slicing paradigm, a powerful but complex technique for isolating relevant

program logic. While the concept, introduced by Weiser, has been influential for decades,

the efficient generation of precise, executable slices remains an open problem. Our work

confronted this challenge by leveraging the Gated Single Assignment (GSA) form to pro-

vide a richer semantic foundation for program analysis, enabling a more robust slicing

methodology.

The central thesis of this work was that the explicit control-dependency informa-

tion embedded in the GSA form could be used to generate self-contained, executable

Idempotent Backward Slices.

To validate this thesis, our contributions progressed from foundational theory to

practical implementation and evaluation. We began by successfully designing and imple-

menting a robust algorithm to convert programs from the standard LLVM Intermediate

Representation into the GSA form. Upon this foundation, we developed a novel program

slicing algorithm that operates on that representation to extract Idempotent Backward

Slices for code-size reduction. To ensure our work is reproducible and extensible, we

delivered this implementation as an open-source out-of-tree LLVM pass, complete with a

corresponding patch for the LLVM Test Suite to facilitate rigorous, standardized evalua-

tion.

Summary of Results The empirical evaluation in Chapter 5 demonstrates the

specific trade-offs of our approach. While Daedalus can achieve significant code-size

reductions in targeted cases (RQ1), its narrow applicability results in a slight average

size increase across the benchmark suite. Encouragingly, these transformations have a

negligible net effect on program runtime, as the costs of function call overhead are balanced

by gains in cache locality (RQ2). This precision, however, comes at the cost of a noticeable,

albeit linear, compilation time overhead (RQ3, RQ4), which is primarily concentrated in

the complex analysis of the Outline Phase (RQ5). Furthermore, combining Daedalus with

other outlining techniques does not yield further size reductions, highlighting its distinct

optimization strategy (RQ6). We conclude that Daedalus is not a general-purpose size-



85

reduction tool but rather a specialized optimization. Its value is most pronounced in

domains where codebases feature the fine-grained, recurrent dataflow patterns that its

GSA-based slicing is uniquely capable of identifying and eliminating.

Limitations This study has several limitations. First, the effectiveness of our

technique is highly dependent on a program’s structure. The empirical data shows that

the recurrent patterns it targets are rare in general-purpose software, limiting its impact.

Finally, our implementation was developed and tested against LLVM 17, and its compat-

ibility with other versions of the framework is not guaranteed without further engineering

effort.

Future Work The contributions and limitations of this thesis open several promis-

ing avenues for future research. A primary direction would be to develop an algorithm

for identifying promising slice candidates, which could make the pass more practical for

production compilers. Another valuable extension would be to adapt the concept of Idem-

potent Backward Slices for other applications beyond code-size reduction, such as targeted

debugging, security analysis, or program parallelization. Finally, extending the slicer to

handle more complex constructs, like inter-procedural slicing and exception handling,

would significantly broaden its applicability.



86

References

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, editors. Compilers:

principles, techniques, & tools. Pearson Addison-Wesley, Boston Munich, 2. ed.,

pearson internat. ed edition, 2007. ISBN 9780321486813 9780321491695.

[2] Andrew W. Appel and Maia Ginsburg. Modern compiler implementation in C.

Cambridge Univ. Press, Cambridge, new, expanded textbook edition, 2004. ISBN

9780521583909 9780521607650.

[3] Sandrine Blazy, Andre Maroneze, and David Pichardie. Verified validation of pro-

gram slicing. In Proceedings of the 2015 Conference on Certified Programs and

Proofs, pages 109–117, Mumbai India, January 2015. ACM. ISBN 9781450332965.

doi: 10.1145/2676724.2693169. URL https://dl.acm.org/doi/10.1145/2676724.

2693169.

[4] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth

Zadeck. Efficiently computing static single assignment form and the control depen-

dence graph. ACM Transactions on Programming Languages and Systems, 13(4):

451–490, October 1991. ISSN 0164-0925, 1558-4593. doi: 10.1145/115372.115320.

URL https://dl.acm.org/doi/10.1145/115372.115320.

[5] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence

graph and its use in optimization. ACM Transactions on Programming Languages

and Systems, 9(3):319–349, July 1987. ISSN 0164-0925, 1558-4593. doi: 10.1145/

24039.24041. URL https://dl.acm.org/doi/10.1145/24039.24041.

[6] Breno Campos Ferreira Guimarães and Fernando Magno Quintão Pereira. Lazy

evaluation for the lazy: automatically transforming call-by-value into call-by-need.

In Proceedings of the 32nd ACM SIGPLAN International Conference on Compiler

Construction, pages 239–249, Montréal QC Canada, February 2023. ACM. ISBN

9798400700880. doi: 10.1145/3578360.3580270. URL https://dl.acm.org/doi/

10.1145/3578360.3580270.

[7] Yann Herklotz, Delphine Demange, and Sandrine Blazy. Mechanised semantics for

gated static single assignment. In Proceedings of the 12th ACM SIGPLAN Inter-

national Conference on Certified Programs and Proofs, pages 182–196, Boston MA

USA, January 2023. ACM. ISBN 9798400700262. doi: 10.1145/3573105.3575681.

URL https://dl.acm.org/doi/10.1145/3573105.3575681.

https://dl.acm.org/doi/10.1145/2676724.2693169
https://dl.acm.org/doi/10.1145/2676724.2693169
https://dl.acm.org/doi/10.1145/115372.115320
https://dl.acm.org/doi/10.1145/24039.24041
https://dl.acm.org/doi/10.1145/3578360.3580270
https://dl.acm.org/doi/10.1145/3578360.3580270
https://dl.acm.org/doi/10.1145/3573105.3575681


REFERENCES 87

[8] Shuo Jiang, Zhanhao Liang, Hanming Sun, Wenhan Shang, Bifeng Tong, Mengting

Yuan, Chun (Jason) Xue, Jiang Ma, and Qingan Li. Lightweight Code Outlining for

Android Applications. ACM Transactions on Architecture and Code Optimization,

page 3776753, November 2025. ISSN 1544-3566, 1544-3973. doi: 10.1145/3776753.

URL https://dl.acm.org/doi/10.1145/3776753.

[9] Kyungwoo Lee, Manman Ren, and Ellis Hoag. Optimistic and scalable global func-

tion merging. In Proceedings of the 25th ACM SIGPLAN/SIGBED International

Conference on Languages, Compilers, and Tools for Embedded Systems, LCTES

2024, pages 46–57, New York, NY, USA, June 2024. Association for Comput-

ing Machinery. ISBN 979-8-4007-0616-5. doi: 10.1145/3652032.3657575. URL

https://dl.acm.org/doi/10.1145/3652032.3657575.

[10] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program

analysis. Springer, Berlin, softcover version of original hardcover edition 1999 edition,

2010. ISBN 9783642084744.

[11] Peng Zhao and J.N. Amaral. Function Outlining and Partial Inlining. In 17th In-

ternational Symposium on Computer Architecture and High Performance Computing

(SBAC-PAD’05), pages 101–108, Rio de Janeiro, RJ, Brazil, 2005. IEEE. ISBN

9780769524467. doi: 10.1109/CAHPC.2005.26. URL http://ieeexplore.ieee.

org/document/1592562/.

[12] LLVM Project. LLVM: llvm::CodeExtractor Class Reference, 2025. URL https:

//llvm.org/doxygen/classllvm_1_1CodeExtractor.html.

[13] LLVM Project. MergeFunctions pass, how it works — LLVM 17.0.1 documentation,

2025. URL https://releases.llvm.org/17.0.1/docs/MergeFunctions.html.

[14] LLVM Project. LLVM: llvm::SimplifyCFGPass Class Reference, 2025. URL https:

//llvm.org/doxygen/classllvm_1_1SimplifyCFGPass.html.

[15] LLVM Project. Loop terminology (and canonical forms) — llvm 22.0.0git documen-

tation, 2025. URL https://llvm.org/docs/LoopTerminology.html.

[16] LLVM Project. Link time optimization: design and implementation — llvm 22.0.0git

documentation, 2025. URL https://llvm.org/docs/LinkTimeOptimization.

html.

[17] Fabrice Rastello. SSA-based compiler design. Springer International Publishing AG,

Cham, 1st ed edition, 2022. ISBN 9783030805159.

[18] Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, and Hugh

Leather. Effective function merging in the ssa form. In Proceedings of the 41st ACM

https://dl.acm.org/doi/10.1145/3776753
https://dl.acm.org/doi/10.1145/3652032.3657575
http://ieeexplore.ieee.org/document/1592562/
http://ieeexplore.ieee.org/document/1592562/
https://llvm.org/doxygen/classllvm_1_1CodeExtractor.html
https://llvm.org/doxygen/classllvm_1_1CodeExtractor.html
https://releases.llvm.org/17.0.1/docs/MergeFunctions.html
https://llvm.org/doxygen/classllvm_1_1SimplifyCFGPass.html
https://llvm.org/doxygen/classllvm_1_1SimplifyCFGPass.html
https://llvm.org/docs/LoopTerminology.html
https://llvm.org/docs/LinkTimeOptimization.html
https://llvm.org/docs/LinkTimeOptimization.html


REFERENCES 88

SIGPLAN Conference on Programming Language Design and Implementation, pages

854–868, London UK, June 2020. ACM. ISBN 9781450376136. doi: 10.1145/3385412.

3386030. URL https://dl.acm.org/doi/10.1145/3385412.3386030.

[19] Bruno Rodrigues, Fernando Magno Quintão Pereira, and Diego F. Aranha. Sparse

representation of implicit flows with applications to side-channel detection. In Pro-

ceedings of the 25th International Conference on Compiler Construction, pages 110–

120, Barcelona Spain, March 2016. ACM. ISBN 9781450342414. doi: 10.1145/

2892208.2892230. URL https://dl.acm.org/doi/10.1145/2892208.2892230.

[20] Robert Endre Tarjan. Fast algorithms for solving path problems. Journal of the ACM,

28(3):594–614, July 1981. ISSN 0004-5411, 1557-735X. doi: 10.1145/322261.322273.

URL https://dl.acm.org/doi/10.1145/322261.322273.

[21] Frank Tip. A survey of program slicing techniques. J. Program. Lang., 3, 1994. URL

https://api.semanticscholar.org/CorpusID:9882901.

[22] Vojislav Tomašević, Dorde Todorović, and Maja Vukasović. Implementation of

the debugging support for the llvm outlining optimization. In Proceedings of

the International Scientific Conference - Sinteza 2025, pages 233–240, Beograd,

Serbia, 2025. Singidunum University. ISBN 978-86-7912-841-6. doi: 10.15308/

Sinteza-2025-233-240. URL http://portal.sinteza.singidunum.ac.rs/paper/

1041.

[23] Peng Tu and David Padua. Efficient building and placing of gating functions. In

Proceedings of the ACM SIGPLAN 1995 conference on Programming language design

and implementation, pages 47–55, La Jolla California USA, June 1995. ACM. ISBN

9780897916974. doi: 10.1145/207110.207115. URL https://dl.acm.org/doi/10.

1145/207110.207115.

[24] Mark Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-10

(4):352–357, July 1984. ISSN 0098-5589, 1939-3520, 2326-3881. doi: 10.1109/TSE.

1984.5010248. URL https://ieeexplore.ieee.org/document/5010248/.

https://dl.acm.org/doi/10.1145/3385412.3386030
https://dl.acm.org/doi/10.1145/2892208.2892230
https://dl.acm.org/doi/10.1145/322261.322273
https://api.semanticscholar.org/CorpusID:9882901
http://portal.sinteza.singidunum.ac.rs/paper/1041
http://portal.sinteza.singidunum.ac.rs/paper/1041
https://dl.acm.org/doi/10.1145/207110.207115
https://dl.acm.org/doi/10.1145/207110.207115
https://ieeexplore.ieee.org/document/5010248/


89

Appendix A

The MiniGSA Interpreter

Implementation

This appendix presents the complete Python source code for the interpreter of theMiniGSA

language, which was formally introduced in Chapter 4. This implementation serves as a

concrete, executable counterpart to the Structural Operational Semantics (SOS) defined

therein. It is designed to adhere strictly to the semantic rules for each instruction, acting

as an executable specification that clarifies the behavior of the GSA gating functions (γ,

µ, η) and control flow constructs.

The interpreter was used to verify the behavior of program on Listing 1.1 from Ex-

ample 1.0.1. Thus ensuring our formal analysis is grounded in a practical and operational

model.

The full commented version of the python code can be found at https://tinyurl.

com/ms4epnej.

1 import operator

2 from collections import defaultdict

3 from dataclasses import dataclass , field

4 from typing import Dict , List , Any , Union , Set

5

6 Value = Union[int , bool , None]

7 Store = Dict[str , Value]

8 Program = Dict[str , List[’Instruction ’]]

9

10 class Instruction:

11 pass

12

13 @dataclass

14 class BinOp(Instruction):

15 dest: str

16 op1: Union[str , Value]

17 op: str

18 op2: Union[str , Value]

19

20 @dataclass

21 class Gamma(Instruction):

https://tinyurl.com/ms4epnej
https://tinyurl.com/ms4epnej


90

22 dest: str

23 pred: str

24 v_true: str

25 v_false: str

26

27 @dataclass

28 class Mu(Instruction):

29 dest: str

30 v_init: str

31 v_loop: str

32

33 @dataclass

34 class Eta(Instruction):

35 dest: str

36 pred: str

37 v_exit: str

38 restart_set: Set[str] = field(default_factory=set)

39

40 @dataclass

41 class Branch(Instruction):

42 target: str

43

44 @dataclass

45 class ConditionalBranch(Instruction):

46 pred: str

47 l_true: str

48 l_false: str

49

50 @dataclass

51 class Stop(Instruction):

52 pass

53

54 class Interpreter:

55 def __init__(self , program: Program):

56 self.program = program

57 self.operators = {

58 ’+’: operator.add ,

59 ’-’: operator.sub ,

60 ’*’: operator.mul ,

61 ’/’: operator.truediv ,

62 ’<’: operator.lt ,

63 ’>’: operator.gt ,

64 ’<=’: operator.le ,

65 ’>=’: operator.ge ,

66 ’==’: operator.eq ,

67 }

68



91

69 def _evaluate(self , operand: Any , store: Store) -> Value:

70 if isinstance(operand , str):

71 return store.get(operand)

72 return operand

73

74 def run(self , entry_label: str , initial_store: Store) -> Store:

75 instruction_stream = list(self.program[entry_label ])

76 store = initial_store.copy()

77 max_steps = 1000

78 for step_count in range(max_steps):

79 if not instruction_stream:

80 raise RuntimeError("Execution fell off the end of a

basic block without a terminator.")

81 current_inst = instruction_stream.pop (0)

82 if isinstance(current_inst , Stop):

83 print(f"--- Program Halted in {step_count +1} steps ---")

84 return store

85 if isinstance(current_inst , BinOp):

86 val1 = self._evaluate(current_inst.op1 , store)

87 val2 = self._evaluate(current_inst.op2 , store)

88 if val1 is None or val2 is None:

89 raise ValueError(f"Attempted to use uninitialized

variable in BinOp: {current_inst}")

90 op_func = self.operators.get(current_inst.op)

91 if not op_func:

92 raise ValueError(f"Unknown operator: {current_inst.

op}")

93 result = op_func(val1 , val2)

94 store[current_inst.dest] = result

95 elif isinstance(current_inst , Gamma):

96 predicate_val = self._evaluate(current_inst.pred , store)

97 if predicate_val is None:

98 raise ValueError(f"Predicate ’{current_inst.pred}’

is uninitialized.")

99 if predicate_val:

100 value = self._evaluate(current_inst.v_true , store)

101 else:

102 value = self._evaluate(current_inst.v_false , store)

103 store[current_inst.dest] = value

104 elif isinstance(current_inst , Mu):

105 if current_inst.dest not in store:

106 value = self._evaluate(current_inst.v_init , store)

107 else:

108 value = self._evaluate(current_inst.v_loop , store)

109 store[current_inst.dest] = value

110 elif isinstance(current_inst , Eta):

111 predicate_val = self._evaluate(current_inst.pred , store)



92

112 if predicate_val is None:

113 raise ValueError(f"Predicate ’{current_inst.pred}’

is uninitialized.")

114 if not predicate_val:

115 value = self._evaluate(current_inst.v_exit , store)

116 store[current_inst.dest] = value

117 for r_var in current_inst.restart_set:

118 if r_var in store:

119 del store[r_var]

120 elif isinstance(current_inst , Branch):

121 instruction_stream = list(self.program[current_inst.

target ])

122 elif isinstance(current_inst , ConditionalBranch):

123 predicate_val = self._evaluate(current_inst.pred , store)

124 if predicate_val is None:

125 raise ValueError(f"Predicate ’{current_inst.pred}’

is uninitialized.")

126 if predicate_val:

127 target_label = current_inst.l_true

128 else:

129 target_label = current_inst.l_false

130 instruction_stream = list(self.program[target_label ])

131 else:

132 raise TypeError(f"Unknown instruction type: {type(

current_inst)}")

133 raise RuntimeError("Maximum execution steps exceeded.")

134

135

136 if __name__ == ’__main__ ’:

137 example_program: Program = {

138 ’entry’: [

139 Branch(’BB1’)

140 ],

141 ’BB1’: [

142 Mu(’x1’, ’x0’, ’x2’),

143 Mu(’s1’, ’s0’, ’s2’),

144 Mu(’t1’, ’t0’, ’t2’),

145 BinOp(’p0’, ’x1’, ’<’, ’n0’),

146 ConditionalBranch(’p0’, ’BB2’, ’BB3’)

147 ],

148 ’BB2’: [

149 BinOp(’x2’, ’x1’, ’+’, 1),

150 BinOp(’s2’, ’s1’, ’*’, 2),

151 BinOp(’t2’, ’t1’, ’+’, 3),

152 Branch(’BB1’)

153 ],

154 ’BB3’: [



93

155 Eta(’s4’, ’p0’, ’s1’, restart_set ={’x2’,’s2’,’t2’,’p0’}),

156 BinOp(’s3’, ’s4’, ’+’, 1),

157 BinOp(’u0’, ’s3’, ’+’, ’t1’),

158 Stop()

159 ]

160 }

161 initial_values: Store = {

162 ’n0’: 10,

163 ’x0’: 0,

164 ’s0’: 1,

165 ’t0’: 0

166 }

167 interpreter = Interpreter(example_program)

168 final_store = interpreter.run(’entry ’, initial_values)

169 print("\n--- Final Store (Original Program) ---")

170 for var , val in sorted(final_store.items()):

171 print(f"{var}: {val}")

172 expected_var_val = 2 ** final_store[’n0’] + 1

173 print(f"\nExpected final values: For n0=10 -> s3={ expected_var_val},

u0={ expected_var_val + final_store[’t1 ’]}")

174

175 example_program_slice: Program = {

176 ’entry’: [

177 Branch(’BB1’)

178 ],

179 ’BB1’: [

180 Mu(’x1’, ’x0’, ’x2’),

181 Mu(’s1’, ’s0’, ’s2’),

182 BinOp(’p0’, ’x1’, ’<’, ’n0’),

183 ConditionalBranch(’p0’, ’BB2’, ’BB3’)

184 ],

185 ’BB2’: [

186 BinOp(’x2’, ’x1’, ’+’, 1),

187 BinOp(’s2’, ’s1’, ’*’, 2),

188 Branch(’BB1’)

189 ],

190 ’BB3’: [

191 Eta(’s4’, ’p0’, ’s1’, restart_set ={’x2’,’s2’,’p0’}),

192 BinOp(’s3’, ’s4’, ’+’, 1),

193 Stop()

194 ]

195 }

196 initial_values_slice: Store = {

197 ’n0’: 10,

198 ’x0’: 0,

199 ’s0’: 1,

200 }



94

201 interpreter = Interpreter(example_program_slice)

202 final_store = interpreter.run(’entry ’, initial_values_slice)

203 print("\n--- Final Store (Sliced Program) ---")

204 for var , val in sorted(final_store.items()):

205 print(f"{var}: {val}")

206 out_var_val = 2 ** final_store[’n0’] + 1

207 print(f"\nExpected final values: For n0=10 -> s3={ out_var_val} (is

equal to original output? {expected_var_val == out_var_val })")

Listing A.1: Python Interpreter for MiniGSA


	Introduction
	Literature Review
	Definitions
	Control Flow Graph
	Data-flow Analysis
	Dominance
	Data and Control Dependencies
	Static Single Assignment Form
	Gated Single Assignment Form

	Program Slice
	Algorithms
	Sparse Slicing
	Gating Phi-functions
	Gating by Path Expressions

	Optimizations
	Motivating Example

	Algorithms
	Program Slicer
	GSA Construction
	Slice Identification
	Idempotent Backward Slice
	Function Outlining

	Function Merging and Simplification
	Slicing Example

	Soundness
	MiniGSA: A Minimal GSA Language
	Syntax
	Semantics

	Soundness

	Evaluation
	Experimental Setup
	Research Questions

	Conclusion
	References
	The MiniGSA Interpreter Implementation

