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Abstract. Range analysis is a compiler technique that determines stat-
ically the lower and upper values that each integer variable from a target
program may assume during this program’s execution. This type of infer-
ence is very important, because it enables several compiler optimizations,
such as dead and redundant code elimination, bitwidth aware register al-
location, and detection of program vulnerabilities. In this paper we em-
pirically evaluate an inter-procedural, context-sensitive range analysis
algorithm that we have implemented in the LLVM compiler. During the
effort to produce an industrial-quality implementation of our algorithm,
we had to face a constant tension between precision and speed. The fore-
most goal of this paper is to discuss the many engineering choices that,
due to this tension, have shaped our implementation. Given the breath
of our evaluation, we believe that this paper contains the most compre-
hensive empirical study of a range analysis algorithm ever presented in
the compiler related literature.

1 Introduction

Range analysis is a compiler technique whose objective is to determine stati-
cally, for each program variable, limits for the minimum and maximum values
that this variable might assume during the program execution. Range analy-
sis is important because it enables many compiler optimizations. Among these
optimizations, the most well-known are dead and redundant code elimination.
Examples of redundant code elimination include the removal of array bounds
checks [3,13,27] and overflow checks [22]. Additionally, range analysis is also
used in bitwidth aware register allocation [1, 19, 26], branch prediction [18] and
synthesis of hardware for specific applications [4, 12, 14, 23]. Because of this im-
portance, the programming language community has put much effort in the
design and implementation of efficient and precise range analysis algorithms.
However, the compiler related literature does not contain a comprehensive
evaluation of range analysis algorithms that scale up to entire programs. Many
works on this subject are limited to very small programs [14, 21, 23], or, given
their theoretic perspective, have never been implemented in production compil-
ers [9, 10, 24, 25]. There are implementations of range analysis that deal with very
large programs [2, 6,13, 16]; nevertheless, because these papers focus on appli-
cations of range analysis, and not on its implementation, they do not provide a



thorough discussion about their engineering decisions. A noticeable exception is
the recent work of Oh et al. [17], which discusses a range analysis algorithm de-
veloped for C programs that can handle very large benchmarks. Oh et al. present
an evaluation of the speed and memory consumption of their implementation.
In this paper we claim to push this discussion considerably further.

We have implemented an industrial-quality range analysis algorithm in the
LLVM compiler [11]. While designing and implementing our algorithm we had
to face several important engineering choices. Many approaches that we have
used in an attempt to increase the precision of our implementation would re-
sult in runtime slowdowns. Although we cannot determine the optimum spot in
this design space, given the vast number of possibilities, we discuss our most
important implementation decisions in Section 3. Section 3.1 shows how we can
improve runtime and precision substantially by processing data-flow informa-
tion in the strongly connected components that underly our constraint system.
Section 3.2 discuss the importance of choosing a suitable intermediate represen-
tation when implementing a sparse data-flow framework. Section 3.3 compares
the intra-procedural and the inter-procedural versions of our algorithm. The role
of context sensitiveness is discussed in Section 3.4. Finally, Section 3.5 discusses
the different widening strategies that we have experimented with.

This work concludes a two years long effort to produce a solid and scal-
able implementation of range analysis. Our first endeavor to implement such an
algorithm was based on Su and Wagner’s constraint system [24, 25]. However,
although we could use their formulation to handle a subset of C-like constructs,
their description of how to deal with loops was not very explicit. Thus, in order
to solve loops we adopted Gawlitza et al.’s [9] approach. This technique uses
the Bellman-Ford algorithm to detect increasing or decreasing cycles in the con-
straint system, and then saturates these cycles via a simple widening operator.
A detailed description of our implementation has been published by Couto and
Pereira [8]. Nevertheless, the inability to handle comparisons between variables,
and the cubic complexity of the Bellman-Ford method eventually led us to seek
alternative solutions to range analysis. This quest reached a pinnacle in the
present work, which we summarize in this paper.

2 Brief Description of our Range Analysis Algorithm

The Interval Lattice. Following Gawlitza et al.’s notation, we shall be per-
forming arithmetic operations over the lattice Z = Z U {—o0, +00}, where the

ordering is naturally given by —co < ... —1 <0< 1... < +o0. We let meet and
join be the min and max operators respectively. For any x > —oco we define:
T+ 00 =00 T — 00 = —00
rxoo=o00ifx>0 rxoo=—-0ifx <0
0xo0o=0 (—o00) x 0o = not defined

From the lattice Z we define the product lattice 22, partially ordered by the
subset relation C, and defined as 22 = ) U {[z1,22]]| 21,22 € Z, 21 < 29, —0 <
z2}. The objective of range analysis is to determine a mapping I : V — Z? from
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Fig. 1. Our implementation of range analysis. Rounded boxes are optional modules.
The grey box is a module implemented in LLVM; the other parts are our contributions.

the set of integer program variables V to intervals, such that, for any variable
v € V, if I(v) = [l,u], then, during the execution of the target program, any
value i assigned to v is such that [ <i < u.

A Holistic View of our Range Analysis Algorithm. Figure 1 gives a global
view of our range analysis algorithm. We perform range analysis in a number
of steps, some of which are optional. The optional parts improve the precision
of the range analysis, at the expense of a longer running time. In Section 3 we
discuss in more detail these tradeoffs.

We will illustrate the mandatory parts of the algorithm via the example
program in Figure 2. More details about each phase of the algorithm will be
introduced in Section 3, when we discuss our engineering decisions. Figure 2(a)
shows an example program taken from the partition function of the quicksort
algorithm used by Bodik et al. [3]. Figure 2(b) shows one possible way to rep-
resent this program internally. As we explain in Section 3.2, a good program
representation helps range analysis to find more precise results. In this example
we chose a program representation called Extended Static Single Assignment
form [3], which lets us solve range analysis via a path sensitive algorithm. This
representation uses the ¢-functions typical in SSA form programs [7], plus fu-
tures (ft), which we shall define later. Figure 2(c) shows the constraints that
we extract from the intermediate representation seen in part (b) of this figure.
From these constraints we build the constraint graph in Figure 2(d). This graph
is the main data-structure that we use to solve range analysis. For each variable
v in the constraint system, the constraint graph has a node n,. Similarly, for
each constraint v = f(...,u,...) in the constraint system, the graph has an op-
eration node ny. For each constraint v = f(...,u,...) we add two edges to the
graph: m and W . Some edges in the constraint graph are dashed. These
are called control dependence edges. If a constraint v = f(...,ft(u),...) uses a
future bound from a variable u, then we add to the constraint graph a control
dependence edge W . The final solution to this instance of the range analysis
problem is given in Figure 2(e).
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Fig. 2. Range analysis by example. (a) Input program. (b) Internal compiler represen-
tation. (c¢) Constraints of the range analysis problem. (d) The constraint graph. (e)
The final solution.

The Micro Algorithm. We find the solution given in Figure 2(e) in a process
that we call the micro algorithm. This process is divided into three sub-steps:
(i) growth analysis; (ii) future resolution and (iii) narrowing analysis.

Growth analysis. The objective of growth analysis is to determine the growth
behavior of each program variable. There are four possible behaviors: (a) the vari-
able is bound to a constant interval, such as ko in Figure 2(b). (b) The variable
is bound to a decreasing interval, i.e., an interval whose lower bound decreases.
This is the case of j; in our example. (¢) The variable is bound to an increasing
interval, i.e., its upper bound increases. This is the case of i in the example. (d)
The variable is bound to an interval that expands in both directions. The growth
analysis uses an infinite lattice, i.e., Z2. Thus, a careless implementation of an
algorithm that infers growth patterns might not terminate. In order to ensure
termination, we must rely on a technique called widening, first introduced by
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Fig. 4. Cousot and Cousot’s narrowing operator. Function e(V) is an abstract evalua-
tion, on the interval lattice, of the instruction that produces V.

Cousot and Cousot as a key component of abstract interpretation [5]. There are
many different widening strategies. We discuss some of them in Section 3.5.

Future resolution. In order to learn information from comparisons between
variables, such as i < j in Figure 2(a), we bind some intervals to futures. Fu-
tures are symbolic limits, which will be replaced by actual numbers once we
finish the growth analysis. The ranges found by the growth analysis tells us
which variables have fixed bounds, independent on the intersections in the con-
straint system. Thus, we can use actual limits to replace intersections bounded
by futures. Figure 3 shows the rules to perform these substitutions. In order to
correctly replace a future ft(v) that limits a variable v/, we need to have already
applied the growth analysis onto v. Had we considered only data dependence
edges, then it would be possible that v' be analyzed before v. However, because
of control dependence edges, this case cannot happen. The control dependence
edges ensure that any topological ordering of the constraint graph either places
N, before N, , or places these nodes in the same strongly connected component.
For instance, in Figure 2(d), variables j; and #; are in the same SCC only because
of the control dependence edges.

Narrowing analysis. The growth analysis associates very conservative bounds
to each variable. Thus, the last step of our algorithm consists in narrowing these
intervals. We accomplish this step via Cousot and Cousot’s classic narrowing
operator [5, p.248], which we show in Figure 4.
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Fig. 5. Design space exploration: precision (percentage of bitwidth reduction) versus
speed (secs) for different configurations of our algorithm analyzing the SPEC CPU
2006 integer benchmarks.

3 Design Space

As we see from a cursory glance at Figure 1, our range analysis algorithm has
many optional modules. These modules give the user the chance to choose be-
tween more precise results, or a faster analysis. Given the number of options, the
design space of a range analysis algorithm is vast. In this section we try to cover
some of the most important tradeoffs. All the numbers that we show have been
obtained as the average of 15 runs in an Intel Core 2 Quad processor with 2.4
GHz, and 3.5 GB of main memory. Figure 5 plots, for the integer programs in
the SPEC CPU 2006 benchmark suite, precision versus speed for different con-
figurations of our implementation. Our initial goal when developing this analysis
was to support a bitwidth-aware register allocator. Thus, we measure precision
by the average number of bits that our analysis allows us to save per program
variable. It is very important to notice that we do not consider constants in our
statistics of precision. In other words, we only measure bitwidth reduction in
variables that a constant propagation step could not remove.

3.1 Strongly Connected Components

The greatest source of improvement in our implementation is the use of strongly
connected components. To propagate ranges across the constraint graph, we frag-
ment it into strongly connected components, collapse each of these components
into single nodes, and sort the resulting directed acyclic graph topologically. We
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Fig. 6. (Left) Bars give time to run our analysis without building strong components
divided by time to run the analysis on strongly connected components. (Right) Bars
give precision, in bitwidth reduction, that we obtain with strong components, divided
by the precision that we obtain without them.

then solve the range analysis problem for each component individually. Once we
have solved a component, we propagate its ranges to the next components, and
repeat the process until we walk over the entire constraint graph. It is well-known
that this technique is essential to speedup constraint solving algorithms [15, Sec
6.3]. In our case, the results are dramatic, mostly in terms of speed, but also
in terms of precision. Figure 6 shows the speedup that we gain by using strong
components. We show results for the integer programs in the SPEC CPU 2006
benchmark suite. In xalancbmk, the analysis on strong components is 450x faster.

According to Figure 6, in some cases, as in bzip2, strong components increase
our precision by 40%. The gains in precision happen because, by completely re-
solving a component, we are able to propagate constant intervals to the next
components, instead of propagating intervals that can grow in both directions.
An an example, in Figure ?? we pass the range [0,99] from variable k to the
component that contains variable j. Had we run the analysis in the entire con-
straint graph, by the time we applied the growth analysis on 7 we would still
find k& bound to [0, +00].

3.2 The choice of a program representation

If strong components account for the largest gains in speed, the choice of a
suitable program representation is responsible for the largest gains in precision.
However, here we no longer have a win-win condition: a more expressive pro-
gram representation decreases our speed, because it increases the size of the
target program. We have tried our analysis in two different program represen-
tations: the Static Single Assignment (SSA) form [7], and the Extended Static
Single Assignment (e-SSA) form [3]. The SSA form gives us a faster, albeit more
imprecise, analysis. Any program in e-SSA form has also the SSA core property:
any variable name has at most one definition site. The contrary is not true: SSA
form programs do not have the core e-SSA property: any use site of a variable
that appears in a conditional test post-dominates its definition. The program in



Fig. 7. (Left) Bars give the time to run analysis on e-SSA form programs divided by
the time to run analysis on SSA form programs. (Right) Bars give the size of the e-SSA
form program, in number of assembly instructions, divided by the size of the SSA form
program.

Figure 2(b) is in e-SSA form. The live ranges of variables i; and j; have been
split right after the conditional test via the assertions that creates variables i,
and j;. The e-SSA format serves well analyses that extract information from
definition sites and conditional tests, and propagate this information forwardly.
Examples include, in addition to range analysis, tainted flow analysis [20] and
array bounds checks elimination [3].

Figure 7 compares these two program representations in terms of runtime. As
we see in Figure 7(Left), the e-SSA form slows down our analysis. In some cases,
as in xalancbmk, this slowdown increases execution time by 71%. Runtime in-
creases for two reasons. Firstly, the e-SSA form programs are larger than the SSA
form programs, as we show in Figure 7(Right). However, this growth is small: we
did not verify any growth larger than 9% in any integer program of SPEC CPU
2006. Second, the e-SSA form program has futures; hence requiring the future
resolution phase of our algorithm, which is not necessary in SSA form programs.
Nevertheless, whereas the e-SSA form slows down the analysis runtime, its gains
in precision are remarkable, as seen in Figure 8. These gains happen because the
e-SSA format lets the analysis to use the results of comparisons to narrow the
ranges of variables.

3.3 Intra versus Inter-procedural Analysis

A naive implementation of range analysis would be intra-procedural; that is,
would solve the range analysis problem once per each function. However, we can
gain in precision by performing it inter-procedurally. An inter-procedural imple-
mentation allows the results found for a function f to flow into other functions
that f calls. Figure 9 illustrates the inter-procedural analysis for the program
seen in Figure 2(a). The trivial way to produce an inter-procedural implementa-
tion is to insert into the constraint system assignments from the actual parameter
names to the formal parameter names. In our example of Figure 9, our constraint
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Fig. 8. The impact of the e-SSA transformation on precision for three different bench-
mark suites. Bars give the ratio of precision (in bitwidth reduction), obtained with
e-SSA form conversion divided by precision without e-SSA form conversion.
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Fig. 9. Example where an inter-procedural analysis is more precise than an intra-
procedural analysis.

graph contains a flow of information from 0, the actual parameter, to kg, the
formal parameter of function foo.

Figure 11 compares the precision of the intra and inter-procedural analy-
ses for the five largest programs in three different categories of benchmarks:
SPEC CPU 2006, the Stanford Suite ! and Bitwise [23]. Our results for the
SPEC programs were disappointing: on average, for the five largest programs,
the intra-procedural version of our analysis saves 5.23% of bits per variable. The
inter-procedural version increases this number to 8.89%. A manual inspection of
the SPEC programs reveals that this result is expected: these programs use many
external library functions, which we cannot analyze, and their source codes do
not provide enough explicit constants to power our analysis up. However, with
numerical benchmarks we fare much better. On average, our inter-procedural al-

! http://classes.engineering.wustl.edu/csed65/docs/BCCExamples/stanford.c
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Fig. 10. Example where a context-sensitive implementation improves the results of
range analysis.

gorithm reduces the bitwidth of the Stanford benchmarks by 36.24%. For Bitwise
we obtain a bitwidth reduction of 12.27%. However, this average is lowered by
two outliers: edge_detect and sha, which cannot be reduced. The Bitwise bench-
marks were implemented by Stephenson et al. [23] to validate their bitwidth
analysis. Our results are on par with those found by the original authors. The
Bitwise programs contain only the main function; thus, different versions of our
algorithm find the same results when applied onto these programs.

3.4 Context Sensitive versus Context Insensitive Analysis

Another way to increase the precision of range analysis is via a context-sensitive
implementation. Context-sensitiveness allows us to distinguish different calling
sites of the same function. Figure 10 shows why the ability to make this dis-
tinction is important for precision. In Figure 10(a) we have two different calls of
function foo. An usual way to perform a data-flow analysis inter-procedurally is
to create assignments between formal and actual parameters, as we show in Fig-
ure 10(b). If a function is called more than once, then its formal parameters will
receive information from many actual parameters. We use the SSA’s ¢-functions
to bind this information together into a single flow. However, in this case the
multiple assignment of values to parameters makes the ranges of these parame-
ters very large, whereas in reality they are not. As an example, in Figure 10(b),
variable k ends up associated with the range [0, 10%], but in reality this variable
contains an interval that is only 100 units long. A way to circumvent this source
of imprecision is via function inlining, as we show in Figure 10(c). The results
that we can derive for the transformed program are more precise, as each input
parameter is assigned a single value.

Figure 11 shows how function inlining modifies the precision of our results.
It is difficult to find an adequate way to compare the precision of our analysis
with, and without inlining. This difficulty stems from the fact that this transfor-
mation tends to change the target program too much. In absolute numbers, we
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Fig.12. Runtime comparison between intra, inter and inter+inline versions of our
algorithm. The bars are normalized to the time to run the intra-procedural analysis.

always reduce the bitwidth of more variables after function inlining. However,
proportionally function inlining leads to a smaller percentage of bitwidth reduc-
tion for many benchmarks. In the Stanford Collection, for instance, where most
of the functions are called in only one location, inlining leads to worse precision
results. On the other hand, for the SPEC programs, inlining, even in terms of
percentage of reduction, tends to increase our measure of precision.

Intra vs Inter-procedural runtimes. Figure 12(Right) compares three differ-
ent execution modes. Bars are normalized to the time to run the intra-procedural
analysis without inlining. On average, the intra-procedural mode is 28.92% faster
than the inter-procedural mode. If we perform function inlining, then this dif-
ference is 45.87%. These numbers are close because our runtime is bound to the
size of the strong components. We have observed that function inlining does not
increase too much these components.

3.5 Choosing a Widening Strategy

We have implemented the widening operator used in the growth analysis in
two different ways. The first way, which we call simple, is based on Cousot and
Cousot’s original widening operator [5]. This operator is shown in Figure 13,
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Fig. 14. An example where jump-set widening is more precise.

and it is the one used in Figure ??(b). The second widening strategy, which
we call jump-set widening consists in using the constants that appear in the
program text, in sorted order, as the next limits of each interval after widening
is applied. This operator is common in implementations of range analysis [15,
p.228]. There are situations in which jump-set widening produces better results
than the simple operator. Figure 14 shows an example taken from the code of
SPEC CPU bzip2. Part of the constraint graph of the program in Figure 14(a)
is given in Figure 14(b). The result of applying the simple operator is shown in
Figure 14(c). Jump-set widening would use the lattice in Figure 14(d), instead of
the lattice in Figure 13(Right). This lattice yields the result given in Figure 14(e),
which is more precise.

Another way to improve the precision of growth analysis is to perform a few
rounds of abstract interpretation on the constraint graph, and to apply widen-
ing only if this process does not reach a fixed point. Each round of abstract



Benchmark Size 0 + Simple | 16 + Simple 0 + Jump 16 + Jump
hmmer | 38,409 9.98 11.40 (12.45) | 10.98 (9.11) | 11.40 (12.45)
gobmk 84,846 8.15 9.93 (17.92) | 9.02 (9.64) | 10.13 (19.54)
h264ref 97,494 12.58 13.11 (4.04) 13.00 (3.23) 13.11 (4.04)

xalancbmk | 352,423 771 7.98 (3.38) | 7.95 (3.02) | 7.98 (3.38)

gee 449,442 16.09 16.63 (3.25) | 16.41 (1.95) | 16.64 (3.31)

Fig. 15. Variation in the precision of our analysis given the widening strategy. The
size of each benchmark is given in number of variable nodes in the constraint graph.
Precision is given in percentage of bitwidth reduction. Numbers in parenthesis are
percentage of gain over 0 + Simple.

interpretation consists in evaluating all the constraints, and then updating the
intervals that change from one evaluation to the other. For instance, in Figure 14
one round of abstract interpretation, coupled with the simple widening operator,
would be enough to reach the fixed point of that constraint system. We have
experimented with 0 and 16 iterations before doing widening, and the overall
result, for the programs in the SPEC CPU 2006 suite is given in Figure 5. Fig-
ure 15 shows some of these results in more detail for the five largest benchmarks
in this collection. In general jump-set widening improves the precision of our
results in non-trivial ways. Nevertheless, the simple widening operator preceded
by 16 rounds of abstract interpretation in general is more precise than jump-set
widening without any cycle of pre-evaluation, as we see in Figure 15.

4 Final Remarks

This paper presents what we believe is the most comprehensive evaluation
of range analysis in the literature. Altogether we have experimented with
32 different configurations of our range analysis algorithm. Our implemen-
tation is publicly available at http://code.google.com/p/range-analysis/.
This repository contains instructions about how to deploy and use our im-
plementation. We provide a gallery of examples, including source codes,
CFGs and constraint graphs that we produce for meaningful programs at
http://code.google.com/p/range-analysis/wiki/gallery.
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