
Computer Communications xxx (2010) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom
TinyPBC: Pairings for authenticated identity-based non-interactive key
distribution in sensor networks

Leonardo B. Oliveira a,*, Diego F. Aranha b, Conrado P.L. Gouvêa b, Michael Scott c, Danilo F. Câmara b,
Julio López b, Ricardo Dahab b

a Faculty of Technology, UNICAMP, Limeira, SP, CEP 13484-332, Brazil
b Institute of Computing, UNICAMP, Campinas, SP, CEP 13083-970, Brazil
c School of Computing, Dublin City University, Glasnevin, Dublin 9, Ireland
a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Key distribution
Sensor networks
Identity-based cryptography
Pairing-based cryptography
Efficient implementation
0140-3664/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.comcom.2010.05.013

* Corresponding author. Address: R. Paschoal Marm
Jd., Nova Itália – Limeira, SP, Brazil. Tel.: +55 19 2113

E-mail addresses: leob@ft.unicamp.br (L.B. Olive
(D.F. Aranha), conradoplg@ic.unicamp.br (C.P.L. Gou
(M. Scott), dfcamara@gmail.com (D.F. Câmara), jlop
rdahab@ic.unicamp.br (R. Dahab).

Please cite this article in press as: L.B. Oliveira
works, Comput. Commun. (2010), doi:10.1016/
a b s t r a c t

Key distribution in Wireless Sensor Networks (WSNs) is challenging. Symmetric cryptosystems can per-
form it efficiently, but they often do not provide a perfect trade-off between resilience and storage. Fur-
ther, even though conventional public key and elliptic curve cryptosystems are computationally feasible
on sensor nodes, protocols based on them are not, as they require the exchange and storage of large keys
and certificates, which is expensive.

Using Pairing-Based Cryptography (PBC) protocols parties can agree on keys without any interaction. In
this work, we (i) show how security in WSNs can be bootstrapped using an authenticated identity-based
non-interactive protocol and (ii) present TinyPBC, to our knowledge, the most efficient implementation of
PBC primitives for 8, 16 and 32-bit processors commonly found in sensor nodes. TinyPBC is able to com-
pute pairings, the most expensive primitive of PBC, in 1.90 s on ATmega128L, 1.27 s on MSP430 and 0.14 s
on PXA27x.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Wireless Sensor Networks (WSNs) [1] are ad hoc networks com-
posed primarily of perhaps thousands of tiny sensor nodes with
limited resources and one or more base stations (BSs). They are
used for monitoring purposes, providing information about the
area of interest to the rest of the system.

On the other hand, Pairing-Based Cryptography (PBC) [2,3] is an
emerging technology that allows a wide range of applications. Pair-
ings have been attracting the interest of the international cryptog-
raphy community because they enable the design of original
cryptographic schemes and make well-known cryptographic pro-
tocols more efficient. Perhaps the main evidence of this is the real-
ization of Identity-Based Encryption (IBE) [4] which in turn has
facilitated complete schemes for Identity-Based Cryptography
(IBC) [5].

In the context of WSNs, the issue of securing and authenticating
communications is a difficult one, especially as currently nodes
ll rights reserved.

o, 1888 – CEP 13484-332 –
3368; fax: +55 19 2113 3339.
ira), dfaranha@ic.unicamp.br
vêa), mike@computing.dcu.ie
ez@ic.unicamp.br (J. López),

et al., TinyPBC: Pairings for au
j.comcom.2010.05.013
have no capacity for the secure storage of secret keys and are fre-
quently deployed in unprotected areas, which make them more
vulnerable to attacks [6]. One simple idea to introduce minimal
security is to fit each sensor node with the same cryptographic
key to be used for all communications (e.g. [7]). But this does not
authenticate the source of a message, and furthermore if one node
is successfully attacked, all communications are compromised.

Assume now that there are n nodes, and that each has its own
unique identifier ID 2 {0, . . . ,n � 1}. A better idea would be to fit
each pair of nodes with a unique mutual key for all communica-
tions between them. But if that were the case each node would
have to store n � 1 secret keys, and furthermore n(n � 1)/2 such
keys would need to be generated in all. This is a big requirement
in terms of time and storage for large n. Furthermore, if new nodes
are to be deployed at a later stage all existing ones must be recalled
to be fitted with new keys.

Now consider this scenario: each node is issued with (i) a un-
ique ID; and (ii) a unique secret, not shared with any other entity.
Two parties, each knowing only the ID of the other and without
communicating, are then able to derive a mutual secret unknown
to any other party, and use that secret to derive a cryptographic
key to secure their communications. It is also trivial to dynamically
add new nodes to the WSN without any impact on existing nodes.

This scheme exists and in the area of Cryptography it is known
as an Identity-Based Non-Interactive Key Distribution Scheme
thenticated identity-based non-interactive key distribution in sensor net-

http://dx.doi.org/10.1016/j.comcom.2010.05.013
mailto:leob@ft.unicamp.br
mailto:dfaranha@ic.unicamp.br
mailto:conradoplg@ic.unicamp.br
mailto:mike@computing.dcu.ie
mailto:dfcamara@gmail.com
mailto:jlopez@ic.unicamp.br
mailto:rdahab@ic.unicamp.br
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom
http://dx.doi.org/10.1016/j.comcom.2010.05.013

2 L.B. Oliveira et al. / Computer Communications xxx (2010) xxx–xxx

ARTICLE IN PRESS
(ID-NIKDS) [2]. It is Identity-Based [8], as only IDs are required – in
particular no extra public key data is needed. It is Non-Interactive, as
only the ID of the ‘‘other” is required to determine the key – no
interaction is required. In fact ‘‘non-interactive” implies ‘‘Identity-
based”: In this setting the only information a node knows about
another node is its identity. And it is a Key Distribution Scheme, be-
cause each node pair ends up with the same key value. Also, the
protocol is authenticated as each party knows that only the other
can possibly calculate the same key.1

One issue has not been addressed – from where does each entity
get its unique secret? It gets it from a Trusted Authority. This author-
ity generates the unique secret from nodes’ IDs and a master secret
of its own. Note that this ‘‘Trusted Authority” must be just that, as it
is in a position to determine all the keys used within the system.

It is our contention that such a setup is an ideal way to bootstrap a
WSN for security. The Trusted Authority is simply the deployer of the
network, and there will be no issue in assuming their trustworthi-
ness. Indeed, it might even be regarded as a ‘‘feature” that the
deployer should be in a position to monitor all wireless traffic.

An alternative idea is to use the well-known Diffie–Hellman
interactive key exchange to dynamically derive a mutual key be-
tween pairs of nodes. But this is not authenticated, and hence is
subject to a deadly man-in-the-middle attack. Also, interaction in-
volves communication, and wireless communication is expensive
in terms of power consumption.

Can the method we suggest be realized using regular Public Key
Cryptography (PKC)? No, because in regular PKC there is no corre-
lation between an individual’s ID and their public key. Indeed, it is
only relatively recently that a viable scheme has been discovered,
and its implementation is quite difficult and computationally
costly. However, we only suggest it as a bootstrapping mechanism.
Once the WSN nodes are deployed, they can cache keys, and create
their own local keys for use within their own neighborhood. In this
way the ID-NIKDS protocol is only required very occasionally. Note
that the ID-NIKDS secret is the only long-term secret that the node
possesses, and that possession of such a unique secret is unavoid-
able if authentication is a requirement.

We do not claim that a scheme like this is by itself sufficient for
securing WSNs and that a network bootstrapped in this way will be
immune from attack. An attacker could, after all, in theory compro-
mise every node in the network. We do however claim that it is the
best possible way to bootstrap a WSN, given that a node does not
have secure storage for its secrets. Built on top of such a system,
the network can dynamically evolve and develop routing and com-
munications algorithms with maximum confidence that the dam-
age caused by an attacker will be localized and minimized.

In this work, we first discuss why and how ID-NIKDS should be
used to bootstrap security in WSNs. After that, we present TinyPBC,
to our knowledge the most efficient implementation of PBC prim-
itives for the 8, 16 and 32-bit processors found in sensor nodes.
Performance figures are presented for the processors ATmega128L
(the MICA2 and MICAZ node microcontroller [9]), MSP430 (the Tel-
osB and Tmote Sky microcontroller [10]) and PXA271 (the Imote2
microcontroller [11]). TinyPBC is based on the RELIC cryptographic
toolkit [12], which is a publicly available and open source library.
To sum up, our key contributions are:

(1) demonstrate how sensor nodes can exchange keys in an
authenticated and non-interactive way;

(2) present the fastest pairing computation on several sensor
platforms; and

(3) show the best figures for the implementation of finite field
arithmetic in these platforms.
1 Actually, as we will see latter, so can an entity that is unconditionally trusted.

Please cite this article in press as: L.B. Oliveira et al., TinyPBC: Pairings for au
works, Comput. Commun. (2010), doi:10.1016/j.comcom.2010.05.013
The remainder of this work is organized as follows. In Section
2, we discuss the need for new security solutions in WSNs. We
point out the synergy between IBC and WSNs in Section 3. In
Section 4 we show how ID-NIKDS can bootstrap security in
WSNs. Implementation and results are presented in Section 5.
Finally, we discuss related work and conclude in Sections 6 and
7, respectively.
2. Bootstrapping security in WSNs: need for new approaches

Security is mainly justified in WSNs because of their battlefield
applications. We believe, however, that, once WSNs start to be de-
ployed in large scale, security will become much more common
than it is thought today. Apart from the well-known battlefield
applications, confidentiality is likely to be a requirement in indus-
trial and other scenarios. For example, industries/farmers that em-
ploy WSNs to monitor their supply-chains/crops may want to keep
their data private from competitors. Additionally, authentication
might be useful even in domestic WSNs, avoiding interaction with
nodes from a neighboring network.

Briefly, an ideal security scheme in WSNs should provide per-
fect connectivity and resilience. In other words, nodes should be
able to (i) communicate securely with any other node they wish,
and (ii) the compromise of a single node should not impact the net-
work as whole. (Note that these properties should apply even to
nodes deployed at different times.) Also, the scheme should be
low-cost in terms of both communication and computation.

In WSNs, security is typically bootstrapped using key distribu-
tion schemes. Most of standard key distribution schemes in the
security literature [13], however, are ill-suited to WSNs: conven-
tional public key-based distribution, because of its processing
requirements; global keying, because of its security vulnerabilities;
complete pairwise keying, because of its memory requirements;
and those based on a key distribution center, because of its
inefficiency. (See Carman et al. [14] for a good introduction to
key distribution in WSNs.)

Symmetric key-based distribution schemes have been specifi-
cally designed for WSNs (e.g. [15–26]). While they are well-suited
for the applications and organizations they were designed for, they
might not be adequate for others. They provide a trade-off between
connectivity and resilience, while not providing an ideal level of
either. Further, most schemes rely on some sort of interaction be-
tween nodes so that they can agree on keys.

Subsequently, it has been shown that methods of Public Key
Cryptography are feasible in WSNs [27–29]. Because in those sys-
tems communicating parties only have a pair of keys, a private
and a public key, PKC schemes are scalable and easy to use. This
convenience, though, comes at a price: a way of authenticating
public keys must be provided. And key authentication, in turn,
whether traditional (PKI and/or certificates) or especially tailored
to WSNs (e.g. [30]), often ends up in overhead – which is especially
ill-suited to WSNs.

As we will show in Section 4, by using ID-NIKDS we are able to
resolve these security issues.
3. Synergy between IBC and WSNs

PBC has paved the way for a new wide range of cryptographic
protocols and applications [31]. It has also allowed many long-
standing open problems to be solved elegantly. Perhaps the most
impressive among those applications is IBE [4], which in turn has
allowed complete IBC schemes [5].2
2 Note that other methods of implementing IBE exist (e.g. [32]).

thenticated identity-based non-interactive key distribution in sensor net-

http://dx.doi.org/10.1016/j.comcom.2010.05.013

3 To be precise, a small number of public parameters are also needed to be stored
into nodes, but for simplicity’s sake, we will omit them.

L.B. Oliveira et al. / Computer Communications xxx (2010) xxx–xxx 3

ARTICLE IN PRESS
One may thus ask why IBC is still not widely deployed in secu-
rity systems. Besides the usual time it takes for new technologies
to be adopted, IBC also faces additional drawbacks. In particular,
it requires a Private Key Generator (PKG), a trusted entity in charge
of generating and escrowing users’ private keys. That is, it is able to
impersonate anybody else in the system. For that reason, the PKG
must be an entity that is unconditionally trusted by all network
users. Such an entity, however, cannot always be easily identified
in many scenarios.

In WSNs, conversely, this is not a problem. The deployer – who
loads software into nodes, then deploys in areas of interest, and ob-
serves collected data – is, obviously, trusted. In the world of WSNs,
the deployer’s role is represented by base station (BS) nodes. These
nodes possess both laptop-level resources and physical protection.
In other words, they can play the role of the PKG perfectly.

Another IBC requirement is that the keys must be delivered over
confidential and authenticated channels to users. If the crypto-
graphic scheme is being used to bootstrap security – as very often
is the case – such channels will not exist. But, again, this is not a
great concern to WSNs. In their security model, there is clearly a
point in the time (i.e., prior to deployment) where secure channels
between the BS and ordinary nodes do exist. Along with applica-
tion software, private keys can be loaded into nodes during the
pre-deployment stage.

4. Authenticated identity-based non-interactive key
distribution in sensor networks

The notion of Identity-Based Cryptography dates back from
Shamir’s original work [5], but it has only become practical with
the advent of PBC [2,4,33]. The main idea is that known informa-
tion that uniquely identifies users (e.g. IP or email address) can
be used to derive public keys. As a result, keys are self-authenti-
cated and additional means of public key authentication, e.g. certif-
icates, are thus unnecessary. In this Section we define pairings
(Section 4.1), and show how to setup IBC schemes in the WSN con-
text (Section 4.2), and finally show how ID-NIKDS can be used so
that pairs of nodes can establish common secret keys (Section 4.3).

4.1. Pairings: definition

Bilinear pairings – or pairings for short – were first used in the
context of cryptanalysis [34], but their pioneering use in cryptosys-
tems is due to the works of Sakai et al. [2] and Joux [33]. In what
follows, let E=Fq be an elliptic curve over a finite field Fq; EðFqÞ
be the group of points of this curve, and #EðFqÞ be the group order,
that is the number of points on the curve.

Let n be a positive integer. Let G be an additively-written group
of order n with identity O, and let GT be a multiplicatively-written
group of order n with identity 1.

A bilinear pairing is a computable, non-degenerate function

e : G�G! GT ;

with additional properties, the most important of which, in crypto-
graphic constructions, is bilinearity; namely:

8P;Q 2 G; and 8a; b 2 Z�; we have

eð½a�P; ½b�QÞ ¼ eðP; ½b�QÞa ¼ eð½a�P;QÞb ¼ eðP;QÞab
:

For practical implementations, the group G is chosen as a set of
points on certain elliptic curves and the group GT is a multiplicative
subgroup of a finite extension field. For more on pairing definitions,
see, for instance, Galbraith [35].

Here we are using the definition of a Type 1 or symmetric pairing
(in the sense of Galbraith et al. [36]), and so we have the additional
property that
Please cite this article in press as: L.B. Oliveira et al., TinyPBC: Pairings for au
works, Comput. Commun. (2010), doi:10.1016/j.comcom.2010.05.013
eðP;QÞ ¼ eðQ ; PÞ:

In addition, pairings of Type 1 permit strings to be hashed to a spe-
cific group. Those two aforementioned properties are required for
efficient and simple implementation of the protocols (pairings of
Types 2 and 3 do not provide, at once, both properties). However,
realization of the solution is possible with Type 3 pairings and some
added complexity [37]. Pairing computation in sensor nodes at a
sufficient security level for WSNs also seems more efficient in the
symmetric setting [37].

4.2. Setup

To start up an IBC scheme, the PKG first needs to generate and
distribute private keys and public parameters. Broadly speaking,
this procedure can be accomplished as follows in WSNs. First, the
BS generates a master secret key s and then calculates each node’s
private key. To do this it first maps each node’s identity to a point
on the elliptic curve, via a hashing-and-mapping function /; so for
node X, PX = /(idX). It then calculates the node’s private key as
SX = [s]PX. It next preloads each node X with the following informa-
tion: (i) the node’s ID idX; and (ii) the node’s private key SX. Each
node is also equipped with the function / so that it can take any
ID (e.g. idY) as input and output the public key corresponding to
the ID (e.g. PY).3 Note that, besides the BS, only node X knows the
key SX.

4.3. Applying ID-NIKDS in WSNs

WSNs are composed of maybe thousands of tiny resource-con-
strained sensor nodes for which the scarcest resource is energy.
Communication, on the other hand, is the activity that consumes
most energy. This, in turn, means that besides meeting the needs
described in Section 2 (i.e., perfect connectivity and resilience),
an ideal key agreement scheme for WSNs should also keep the
number of exchanged messages to a minimum.

With the advent of PBC, however, a method of accomplishing
this has become available. That is, PBC provides means to non-
interactively distribute keys between any two network nodes, even
if they were deployed at different times. Further, because nodes
employ asymmetric primitives, the effect of node compromise is
strictly local. In what follows, we show how the protocol due to Sa-
kai et al. ID-NIKDS [2], can be employed to achieve such a goal. We
assume that the setup protocol shown in Section 4.2 has been al-
ready carried out.

Suppose two nodes A and B that know each other’s IDs have to
agree on a secret key. Recall from Section 4.2 that nodes’ A and B
private keys are SA = [s]PA and SB = [s]PB, respectively. Conse-
quently, by bilinearity (Section 4.1) we have

eðSA; PBÞ ¼ eð½s�PA; PBÞ ¼ eðPA; PBÞs ¼ eðPA; ½s�PBÞ ¼ eðPA; SBÞ
¼ eðSB; PAÞ:

Note that A possesses SA and can compute PB = /(idB). Likewise, B
possesses SB and can compute PA = /(idA). Therefore, both A and B
are able to compute the secret key

kA;B ¼ eðSA; PBÞ ¼ eðSB; PAÞ:

(Formally speaking, a key derivation function must first be applied
to kA,B in order to generate a key appropriate for cryptosystems. For
details on this and other PBC protocols refer, e.g. to Paterson [31].)
Additionally, A knows that only B – and the BS, a Trusted Authority
– possess SB and vice versa, and consequently the protocol is
authenticated.
thenticated identity-based non-interactive key distribution in sensor net-

http://dx.doi.org/10.1016/j.comcom.2010.05.013

4 L.B. Oliveira et al. / Computer Communications xxx (2010) xxx–xxx

ARTICLE IN PRESS
Observe that, due to the non-interactive nature of the commu-
nication, nodes can agree on keys even if they are not online simul-
taneously. This is particularly useful in WSNs, where nodes might
follow sleeping patterns, may be deployed at different times, and
often become temporarily unavailable due to physical obstacles
or malfunctions.

Lastly, observe that we assume that nodes already know each
other’s IDs, a reasonable assumption in WSNs since in these net-
works nodes already need to get to know their neighbors’ IDs to ex-
change ordinary information.

5. Evaluation

The utilization of pairings to implement security in WSNs is
quite complex. For an 80-bit security level (RSA-1024 equivalent),
PBC works with 1024-bit numbers – as opposed to conventional
Elliptic Curve Cryptography (ECC), which works with 160-bit num-
bers only. In this section, we assess the costs incurred by PBC on
several representatives of the sensor platform spectrum: a re-
source-constrained MICAZ node, a (TelosB) Tmote Sky node and a
powerful Imote2 node. The MICA platform features an 8-bit ATme-
ga128 microcontroller, the Tmote Sky node employs a 16-bit TI
MSP430 microcontroller and the Imote2 platform has a 32-bit
ARM XScale PXA27x microcontroller.

5.1. Implementation

By far the most time consuming part when evaluating PBC pro-
tocols is the pairing computation itself.4 In this section we present
TinyPBC, an implementation of the Tate pairing (realized in the
form of the gT [39] pairing – pronounced ‘‘eta-t” – over supersingu-
lar binary curves and a variant of the Tate pairing over prime fields
[37]) for resource-constrained nodes. The source code is available
at URL http://sites.google.com/site/tinypbc/.

5.1.1. Security requirements
To meet efficiency constraints, security requirements in

WSNs are often relaxed. For example, some (e.g. [15]) have
adopted a 64-bit security level. We adopted a more conservative
posture and thus used an 80-bit security level, as recommended
by NIST.

5.1.2. Pairing
The implementation comprised the gT [39] pairing which is de-

fined over binary fields. This pairing is possibly the fastest known
pairing at this security level [37]. It was proposed by Barreto, Gal-
braith, Ó hÉigeartaigh, and Scott, following earlier work of Duurs-
ma and Lee [40]. Like most pairings, it uses a variant of Miller’s
algorithm to evaluate pairings. Its main feature, however, is that
the gT pairing requires only half the number of iterations of the
Miller’s loop compared with other pairings (Line 4, Algorithm 3
of [39]).

Our sofware implementation of the gT pairing is for binary fields
(F2271). We selected the supersingular curve y2 + y = x3 + x, which
has an embedding degree of four. In this case, the execution of the
gT pairing spends most of its time performing field multiplications
in F24�271 , the quartic extension field.

5.2. ATmega128 8-bit processor

The MICAz Mote sensor node is equipped with an ATmega128
8-bit processor clocked at 7.3728 MHz. The program code is
4 ID-NIKDS also requires hashing, but that can be efficiently computed in sensor
nodes [38].

Please cite this article in press as: L.B. Oliveira et al., TinyPBC: Pairings for au
works, Comput. Commun. (2010), doi:10.1016/j.comcom.2010.05.013
stored in a 128 KB EEPROM chip and data memory is provided
by a 4 KB RAM chip [9]. The ATmega128 processor is a typical RISC
architecture with 32 registers, but six of them are special pointer
registers. Since at least one register is needed to store temporary
results or data loaded from memory, 25 registers are generally
available for arithmetic. The instruction set is also reduced, as
only 1-bit shift/rotate instructions are natively supported. Bitwise
shifts by arbitrary amounts can then be implemented with combi-
nations of shift/rotate instructions and other instructions. In par-
ticular, shifts by 7 bits can be implemented very efficiently with
the instructions bld/bst for loading/storing individual register
bits from/to a processor flag. The processor pipeline has two
stages and memory instructions always cause pipeline stalls.
Arithmetic instructions with register operands cost 1 cycle and
memory instructions or memory addressing cost 2 processing
cycles [41].
5.2.1. Field representation
The elements of the binary field are represented using a polyno-

mial basis. For the particular binary field F2271 , we have selected the
square-root friendly [42] pentanomial f(x) = x271 + x207 + x175 +
x111 + 1, given in [43]. This pentanomial has two important fea-
tures: modular reduction by f(z) only requires shifts by 1 bit or
7 bits which are fast in this platform; square-root extraction does
not require shifts in processors with word length of 8 or 16 bits.
In software, a field element a(z) is stored as an array of n = 34
bytes.
5.2.2. Squaring
Given aðzÞ 2 F2271 , the binary representation of a(z)2 can be

computed by inserting a ‘‘0” bit between each pair of successive
bits of the binary representation of a(z). This can be accelerated
by introducing a small 16-byte lookup table which stores in mem-
ory the square of all 4-bit polynomials. In platforms with expen-
sive access to memory, redundant memory accesses can be
avoided by implementing squaring in two steps. The first one
computes the square of the lower half of the digit vector using
a conventional 4-bit expansion table. The second step computes
the square of the higher half combined with modular reduction.
This way, values already loaded into registers can be reduced
immediately.
5.2.3. Multiplication
Multiplication is a performance-critical operation and was

implemented with the López–Dahab algorithm [44] using a win-
dow size of t = 4 bits (Algorithm 1). In order to avoid redundant
memory accesses, the intermediate digit vector is stored inside a
rotating register window as in Algorithm 2. This optimization
alone reduces the number of read instructions by half and the
number of write instructions by a quadratic factor, compared
with a standard implementation of the algorithm. Since this reg-
ister window would require 35 registers and only 25 are avail-
able for arithmetic, the accumulation in the register window
was divided in different blocks in a multistep fashion and each
block processed with a different rotating register window. A
slight overhead is introduced between the processing of consec-
utive blocks because some registers must be written into mem-
ory and freed before they can be used in a new rotating
register window. Some additional implemented optimizations
are: storing the results of the first phase of the algorithm already
shifted; and the embedding of modular reduction at the end of
the multiplication algorithm, again by making use of results al-
ready stored in registers and avoiding redundant memory
accesses.
thenticated identity-based non-interactive key distribution in sensor net-

http://sites.google.com/site/tinypbc/
http://dx.doi.org/10.1016/j.comcom.2010.05.013

L.B. Oliveira et al. / Computer Communications xxx (2010) xxx–xxx 5

ARTICLE IN PRESS
Algorithm 1: López–Dahab multiplication in F2m [44].

Input: a(z) = a[0..n � 1], b(z) = b[0..n � 1].
Output: c(z) = c[0..2n � 1].

1: Compute T(u) = u(z)b(z) for all polynomials u(z) of degree
lower than t.

2: c[0. . .2n � 1] 0
3: for k 0 to n � 1
4: u a[k]� t do
5: for j 0 to n do
6: c[j + k] c[j + k] � T(u)[j]
7: end for
8: end for
9: c(z) c(z)zt

10: for k 0 to n � 1
11: u a[k] mod 2t

12: for j 0 to n
13: c[j + k] c[j + k] � T(u)[j]
14: end for
15: end for
16: return c
Algorithm 2: Proposed optimization for multiplication in F2m

using n + 1 8-bit registers.

Input: a(z) = a[0..n � 1], b(z) = b[0..n � 1].
Output: c(z) = c[0..2n � 1].
Note: vi denotes the vector of n + 1 registers

(ri�1, . . . ,r0,rn, . . . ,ri).
1: Compute T(u) = u(z)b(z) for all polynomials u(z) of degree

lower than 4.
2: Let ui be the 4 most significant bits of a[i].
3: v0 T(u0), c[0] r0

4: v1 v1 � T(u1), c[1] r1

5: � � �
6: vn�1 vn�1 � T(un�1), c[n � 1] rn�1

7: c ((rn�2, . . . ,r0,rn)k(c[n � 1], . . . ,c[0]))	 4
8: Let ui be the 4 least significant bits of a[i].
9: v0 T(u0), c[0] c[0] � r0

10: � � �
11: vn�1 vn�1 � T(un�1), c[n � 1] c[n � 1] � rn�1

12: c[n. . .2n � 1] c[n. . .2n � 1] � (rn�2, . . . ,r0,rn)
13: return c
5.2.4. Square-root
Square-root extraction was implemented according to the ap-

proach due to Fong et al. [45]. This approach requires a splitting
step for concatenating the coefficients with even or odd indexes
of a field element. This is commonly implemented using a lookup
table (as in [37]), but the microcontroller support for bit load/store
operations allowed a particularly fast implementation without ta-
ble lookups using simple bit manipulation.

5.3. MSP430 16-bit processor

The Tmote Sky sensor node is equipped with an MSP430F1611
16-bit processor clocked at 8 MHz. It contains 48 KB of program
flash memory and 10 KB of RAM. The MSP430 family provides 12
general-purpose registers and a small instruction set with 27
instructions including 1-bit-only shifts. In particular, 15-bit shifts
can be implemented with the left-shift/rotate-through-carry
instructions. Operands may be located in registers or in memory.
Since there is no cache, determining the number of cycles taken
by each instruction is simple (with a few exceptions): one cycle
Please cite this article in press as: L.B. Oliveira et al., TinyPBC: Pairings for au
works, Comput. Commun. (2010), doi:10.1016/j.comcom.2010.05.013
to fetch the instruction, one cycle to fetch each offset word (if
any), one cycle for each memory read and two cycles for each
memory write. Small constants (�1, 0, 1, 2, 4 and 8) are generated
by using some special registers and do not require offset words
when used. Four addressing modes are available: direct (from reg-
isters), indirect (memory address stored in a register), indexed (ad-
dress stored in a register, plus an offset) and indirect with post
increment (which automatically increments the contents of the
register holding the address).

5.3.1. Field representation
The same pentanomial f(x) = x271 + x207 + x175 + x111 + 1 used in

the ATmega128 processor was chosen, since the reduction by f(z)
can be computed using 1-bit and 15-bit shifts only, which are
cheap in this platform. Aditionally, square-root extraction does
not require any shifts. In software, a field element a(z) is stored
as an array of n = 17 16-bit digits.

5.3.2. Arithmetic
Field arithmetic was implemented similarly to the ATmega128

processor. Squaring was implemented using a 512-byte lookup table
storing the square of all 8-bit polynomials in ROM. Multiplication
was implemented by a straightforward adaptation of Algorithm 2
for 16-bit processors processing the consecutive accumulations in
two distinct blocks and employing a rotating window with 8 regis-
ters. For comparison, the Karatsuba method was also implemented
as described in [37]. Some simple but effective optimizations used
were taking advantage of the indirect with post increment address-
ing mode, which saves one cycle on each read from the precomputa-
tion table; and computing the required 4-bit shifts in registers,
dividing the intermediate result into four blocks.

5.4. XScale PXA27x 32-bit processor

ARM is an open RISC processor architecture that is the most
widely used in 16/32-bit embedded RISC solutions. Besides typical
RISC architecture features, ARM includes: an optional embedding
of a shift operation in every data-processing instruction executed
by the Arithmetic Logic Unit (ALU); auto-increment/decrement
addressing modes to optimize program loops; and conditional exe-
cution of all instructions to maximize execution throughput.

From the user mode (unpriviledged code) point of view, the
ARM has 16 general-purpose 32-bit registers. Two of these regis-
ters have special roles: register 15 is the Program Counter (PC)
and register 14 is the Link Register (LR) that holds the address of
the next instruction after a Branch and Link (BL) instruction used
to call a subroutine. Software implementation normally uses R13
as the Stack Pointer (SP).

The Intel XScale PXA family of processors is an implementation
of the 5th generation of the ARM architecture without the floating
point instructions. With a design tailored for wireless and portable
multimedia devices, the PXA family focuses on balancing process-
ing power and battery usage. The target processor used in this
work is the PXA271, a 32-bit ARMv5TE with 32 KB data cache
and 32 KB instruction cache. This family of processors also features
a Wireless MMX (WMMX) coprocessor which executes vector
instructions in 64-bit registers. The WMMX instruction set sup-
ports 43 SIMD instructions for orthogonal manipulation of 16
architectural registers that can be treated as arrays of 32-bit words,
four 16-bit halfwords or eight 8-bit bytes.

5.4.1. Field representation
In the ARM implementation we selected the square-root

friendly trinomial f(x) = x271 + x201 + 1 given in [37]. Shift instruc-
tions are flexible in this platform and, under these circumstances,
this trinomial allows fast implementations of modular reduction
thenticated identity-based non-interactive key distribution in sensor net-

http://dx.doi.org/10.1016/j.comcom.2010.05.013

6 L.B. Oliveira et al. / Computer Communications xxx (2010) xxx–xxx

ARTICLE IN PRESS
and square-root extraction. In software, a field element a(z) is
stored as an array of n = 9 32-bit words.

5.4.2. Arithmetic
Similarly to the ATmega128 processor, we optimized the imple-

mentation with a lookup table in the squaring operations and em-
ployed a rotating register window as in Algorithm 2 in the
multiplication operation. We were able to reserve 9 registers to
the accumulator and the multiplication did not need to be divided
as in the 8-bit case. Since a bitwise shift is free in any data-process-
ing instruction, we embedded most shifts of the arithmetic in the
binary addition instructions (logic XOR operation).

5.5. Performance

In this section we summarize performance numbers. High-level
algorithms like pairing computation and extension field arithmetic
were implemented in C, while finite field arithmetic was imple-
mented in Assembly to allow fine-grained resource allocation
and to avoid inefficiencies introduced by the compiler. Figures
are based on the GCC 4.1.2 compiler with optimization level -O2
Table 1
Time costs to evaluate finite field arithmetic and the gT pairing at the 80-bit security
level on MICA2/MICAz platform (7.3728 MHz ATmega128L) using TinyPBC.

Algorithm TinyPBC Szczechowiak et al.
[37]

Comparison

Cycles Cycles Improvement
(%)

Squaring 1439 1581 9.0
Square-root 1182 1730 31.8
Multiplication 11727 13557 13.5
Pairing 14 � 106

(1.90 s)
19.6 � 106 28.6

Table 2
Time costs to evaluate finite field arithmetic and the gT pairing at the 80-bit security
level on TelosB/Tmote Sky platform (8 MHz MSP430) using TinyPBC.

Algorithm TinyPBC Szczechowiak et al.
[37]

Comparison

Cycles Cycles Improvement
(%)

Squaring 889 1363 34.8
Square-root 769 1644 53.2
Mult.

(Karatsuba)
9647 10147 4.0

Multiplication 8706 – 13.3
Pairing

(Karatsuba)
11.3 � 106

(1.38 s)
14.1 � 106 19.8

Pairing 10.4 � 106

(1.27 s)
– 26.3

Table 3
Time costs to evaluate finite field arithmetic and the gT pairing at the 80-bit security
level on Imote2 platform (13 MHz PXA27x) using TinyPBC.

Algorithm TinyPBC Szczechowiak et al.
[37]

Comparison

Cycles Cycles Improvement
(%)

Squaring 187 499 62.5
Square-root 185 546 66.1
Multiplication 2025 4926 58.9
Mult. (wMMX) 1411 – 71.3
Pairing 2.45 � 106

(0.19 s)
6 � 106 59.2

Pairing
(WMMX)

1.81 � 106

(0.14 s)
– 69.8

Please cite this article in press as: L.B. Oliveira et al., TinyPBC: Pairings for au
works, Comput. Commun. (2010), doi:10.1016/j.comcom.2010.05.013
and loop unrolling (GCC 3.2.3 on the MSP430). The timings were
measured with the software AVR Studio 4.14 [46], the cycle-accu-
rate simulator MSPsim [47] and on a PXA27x Mainstone evaluation
board.

TinyPBC takes only 1.90 s to compute pairings on ATmega128L,
1.27 s on the Tmote Sky and 0.14 s on a 13 MHz Imote2 (Tables 1–
3). That is, it requires 28.6%, 26.3% and 69.8% less than the time of
the fastest previous results [37], which take 2.66 s, 1.71 s and
0.46 s to compute pairings on these platforms. This is mainly due
to our faster finite field multiplication and to some further algo-
rithmic improvements proposed in [48]. The time required to com-
pute binary field multiplication with our LD implementation,
averaged over 1000 trials, is only 11727 cycles in Table 1, 8706 cy-
cles in Table 2 and 1411 cycles in Table 3. For the ATmega128 plat-
form, this is 13.5% faster than Karatsuba’s method, which was
employed in [37]. This result is particularly interesting because it
contrasts sharply with results presented in [49], which claims that
Karatsuba’s is the most appropriate method for embedded devices.
For the Tmote Sky, the LD method using blocks resulted in a 13.3%
speed improvement; but Karatsuba may be used to provide a
speed/space trade-off, raising the pairing computation time from
1.27 s to 1.38 s. For the Imote2 platform, the WMMX instruction
set included in the XScale family of processors provides further
speedups and we achieve an improvement of 71.3% in our imple-
mentation of multiplication.
5.6. Storage

Table 4 summarizes the storage requirements for TinyPBC. The
requirements for stack and static memory and program size for all
platforms are presented. Note that our approach allocates virtually
all the RAM from the stack, which means that once the pairing is
computed, memory is available for other operations. The MSP430
has the smallest ROM space available of the three platforms; for
that reason, the Karatsuba multiplication method can be used in
order to save 6 KB of ROM, increasing the pairing computation
time by 0.11 s in return. We have selected RELIC [12] as our imple-
mentation framework because this library was specifically built for
memory-contrained devices, providing several configuration op-
tions for reducing program size.

Besides the cryptographic code, a node needs to store its private
key and public parameters in order to run ID-NIKDS. Public param-
eters are part of the specification of the pairing and they are al-
ready taken into consideration in our code. A private key, on the
other hand, requires a point on an elliptic curve; that is, an elliptic
curve point that, in turn, is represented by coordinates (x,y) from a
finite field with 271-bit elements. Given x and a single bit of y,
however, one can easily derive y. So, in addition to the crypto-
graphic code, a node must be loaded with a private key of 272 bits,
i.e., an overhead of only 34 bytes.
6. Related work

The number of studies specifically targeted to secure WSNs has
grown significantly. Due to space constraints, we first provide a sam-
Table 4
Memory costs to evaluate the pairings on the target platforms using the fastest finite
field implementations. The RAM column refers to global variables.

Storage (KB)

Processor Stack RAM ROM

ATmega128L 3.1 0.5 37.9
MSP430 2.8 0.5 30.1
MSP430 (Karatsuba) 2.4 0.5 24.0
PXA27x 8.0 4.7 53.5

thenticated identity-based non-interactive key distribution in sensor net-

http://dx.doi.org/10.1016/j.comcom.2010.05.013

TinyTate [60]

NanoECC [64]

Ishiguro et al. 2008 [63]

Oliveira et al. 2007 [61]

Szczechowiak et al. 2009 [30]

NanoECC [64]

Szczechowiak et al. 2009 [30]

Szczechowiak et al. 2009 [30]

Ti
m

e
(s

ec
)

This work

This work

This work

ATmega128L
30.20

10.96

5.455.80

2.66 1.90

MSP430

5.25

1.71 1.27

PXA27x

0.46 0.14

Fig. 1. Timings for pairing computation in several sensor platforms.

L.B. Oliveira et al. / Computer Communications xxx (2010) xxx–xxx 7

ARTICLE IN PRESS
ple of studies based on symmetric cryptosystems, and then focus on
those targeted to efficient implementation of PKC on sensor nodes.

Many security proposals for WSNs (e.g. [15–22,24,23,25,26])
have focused on efficient key management of symmetric encryp-
tion schemes. Perrig et al. [15] proposed SPINS, a suite of efficient
symmetric key-based security building blocks. Eschenauer and Gli-
gor [16] looked at random key predistribution schemes, which
opened the way to a large number of follow-up works [21]. In
[17] Zhu et al. proposed LEAP, a rather efficient scheme based on
local distribution of secret keys among neighboring nodes.

The studies specifically targeted to PKC have tried either to ad-
just conventional algorithms (e.g. RSA) to sensor nodes, or to em-
ploy more efficient techniques (e.g. ECC) in this resource-
constrained environment.

All the seminal papers of Watro et al. [27], Gura et al. [28], and
Malan et al. [29] have targeted the ATmega128L. Watro et al. [27]
proposed TinyPK. To perform key distribution, TinyPK assigns the
efficient RSA public operations to nodes and the expensive RSA pri-
vate operations to better equipped external parties.

Gura et al. [28] reported results for ECC and RSA primitives on
the ATmega128L and demonstrated convincingly that the former
outperforms the latter. Their ECC implementation is based upon
arithmetic in the prime finite field Fp.

Malan et al. [29] have all presented the first ECC implementation
over binary fields F2m for sensor nodes. They used a polynomial basis
and presented results for the ECDH key exchange protocol.

In the literature there are works that make use of identities to
distribute keys in WSNs. Some (e.g. [14,23,50]) are based on the
symmetric cryptosystems due to Blundo et al. [51] and Blom
[52]. These strategies, however, do not provide perfect resilience,
as after a certain percentage of nodes have been compromised,
the whole network can be compromised as well. Others (e.g.
[53–55]) have employed IBC from PBC. The works of Zhang et al.
[53], Doyle et al., [54] and Oliveira et al. [55] employ IBC to distrib-
ute keys between nodes. However, they all use interactive proto-
cols and therefore nodes are required to exchange messages to
agree on keys.

Software implementation of pairings has also been focus of re-
search. Before demonstrating the efficiency of PBC on sensor nodes,
we first showed its feasibility [56] with an implementation of the
Tate pairing. TinyTate, as it is called, uses TinyECC [50] as the
underlying library and also targets the ATmega128L. TinyTate,
however, takes around 31 s to compute pairings and its level of
Please cite this article in press as: L.B. Oliveira et al., TinyPBC: Pairings for au
works, Comput. Commun. (2010), doi:10.1016/j.comcom.2010.05.013
security, equivalent to RSA-512, is not appropriate for all applica-
tions. We subsequently – in a previous version of TinyPBC [57] –
improved these figures by employing the MIRACL cryptographic li-
brary [58] together with the López–Dahab binary field multiplica-
tion method [44]. By using TinyPBC, we were able to compute the
gT pairing in only 5.45 s on the ATmega128L. The same pairing has
been implemented in the work of Ishiguro et al. [59] as well. Their
work uses ternary fields and evaluates pairings in 5.79 s. Also using
MIRACL, Szczechowiak et al. [60] have shown performance num-
bers for ECC operations as well as pairings over binary and primes
fields. Their implementation of gT uses the Karatsuba multiplica-
tion method and takes 10.96 s to be evaluated on the ATmega128L
and 5.25 s on the MSP430. Further, by translating critical part of
code to Assembly and then by carefully manipulating registers,
Szczechowiak et al. [37] managed to reduce those times to only
2.66 s and 1.71 s, respectively. Fig. 1 presents a comparison be-
tween the execution times obtained by this work compared to
the related work discussed in this section.

More recently, Oliveira et al. [61] have shown how short signa-
tures [62] from pairings can be used to authenticate sensors in a
shared WSN scenario and Galindo et al. [63] have used TinyPBC
to make explicit the benefits of using PBC to solve the key distribu-
tion problem in Underwater Wireless Sensor Networks (UWSNs).

7. Conclusion

In spite of intense research efforts, achieving security in WSNs
using cryptography is still a challenging problem. On the other
hand, the advent of PBC has enabled a wide range of new crypto-
graphic solutions.

In this work, we first have shown how security in WSNs can be
bootstrapped using ID-NIKDS. Subsequently we have presented
TinyPBC, to our knowledge the most efficient implementation of
PBC primitives for 8, 16 and 32-bit processors found in wireless
sensor nodes. TinyPBC is able to compute pairings, the most expen-
sive primitive of PBC, in 1.90 s on ATmega128L, 1.27 s on MSP430
and 0.14 s on PXA27x and it is based on RELIC [12], an open source
cryptographic library.

Acknowledgements

The authors thank Kenneth G. Paterson, Paulo S. L. M. Barreto,
Piotr Szczechowiak and the anonymous reviewers for their
thenticated identity-based non-interactive key distribution in sensor net-

http://dx.doi.org/10.1016/j.comcom.2010.05.013

8 L.B. Oliveira et al. / Computer Communications xxx (2010) xxx–xxx

ARTICLE IN PRESS
valuable comments on this work; and CAPES and FAPESP, which
support authors L. B. Oliveira and D. F. Aranha (under grants
4630/06–8, 05/00557–9; and 07/06950–0 respectively).

References

[1] D. Estrin, R. Govindan, J.S. Heidemann, S. Kumar, Next century challenges:
scalable coordination in sensor networks, in: K.G. Shin, Y. Zhang, R. Bagrodia,
R. Govindan (Eds.), 15th Annual International Conference on Mobile
Computing and Networking (MOBICOM’99), ACM Press, Seattle, WA, USA,
1999, pp. 263–270.

[2] R. Sakai, K. Ohgishi, M. Kasahara, Cryptosystems based on pairing, in: Symposium
on Cryptography and Information Security (SCIS’00), 2000, pp. 26–28.

[3] A. Joux, The weil and tate pairings as building blocks for public key
cryptosystems, in: C. Fieker, D.R. Kohel (Eds.), The Fifth International
Symposium on Algorithmic Number Theory (ANTS-V), LNCS, Vol. 2369,
Springer, 2002, pp. 20–32.

[4] D. Boneh, M. Franklin, Identity-based encryption from the weil pairing, SIAM
Journal of Computing 32 (3) (2003) 586–615. also appeared in CRYPTO’01.

[5] A. Shamir, Identity-based cryptosystems and signature schemes, in: G.R.
Blakley, D. Chaum (Eds.), Fourth Annual International Cryptology Conference
(CRYPTO’84), LNCS, Vol. 196, Springer, 1984, pp. 47–53.

[6] C. Karlof, D. Wagner, Secure routing in wireless sensor networks: attacks and
countermeasures, Ad Hoc Networks Journal, Special Issue on Sensor Network
Applications and Protocols 1 (2–3) (2003) 293–315. also appeared in SNPA’03.

[7] C. Karlof, N. Sastry, D. Wagner, TinySec: a link layer security architecture for
wireless sensor networks, in: J.A. Stankovic, A. Arora, R. Govindan (Eds.),
Second International Conference on Embedded Networked Sensor Systems
(SenSys’04), ACM Press, 2004, pp. 162–175.

[8] C. Boyd, K.-K.R. Choo, Security of two-party identity-based key agreement, in:
E. Dawson, S. Vaudenay (Eds.), First International Conference on Cryptology in
Malaysia (MYCRYPT’05), LNCS, Vol. 3715, Springer, 2005, pp. 229–243.

[9] J.L. Hill, D.E. Culler, Mica: A wireless platform for deeply embedded networks,
IEEE Micro 22 (6) (2002) 12–24.

[10] J. Polastre, R. Szewczyk, D. Culler, Telos: enabling ultra-low power wireless
research, in: Fourth International Symposium on Information processing in
Sensor Networks (IPSN’05), IEEE Press, Piscataway, NJ, USA, 2005, pp. 364–369.

[11] L. Nachman, R. Kling, R. Adler, J. Huang, V. Hummel, The intel mote platform: a
bluetooth-based sensor network for industrial monitoring, in: Fourth
International Symposium on Information Processing in Sensor Networks
(IPSN’05), IEEE Press, 2005, pp. 437–442.

[12] D.F. Aranha, RELIC Cryptographic Toolkit, <http://code.google.com/p/relic-
toolkit>, 2009.

[13] A. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1996.

[14] D.W. Carman, P.S. Kruus, B.J. Matt, Constraints and approaches for distributed
sensor network security, Technical Report 00-010, NAI Labs, Network
Associates, Inc. 2000.

[15] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J.D. Tygar, SPINS: security protocols
for sensor networks, Wireless Networks 8 (5) (2002) 521–534. also appeared
in MOBICOM’01.

[16] L. Eschenauer, V.D. Gligor, A key management scheme for distributed sensor
networks, in: V. Atluri (Ed.), Ninth ACM Conference on Computer and
Communications Security (CCS’02), ACM Press, 2002, pp. 41–47.

[17] S. Zhu, S. Setia, S. Jajodia, LEAP: efficient security mechanisms for large scale
distributed sensor networks, in: 10th ACM Conference on Computer and
communication security (CCS’03), ACM Press, 2003, pp. 62–72.

[18] R.D. Pietro, L.V. Mancini, A. Mei, Random key-assignment for secure wireless
sensor networks, in: S. Setia, V. Swarup (Eds.), First ACM Workshop on
Security of ad hoc and Sensor Networks (SASN’03), ACM Press, 2003, pp. 62–
71.

[19] H. Chan, A. Perrig, D.X. Song, Random key predistribution schemes for sensor
networks, in: IEEE Symposium on Security and Privacy (S & P’03), IEEE Press,
2003, pp. 197–213.

[20] R. Kannan, L. Ray, A. Durresi, Security-performance trade-offs of inheritance
based key predistribution for wireless sensor networks, in: First European
Workshop on Security in Wireless and ad hoc Sensor Networks (ESAS’04),
2004.

[21] J. Hwang, Y. Kim, Revisiting random key predistribution schemes for wireless
sensor networks, in: S. Setia, V. Swarup (Eds.), Second ACM Workshop on
Security of ad hoc and Sensor Networks (SASN’04), 2004, pp. 43–52.

[22] S.A. Çamtepe, B. Yener, Combinatorial design of key distribution mechanisms
for wireless sensor networks, in: P. Samarati, P.Y.A. Ryan, D. Gollmann, R.
Molva (Eds.), Ninth European Symposium on Research Computer Security
(ESORICS’04), LNCS, Vol. 3193, Springer, 2004, pp. 293–308.

[23] W. Du, J. Deng, Y.S. Han, P.K. Varshney, J. Katz, A. Khalili, A pairwise key
predistribution scheme for wireless sensor networks, ACM Transactions on
Information and System Security 8 (2) (2005) 228–258. also appeared in ACM
CCS’03.

[24] D. Liu, P. Ning, R. Li, Establishing pairwise keys in distributed sensor networks,
ACM Transactions on Information and System Security 8 (1) (2005) 41–77. also
appeared in ACM CCS’03.

[25] L.B. Oliveira, H.C. Wong, R. Dahab, A.A.F. Loureiro, On the design of secure
protocols for hierarchical sensor networks, International Journal of Security
and Networks (IJSN) 2 (3/4) (2007) 216–227.
Please cite this article in press as: L.B. Oliveira et al., TinyPBC: Pairings for au
works, Comput. Commun. (2010), doi:10.1016/j.comcom.2010.05.013
[26] L.B. Oliveira, A. Ferreira, M.A. Vilaça, H.C. Wong, M. Bern, R. Dahab, A.A.F.
Loureiro, SecLEACH – on the security of clustered sensor networks, Signal
Processing 87 (12) (2007) 2882–2895.

[27] R.J. Watro, D. Kong, S. fen Cuti, C. Gardiner, C. Lynn, P. Kruus, TinyPK: securing
sensor networks with public key technology, in: S. Setia, V. Swarup (Eds.),
Second ACM Workshop on Security of ad hoc and Sensor Networks (SASN’04),
ACM Press, 2004, pp. 59–64.

[28] N. Gura, A. Patel, A. Wander, H. Eberle, S.C. Shantz, Comparing elliptic curve
cryptography and RSA on 8-bit CPUs, in: M. Joye, J.-J. Quisquater (Eds.),
Workshop on Cryptographic Hardware and Embedded Systems (CHES’04),
LNCS, Vol. 3156, Springer, 2004, pp. 119–132.

[29] D.J. Malan, M. Welsh, M.D. Smith, A public key infrastructure for key
distribution in tinyos based on elliptic curve cryptography, in: First IEEE
International Conference on Sensor and ad hoc Communications and Networks
(SECON’04), 2004, pp. 71–80.

[30] W. Du, R. Wang, P. Ning, An efficient scheme for authenticating public keys in
sensor networks, in: P.R. Kumar, A.T. Campbell, R. Wattenhofer (Eds.), Sixth
ACM International Symposium on Mobile ad hoc Networking and Computing
(MOBIHOC’05), ACM Press, 2005, pp. 58–67.

[31] K.G. Paterson, Cryptography from pairings, in: I.F. Blake, G. Seroussi, N. Smart
(Eds.), Advances in Elliptic Curve Cryptography, London Mathematical Society
Lecture Notes, Vol. 317, Cambridge University Press, 2005, pp. 215–251.
Chapter X.

[32] C. Cocks, An identity-based encryption scheme based on quadratic residues,
in: B. Honary (Ed.), Eighth IMA International Conference on Cryptography and
Coding, LNCS, Vol. 2260, Springer, 2001, pp. 360–363.

[33] A. Joux, A one round protocol for tripartite Diffie–Hellman, Journal of
Cryptology 17 (4) (2004) 263–276. also appeared in ANTS-IV.

[34] A. Menezes, T. Okamoto, S. Vanstone, Reducing elliptic curve logarithms to
logarithms in a finite field, IEEE Transactions on Information Theory 39 (5)
(1993) 1639–1646.

[35] S.D. Galbraith, Pairings, in: I.F. Blake, G. Seroussi, N. Smart (Eds.), Advances in
Elliptic Curve Cryptography, London Mathematical Society Lecture Notes, Vol.
317, Cambridge University Press, 2005, pp. 183–213. Chapter IX.

[36] S.D. Galbraith, K.G. Paterson, N.P. Smart, Pairings for cryptographers, Discrete
Applied Mathematics 156 (16) (2008) 3113–3121.

[37] P. Szczechowiak, A. Kargl, M. Scott, M. Collier, On the application of pairing
based cryptography to wireless sensor networks, in: D.A. Basin, S. Capkun, W.
Lee (Eds.), Second ACM Conference on Wireless Network Security (WISEC’09),
ACM Press, 2009, pp. 1–12.

[38] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F. Mueller, M. Sichitiu,
Analyzing and modeling encryption overhead for sensor network nodes, in:
C.S. Raghavendra, K.M. Sivalingam, R. Govindan, P. Ramanathan (Eds.),
Second ACM International Conference on Wireless Sensor Networks and
Applications (WSNA’03), ACM Press, 2003, pp. 151–159.

[39] P.S.L.M. Barreto, S. Galbraith, C. Ó hÉigeartaigh, M. Scott, Efficient pairing
computation on supersingular abelian varieties, Designs Codes and
Cryptography 42 (3) (2007) 239–271.

[40] M. Duursma, H.-S. Lee, Tate pairing implementation for hyperelliptic curves
y2 = xp � x + d, in: C.-S. Laih (Ed.), Ninth International Conference on the
Theory and Application of Cryptology and Information Security
(ASIACRYPT’03), LNCS, Vol. 2894, Springer, 2003, pp. 111–123.

[41] Atmel, 8 bit AVR Microcontroller ATmega128(L) Manual, v. 2467M-AVR-11/04,
November 2004.

[42] R.M. Avanzi, Another look at square-roots (and other less common operations)
in fields of even characteristic, in: C.M. Adams, A. Mi ri, M.J. Wiener (Eds.),
14th International Workshop on Selected Areas in Cryptography (SAC 2007),
LNCS, Vol. 4876, Springer, 2007, pp. 138–154.

[43] M. Scott, Optimal irreducible polynomials for GF(2m) arithmetic, Cryptology
ePrint Archive, Report 2007/192, 2007.

[44] J. López, R. Dahab, High-speed software multiplication in GF(2m), in: B.K. Roy,
E. Okamoto (Eds.), First International Conference in Cryptology in India
(INDOCRYPT’00), LNCS, Vol. 1977, Springer, 2000, pp. 203–212.

[45] K. Fong, D. Hankerson, J. López, A. Menezes, Field inversion and point halving
revisited, IEEE Transactions on Computers 53 (8) (2004) 1047–1059.

[46] Atmel Corporation, AVR Studio 4, URL <http://www.atmel.com/>, 2005.
[47] J. Eriksson, A. Dunkels, N. Finne, F. Österlind, T. Voigt, MSPsim – an extensible

simulator for msp430-equipped sensor boards, in: Fourth European
Conference on Wireless Sensor Networks (EWSN’07), Poster/Demo session,
2007, URL <http://www.sics.se/adam/eriksson07mspsim.pdf>.

[48] J. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, F. Rodríguez-Henríquez, A
comparison between hardware accelerators for the modified tate pairing
over F2m and F3m , in: S.D. Galbraith, K.G. Paterson (Eds.), Second
International Conference on Pairing-Based Cryptography (Pairing’08), 2008,
pp. 297–315.

[49] S. Bartolini, I. Branovic, R. Giorgi, E. Martinelli, Effects of instruction set
extensions on an embedded processor: a case study on elliptic curve
cryptography over gf(2m), IEEE Transactions on Computers 57 (5) (2008)
672–685.

[50] A. Liu, P. Kampanakis, P. Ning, TinyECC: elliptic curve cryptography for sensor
networks (Ver. 0.3), URL <http://discovery.csc.ncsu.edu/software/TinyECC/>,
2005.

[51] C. Blundo, A.D. Santis, A. Herzberg, S. Kutten, U. Vaccaro, M. Yung, Perfectly-
secure key distribution for dynamic conferences, in: E.F. Brickell (Ed.), 12th
Annual International Cryptology Conference (CRYPTO’92), LNCS, Vol. 740,
Springer, 1992, pp. 148–167.
thenticated identity-based non-interactive key distribution in sensor net-

http://code.google.com/p/relic-toolkit
http://code.google.com/p/relic-toolkit
http://www.atmel.com/
http://www.sics.se/adam/eriksson07mspsim.pdf
http://discovery.csc.ncsu.edu/software/TinyECC/
http://dx.doi.org/10.1016/j.comcom.2010.05.013

L.B. Oliveira et al. / Computer Communications xxx (2010) xxx–xxx 9

ARTICLE IN PRESS
[52] R. Blom, An optimal class of symmetric key generation systems, in: Workshop
on the Theory and Application of Cryptographic Techniques (EUROCRYPT’84),
1984, pp. 335–338.

[53] Y. Zhang, W. Liu, W. Lou, Y. Fang, Securing sensor networks with location-
based keys, in: IEEE Wireless Communications and Networking Conference
(WCNC’05), 2005.

[54] B. Doyle, S. Bell, A.F. Smeaton, K. McCusker, N. O’Connor, Security
considerations and key negotiation techniques for power constrained sensor
networks, The Computer Journal 49 (4) (2006) 443–453.

[55] L.B. Oliveira, R. Dahab, J. Lopez, F. Daguano, A.A.F. Loureiro, Identity-based
encryption for sensor networks, in: Fifth IEEE International Conference on
Pervasive Computing and Communications Workshops (PERCOMW’07), 2007,
pp. 290–294.

[56] L.B. Oliveira, D.F. Aranha, E. Morais, F. Daguano, J. López, R. Dahab, TinyTate:
computing the tate pairing in resource-constrained nodes, in: Sixth IEEE
International Symposium on Network Computing and Applications (NCA’07),
2007, pp. 318–323.

[57] L.B. Oliveira, M. Scott, J. López, R. Dahab, TinyPBC: Pairings for authenticated
identity-based non-interactive key distribution in sensor networks, in: Fifth
International Conference on Networked Sensing Systems (INSS’08), 2008, pp.
173–180.
Please cite this article in press as: L.B. Oliveira et al., TinyPBC: Pairings for au
works, Comput. Commun. (2010), doi:10.1016/j.comcom.2010.05.013
[58] M. Scott, MIRACL—A multiprecision integer and rational arithmetic C/C++
library, Shamus Software Ltd, Dublin, Ireland, URL <http://www.shamus.ie>,
2003.

[59] T. Ishiguro, M. Shirase, T. Takagi, Efficient implementation of pairings on
sensor nodes, in: Applications of Pairing-Based Cryptography – NIST, 2008, pp.
96–106.

[60] P. Szczechowiak, L.B. Oliveira, M. Scott, M. Collier, R. Dahab, NanoECC: testing
the limits of elliptic curve cryptography in sensor networks, in: Fifth
European Conference on Wireless Sensor Networks (EWSN’08), 2008, pp.
305–320.

[61] L.B. Oliveira, A. Kansal, B. Priyantha, M. Goraczko, F. Zhao, Secure-TWS:
authenticating node to multi-user communication in shared sensor networks,
in: Eighth ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN’08), 2009, pp. 289–300.

[62] D. Boneh, B. Lynn, H. Schacham, Short signatures from the weil pairing, Journal
of Cryptology 17 (4) (2004) 297–319.

[63] D. Galindo, R. Roman, J. Lopez, A killer application for pairings: authenticated
key establishment in underwater wireless sensor networks, in: M.K. Franklin,
L.C.K. Hui, D.S. Wong (Eds.), Seventh International Conference on
Cryptology and Network Security (CANS’08), LNCS, Vol. 5339, Springer, 2008,
pp. 120–132.
thenticated identity-based non-interactive key distribution in sensor net-

http://www.shamus.ie
http://dx.doi.org/10.1016/j.comcom.2010.05.013

	TinyPBC: Pairings for authenticated identity-based non-interactive key distribution in sensor networks
	Introduction
	Bootstrapping security in WSNs: need for new approaches
	Synergy between IBC and WSNs
	Authenticated identity-based non-interactive key distribution in sensor networks
	Pairings: definition
	Setup
	Applying ID-NIKDS in WSNs

	Evaluation
	Implementation
	Security requirements
	Pairing

	ATmega128 8-bit processor
	Field representation
	Squaring
	Multiplication
	Square-root

	MSP430 16-bit processor
	Field representation
	Arithmetic

	XScale PXA27x 32-bit processor
	Field representation
	Arithmetic

	Performance
	Storage

	Related work
	Conclusion
	Acknowledgements
	References

