
NextBug: A Tool for Recommending Similar Bugs in
Open-Source Systems

Henrique S. C. Rocha1, Guilherme A. de Oliveira2,
Humberto T. Marques-Neto2, Marco Túlio O. Valente1

1 Department of Computer Science
Federal University of Minas Gerais (UFMG)
Belo Horizonte – MG – 31.270-901 – Brazil

2Department of Computer Science
Pontifical Catholic University of Minas Gerais (PUC Minas)

Belo Horizonte – MG – 30.535-901 – Brazil

henrique.rocha@dcc.ufmg.br, guilherme.oliveira.753469@sga.pucminas.br

humberto@pucminas.br, mtov@dcc.ufmg.br

Abstract. Due to the characteristics of the maintenance process of open-source
systems, grouping similar bugs to improve developers productivity is a chal-
lenging task. In this paper, we proposed and evaluate a tool, called NextBug, for
recommending similar bugs in open-source systems. NextBug is implemented
as Bugzilla plug-in and it was design to help maintainers selecting the next bug
he/she would fix. We also report an experience on using NextBug with 109,145
bugs previously reported for Mozilla products.

Video URL: <http://youtu.be/Tt69zVobnF8>

1. Introduction
Considering the great importance, the costs, and the increasing complexity of software
maintenance activities, most organizations usually maintain their systems by perform-
ing tasks periodically, i.e., maintenance requests are grouped and implemented as part
of large software projects [Tan and Mookerjee 2005; Aziz et al. 2009; Junio et al. 2011;
Marques-Neto et al. 2013]. On the other hand, open-source projects typically adopt con-
tinuous maintenance policies where the maintenance requests are addressed by main-
tainers with different skills and commitment levels, as soon as possible, after being
registered in an issue tracking platform, such as Bugzilla and Jira [Mockus et al. 2002;
Tan and Mookerjee 2005; Liu et al. 2012].

However, this process is usually uncoordinated, which results in a high number of
issues from which many are invalid or duplicated [Liu et al. 2012]. In 2005, a certified
maintainer from the Mozilla Software foundation made the following comment on this
situation: “everyday, almost 300 bugs appear that need triaging. This is far too much for
only the Mozilla programmers to handle” [Anvik et al. 2006]. The dataset formed by bugs
reported for the Mozilla projects indicates that, in 2011, the number of reported issues per
year increased approximately 75% when compared to 2005. In this context, tools to
assist in the issue processing would be very helpful and could contribute to increase the
productivity of open-source systems development.

http://youtu.be/Tt69zVobnF8

In this paper, we claim that a very simple form of periodic maintenance policy can
be promoted in open-source systems by recommending similar maintenance requests to
maintainers whenever they manifest interest in handling a given request. Suppose that a
developer has manifested interest in a bug with a textual description di. In this case, we
rely on text mining techniques to retrieve open bugs with descriptions dj similar to di and
we recommend such bugs to the maintainers.

More specifically, we present NextBug, a tool to recommend similar bugs to main-
tainers based on the textual description of each bug stored in Bugzilla, an issue tracking
system widely used by open-source projects. The proposed tool is compatible with the
software development process followed by open-source systems for the following rea-
sons: (a) it is based on recommendations and, therefore, maintainers are not required to
accept extra bugs to fix; (b) it is a fully automatic and unsupervised approach which does
not depend on human intervention; and (c) it relies on information readily available in
Bugzilla. Assuming the recommendations effectively denote similar bugs and suppos-
ing that the maintainers would accept the recommendations pointed out by NextBug, the
tool can contribute to introduce gains of scale similar to the ones achieved with periodic
policies [Banker and Slaughter 1997]. We also report a field study when we populated
NextBug with a dataset of bugs reported for Mozilla systems.

The remainder of this paper is organized as follows. Section 2 discuss tools for
finding duplicated issue reports in bug tracking systems and also tools that assign bugs
to developers. The architecture and the central features of NextBug are described in
Section 3. An example of usage is presented in Section 4. Finally, conclusions are offered
in Section 5.

2. Related Tools

Most open-source systems adopt an Issue Tracking System (ITS) to support their mainte-
nance processes. Normally, in such systems both users and testers can report modification
requests [Liu et al. 2012]. This practice usually results in a continuous maintenance pro-
cess where maintainers address the change requests as soon as possible. The ITS provides
a central knowledge repository which also serves as a communication channel for geo-
graphically distributed developers and users [Anvik et al. 2006; Ihara et al. 2009].

Recent studies have focused on finding duplicated issue reports in bug tracking
systems. Duplicated reports can hamper the bug triaging process and may drain mainte-
nance resources [Cavalcanti et al. 2013]. Typically, studies for finding duplicated issues
rely on traditional information retrieval techniques such as natural language processing,
vector space model, and cosine similarity [Alipour et al. 2013].

Approaches to infer the most suitable developer to correct a software issue are also
reported in the literature. Most of them can be viewed as recommendation systems that
suggest developers to handle a reported bug. For instance, [Anvik and Murphy 2011] pro-
posed an approach based on supervised machine learning that requires training to create
a classifier. This classifier assigns the data (bug reports) to the closest developer.

However, to the best of our knowledge, we are not aware of any tool designed to
recommend similar bugs to maintainers of open-source systems.

Figure 1. NextBug Screenshot (similar bugs are shown in the lower right corner)

3. NextBug in a Nutshell

In this section, we present NextBug1 main features (Section 3.1). We also present the
tool’s architecture and main components (Section 3.2).

3.1. Main Features
Currently, there are several ITSs that are used in software maintenance such as Bugzilla,
Jira, Mantis, and RedMine. NextBug was implemented as a Bugzilla plug-in mainly
because this ITS is used by the Mozilla project, which was used to validate our tool.

When a developer is analyzing or browsing an issue, NextBug can recommend
similar bugs in the usual Bugzilla web interface. As described in Section 3.2, NextBug
uses a textual similarity algorithm to verify the similarity among bug reports.

Figure 1 shows an usage example of our tool. This figure shows a real bug from the
Mozilla project, which refers to a FirefoxOS application issue related to a mobile device
camera (Bug 937928). As we can observe, Bugzilla shows detailed information about
this bug, such as a summary description, creation date, product, component, operational
system, and hardware information. NextBug extends this original interface by showing
a list of similar bugs to the browsed one. This list is shown on the lower right corner.
Another important feature is that NextBug is only executed if its Ajax link is clicked and,
thus, it will not cause additional overhead or hinder performance to developers who do
not wish to use similar bug recommendations.

In Figure 1, NextBug suggested three similar bugs to the one which is browsed
on the screenshot. As we can note, NextBug not only detects similar bugs but it also
calculates an index to express this similarity. Our final goal is to guide the developer’s
workflow by suggesting similar bugs to the one he/she is currently browsing. If a devel-
oper chooses to handle one of the recommended bugs, we claim he/she can minimize the
context change inherent to the task of handling different bugs and, consequently, improve
his/her productivity.

1NextBug is open-source and available under the Mozilla Public License (MPL) at <http://aserg.
labsoft.dcc.ufmg.br/nextbug/>.

http://aserg.labsoft.dcc.ufmg.br/nextbug/
http://aserg.labsoft.dcc.ufmg.br/nextbug/

Figure 2. NextBug Architecture

3.2. Architecture and Algorithms
Figure 2 shows NextBug’s architecture, including the system main components and the
interaction among them. As described in Section 3.1, NextBug is a plug-in for Bugzilla.
Therefore, it is implemented in Perl, the same language used in the implementation of
Bugzilla. Basically, NextBug instruments the Bugzilla interface used for browsing and
for selecting bugs reported for a system. NextBug registers an Ajax event in this interface
that calls NextBug passing the browsed issue as an input parameter.

NextBug architecture has two central components: Information Retrieval (IR)
Process and Recommender. The IR Process component obtains all open issues currently
available on the Bugzilla system along with the browsed issue. Then it relies on
IR techniques for natural language processing such as: tokenization, stemming, and
stop-words removal [Runeson et al. 2007]. We implemnted all such techniques in Perl.
After this processing, the issues are transformed into vectors using the vector space
model [Baeza-Yates and Ribeiro-Neto 1999; Runeson et al. 2007]. VSM is a classical
information retrieval model to process documents and to quantify their similarities. The
usage of VSM is accomplished by decomposing the data (available bug reports and
queries) into t-dimensional vectors, assigning weights to each indexed term. The weights
wi are positive real numbers that represent the i-th index term in the vector. To calculate
wi we used the following equation, which is called a tf-idf weight formula:

wi = (1 + log2 fi)× log2

N

ni

where fi is the frequency of the i-th term in the document, N is the total number of
documents, and ni is the number of documents in which the i-th term occurs.

The Recommender component receives the processed issues and verifies the ones
similar to the browsed issue. The similarity is computed using the cosine similarity mea-
sure [Baeza-Yates and Ribeiro-Neto 1999; Runeson et al. 2007]. More specifically, the
similarity between the vectors of a document dj and a query q is described by the follow-
ing equation, which is called the cosine similarity because it measures the cosine of the
angle between the two vectors:

Sim(dj, q) = cos(Θ) =

−→
dj • −→q

||
−→
dj || × ||−→q ||

=

∑t
i=1 wi,d × wi,q√∑t

i=1(wi,d)2 ×
√∑t

i=1(wi,q)2

Since all the weights are greater or equal to zero, we have 0 ≤ Sim(dj, q) ≤ 1,
where zero indicates that there is no relation between the two vectors, and one indicates
the highest possible similarity, i.e., both vectors are actually the same.

The issues are then ordered according to their similarity before being returned to
Bugzilla. Since NextBug started as an Ajax event, the recommendations are showed in
the same Bugzilla interface used by developers for browsing and selecting bugs to fix.

4. Evaluation
We used a dataset with bugs from the Mozilla project to evaluate the proposed tool.
Mozilla is composed of 69 products from different domains which are implemented in
different programming languages. Mozilla project includes some popular systems such
as Firefox, Thunderbird, SeaMonkey, and Bugzilla. We considered only issues that were
actually fixed from January 2009 to October 2012. More specifically, we ignored issue
types such as “duplicated”, “incomplete”, and “invalid”.

Mozilla issues are also classified according to their severity in the following scale:
blocker, critical, major, normal, minor, and trivial. Table 1 shows the number and the
percentage of each of these severity categories in the considered dataset. This scale also
includes enhancements as a particular severity category. Although, it was not considered
in our study, i.e., we do not provide recommendations for similar enhancements.

Table 1. Issues per Severity

Severity Issues Days to Resolve
Number % Min Max Avg Dev Med

blocker 2,720 2.08 0 814 15.44 52.25 1
critical 7,513 5.76 0 1258 37.87 99.52 6
enhancement 3,600 2.76 0 1285 126.14 195.25 40
major 7,508 5.75 0 1275 41.59 109.83 5
minor 3,660 2.80 0 1355 77.05 161.72 11
normal 103,385 79.23 0 1373 46.27 108.84 8
trivial 2,109 1.62 0 1288 80.84 164.74 11
Total 130,495 100 – – – – –
Final Dataset 109,145 83.64 – – – – –

Table 1 also shows the number of days required to fix the issues in each category.
We can observe that blocker bugs are quickly corrected by developers, showing the low-
est values for maximum, average, standard deviation, and median measures among the
considered categories. The presented lifetimes also indicate that issues with critical and
major severity are closer to each other. Finally, enhancements are very different from the
others, showing the highest values for average, standard deviation, and median.

Issues marked as blocker, critical, or major were not considered in our evaluation
because developers have to fix them as quickly as possible. In other words, they would
probably not consider fixing other issues together, since their ultimate priority is to fix
the main blocker issue. In other words, our dataset is formed by fixed issues classified as
normal, minor, and trivial. These issues count for 109,154 bugs (83.64%) from our initial
population of bugs available for the NextBug evaluation.

We used three metrics in our evaluation: Feedback, Precision, and Likelihood.
These metrics were inspired by the evaluation followed by the ROSE recommendation
system [Zimmermann et al. 2004]. Feedback presents the ratio of queries where NextBug
makes at least k recommendations. Precision indicates the percentage of recommenda-
tions that were actually relevant among the top-k suggestions by NextBug. Finally, Like-
lihood indicates whether at least one relevant recommendation is included in NextBug’s
top-k suggestions.

In this evaluation, we defined a relevant recommendation as one that shares the
same developer with the main issue. More specifically, we consider that a recently cre-
ated issue q is connected to a second opened issue when they are handled by the same
developer. The assumption in this case is that our approach fosters gains of productivity
whenever it recommends issues that were later fixed anyway by the same developer.

Figure 3 shows the average feedback (left chart), precision (central chart) and
likelihood (right chart) up to k = 5.

Feedback

m
et

ric
 v

al
ue

0.
0

0.
2

0.
4

0.
6

0.
8

Precision

0.
0

0.
2

0.
4

0.
6

0.
8

Likelihood

0.
0

0.
2

0.
4

0.
6

0.
8

k=1
k=2
k=3
k=4
k=5

Figure 3. Average Evaluation Results for k = 1 to k = 5.

We summarize our results as follows:

• We achieved a feedback of 0.63 for k = 1. Therefore, on average, NextBug made
at least one suggestion for 63% of the bugs, i.e., for every five bugs NextBug was
able to provide at least one similar recommendation for three of those. Moreover,
NextBug showed on average 3.2 recommendations for its queries.
• We achieved a precision of 0.31 or more for all values of k. In other words, the

NextBug recommendations were on average 31% relevant (i.e., further handled by
the same developer), no matter how many suggestions were given.
• We achieved a likelihood of 0.54 for k = 3. More specifically, in about 54% of

the cases, there is a top-3 recommendation that was later handled by the same
developer responsible for the original bug.

We also conducted a survey with Mozilla developers using our tool. We gave
recommendations suggested by NextBug to 176 Mozilla maintainers and asked them a
few questions. Our summarized results are: (i) 77% found our recommendations relevant;
(ii) 85% confirmed that a tool to recommend similar bugs would be useful to the Mozilla
community and it would allow them to do more work in less time.

4.1. Example of Recommendation

Table 2 presents an example of a bug (browsed or main issue) opened for the component
DOM:Device Interfaces of the Core Mozilla product and the first three recom-
mendations (top-3) suggested by our tool for this bug. As we can observe in the sum-
mary description, both query and recommendations require maintenance in the Device
Storage API, used by Web apps to access local file systems. Moreover, all four issues
were handled by the same developer (Dev ID 302291).

Table 2. Example of Recommendation
Similarity Bug ID Summary Creation Date Fix Date

Browsed – 788588

Device Storage - Default
location for device stor-
age on windows should be
NS WIN PERSONAL DIR

2012-09-05 2012-09-06

Top-1 56% 754350 Device Storage - Clean up error
strings 2012-05-11 2012-10-17

Top-2 47% 788268 Device Storage - Convert tests to
use public types 2012-09-04 2012-09-06

Top-3 42% 786922 Device Storage - use a properties
file instead of the mime service 2012-08-29 2012-09-06

We can also observe that the three recommended issues were created before the
original query. In fact, the developer fixed the bugs associated to the second and the
third recommendations in the same date which he has fixed the original query, i.e. on
2012-09-06. However, he only resolved the other recommended bug (ID 754350) 41 days
latter, i.e., on 2012-10-17. Therefore, our approach would have helped this maintainer to
discover quickly the related issues. This task probably demanded more effort without a
recommendation automatically provided by a tool like NextBug.

5. Conclusion
This paper presented NextBug, a tool for recommending similar bugs. NextBug is imple-
mented as a plug-in for Bugzilla, a widely used Issue Tracking Systems (ITS), specially
used by open-source systems. The proposed tool relies on information retrieval tech-
niques to extract semantic information from issue reports in order to identify the similarity
of open bugs with the one that is being handled by a developer.

We evaluate the NextBug with a dataset of 109,154 Mozilla bugs, achieving feed-
back results of 63%, precision results around 31% and likelihood results greater than 54%.
Those results are very reasonable compared to other recommendation tools.

We also conducted a survey with 176 Mozilla developers using recommendations
provided by NextBug. From such developers, 77% of them thought our recommendations
were relevant and 85% confirmed that a tool like NextBug would be useful to the Mozilla
community.

6. Acknowledgements
This work was supported by CNPq, CAPES, and FAPEMIG.

References
[Alipour et al. 2013] Alipour, A., Hindle, A., and Stroulia, E. (2013). A contextual ap-

proach towards more accurate duplicate bug report detection. In 10th Working Confer-
ence on Mining Software Repositories (MSR), pages 183–192.

[Anvik et al. 2006] Anvik, J., Hiew, L., and Murphy, G. C. (2006). Who should fix this
bug? In 28th International Conference on Software engineering (ICSE), pages 361–
370.

[Anvik and Murphy 2011] Anvik, J. and Murphy, G. C. (2011). Reducing the effort of
bug report triage: recommenders for development-oriented decisions. ACM Transac-
tions on Software Engineering Methodology (TOSEM), 20(3):10:1–10:35.

[Aziz et al. 2009] Aziz, J., Ahmed, F., and Laghari, M. (2009). Empirical analysis of
team and application size on software maintenance and support activities. In 1st In-
ternational Conference on Information Management and Engineering (ICIME), pages
47–51.

[Baeza-Yates and Ribeiro-Neto 1999] Baeza-Yates, R. A. and Ribeiro-Neto, B. (1999).
Modern information retrieval. Addison-Wesley, 2nd edition.

[Banker and Slaughter 1997] Banker, R. D. and Slaughter, S. A. (1997). A field study of
scale economies in software maintenance. Management Science, 43:1709–1725.

[Cavalcanti et al. 2013] Cavalcanti, Y. C., Mota Silveira Neto, P. A., Lucrédio, D., Vale,
T., Almeida, E. S., and Lemos Meira, S. R. (2013). The bug report duplication problem:
an exploratory study. Software Quality Journal, 21(1):39–66.

[Ihara et al. 2009] Ihara, A., Ohira, M., and Matsumoto, K. (2009). An analysis method
for improving a bug modification process in open source software development. In
7th International Workshop Principles of Software Evolution and Software Evolution
(IWPSE-Evol), pages 135–144.

[Junio et al. 2011] Junio, G., Malta, M., de Almeida Mossri, H., Marques-Neto, H., and
Valente, M. (2011). On the benefits of planning and grouping software maintenance
requests. In 15th European Conference on Software Maintenance and Reengineering
(CSMR), pages 55–64.

[Liu et al. 2012] Liu, K., Tan, H. B. K., and Chandramohan, M. (2012). Has this bug
been reported? In 20th ACM SIGSOFT International Symposium on the Foundations
of Software Engineering (FSE), pages 28:1–28:4.

[Marques-Neto et al. 2013] Marques-Neto, H., Aparecido, G. J., and Valente, M. T.
(2013). A quantitative approach for evaluating software maintenance services. In
28th ACM Symposium on Applied Computing (SAC), pages 1068–1073.

[Mockus et al. 2002] Mockus, A., Fielding, R. T., and Herbsleb, J. D. (2002). Two case
studies of open source software development: Apache and Mozilla. ACM Transactions
on Software Engineering and Methodology, 11(3):309–346.

[Runeson et al. 2007] Runeson, P., Alexandersson, M., and Nyholm, O. (2007). Detec-
tion of duplicate defect reports using natural language processing. In 29th International
Conference on Software Engineering (ICSE), pages 499–510.

[Tan and Mookerjee 2005] Tan, Y. and Mookerjee, V. (2005). Comparing uniform and
flexible policies for software maintenance and replacement. IEEE Transactions on
Software Engineering, 31(3):238–255.

[Zimmermann et al. 2004] Zimmermann, T., Weisgerber, P., Diehl, S., and Zeller, A.
(2004). Mining version histories to guide software changes. In 26th International
Conference on Software Engineering (ICSE), pages 563–572.

	1 Introduction
	2 Related Tools
	3 NextBug in a Nutshell
	3.1 Main Features
	3.2 Architecture and Algorithms

	4 Evaluation
	4.1 Example of Recommendation

	5 Conclusion
	6 Acknowledgements

