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ABSTRACT
Current high-performance multicore processors provide users
with a non-uniform memory access model (NUMA). These
systems perform better when threads access data on mem-
ory banks next to the core where they run. However, en-
suring data locality is di�cult. In this paper, we propose
compiler analyses and code generation methods to support a
lightweight runtime system that dynamically migrates mem-
ory pages to improve data locality. Our technique combines
static and dynamic analyses and is capable of identifying
the most promising pages to migrate. Statically, we infer
the size of arrays, plus the amount of reuse of each memory
access instruction in a program. These estimates rely on a
simple, yet accurate, trip count predictor of our own design.
This knowledge let’s us build templates of dynamic checks,
to be filled with values known only at runtime. These checks
determine when it is profitable to migrate data closer to the
processors where this data is used. Our static analyses are
quadratic on the number of variables in a program, and the
dynamic checks are O(1) in practice. Our technique does
not require any form of user intervention, neither the sup-
port of a third-party middleware, nor modifications in the
operating system’s kernel. We have applied our technique
on several parallel algorithms, which are completely oblivi-
ous to the asymmetric memory topology, and have observed
speedups of up to 4x, compared to static heuristics. We
compare our approach against Minas, a middleware that
supports NUMA-aware data allocation, and show that we
can outperform it by up to 50% in some cases.
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1. INTRODUCTION
There exist two basic ways to connect processors to mem-

ory in a multi-core architecture. The simplest alternative
consists in connecting each processor equally to the mem-
ory bank. Such architectures are also known as Symmet-
ric Multiprocessing (SMP) systems. The other approach is
asymmetric: each processor is directly connected to local
memory banks and a forwarding mechanism is used to read
or write data in remote memory banks. This kind of archi-
tecture, known as Non-Uniform Memory Access, or NUMA
for short, is not a new idea - early designs were already en-
joying commercial success in the late 70’s. As an example,
the Burroughs’s B6800 processor, of 1977, is a NUMA archi-
tecture. Although the NUMA model used to be mostly com-
mon in high performance computing systems, nowadays, we
find non-uniform memory layouts in several general-purpose
multi-core processors such as the Tilera Tile64, Intel E8870,
HP sx2000, and the AMD Opteron. This tendency is likely
to remain in vogue, given that the number of cores per chip
is predicted to increase even more in the coming years [2,
Sec.2.2]. The attractiveness of the NUMA design comes
from the fact that it enables parallel data accesses on mul-
tiple memory banks; thus reducing memory access conflicts.
The ever-increasing speed of processing units is contributing
to boost the importance of this advantage.

The performance of memory systems, in general, su↵ers in
face of access conflicts. Such conflicts happen whenever dif-
ferent threads try to read or write data in the same memory
bank simultaneously. NUMA machines mitigate this prob-
lem by allowing the placement of data in separate mem-
ory banks. Therefore, in these architectures, data allocation
plays a central role in performance. Ideally, a thread should
access data placed in memory located at the core that exe-
cutes it. We call this memory a local bank, and we call these
accesses local. Whenever a thread reads or writes data in a
remote (non-local) memory bank, the data is copied from
a remote location to a local cache - an expensive operation
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that we call a remote access. Yet, the main drawback of
remote accesses is not their long tra�c time: these accesses
are prone to generate access conflicts, leading to resource
contention between threads [27].

There have been several di↵erent proposals to improve
data allocation on NUMA machines. Many of these tech-
niques were published in the late 2000’s. Some of these
methods are implemented at the operating system level [2,
4, 17, 23], at the hardware level [10, 15, 28], or at the mid-
dleware level [6, 8, 19, 24]. These approaches extract infor-
mation from a program’s runtime behavior, but do not take
its coding structure into consideration. Other approaches
rely on library calls, which give the programmer the oppor-
tunity to move memory pages around [5, 14, 26, 29]. These
techniques, in our point of view, have a shortcoming: they
require the intervention of the programmer. Data place-
ment libraries, for instance, provide developers with ways
to determine the allocation of data before a program starts
running, or let them migrate memory pages during the pro-
gram’s execution. To benefit from this support, users must
be familiar with the underlying memory architecture and
with the application’s code.

In this paper we have designed and implemented a com-
piler assisted technique that solves these shortcomings. We
introduce a suite of compiler analyses that determine when
it is beneficial to move data once a program starts executing.
We also use our analyses to generate dynamic checks, which
we insert into the program’s code. These checks are built
as templates that once filled with runtime values - mostly
the limits of loops - decide if the operating system should
migrate physical memory pages to the cores where they are
frequently accessed. The proposed approach is very granu-
lar: it can treat data used in di↵erent parts of the program
in di↵erent ways, selectively moving only the memory pages
whose migration pays o↵. Our solution does not demand
any extra hardware support. Furthermore, it requires min-
imal support from the operating system. More specifically,
we need the ability to move pages around and some limited
form of introspection to find the size of the cache. This sup-
port is already present in standard distributions of popular
operating systems. Most importantly, our approach does
not require any form of user intervention in the application
code.

We have implemented our technique using the LLVM [21]
compiler, and have tested it on a number of parallel bench-
marks, which we ship together with our tool. These bench-
marks have been coded using C POSIX Threads and are
completely oblivious to the topology of the memory hier-
archy. Our results show that programs instrumented with
our code transformations outperform the original parallel
programs by up to four times, on a 64-core NUMA machine.
Furthermore, we compare our approach against Minas [26], a
middleware that optimizes data allocation and placement in
non-uniform memory access architectures. Minas provides
developers with an API which gives them (i) information
about the topology of the machine and (ii) mechanisms to
determine the initial allocation and placement of data into
memory banks. The programs that we generate automat-
ically tend to outperform the programs hand-coded to use
the Minas library. These results are encouraging, because
our approach does not require any form of intervention from
the programmer, whereas Minas is used as a library, which
must be manipulated directly by the developer.

2. BACKGROUND
In order to take more benefit from the ever-increasing core

count, computer architects have been shifting their designs
from the SMP (Symmetric Multiprocessing) model towards
the NUMA (Non-Uniform Memory Access) design [20]. Sim-
ilar to the SMP approach, NUMA architectures allow code
running in any core to access any memory word in the sys-
tem. However, in the NUMA model, the memory banks are
distributed among multiple controllers and the data access
latency varies accordingly to the memory bank and the core
position. Figure 1 shows the topology of a NUMA architec-
ture with four processing cores and four memory controllers.
Each memory controller is connected to a memory bank,
to a computing core, and to the other memory controllers
through the interconnecting bus.

Bank 2Core 1 Core 2

Core 3 Core 4
Memory
Bank 3

Memory
Bank 4

Memory
Bank 1

Memory Controller

Memory

Figure 1: Non-Uniform Memory Access system.

On a NUMA machine, threads running on di↵erent cores
can access data on di↵erent memory banks. However, to
develop applications that take full benefit from this capacity,
it is important to distribute data on memory banks located
next to the cores where the threads that access them are
executed. In order to induce this locality, modern operating
systems try to allocate pages on memory banks next to the
cores that are executing the threads that triggered the page
allocation. This is known as “first-touch” policy. However,
in many programs, the key data structures are allocated in
the main thread, which runs before parallel computation
takes place. This setup causes all the data to be allocated
on a single memory bank. Unfortunately, in this scenario,
all the cores will compete for the same memory controller,
as in the SMP approach. The “first-touch” curve in Figure 2
shows the scalability of a parallel program that performs
the Cholesky decomposition on several matrices that were
initially allocated in the main thread.

A common optimization used in this environment consists
in allocating or moving memory pages to memory banks next
to the cores executing the threads that tend to use these
pages more often [2, 20]. Figure 2 illustrates the remarkable
benefits of this technique. The Linux kernel provides sys-
tem calls to migrate memory pages between memory banks.
After migrating the pages, the system updates the page ta-
bles to map the virtual page addresses to the new physical
page addresses. However, migrating the page may be an
expensive operation, and the optimization may only pay o↵
if the data in the page is frequently retrieved from main
memory [17]. In this work, we leverage static compiler opti-
mizations and runtime support to improve performance via
selective page migration. The gains in Figure 2 were ob-
tained via manual intervention in the source code. We want
to derive such gains automatically, via transformations im-
plemented at the compiler level.
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Figure 2: Scalability of a parallel program with
first-touch and manual page placement on a 64-core
NUMA system. Numbers give speedup compared
to a single-threaded application.

3. SELECTIVE PAGE MIGRATION
Our approach consists in moving pages that we predict

to be frequently reused (hot pages) to local memory banks.
Most of the page accesses occur inside program loops; hence,
our compiler inserts checks before loops that contain array
accesses. Such checks determine if it is profitable to migrate
the page before the program’s flow of execution enters these
loops.

Figure 3 illustrates our approach. Throughout the rest
of this section, we will use the program in Figure 3 (a), an
artificial code that exercises all the facets of the technique
proposed here, as our running example. The pattern of loops
and array accesses in this program will let us illustrate the
main features of our static analyses. We will represent every
array access as a[e], where a is a base pointer, and e is an
indexing expression. In other words, we linearize every array
access. If a is an N ⇥ M matrix, then we write a[i, j] as
a[i ⇥ M + j]. This notation puts us closer to the internal
representation of arrays in our compiler infrastructure. In
this example, Tid is a special variable, which represents the
thread identifier. Figure 3 (b) shows the instrumentation
that we insert. We always try to insert code surrounding
outermost loops. The conditional test (Tid+ 1)⇥R+ P >
Tid ⇥ R in Figure 3 (b) guards us against scenarios where
the outermost loop, at line 1, executes zero iterations. With
this, we avoid burdening applications that would not benefit
from page migration with an unnecessary overhead.

We consider that a block of data should be transferred to
a local memory bank if: (i) its memory footprint is larger
than the processor’s last level cache, and (ii) it is accessed
several times by the local thread. We take item (i) - cache
size - into consideration because if the data fits in the cache,
then it will be naturally copied while accessed. Item (ii)
- reuse - is important because the cost of moving a page
over is roughly equivalent to the cost of accessing each of its
elements once. Thus, we do not save memory accesses by
migrating a page whose data is only read or written a few
times. We take care of item (i) by determining the size of
the arrays that the program manipulates. To determine (ii),
we discover the number of times that each array is accessed

1

2

3

4

5

6

7

8

9

10

for (i = Tid × R; i < (Tid + 1) × R + P; i++) {

    A[i] = 0;

    for (j0 = i + 1; j0 < N2; j0 += 4) {

        B[i×N2 + j0] = 0;

        for (k = j0; k > i; k -= 1) {

            B[i×N2 + j0] = B[i×N2 + j0] + C[i×N2×N3 + j0×N3 + k];

        }

    }

    for (j1 = i + 1; j1 < N2; j1 += 4) {

        A[i] = A[i] + B[i×N2 + j1];

    }

}

(a)

(b)

11

12

1

...

if ((Tid + 1) × R + P > Tid × R) {

  (ArraySt_A, ArrayEd_A) = calc_size_exp_A(N1)

  (ArraySt_B, ArrayEd_B) = calc_size_exp_B(N1, N2)

  (ArraySt_C, ArrayEd_C) = calc_size_exp_A(N1, N2, N3)

  ArrayReuse_A = calc_reuse_exp_A(N1)

  ArrayReuse_B = calc_reuse_exp_B(N1, N2)

  ArrayReuse_C = calc_reuse_exp_C(N1, N2, N3)

  PageReuse_A = ArrayReuse_A / ArraySize_A × PageSize
  PageReuse_B = ArrayReuse_B / ArraySize_B × PageSize
  PageReuse_C = ArrayReuse_C / ArraySize_C × PageSize

  try_migrate(A, ArraySt_A, ArrayEd_A, PageReuse_A)
  try_migrate(B, ArraySt_B, ArrayEd_B, PageReuse_B)
  try_migrate(C, ArraySt_C, ArrayEd_C, PageReuse_C)

}

for (i = Tid × R; i < (Tid + 1) × R + P; i++) {

    ...

}

release_migrated_pages(A, ArraySt_A, ArrayEd_A)
release_migrated_pages(A, ArraySt_A, ArrayEd_A)
release_migrated_pages(A, ArraySt_A, ArrayEd_A)

12

Figure 3: (a) Our core example. (b) Instrumented
program.

within a loop. We call such metric the reuse of the array. As
the reader will notice in Figure 3 (b), we ultimately consider
reuse as an estimate of how often the same page is accessed
(see the assignment to PageReuse_A, for instance). This
happens because our unit of data migration is the size of
the operating system’s virtual page.

In the rest of this section, we describe the static analyses
that we use to obtain all the information that our heuristics
require. Figure 4 summarizes them. In Section 3.2 we show
how to compute symbolic expressions denoting the least and
maximum addresses that an array can assume. In order to
build these expressions we need one key information: the
ranges, i.e., minimum and maximum symbolic values that
the variables used to index arrays can assume. We obtain
this information via the induction variable analysis that we
describe in Section 3.1. In Section 3.4 we discuss how we
build symbolic expressions representing the reuse of arrays.
To this end, we need to construct symbolic expressions that
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Figure 4: A bird’s-eye view of our approach.

describe how many times a nest of loops will execute; we
accomplish this task through the analysis discussed in Sec-
tion 3.3. These symbolic expressions give us the subsidies
to instrument the code to perform dynamic tests, as we de-
scribe in Section 3.5. These tests require information con-
cerning the topology of the underlying memory architecture,
which we obtain via the Portable Hardware Locality (hwloc)
library [7], again, without any intervention of the program-
mer.
Loop Jargon. Let S be a subset of nodes of a control
flow graph G. S contains a special node H, which we shall
call header or entry point. Following Appel and Palsberg [1,
pp.376], we say that S is a natural loop if and only if it
presents the following three properties:

1. there exists a path from any node in S to H;

2. there exists a path from H to any node in S;

3. there is no path from any node of G to any node of S
that does not go across H.

The last property defines S as a single-entry region, following
Ferrante’s nomenclature [16]. An edge between any node in
S to H is called a back-edge. We adopt Wolfe’s definition of
trip count [31, pp.200]: the number of times any back-edge
of a natural loop has been traversed by the program flow
within a single execution of the loop.

We call a node L 2 S a latch or exit point if there exists
an edge from L to a node N , N 2 G, N /2 S. We say that
L is a natural latch if one of these two conditions applies:

• L = H. In this case we have a while loop;

• L 6= H, and, for any edge e that starts at L, either e
leaves S, or e goes to H. In this case we have a repeat
loop.

If S contains only one latch, then we call it single exit. In
this work we consider multiple exit loops featuring only one
natural latch. Code generated from typical programming

language constructs, i.e., for, while and repeat has this
property, as long as the command goto is not used.
Symbolic Kernels. In this work we have designed static
analyses that associate variables and program labels with
symbols. We define the symbolic kernel of a loop S with
header H as the set of variables alive at H that are not
defined inside S plus the constants (known at compilation
time) that are used in the body of S. We adopt the standard
definition of liveness, i.e., we say that a variable v is alive at
a node n of a control flow graph if:

• there exists a path from a point nd, where v is defined,
to a point nu, where v is used, that goes across n;

• no other definition of v exists between nd and n.

As an example, variables Tid, R, P, N2, and N3 constitute
the symbolic kernel of the natural loop that starts in line
1 of Figure 3 (a). Similarly, variables Tid, R, P, N2, N3, i
and j0 are the symbolic kernel of the loop at line 5 in the
same figure. We say that E is an expression if and only if
E is defined by the grammar below. In this definition, s is
a symbol, i.e., an element in the symbolic kernel and n 2 N:

E ::= n | s | min(E,E) | max(E,E) | E � E
| E + E | E ⇥ E | E/E

The techniques that we describe in this paper consist in
generating - statically - expressions representing the size and
reuse of arrays. We solve these expressions dynamically,
once we replace symbols with their runtime values.

3.1 Induction Variable Analysis
The induction variable analysis associates each loop induc-

tion variable v with a triple Ind(v) = (l, u, s). The element
l is a symbolic expression representing the minimum value
that v might assume during the execution of the loop. The
parameter u represents the maximum value that v may as-
sume, and s 2 N represents the step of change of v. In this
work we restrict our analyses to loops that are controlled by
linearly monotonic induction variables. The variable i is a
linear induction variable in a loop if the only definitions of
i within that loop are of the form i = i + c or i = i � c,
where c is loop invariant. We call c the step of i. If every
redefinition of i uses invariants with the same signal, then
we say that i is monotonic. Any latch contains a stop con-
dition: a boolean expression whose evaluation either keeps
the program flow in S or leads away from it. If the stop
condition uses an induction variable i, then we say that the
loop is controlled by i. For instance, the loop for(k = j0;

k > i; k -= 1), at line 5 of Figure 3 (a), has a stop con-
dition k > i, which is controlled by variables i and k. The
step of induction variable k is one in this example.

To discover the minimum and maximum values that linear
monotonic induction variables can assume, we look at the
code that initializes them and at the code that limits them.
If we have a sequence of nested loops L0 . . . Ln, where Li is
nested within Li�1, then we run our analysis in Li�1 before
visiting Li. With this, we try to build the limits of the
induction variable used in Li as a function of the limits of
the induction variables used in Li�1. Figure 5 illustrates
our analysis. In this example, first we analyze the loop at
line 1 of the example program. This gives us limits for i,
the only induction variable used in that loop. Once we find
symbolic bounds of i, we move on to discover the limits of
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for (i = Tid × R; i < (Tid + 1) × R + P; i++) {

    A[i] = 0;

    for (j0 = i + 1; j0 < N2; j0 += 4) {

      B[i×N2 + j0] = 0;

      for (k = j0; k > i; k -= 1) {

        B[i×N2 + j0] = B[i×N2 + j0] + C[i×N2×N3 + j0×N3 + k];

      }

    }

    for (j1 = i + 1; j1 < N2; j1 += 4) {

      A[i] = A[i] + B[i×N2 + j1];

  }

}

1

2
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Ind(i) = (Tid × R,

    (Tid + 1) × R + P − 1, 1)

Ind(j0) = (i + 1, N2 − 1; 4)

           = (Tid × R + 1, N2 − 1)

Ind(k) = (i + 1, j0, 1)

          = (Tid × R + 1, i + 1, 1)

          = (Tid × R + 1, (Tid + 1) × R + P, 1)

Ind(j1) = (i + 1, N2 − 1, 4)

           = (Tid × R + 1, N2 − 1)

Figure 5: Induction variable analysis applied on the
program seen in Figure 3 (a).

j0 and j1. These variables control the loops at lines 3 and 9,
which are nested within the loop on line 1. Therefore, the
limits of these two induction variables are built as functions
of the limits of i. Finally, we place bounds on k. These
bounds are built as functions of the bounds of j0 and i. To
simplify the formulas that we build in such fashion, we use
the SymPy library [18] of symbolic manipulation. SymPy uses
cylindrical algebraic decomposition [3] to solve the symbolic
equations that we feed to it.
Dealing with Multi-Path Induction Variables. An
induction variable can be incremented with di↵erent steps on
the same loop. This happens, for instance, in the program
that we show in Figure 6 (Left). In this paper we are inter-
ested in the minimum trip count of a loop. In other words,
we want to estimate this quantity conservatively. There-
fore, we shall be considering the maximum increment over
all paths through which an induction variable can be incre-
mented. We can compute this number via Dijkstra’s algo-
rithm, which solves the single-source shortest path problem
for a graph with non-negative edge path costs [13]. We apply
the algorithm on the program’s dependence graph, a data
structure due to Ferrante et al. [16]. In our case, the cost of
each edge is the increment that the induction variable can
su↵er along that path.

Figure 6 (Right) shows the program dependence graph
of our example. We use Static Single Assignment form
(SSA) [11] to represent programs. In this representation,
each variable of a program has only one definition site. There-
fore, each redefinition of variable i in Figure 6 (Left) has a
new name in the graph in Figure 6 (Right). The �-functions
in Figure 6 (Right) join di↵erent definitions of variables. As
an example, the increment at line 9 can be applied on three
di↵erent definitions of i. These definitions reach line 9 com-
ing from lines 4, 6, and 8. All these definitions are unified
into i5, which is then incremented; thus producing a new
name i6.

Dijkstra gives us, in this example, the heaviest path (+4,
+1) = +5, where the weight of a path is the sum of all the in-
crements that the induction variable can su↵er along it. We
cannot deal with oscillating induction variables, i.e., vari-

i = 0

while (i < N) {

    if (DEF_INT_32)

        i += 4;

    else if (DEF_INT_16)

        i += 2;

    else

        i += 1;

    i++;

}

i0 ϕ i6

i1

+4 +2 +1

i2 i3 i4

ϕ i5 +1

1

2

3

4

5

6

7

8

9

10

Figure 6: Example with multiple paths in a single
loop.

ables that can su↵er positive or negative increments through
an iteration of a loop. Nevertheless, this situation is rather
uncommon, and we have not observed it in a suite of hun-
dreds of benchmarks, as we will discuss in Section 4.

3.2 Array Range Access Analysis
If a[e] is an array access, then we say that the access range

of a[e] is the minimum and the maximum values that emight
assume. We find these two values, i.e., the symbolic mini-
mum and maximum of e, in a two steps approach:

1. we replace every induction variable v used in e by the
interval [l, u], where l and u are given by Ind(v) =
(l, u, s). Let the resulting symbolic expression be de-
noted by ei.

2. we solve ei using a simple algebra of symbolic intervals,
which is defined by the expressions below:

• [l0, u0] + [l1, u1] = [l0 + l1, u0 + u1]

• [l0, u0]� [l1, u1] = [min(l0 � l1, u0 � u1),
max(l0 � l1, u0 � u1)]

• [l0, u0]⇥ [l1, u1] = [min(T ),max(T )], where
T = {l0 ⇥ l1, l0 ⇥ u1, u0 ⇥ l1, u0 ⇥ u1}

• [l0, u0]/[l1, u1] = [min(T ),max(T )], where T =
{l0/l1, l0/u1, u0/l1, u0/u1}, if 0 /2 [l1, u1], other-
wise [�1,+1]

Continuing with our example, Figure 7 shows the results
of this analysis for three of the array accesses seen in the
program of Figure 3 (a). Once we solve the interval ex-
pression ei, for an array access a[e], we bind this access to
a symbolic interval [l, u]. The syntax A[i] denotes the ac-
cesses at lines 2 and 10 of Figure 3. B[i⇥N2 + j0] denotes
the accesses at lines 4 and 6. The access on C happens at
line 6 of Figure 3. Notice that internally we use the static
single assignment form. Thus, each induction variable has
a unique name. Consequently, if a program contains two
accesses using the same expression, e.g., A[e] and B[e], then
these accesses will give us the same ranges. Also notice that
our interval algebra admits several simplifications, mostly
concerning products between intervals. For instance, the
product [l, u] ⇥ n, n 2 N, n > 0 is given by [n ⇥ l, n ⇥ u].
As in Section 3.1, we rely on SymPy to perform algebraic
simplifications on symbolic expressions.
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A[i]

(
min = Tid⇥R

max = Tid⇥R+ P � 1

B[i⇥N2 + j0]

(
min = Tid⇥R⇥N2 + 1

max = (Tid⇥R+ P )⇥N2 � 1

C[i⇥N2⇥N3+j0⇥N3+k]

8
>>><

>>>:

min = Tid⇥R⇥N2 ⇥N3 +

(Tid⇥R+ 1)⇥ (N3 + 1)

max = (((Tid+ 1)⇥R+ P )⇥N2 � 1)

⇥ N3 +N2 � 1

Figure 7: Results of the symbolic array range access
analysis.

From ranges to sizes. The array range access analysis
gives us a way to determine the lowest and highest address-
able o↵sets in an array. Its lowest addressable o↵set is the
minimum between all the lower ranges inferred for it. Natu-
rally, its highest addressable o↵set is the maximum between
all the upper ranges inferred for it. We estimate the size
of an array as the di↵erence between its highest and lowest
addressable o↵sets. In Figure 3 (b), this number, for array
A, is given by ArrayEdA � ArrayStA.

3.3 Trip Count Analysis
The reuse of an array a in a loop L is the number of times

that a is accessed within L. Therefore, to estimate the reuse
of an array a, we must estimate the number of iterations of
every loop that contains accesses to a. We perform such
estimates via trip count analysis. This analysis associates
each loop L in the program with a summation, which gives
us the number of times that L executes in relation to its
immediate parent loop. If L is not nested within any other
loop, then this summation gives us the number of times L
executes in the parent function. If L is controlled by an
induction variable v, then this summation is given by the
expression:

Trip(Lv) =
uX

i=l

1
s
, where Ind(v) = (l, u, s)

The number of times a loop Ln executes in relation to its
parent loops (outermost to innermost) L1, L2, · · · , Ln�1 is
given by sequential application of each loop summation:
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Figure 8 shows the results of our trip count analysis when
applied on three loops of the program first seen in Figure 3
(a). All the summations are built as functions of the sym-
bolic kernels of their respective loops. Our summations ad-
mit closed formulas, which we determine as successive ap-
plications of the identity:

uX

i=l

1
s
=

u+ 1� l
s

We obtain such formulas through the SymPy library. The
three symbolic expressions seen in Figure 8 were produced

for (i = Tid × R; i < (Tid + 1) × R + P; i++) {

  A[i] = 0;

    for (j0 = i + 1; j0 < N2; j0 += 4) {

      B[i×N2 + j0] = 0;

      for (k = j0; k > i; k -= 1) {

        B[i×N2 + j0] = B[i×N2 + j0] + C[i×N2×N3 + j0×N3 + k];

      }

    }

    ...

  }

}

E - S

-(E - 2×N2 + S)×(E - S + 1)/2

E3/24 + E 
× (-N2/8 + 1/2) + E × (N2

2/8 - N2 + 41/24) +

    N2
2/8 - 7 × N2/8 - S3/24 + S2 × (N2/8 - 3/8) +

    S × (-N2
2/8 + 3 × N2/4 - 5/6) + 5/4

Figure 8: Results of the trip count analysis. We let
S = Tid⇥R, and E = (Tid+ 1)⇥R+ P .

in this way. Although they seem complicated, much of
their complexity will be optimized away, once we run them
through the compiler’s standard optimization passes.

3.4 Array Reuse Analysis
Once we have the trip count of every loop Li, we proceed

to determine the reuse of each array. If a program contains
an array access a[e], then we say that this access is immedi-
ately within loop Li if: (i) the instructions that implement
a[e] are inside Li; and (ii) for every other loop Lj that con-
tains a[e], Lj contains Li. For each array access, we say that
the reuse of that access is the number of times that the ac-
cess will be executed. We estimate the number of executions
of an access as the trip count of its immediate loop. Given
an array a, its reuse is the sum of the reuse of all its accesses
in a loop nest. For instance, the reuse of array B in our ex-
ample of Figure 3 is Trip(L3) + 2 ⇥ Trip(L5) + Trip(L9),
where Li is the loop at line i in the figure. We use this
formulate because array B is used once immediately within
loops L3 (line 4) and L9 (line 10), and twice within loop L5

(line 6). When generating final formulas for reuse estima-
tion, we multiply the reuse of each array access by the page
size, as this is the granularity of data that we can migrate.

3.5 Instrumentation Code
Figure 9 shows the final expressions that we insert in the

original example to implement our heuristics. The minimum
and maximum indexable o↵sets of the array are computed as
the minimum among all the lower bounds and the maximum
among all the upper bounds that the range access analysis
finds. In the figure, we call these values ArraySt_A and Ar-

rayEd_A respectively. As mentioned before, the array reuse
is the sum of the reuse computed for each use of the array
within the loop. In Figure 9 we show the closed formulas
that we use to calculate the reuse of array A.

An important question that we must address is: where
to place the instrumentation code? Ideally we would like
to remove instrumentation checks from inner loops, to de-
crease the overhead on the target program. Therefore, we
place these checks at the earliest program point where all
the variables used in the symbolic kernel of a loop are alive.
In the example of Figure 3 (a), this point is right before line
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if ((Tid + 1) × R + P > Tid × R) {

  (ArraySt_A, ArrayEd_A) = (Tid × R,  (Tid + 1) × R + P − 1))
  (ArraySt_B, ArrayEd_B) = ...
  (ArraySt_C, ArrayEd_C) = ...

  ArrayReuse_A = (2 × N2 − 2 × Tid × R + R + P) × 2 × (R + P + 1)

  ArrayReuse_B = ...
  ArrayReuse_C = ...

  PageReuse_A = ArrayReuse_A / ArraySize_A × PageSize
  PageReuse_B = ...
  PageReuse_C = ...

  try_migrate(A, ArraySt_A, ArrayEd_A, PageReuse_A)
  ...

}

Figure 9: Final expressions used to estimate the size
and reuse of array A, seen in Figure 3.

try_migrate (Array, Start, End, PageReuse) {

  if (End - Start > CacheSize && PageReuse > Threshold ) {

    PageStart = (Array + Start) / PAGE_SIZE;

    PageEnd   = (Array + End) / PAGE_SIZE;       

    (MinMigratablePageStart, MaxMigratablePageEnd) =
                                                pin_pages(gettid(), PageStart, PageEnd);

    if (MaxMigratablePageEnd - MinMigratablePageStart > 0) {

        migrate (PageStart, PageEnd);

    }

  }

}

release_migrated_pages (Array, Start, End) {

  PageStart = (Array + Start) / PAGE_SIZE;

  PageEnd   = (Array + End) / PAGE_SIZE;

  unpin_pages (PageStart, PageEnd);
}

(a)

(b)

Figure 10: Functions used to implement page mi-
gration.

1 of the program. Notice that there exists always a point
where we can place the dynamic checks: immediately be-
fore the header of the loop, because, by definition, all the
variables in the symbolic kernel of the loop are alive at that
point.
Dealing with disputes among threads. We imple-
ment page migration through two functions: try_migrate

and release_migrated_pages. We show a high-level im-
plementation of these functions at Figure 10. We define a
pinned page as a page that has been migrated by a call to
try_migrate. While a page remains in this state, we do
not allow further migration of it. With this, we prevent
threads from disputing a page. We say that two threads dis-
pute a page if: (i) these threads run in di↵erent cores; and
(ii) these threads try to migrate the same page. If threads
were allowed to dispute pages, then the excessive copy of
data between memory banks would impose a burden on our
system.

Every memory page is initially unpinned. During the ex-
ecution of the program, the state of a page can alternate
between unpinned and pinned. If a thread touches a page
p and successfully migrates it, then it marks p as pinned.

Once the thread exits the loop where p is used, it turns that
page’s state back into unpinned. Our compiler inserts in-
strumentation code to operate these changes. In Figure 3
(b), page states can change at two points in the code of the
instrumented program. Pages can be pinned by one of the
three calls of try_migrate, right before the loop. In the
opposite direction, pages might be unpinned by the three
calls of release_migrated_pages, which occur right after
the loop.

To discover which pages are pinned, we use a binary tree
of interval ranges. Each node in this tree represents an in-
terval of virtual memory addresses, which is associated with
a thread identifier. The try_migrate function attempts to
perform the migration of a contiguous range of pages, which
is specified by the interval PageStart - PageEnd. It is pos-
sible that some of the pages in this range are pinned. In this
case, the auxiliary function pin_pages scans our interval
tree, and returns the first contiguous sequence of unpinned
pages. Notice that we do not return a maximal sequence of
unpinned pages, nor we return multiple intervals of unpinned
pages, in case they exist. We use a best e↵ort strategy be-
cause we have realized experimentally that this approach
yields a good tradeo↵ between the precision of our heuristic
and its e�ciency.

0 R 2R 3R 4R 5R

Tid = 0 Tid = 2
0 R+P 2R 2R+P

Tid = 3

Tid = 4

3R+P 4R

4R 5R+P

P(a)

(b) Touching order:

Tid = 2, Tid = 4,

Tid = 0, Tid = 3

Tid = 0 Tid = 2
0 R+P 2R 2R+P

Tid = 4
4R 5R+P

Tid = 0 Tid = 2
0 R+P 2R 2R+P

Tid = 4
4R 5R+P

(c) Tid = 3 releases its pinned pages

Tid = 1
R+P 2R

(d) Tid = 1 starts execution

P P P P

Figure 11: (a) The memory layout and data dis-
tribution after an initial round of execution of the
program in Figure 3 (a). (b-d) Interval tree show-
ing how pinned pages are organized at di↵erent mo-
ments of the program execution.

Figure 11 shows how we organize the pinning of pages
during a round of execution of our running example, seen in
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Figure 3 (a). In this example, threads of identifier Tid and
Tid + 1 access overlapping memory regions through A[i] in
lines 2 and 10 of Figure 3 (a). Thus, it is possible that one
thread will try to migrate a memory page that has been
copied by another thread. To avoid this situation, before
performing this copy, a thread t must search for the range
of data to be copied in our interval tree. If the tree does
not contain this range, then t is allowed to perform the mi-
gration, and a new entry is added to the tree. On the other
hand, if the tree contains part of the range, then a partial
migration might take place. As an example, Figure 11 (d)
shows the configuration of the interval tree once thread Tid

= 1 attempts to copy pages over. Part of the requested range
has been pinned by threads Tid = 0 and Tid = 2. There-
fore, thread 1 will be allowed to migrate a range of pages
that is smaller than its original request.

4. EXPERIMENTAL RESULTS
The primary goal of this section is to demonstrate that

our technique is able to speedup code without human in-
tervention. Most of our techniques rely on our ability to
predict the trip count of loops. Thus, a secondary goal of
this section is to show that we can perform such predictions
reliably. We start the section by diving into this second
goal and leave the latter for Section 4.2. Given these two
distinct goals, Sections 4.1 and 4.2 use two di↵erent bench-
mark suites. In Section 4.1 we measure the precision of
our trip count predictor in the programs of the SPEC CPU
2006 benchmark suite. We use SPEC because this bench-
mark gives us an extensive number of loops, which we can
analyze statically, and measure dynamically. In Section 4.2
we use a suite of parallel benchmarks, which is distributed
with our extension of the LLVM compiler. Even though our
technique is applicable to sequential code - for example re-
ducing memory access latencies bringing data from remote
memory closer to the core where it is needed - the parallel
benchmarks give us more opportunities to exercise all the
features of our technique.

4.1 Trip Count Prediction
Actual loops have simple topology. Table 1 shows
structural characteristics of the loops that we found in SPEC
CPU 2006. SPEC gave us a total of 21,336 loops, out of
which we could instrument 11,850, i.e., 55.54%. We fail to
instrument a loop when we do not find its induction variable.
This failure might happen for three main reasons: (i) the
loop is controlled by an oscillating induction variable; (ii)
it is controlled by a function call; or (iii) it is controlled by
data located in memory. We have not found examples of (i)
in SPEC. Situation (ii) happens in loops like while(f());
an example of (iii) is for (p = a; *p != ’0’; p++).

Table 1 also shows the number of Strongly Connected
Components (SCC) formed by the di↵erent induction vari-
ables that we found in the loops. This number is usually
larger than the number of loops, because some of them might
be controlled by more than one induction variable. We have
found a few linear monotonic variables that might be incre-
mented through di↵erent paths during the execution of the
loop. Nevertheless, this number is rather small: 16% of the
induction variables present this characteristic.
Hit rate of the predictor. We have developed a profiler
that measures the actual trip count of loops. The result
of our profiler lets us observe how accurate our heuristic

Program L IL %IL/L SCC SP

milc 426 391 91.78% 426 409
namd 623 469 75.28% 781 604
dealII 6,526 3,535 54.17% 7,249 6,077
soplex 742 422 56.87% 807 683
lbm 23 23 100.00% 24 23
bzip2 238 186 78.15% 244 171
gcc 4,614 1,798 38.97% 5,121 4,513
mcf 50 7 14.00% 54 40
gobmk 1,288 1,040 80.75% 1,555 1,283
hmmer 881 664 75.37% 946 825
sjeng 267 106 39.70% 276 221
libquantum 98 77 78.57% 123 100
h264ref 1,870 1,411 75.45% 1,946 1,841
omnetpp 465 238 51.18% 470 379
astar 119 80 67.23% 138 118
xalancbmk 3,106 1,403 45.17% 3,024 2,486

Total 21,336 11,850 55.54% 23,184 19,773

Table 1: L: number of loops. IL: number of loops
that we could instrument. SCC: number of induc-
tion variables. SP: induction variables having a
unique increment.

estimates of Section 3.3 are. We have split our accuracy
results into seven categories according to the actual number
N of iterations:

• [0,
p
N ]: Occurs when the estimated trip count is less

than or equal to the square root of the actual trip
count. For example, if we estimate that a loop will
iterate 2 times and it iterates 10 times during its exe-
cution, this loop will be classified into this category.

• ]
p
N , N/2]: Occurs when the estimated trip count lies

between the square root of the actual trip count and
half its value. This case happens, for instance, if we
estimate that a loop will iterate 4 times, but it actually
iterates 10 times.

• ]N/2, N [: Occurs when the estimated trip count lies
between halve the actual trip count and the trip count
itself. For example, if we estimate that a loop will it-
erate 8 times and it iterates 10 times during the actual
execution, this loop will be classified into this category.

• [N , N ]: Occurs when the estimated trip count equals
the actual trip count.

• ]N , 2 ⇤ N ]: Occurs when the estimated trip count is
greater than the actual trip count, but is less than or
equal to twice its true value. For example, if we esti-
mate that a loop will iterate 16 times, but it actually
iterates 10 times, this instance of the loop execution
will fall into this category.

• ]2 ⇤ N , N2]: Occurs when the estimated trip count
is greater than twice the actual trip count, but is less
than or equal to the square of the actual trip count.
This case happens, for instance, if we estimate that a
loop will iterate 32 times and it iterates 10 times in
fact.
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Program [0,
p
N ] ]

p
N , N/2] ]N/2, N [ [N , N ] ]N , 2N ] ]2N , N2] ]N2, +1]

SPEC 15,914,068 1,113 2,877,992 955,866,120 44,786,968 6,026,735 37,227,397
Subtotal (%) 1.50% 0.00% 0.27% 89.95% 4.21% 0.57% 3.50%

LLVM 25,525,142 2,078 2,922,080 4,134,074,825 163,974,403 11,363,892 400,209,181
Total (%) 0.54% 0.00% 0.06% 87.25% 3.46% 0.24% 8.45%

Table 2: Precision of the trip count analysis of Section 3.3.

• ]N2, +1]: Occurs when the estimated trip count is
greater than the square of the actual trip count. For
example, if we estimate that a loop will iterate 128
times, but it actually iterates 10 times, this run will
fall into this category.

Table 2 shows the comparison between the estimated trip
count and the actual trip count collected via profiling. “SPEC”
summarizes the results for the SPEC CPU benchmarks, while
“LLVM”also includes more than 430 benchmarks distributed
with the LLVM test suite. While running the programs, each
time a loop stops, we collect the actual trip count and com-
pare it with the estimated trip count. Thus, the numbers
that we present gives us the quantity of dynamic instances
of loops during runtime, instead of the number of natural
loops in the code. We did this because we may predict cor-
rectly the trip count of some executions of a loop, but may
predict wrongly the trip count of other instances of the same
loop.

4.2 Performance Analysis
In this section we compare the relative performance of

four di↵erent page allocation policies:

1. Selective Page Migration: the technique that we
propose.

2. Minas: a middleware plus a library that has been de-
veloped for NUMA aware architectures [25, Ch.5]. Mi-
nas replaces the memory allocation calls of the C stan-
dard library with an API of its own [26]. Thus, it de-
cides, at runtime, where memory pages will be placed,
based on two policies: first-touch and round robin.
Threads are pinned to the cores where they start run-
ning. Once a thread asks for memory, it is given space
on its local NUMA node. If this node already con-
tains a certain number of active memory pages, then
the next requests are scattered around remote mem-
ory banks, in round-robin fashion, to decrease memory
contention. Minas performs page placement whenever
a thread asks for memory, but it does not migrate a
page after its creation.

3. Premature migration: a policy in which pages are
always migrated to the cores in which they are ac-
cessed. This migration happens regardless of reuse rate
or array size.

4. Baseline: a policy that never migrates pages. Once
allocated, a page remains in its original memory bank
until either it is evicted due to usual page thrashing,
or the program terminates. The page allocation policy
is first-touch.

We run experiments in a 64-core ccNUMA computer fea-
turing four 16-core AMD Opteron 6282 SE processors. This
machine has 8 nodes/memory controllers, each one connected
to a memory bank with 16GB of memory. Cores inside a
processor are organized in eight pairs. The two cores inside
a compute unit share a 64KB L1 instruction cache, a 2MB
L2 cache, a floating-point unit (FPU), and a fetch/decode
unit. Each core has its own 16KB L1 data cache and in-
teger execution pipeline. The compute units share a 6MB
L3 cache. All the performance experiments that we show
in this section use all the 64 available cores. Our operating
system is Ubuntu 12.04.1 LTS, kernel 3.2.0-23 x86 64.
In order to compare these di↵erent page allocation poli-

cies we apply them onto six di↵erent parallel benchmarks.
To ensure reproducibility, these six benchmarks are shipped
together with our distribution of the LLVM compiler and
are freely available in our repository. The benchmarks were
designed and implemented in a way that is oblivious to the
memory allocation policy. All these programs implement
typical parallel algorithms using C POSIX Threads. Four of
our benchmarks are linear algebra applications: matrix mul-
tiplication, Cholesky decomposition, LU decomposition, and
matrix addition. A fifth benchmark is an implementation
of the K-Nearest Neighbors (KNN) data-mining algorithm.
Our last benchmark is the parallel bucket sort algorithm.
Figure 12 shows our runtime results for these programs.

We first notice that in the case of matrix addition, se-
lective migration always beats premature migration. The
reuse rate of each array access is small, since each element is
only accessed once. Our heuristic never migrates any page,
and thus, it is only slightly worse than the original imple-
mentation of the algorithm (baseline), due to its runtime
overhead. Nevertheless, a quick inspection of Chart (e), in
Figure 12, reveals that this overhead is barely noticeable, as
we have been able to hoist the dynamic check to outside the
outermost loop in the code. On the average, selective migra-
tion is 3% slower than the original algorithm. On the other
hand, premature migration always sends pages over, paying
the full price of a data transfer, to communicate values that
will be read only once. Minas also always beats the prema-
ture migration policy; however, its overhead is considerably
larger than our technique.

Premature and selective migration yield similar results
when applied on LU decomposition, Cholesky decomposi-
tion and matrix multiplication, given large inputs. In this
case, both approaches migrate the two arrays that are ac-
cessed more often. Nevertheless, our heuristic is better than
the premature approach for small matrices. This happens
because it does not pay o↵ to migrate arrays that are too
small, as they fit entirely in cache. Hence, the main mem-
ory is only accessed a few times. For very large matrices,
our technique yields smaller speedups than premature mi-
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Figure 12: Relative performance between four di↵erent page allocation policies. Input size for: (a-d) side of
square matrix; (e) size of array to be sorted; (f) size of array of 2D points that constitutes the search space
of K-Means.

gration. We believe that this happens due to the overhead
of keeping a large number of pages in the interval tree.

Parallel bucket sort gives us a promising result: our heuris-
tic is always better than premature migration. This algo-
rithm has four steps. First it sets up an array of initially
empty buckets. Second, it scatters the elements to be sorted
into buckets, in such a way that the elements of the first
bucket are smaller than the elements of the second bucket,
and so on. Third, it sorts the elements of each bucket in
parallel. Finally, it merges the elements of the buckets to
obtain the complete list of sorted elements. The premature
migration policy attempts to migrate pages during all the
four phases of the algorithm, whereas we can recognize the
small reuse rate of array accesses in all the phases but the
third. Thus, in this case we migrate data only when this
operation is beneficial to our algorithm.

Finally, our last chart, seen in Figure 12 (f), shows a situ-
ation when our heuristic should migrate a page, but it does
not - in this case, we deem the amount of array reuse in the
K-Nearest Neighbors algorithm too small to justify the page
transfer. However, premature migration reveals that this
conservative behavior is a mistake in this scenario, given
that it delivers gains of up to 15%. Our overhead causes,
one the average, a 10% slowdown in the application. This
overhead is larger than in the case of matrix addition, shown
in Figure 12 (a), because we have not been able to hoist the
dynamic test completely outside the outermost loop of KNN.

5. RELATED WORK
To the best of our knowledge, the analyses and optimiza-

tions that we describe in Section 3 are novel. However, we
are aware of the seminal work of Wolf and Lam [30], which
laid the foundations of much of the practice and science of
loop analyses. In our work, we preferred to approach loop

analysis using symbolic techniques, because we had to gen-
erate formulas describing trip counts and array sizes. It
is not clear if such formulas could be produced using Wolf
and Lam’s methods. A work more similar to ours is due
to Chatterjee et al. [9], which generates exact formulas to
bound array regions. Our technique can be refined with
more precise models; after all, our formulas give us only es-
timates, not exact numbers. However, we emphasize that
our algorithms are very e�cient. Whereas Chatterjee’s rela-
tional analysis is exponential on the number of bounds, our
method is quadratic.

There are techniques to optimize data placement in NUMA
aware architectures. These methods speedup programs by
reallocating memory pages and mapping threads to cores.
Reallocation and mapping reduce load balancing issues, mem-
ory contention and remote accesses on NUMA machines [15,
6, 26]. In this section we group the most well known tech-
niques into di↵erent categories, depending on which level of
the runtime environment they are implemented: hardware,
operating system, middleware and libraries.

Hardware. Tikir and Hollingsworth [28] have intro-
duced a profile-driven mechanism based on hardware coun-
ters to monitor the memory access behavior of an applica-
tion. The profile is used to decide whether memory pages
should be migrated or not. Cruz et al. [10] have proposed
a mechanism to detect the communication pattern between
threads. Their technique exploits the Translation Lookaside
Bu↵er to obtain the necessary information to map threads
to cores. The resulting mapping reduces the communication
latency by providing data locality to threads. The work of
Dykema et al. [15] has introduced a mechanism that imple-
ments synchronization for data transfers between two ma-
chines with independent memory controllers. Dykema et
al.’s goal is to use the communication link between the nodes
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to synchronize memory and to reduce the overhead of data
transference. In contrast to these works, we focus on a gen-
eral solution that does not rely on a specific feature of a
target architecture. In other words, this paper proposes a
way to speedup applications that does not require modifica-
tions in the current NUMA architectures to be e↵ective.

Operating System. Awasthi et al. [2] have proposed
modifications in the operating system memory allocator to
take into account the NUMA design. Their modifications
improve virtual-to-physical mappings for every page fault
by reducing memory access delays. Migration is performed
during runtime and on spare cycles. Löf and Holmgren [23]
have introduced a new memory policy named a�nity-on-
next-touch for the Solaris operating system. This policy al-
lows data migration when threads touch pages on the next
time. Thus, the threads can have their data in the same
node, allowing more local accesses. Blagodurov et al. [4]
have introduced a contention-aware scheduling algorithm for
NUMA systems. Their work shows how contention-aware
algorithms designed for UMA architectures hurt the perfor-
mance of NUMA multicore systems. Based on these find-
ings, the authors propose an algorithm that minimizes both
thread and data migration, while keeping data locality. The
proposal has been implemented as a user-level scheduler for
the Linux operating system. Diener et al. [12] have presented
a mechanism to dynamically map threads to machine cores.
This technique detects the communication pattern of the
application by monitoring a table that logs page accesses.
Using such information, their approach migrates threads in
order to keep closer the threads that communicate directly.
This solution has been implemented inside the Linux ker-
nel. Closer to our work, Li et al. [22] have used compiler
analyses to determine data placement. Memory allocation,
in their case, uses a customized implementation of the mal-

loc function, and requires system support: an extra field in
memory pages is used to determine its owner. Contrary to
these previous work, our solution does not depend on a spe-
cific operating system. Even though we have implemented
it in Linux, with the hwloc library, it will work in any sys-
tem that gives us: (i) information about the topology of the
underlying architecture and (ii) a way to migrate pages.

Middleware. Broquedis et al. [6] have proposed a
runtime system for OpenMP. This runtime system, called
ForestGOMP, groups threads by a�nity and performs data
migration to reduce NUMA impact on OpenMP applica-
tions. Thread grouping and data migration decision is based
on hints provided by the OpenMP directives of the applica-
tion. The developer does not have to modify the application
source code, however, the approach only works for OpenMP
applications. Castro et al. [8] have proposed a machine
learning based approach that finds an e�cient thread map-
ping for NUMA systems. This approach takes into account
both application and platform characteristics. It relies on
software transactional memory to hide from the application
developer all mapping decisions. Pilla et al. [24] have pro-
posed a load balancing algorithm that migrates tasks over
NUMA domains. It equalizes load and guarantees memory
a�nity by getting runtime information from the application.
The algorithm is implemented inside the Charm++ parallel
runtime system [19] and does not require code modification.
Our solution di↵ers from these previous works because it
does not require a target runtime system. Additionally, our
technique is more aware of the specific structure of the target

program, as it is implemented at the compiler level. Even
though we have not compared our approach against all these
systems, we believe that our overhead is lower, because we
perform most of our computations statically, leaving only
fast runtime checks to be executed dynamically.

Library. Library solutions are closely related to the
middleware category, which we have described previously,
but, contrary to it, in this case programmers must change
their code using particular APIs. Ribeiro et al. [26] pre-
sented an API and a runtime environment to allocate and
place data over the NUMA machine. This API abstracts
to the developer the topology of the architecture and o↵ers
mechanisms to determine the initial allocation and place-
ment of application data. Wittmann and Hager [29] pre-
sented a software layer that reduces adverse e↵ects of task
distribution on ccNUMA systems by sorting tasks into lo-
cality queues. Each of these queues is preferably processed
by threads that belong to the same locality domain, or node.
Dupros et al. [14] optimized a parallel seismic wave propa-
gation software for NUMA machines. This optimization was
performed via direct modifications of the application to be
aware of data allocation and placement. The overall per-
formance of the application has been improved significantly
due to the programmer’s intervention. Borin and Devloo [5]
have discussed the issues of implementing parallel finite ele-
ments methods on multicore NUMAmachines. Both Dupros
et al. [14] and Borin and Devloo [5] have modified their ap-
plication to explicitly manage data and thread placement.
Such management has been done via the numactl tool and
the libnuma API. They also have achieved very expressive
speedups. Contrary to these previous works, our solution
does not require any modification in the source code of the
application. Furthermore, our method is not program spe-
cific and can be applied to di↵erent ranges of applications.

6. CONCLUSION
We have presented a compiler-based technique to improve

page placement in NUMA machines. Our approach joins
static and dynamic analyses in an e↵ective way to allow
parallel benchmarks to benefit from non-uniform memory
architectures. We have shown that it is possible to speed
software’s performance up to four times without program-
mer’s intervention. We are not aware of other solutions that
are completely restricted to the compiler: we did not have
to modify the operating system nor the memory allocation
API used in the C standard library.
Limitations and Future Work. Our implementation
currently does not handle OpenMP directives, as they have
a particular semantics that we have not yet encoded in our
framework. At this time, we only analyze the syntax and se-
mantics that is standard in the intermediate representation
of LLVM, our baseline compiler infrastructure. Given the
vast amount of benchmarks written in OpenMP, we intend
to incorporate its semantics in our analyses.
Software. All the techniques that we have implemented
in this paper, plus the benchmarks that we have used in
Section 4.2 are publicly available at http://code.google.

com/p/selective-page-migration-ccnuma.
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