A Coalescing Algorithm for Aliased Registers

Mariza A. S. Bigonha', Fabrice Rastello?,
Fernando Magno Quintio Pereira', Roberto S. Bigonha'

! Departamento de Ciéncia da Computagido — Universidade Federal de Minas Gerais (UFMG)
Av. Antbnio Carlos, 6627 —31.270-010 — Belo Horizonte — MG — Brazil

{mariza, fpereira,bigonha}@dcc.ufmg.br

2Laboratoire de I’Informatique du Paralllisme — Ecole normale supérieure de Lyon
46 alle d’Italie, 69364 — Lyon cedex 07 — France

Fabrice.Rastello@ens-lyon.fr

Abstract. Register coalescing is a compiler optimization that removes copy in-
structions such as a = b from a source program by assigning variables a and
b to the same register. The vast majority of coalescing algorithms described
in the literature assume homogeneous register banks; however, many important
computer architectures, such as x86, ARM, SPARC and ST240 contain an irre-
gularity called register aliasing. Two registers alias if assigning a value to one
of them changes the contents of the other. Most of the time registers can be di-
vided into subclasses that hierarchically fit into each other. The objective of this
research is to design, implement and test new coalescing algorithms that handle
hierarchical register aliasing. We expect that an aliasing aware coalescer will
be able to remove more copy instructions than an otherwise oblivious algorithm;
thus, decreasing the size and increasing the performance of compiled programs.

1. Problem Description

Register allocation is the task of mapping the variables of a source program into a finite
number of registers. If the number of registers is not sufficient, then some of the variables
are mapped into memory. A compiler optimization that is performed on top of register
allocation is coalescing. This optimization consists in mapping variables related by copy
instructions to the same register. For instance, we can remove the instruction a = b from
the source program provided that a and b are mapped to the same register r.

A good coalescing algorithm can improve the execution speed of a program by
as much as 12% [12]. Although register coalescing is important, and many coalescing
algorithms have been proposed in the literature, these algorithms do not take register
aliasing into consideration. This project aims at filling this gap. Its objective is to design,
implement and test new coalescing algorithms that handle hierarchical register aliasing.

Two registers alias if an assignment to one of them affects the contents of the
other. The best known example of aliasing is found in the x86 architecture, which has four
general purpose 16-bit registers - AX, BX, CX and DX - that can also be used as eight
8-bit registers. That is, the x86 architecture combines two 8-bit registers into one 16-bit
register. Figure 1 shows the bank of general purpose registers used in the x86. Notice that
all the registers contain some sort of aliasing, but only the upper registers are divided into
two parts. Another example of aliased registers is the combination of two aligned single

32 bits | EAX EBX ECX EDX

16 bits
8bis
32 bits | EBP | ESI | EDI | ESP |
t6 it

Figure 1. General purpose registers of the x86 architecture

precision floating-point registers to form one double-precision register. As for the x86,
register aliasing of most architectures is restricted to hierarchical aliasing: at the lowest
level the register bank is composed of atomic registers; the upper level partitions this
set of atomic registers into non-intersecting register subsets; to each subset corresponds
a register that aliases with its composing registers. Examples of such architectures we
are concerned with include the Sun SPARC, the ARM processors, and the ST240. ARM
Neon, and ST240 have two levels of aliasing while SPARC V8 has three: single precision
floating point registers can be combined into double precision and even in quad precision
registers. X86 has a subset of registers with just one level of aliasing - SP, ST, DI and SP
- plus another subset, formed by registers AX, BX, CX and DX, with two levels of aliasing.
X86 is thus an example of hybrid hierarchical aliasing.

2. Related Works

The coalescing problem is intrinsically related to the register allocation problem. For
instance, Chaitin et al. [8] already describe a coalescing strategy in their pioneering work
on register allocation via graph coloring. Since its first appearance, Chaitin’s work has
been the target of a slow, yet never-ending stream of improvements. One quarter century
after Chaitin’s seminal paper, coalescing has been one of the main forces pushing new
variations in graph coloring register allocation. Bouchez et al. [3] summarizes some of
the best known approaches for performing register coalescing:

o Aggressive Coalescing [8, 7]: merges move-related vertices, regardless of the col-
orability of the interference graph after the merging.

e Conservative Coalescing [5]: merges moves if, and only if, the merging does not
compromise the colorability of the interference graph.

e Optimistic Coalescing [17, 18]: coalesces moves aggressively, and if it compro-
mises the colorability of the graph, then gives up as few moves as possible.

e Incremental Conservative Coalescing [11]: removes one particular move instruc-
tion, while keeping the colorability of the graph.

Bouchez et al. [2, 3] have shown, by means of an ingenious sequence of reductions, that
all these different materializations of the register coalescing problem are NP-complete for
general interference graphs. Hack et al. [12] proposed a new scheme called Recoloring
Coalescing: color the graph arbitrarily, recolor move-related nodes (to satisfy as much
moves as possible) and their interfering neighborhood (to keep the coloring valid).

The finding that programs in Single Static Assignment (SSA) form have chordal
interference graphs [2, 6, 13, 20] has given a new boost to research on register coalescing.
Static Single Assignment (SSA) form is an intermediate representation in which each vari-
able is defined at most once in the program code [9, 22]. Nowadays, there exist several

industrial and academic compilers using SSA in their back-end, such as LLVM [15], Sun’s
HotSpot JVM [25], IBM’s Java Jikes RVM [26], LAO [1], and Firm [12]. It is possible
to retain the SSA property until the end of the code generation process. Indeed, there ex-
ists polynomial time algorithms to discover the chromatic number of chordal graphs [10];
thus, register assignment has polynomial time solution for programs in the SSA repre-
sentation. However, as a form of live range splitting, the SSA transformation inserts
many copies into the program code, what makes register coalescing even more important.
Unfortunately, as shown by Bouchez et al. [3], most coalescing instances remain NP-
complete for chordal graphs. Two new coalescing algorithms in the context of SSA-form
based register allocation have been presented in 2008: Hack et al. have proposed a recol-
oring coalescing algorithm [12], and Bouchez et al. have proposed a suite of conservative
and optimistic algorithms [4].

Aliasing complicates register allocation substantially. For instance, finding the
minimal register assignment in face of aliasing is NP-complete, even for programs in
SSA-form [16]. Nevertheless, register allocators that handle aliasing have already been
described [14, 23, 24]. The algorithm presented by Smith et al., for instance, modifies a
graph coloring approach to deal with this phenomenon. However, none of the coalescing
algorithms discussed so far takes aliasing into consideration. Recently, Pereira et al. [21]
have proposed a Puzzle-Based register allocator to handle hierarchical aliasing. In this
paradigm, the register allocation problem is seen as a collection of puzzles that can be
solved in polynomial time. This approach tends to reduce the number of variables sent to
memory, at the expenses of increasing the number of copy instructions in the target code;
thus, making register coalescing essential.

We can differentiate several coalescing problems. Global coalescing consists in
minimizing the total amount of move instructions for the entire procedure. This problem
is NP-complete [3], regardless of aliasing. Local coalescing is the restriction to a basic
block. This problem has polynomial time solution in the absence of register aliasing, but
Lee et al. have shown that it is NP-complete for architectures that present hierarchically
aliased registers. The biased coloring problem is the simplest realization of the coalesc-
ing problem, consisting in minimizing the number of move instructions inserted between
two instructions of a program. Pereira ef al. have described an optimal algorithm for a
particular case of biased coloring - level-1 alias hierarchy with no pre-assignment [19].
We are interested in the global version of the register coalescing problem.

3. The Proposed Approach to the Register Coalescing Problem

We will adapt the graph coloring based coalescing algorithm proposed by Bouchez et
al [4] to handle computer architectures with hierarchical register aliasing. Our objective
is to reduce the number of move instructions in the function being optimized, using, for
instance, the expedient of manipulating two small values stored in different halves of the
same register with one single instruction. For instance, if a,b, c and d are four single
precision floating point values, and a and b are stored in the same double precision reg-
ister, then we can implement the two copies ¢ := a and d := b with one single register
copy. In order to show the advantages of the new approach, we will compare our modified
algorithm with Bouchez’s original method, which does not take register aliasing into con-
sideration. We will also compare it with the puzzle based register allocator [21], which
handles register aliasing, but performs very simple coalescing, based on a biased coloring

strategy. The new register coalescing algorithm will be implemented and tested in the
back-end of the Low Level Virtual Machine (LLVM) framework [15]. This framework is
used, for instance, to JIT compile open-GL applications in Mac OSX 10.5.

4. Expected Results

We expect that our new algorithm will produce target code that is shorter and more ef-
ficient than the code produced by traditional coalescers that do not take register aliasing
into consideration. Ideally we should be able to reduce the size of the programs produced
by the puzzle based allocator [21] by 6-7%. Speed-up improvements will depend on the
target architecture. We expect small improvements in the x86 processor; however, we
should be able to obtain a 2-4% decrease in execution time on the PowerPC chip. Gains
in efficiency should be more noticeable in embedded devises, such as the ARM Neon
processor. In addition to the concrete contribution to the research community, this project
will have the positive side-effect of creating an environment more favorable to further
co-operations between Brazilian and French research institutes.

References

[1] Benoit Boissinot, Sebastian Hack, Daniel Grund, Benoit Dupont de Dinechin, and Fabrice
Rastello. Fast liveness checking for SSA-form programs. In CGO, pages 35-44
IEEE, 2008.

[2] F. Bouchez. Allocation de registres et vidage en mémoire. Master’s thesis, ENS Lyon,
2005.

[3] F. Bouchez, A. Darte, and Fabrice Rastello. On the complexity of register coalescing. In
CGO, pages 102-104 IEEE, 2007.

[4] Florent Bouchez, Alain Darte, and Fabrice Rastello. Advanced conservative and opti-
mistic register coalescing. In CASES, pages 147 — 156. ACM, 2008.

[5] P. Briggs, K. D. Cooper, and L. Torczon. Improvements to graph coloring register alloca-
tion. TOPLAS, 16(3), pages 428-455, 1994.

[6] P. Brisk, F. Dabiri, J. Macbeth, and M. Sarrafzadeh. Polynomial-time graph coloring
register allocation. In IWLS, pages 150-155 ACM, 2005.

[7] G.J. Chaitin. Register allocation and spilling via graph coloring. CC, 17(6), pages 98—
105, 1982.

[8] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W.
Markstein. Register allocation via coloring. Computer Languages, 6, pages 47-57,
1981.

[9] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
Efficiently computing static single assignment form and the control dependence
graph. TOPLAS, 13(4), pages 451-490, 1991.

[10] F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by
cliques, and maximum independent set of a chordal graph. SICOMP, 1(2), pages
180-187, 1972.

[11] Lal George and Andrew W. Appel. Iterated register coalescing. TOPLAS, 18(3), pages
300-324, 1996.

[12] S. Hack and G. Goos. Copy coalescing by graph recoloring. In PLDI, pages 227-237
ACM, 2008.

[13] Sebastian Hack, Daniel Grund, and Gerhard Goos. Register allocation for programs in
SSA-form. In CC, pages 247-262, 2006.

[14] Timothy Kong and Kent D Wilken. Precise register allocation for irregular architectures.
In MICRO, pages 297-307 ACM, 1998.

[15] Chris Lattner and Vikram S. Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In CGO, pages 75-88 IEEE, 2004.

[16] J. K. Lee, J. Palsberg, and Fernando M. Q. Pereira. Aliased register allocation. In /ICALP,
pages 680-691, 2007.

[17] J. Park and S. Moon. Optimistic register coalescing. In PACT, p.196-204 IEEE, 1998.
[18] J. Park and S. Moon. Optimistic register coalescing. TOPLAS, 26(4):735-765, 2004.

[19] Fernando M. Q. Pereira. Register Allocation by Puzzle Solving. PhD thesis, University of
California, Los Angeles, 2008.

[20] Fernando Magno Quintao Pereira and Jens Palsberg. Register allocation via coloring of
chordal graphs. In APLAS, pages 315-329. Springer, 2005.

[21] Fernando M. Q. Pereira and J. Palsberg. Register allocation by puzzle solving. In PLDI,
p.- 216-226 ACM, 2008.

[22] B. K. Rosen, F. K. Zadeck, and M. N. Wegman. Global value numbers and redundant
computations. In POPL, pages 12-27 ACM, 1988.

[23] Bernhard Scholz and Erik Eckstein. Register allocation for irregular architectures. In
LCTES/SCOPES, pages 139-148 ACM, 2002.

[24] Michael D. Smith, Norman Ramsey, and Glenn Holloway. A generalized algorithm for
graph-coloring register allocation. In PLDI, pages 277-288 ACM, 2004.

[25] JVM Team. The java HotSpot virtual machine. Technical Report Technical White Paper,
Sun Microsystems, 2006.

[26] The Jikes Team. Jikes RVM home page, 2007. http://jikesrvm.sourceforge.net/.

