
DawnCC : a Source-to-Source Automatic Parallelizer of C
and C++ Programs

Breno Campos Ferreira Guimarães, Gleison Souza Diniz Mendonça,
Fernando Magno Quintão Pereira

1Departamento de Ciência da Computação – UFMG
Av. Antônio Carlos, 6627 – 31.270-010 – Belo Horizonte – MG – Brazil

{brenosfg,gleison.mendonca,fernando}@dcc.ufmg.br

Abstract. Dedicated graphics processing chips have become a standard com-
ponent in most modern systems, making their powerful parallel computing ca-
pabilities more accessible to developers. Amongst the tools created to aid pro-
grammers in the task of parallelizing applications, directive-based standards
are some of the most widely used. These standards, such as OpenACC and
OpenMP , facilitate the conversion of sequential programs into parallel ones
with minimum human intervention. However, inserting pragmas into pro-
duction code is a difficult and error-prone task, often requiring familiarity
with the target program. This difficulty restricts the ability of developers to
annotate code that they have not written themselves. This paper describes
DawnCC , a tool that solves this problem. DawnCC is a source-to-source com-
piler module that automatically annotates sequential C code with OpenACC or
OpenMP directives; thus, effectively producing parallel programs out of se-
quential semantics. DawnCC is equipped with a number of static program
analyses that: (i) infer bounds of memory regions referenced in source code
to copy them between host and device; and (ii) discover parallel loops in se-
quential code. To validate its effectiveness, we have used DawnCC to auto-
matically annotate the benchmarks in the Polybench/GPU suite with proper
OpenACC directives. These annotations let us parallelize these benchmarks,
leading to speedups of up to 78x.

Link to Video: https://youtu.be/e7mmpP3x10E

1. Introduction
The growing popularity of heterogeneous architectures containing both CPUs and GPUs
has generated an increasing interest in general-purpose computing on graphics processing
units (GPGPU) [?]. This practice consists of developing general purpose programs, i.e.
not necessarily related to graphics processing, to run on hardware that is specialized for
graphics computing. Executing programs on such chips can be advantageous due to the
parallel nature of their architecture: while a typical CPU is composed of a small number
of cores capable of a wide variety of computations, GPUs usually contain hundreds of
simpler processors, which perform computations in separate chunks of memory concur-
rently [?]. Thus, a graphics chip can run programs that are sufficiently parallel much faster
than a CPU [?]. In some cases, this speedup can reach several orders of magnitude. GPUs
can also be not only faster, but also more energy-efficient when running memory-parallel
tasks.

This model, however, has its shortcomings. Historically, parallel programming
has been a difficult paradigm to adopt, sometimes requiring that developers be familiar-
ized with particular instruction sets of different graphics chips. Recently, a few standards
such as OpenCL and CUDA have been designed to provide some level of abstraction to
these platforms, which in turn has led to the development of compiler directive-based
programming models, e.g. OpenACC [?] and OpenMP [?]. While these have somewhat
bridged the gap between programmers and parallel programming interfaces, they still rely
on manual insertion of compiler directives, an error-prone process that also commands in-
depth knowledge of the target program.

Amongst the hurdles involved in annotating code, two tasks are particularly chal-
lenging: identifying parallel loops and estimating memory bounds [?]. Regarding the
former, opportunities for parallelism are usually buried under complex syntax. As to the
latter, languages such as C and C++ do not provide any information on the size of memory
being accessed during the execution of the program. However, when offloading code for
parallel execution, it is necessary to inform which chunks of memory must be copied to
other devices. Therefore, the onus of keeping track of these memory bounds falls on the
programmer.

This paper describes DawnCC , a tool that we have designed, implemented and
tested to shield developers from the complexities of parallel programming. Through the
implementation of a static analysis that derives memory access bounds from source code,
it infers the size of memory regions in C programs. With these bounds, our tool is capable
of inserting data copy directives in the original source code. These directives provide a
compatible compiler with information on which data must be moved between devices. It
is also capable of identifying loops that do not contain memory dependences, and there-
fore can be run in parallel, and marking them as such with the proper pragmas. To increase
the amount of potentially parallel loops detectable, it performs pointer disambiguation.
That is, it determines conditions that guarantee the absence of aliasing, and indicates that
a loop may be executed in parallel when said conditions are met.

We have developed DawnCC as a collection of compiler modules, or passes, for
the LLVM compiler infrastructure [?]. We have made DawnCC available for public use
through a webpage that functions as a front-end1. Users can submit their own C source
code through this page. The code is then compiled to LLVM bytecode and run through our
passes, which analyze it and reconstruct the original C source, inserting the appropriate
parallel standard directives. Thus, the user receives as output a modified version of their
code in plain text, which corresponds to an effectively parallel version of their submitted
program. To demonstrate the effectiveness of DawnCC , in this paper we show how to
apply it onto the source code of the benchmarks available in the Polybench/GPU suite2.
We use DawnCC to annotate the programs in Polybench with OpenACC directives. The
modified benchmarks present speedups of up to 78x in execution time, and their results
are verified for correctness by comparison with sequential execution.

1Our tool is currently available at http://cuda.dcc.ufmg.br/dawn/
2Polybench’s source code is available in several different websites, such as http://web.cse.

ohio-state.edu/˜pouchet/software/polybench/

2. Related Work
We could only design and implement DawnCC because of the emergence of annotation
systems for data-parallel systems. These standards aim to simplify the creation of parallel
programs by providing an interface for developers to annotate specific regions in source
code, indicating that they should run in parallel. Parallel execution can be performed in
a variety of ways, such as spread between multiple cores in a single CPU, or through of-
floading computation to a separate device in heterogeneous architectures. Compilers that
support these standards can check for the presence of directives in source code, and gen-
erate parallel code for the specific regions annotated, which can in turn be allocated to run
on target devices. DawnCC currently supports two standards, OpenACC and OpenMP ,
but it can easily be extended to support others. We have chosen these standards due to
their effectiveness and widespread use in modern parallel programming.

To the best of our knowledge, DawnCC is the only source-to-source compiler that
inserts OpenACC or OpenMP annotations in programs automatically. However, there
are tools with the same end-goal: to compile C into CUDA without much intervention
from developers. A number of optimization frameworks based on the polyhedral model
have been used for automatic generation of GPU code [?, ?]. These tools generate GPU
code directly, without using annotations. In practice, the symbolic limits generated by
such frameworks and the ones generated by the analysis chosen for this work present
similar results [?], each having specific advantages. For instance, the method applied
in this paper can handle non-affine regions of code, while the analyses implemented in
polyhedral-based tools usually generate simpler interval expressions, by performing static
simplification, which comes at the cost of a higher compilation time.

3. Working Example
Figure 1 shows an example program that can be provided as input in DawnCC ’s web-
page. The C code shown contains a few loops that exemplify some of the key analy-
ses DawnCC is capable of performing, and exposes some of the main functionalities it
provides. The following sections explain these in greater depth. For the output exam-
ples in the figures that follow, we have used DawnCC to annotate the source code with
OpenACC directives, and configured it to only annotate loops it deems as parallelizable.
Note that the original code remains unchanged, having been reconstructed from the com-
piler’s intermediate representation.

3.1. Memory Bound Accuracy

Balancing the overhead of offloading computation to a separate device and the gain in
performance from parallel execution is a cornerstone of efficient GPGPU programming.
In many cases, the effort spent in performing tasks not related to effective computation,
such as copying data or synchronizing execution, counterweighs the advantages of abus-
ing parallelism. This can cause the parallel version of the program to show no significant
gain in performance, or even a slowdown, even when the algorithm involved presents
ripe opportunities for concurrent execution. Therefore, handling the amount of overhead
associated with parallelizing code is vital.

When it comes to measuring memory bounds to perform data copying, a naive
analysis could simply measure the total size of memory blocks referenced inside the

void example (int *a, int *b, int c) {
 int n[5000];
 int i, j, k;

 /*loop 1*/
 for (i = 0; i < 1000; i++) {
 /*loop 2*/
 for (j = 0; j < 1000; j++) {
 n[i+j] = i*j;
 }
 }

 /*loop 3*/
 for (k = 0; k < 5000; k++) {
 a[k] = b[k]+(k*k);
 }

 /*loop 4*/
 for (k = 0; k < c; k++) {
 a[k] = k*(k+1);
 }
}

Figure 1. Example input C code.

loops, and use the entire size as the upper bound in a data copy directive. While cor-
rect, such an approach could potentially generate redundant copy instructions, since it is
possible for chunks of data which are not used within the loop to be copied back and forth
between devices. Our analysis instead calculates the bounds of the memory region that is
effectively accessed inside the loop, thus minimizing the amount of potentially redundant
computation. Figure 2 (a) highlights the pragmas inserted in the code for the first two
loops in the original example. Since the upper limit for the array subscript is at most the
sum of the values reachable by both induction variables, it is not necessary to copy the
entire array. As a result, the data directive generated contains a more precise value that
better reflects the effective memory access limits.

3.2. Treating Pointer Aliasing

There are many reasons that might prevent a given piece of program from being paral-
lelizable. Most of these include memory dependences of some form. In C and C++ code
involving dynamically allocated memory regions, one of the main culprits behind such
dependences is the possibility of pointer aliasing. That is to say, when a set of instruc-
tions accesses memory referenced by multiple pointer values, there is no guarantee that
the regions pointed to do not overlap. In such cases, an implicit memory dependence
exists, and the possibility of parallelization is typically discarded. Usually, treating these
cases statically involves the employment of complex and costly interprocedural pointer
analyses.

However, as a by-product of our alias analysis, our tool is capable of performing
pointer disambiguation. This means it can infer conditions that ensure the absence of
aliasing, in which case the memory dependences do not exist, and parallel execution might
be possible. By combining this with conditional compilation directives, we can solve the
problem in an elegant and concise way. The conditional directives instruct a compiler
to create two different versions of a loop, whose execution is controlled by an aliasing
check. Then, during execution, the conditional is evaluated. If the absence of aliasing is
confirmed, the loop is executed in parallel. Otherwise, a sequential version is executed
instead. Figure 2 (b) shows the pragmas inserted for the code that corresponds to the third
loop in the original example. The alias check can be observed immediately before the

pragma directives, and the conditional execution pragmas can be seen associated with the
data copy and kernels directives.

3.3. Symbolic Inference
Figure 2 (c) shows the code that corresponds to the fourth loop in the original example.
In this case, the scalar value of the variables used as subscripts in the memory accesses in
the loop are not predictable in the function’s scope. In this case, DawnCC is capable of
inferring the proper limits by inserting a series of value checks to determine which value
effectively defines the upper bound for the memory accesses performed. It then inserts
the proper value in the copy directive. Note that in this case the memory bounds may vary
during execution, yet the limits defined remain correct for every execution context. The
value checks can be seen immediately above the pragmas. The first pragma inserted is the
data directive, with the proper upper bound as its parameter.

/*loop 1*/
#pragma acc data pcopy(n[0:1999])
#pragma acc kernels
#pragma acc loop independent
for (i = 0; i < 1000; i++) {

/*loop 2*/
#pragma acc loop independent
for (j = 0; j < 1000; j++) {

n[i+j] = i*j;
}

/*loop 3*/
char RST_AI2 = 0;
RST_AI2 |= !((A + 0 > b + 5000)
|| (b + 0 > a + 5000));
#pragma acc data pcopy(a[0:5000],b[0:
5000]) if(!RST_AI2)
#pragma acc kernels if(!RST_AI2)
#pragma acc loop independent
for (k = 0; k < 5000; k++) {
 a[k] = b[k]+(k*k);
}

 /*loop 4*/
 long long int AI3[6];
 AI3[0] = c + -1;
 AI3[1] = 4 * AI3[0];
 AI3[2] = AI3[1] + 4;
 AI3[3] = AI3[2] / 4;
 AI3[4] = (AI[3] > 0);
 AI3[5] = (AI3[4] ? AI3[3] : 0);
 #pragma acc data pcopy(a[0:AI3
[5]])
 #pragma acc kernels
 #pragma acc loop independent
 for (k = 0; k < c; k++) {
 a[k] = k*(k+1);
 }

(a);

(b);

(c);

Figure 2. (a) Pragmas inserted in the first and second loops; (b) Pragmas and
alias checks for third loop; (c) Pragmas and value checks for fourth loop.

4. Web Interface
DawnCC is available at http://cuda.dcc.ufmg.br/dawn/. This webpage is
open to the general public, and it receives, as input, a plain C program. Figure 3 shows the
main screen of our webpage. Whoever uses the DawnCC webpage can choose between
annotating programs with either OpenACC or OpenMP directives. Users have also the
option to display compilation statistics about the annotation process. These statistics in-
clude facts such as the number of memory accesses that DawnCC has been able to bound,
the number of loops inferred to be parallel, the number of total annotations inserted, etc.
When dealing with large programs, users have the option to load them instead of pasting
their text into the input window.

Figure 4 shows the output produced by our tool. The annotated program is made
available to the user at the window in the lower part of the web interface. The user can
also download a complete version of the program, via a link next to the program’s text.
Whenever users select to display compilation statistics, these numbers are displayed right
above the output window. The webpage contains a tutorial about how to use DawnCC ,
which provides more information to the interested reader.

Figure 3. Screenshot of the web interface of DawnCC .

5. Experiments
We performed a small set of tests to validate the effectiveness of DawnCC . We used
the programs in the Polybench/GPU suite of benchmarks, contained in the UniBench
compilation of suites, as our testing codebase. We used DawnCC to annotate all the
programs in the suite with data copy directives and kernels directives. It is important to
note that for this specific set of tests the annotation of parallel loops was done manually, as
the main focus of this work is the analysis for inferring memory bounds and performing
pointer disambiguation. Figure 5 displays a speedup chart that measures the execution
time ratio between GPU and CPU execution time. A positive value means a speedup of
the given amount was observed, while a negative value corresponds to a slowdown of the
same proportion.

The experiments were performed in a server with an Intel Xeon E5-2620 CPU,
with 6 cores at 2.00GHz frequency each, and 16 GB of DDR2 RAM. The GPU used for
parallel execution was an NVidia GTX 670 with 2GB RAM (CUDA Compute Capability
3.0). All the tests were performed in a Linux Ubuntu 12.04 environment. The compiler
used to generate binaries for both baseline and OpenACC-accelerated versions of the
benchmarks was Portland Group’s PGCC, version 16.1.

Some very significant speedups can be observed in benchmarks that have con-
siderable running time on the CPU, such as Covariance and FDTD-2D benchmarks. In
these cases, the CPU took anywhere from 15 to 80 seconds to finish execution, whereas
the GPU usually takes under a second. Less significant speedups can be observed in
other benchmarks that take a moderate amount of time to execute in the CPU, such as
2MM and SYR2K, which take 5 to 15 seconds to execute. In most benchmarks where

Figure 4. Output window of DawnCC .

Figure 5. Speedup chart for experiments on Polybench/GPU benchmarks.

slowdowns occurred, the CPU execution time was under 1 second. This indicates that
for these cases, the overhead involved in moving memory between devices and offload-
ing execution was more significant than any benefits that parallel execution might have

shown. This could possibly be in part due to the problem sizes used in Polybench/GPU
benchmarks. We planned on testing these conjectures empirically by comparing results
from different compilers, but OpenACC-compliant compilers are more often than not
propietary and expensive, which makes further testing challenging.

6. Conclusion
This paper has described DawnCC , a tool that is currently available at http://cuda.
dcc.ufmg.br/dawn/. The goal of DawnCC is to facilitate the development of par-
allel programs that run on Graphics Processing Units (GPUs). Developers can feed this
tool with plain C code, and it transforms it into parallel code by annotating loops with
either OpenACC or OpenMP 4.0 directives. The key benefit of using DawnCC is per-
formance: annotated code can be as much as 70x faster than their original counterparts.
DawnCC still offers room for improvements. In particular, sometimes we perceive slow-
downs in a few programs that we annotate using this tool. We are working to remove
these slowdowns.

Acknowledgement This work has been sponsored by LG Electronics do Brasil through
the project Automatic Parallelization of Code for Mobile Devices.

