Exploratory Factor Analysis in R

In these notes we will explore a number of functions related to factor analysis that are
available in the R base package as well as several very useful functions in the “psych” library

by William Revelle. To access these functions, load the “psych” library.
> library(psych)

The “psych” library contains many data sets. In the following examples we will use the

“bfi” data. According to the help page:

25 personality self report items taken from the International Personality Item Pool
(ipip.ori.org) were included as part of the Synthetic Aperture Personality
Assessment (SAPA) web based personality assessment project. The data from

1000 subjects are included here as a demonstration set for scale

construction and factor analysis.

Usage

data(bfi)

Format

A data frame with 1000 observations on the following 25 variables.

Al

Am indifferent to the feelings of others.
A2

Inquire about others' well-being.
A3

Ad

A5

C1

Cc2

C3

Cc4

C5

E1l

E2

E3

E4

E5

N1

N2

N3

Know how to comfort others.

Love children.

Make people feel at ease.

Am exacting in my work.

Continue until everything is perfect.

Do things according to a plan.

Do things in a half-way manner.

Waste my time.

Don't talk a lot.

Find it difficult to approach others.

Know how to captivate people.

Make friends easily.

Take charge.

Get angry easily.

Get irritated easily.

Have frequent mood swings.

N4
Often feel blue.
N5
Panic easily.
01
Am full of ideas.
02
Avoid imposing my will on others.
03
Carry the conversation to a higher level.
04
Spend time reflecting on things.
05
Will not probe deeply into a subject.
Details

The 25 items are organized by five putative factors:
Agreeableness, Conscientiousness,

Extraversion, Neuroticism, and Opennness. The scoring
key is created using make.keys,

the scores are found using score.items

Source
The items are from the ipip (Goldberg, 1999). The data are from the SAPA project
(Revelle, Wilt and Rosenthal, 2009), collected Fall, 2006.

The bfi items were written to measure 5 higher-order personality dimensions. Let us

perform a parallel analysis on these data to see if a 5 dimensional solution is reasonable.

> data(bfi)

> describe(bfi)

Al
A2
A3
Ad
A5
C1
Cc2
C3
Cc4
C5
E1l
E2
E3
E4
Eb
N1
N2
N3
N4
N5
01
02
03
04
05

> fa.parallel(bfi)

var

© 00 N O O s W N

N NN R, R, R, s, s, s, s, s
S WD O O 0 N O OO W N e, O

25

n mean
1000 2.29
994 4.82
989 4.60
993 4.76
988 4.58
997 4.39
997 4.22
995 4.28
986 2.63
997 3.47
996 2.93
994 3.32
994 3.98
997 4.42
991 4.38
990 2.83
990 3.51
997 3.20
996 3.06
992 2.94
994 4.74
994 3.93
991 4.32
992 4.83
996 2.51

sd median trimmed

.28
.12
.21
.40
.15
.22
.29
.26
.36
.52
.58
.58
.29
.43
.24
.51
.53
.52
.54
.55
.18
.33
.22
.18
.22

2

[& 2 B & 2 B S L O R O b e O b e N O R & 2 N " O L I~ R \O R & ' > S & 2 B ¢ 2 ¢ N ¢ e

N O WD W RN N o N

.13
.98
.76
.00
.70
.50
.32
.38
.51
.48
.84
.29
.02
.59
.50
.72
.52
.15
.97
.84
.88
.95
.42
.00
.39

mad min max range

.48
.48
.48
.48
.48
.48
.48
.48
.48
.48
.48
.48
.48
.48
.48
.48
.48
.48
.48
.48
.48
.48
.48
.48
.48

1
1
1

6

D Y OO OO O O O O O O O O O O O O O 0O OO O OO oo o o

oo oo oo o oo oo o0 o1 o0 o0 o0 o1 o0 O o1 o0 Oov Ov o1 o o O O Oov O

skew kurtosis

.87
.08
.00
.08
.76
.72
.64
.68
.51
.09
.36
.05
.35
.86
.72
.46
.01
.22
.35
.42
.82
.15
.66
.01
.65

-0.

11

.03
.60
.29
.24
.00
.18
.13
.76
.06
.07
.16
.55
.19
.03
.88
.07
.06
.96
.95
.13
.75
.05
.58
.22

O O O O O O O O O O O O O O O O o oo o o o o o o o

se

.04
.04
.04
.04
.04
.04
.04
.04
.04
.05
.05
.05
.04
.05
.04
.05
.05
.05
.05
.05
.04
.04
.04
.04
.04

Parallel analysis suggests that the number of factors = 6 and the number of components

eigenvalues of principal components and factor analysis

Parallel Analysis Scree Plots

—>— PC Actual Data
~~~~~~ PC Simulated Data
--- PC Resampled Data
—A—  FA Actual Data
~~~~~~ FA Simulated Data
--- FA Resampled Data

Factor Number

Based on theory, we will extract and examine a 5 factor, orthogonal solution. Using the

base package function for maximum likelihood factor analysis:

> ml5.out <- factanal(covmat = cor(bfi, use = "complete.obs"),
+ factors = 5, rotation = '"none")
> ml5.out
Call:
factanal (factors = 5, covmat = cor(bfi, use = "complete.obs"),
Uniquenesses:

Al A2 A3 Ad A5 C1 C2 C3 C4 C5

E1l

rotation = "none")

E2

E3

0.848 0.630 0.642 0.829 0.442 0.566 0.635 0.572 0.504 0.603 0.541 0.457 0.541
E4 E5 N1 N2 N3 N4 N5 01 02 03 04 05
0.420 0.549 0.272 0.321 0.526 0.514 0.675 0.625 0.804 0.544 0.630 0.814

Loadings:

Factorl Factor2 Factor3 Factor4d Factorb

A1 0.248 -0.282

A2 -0.402 0.290 0.215 0.271
A3 -0.413 0.310 0.212 0.207
A4 -0.306 0.273
A5 -0.556 0.294 -0.139 0.198 0.322
C1 -0.193 0.201 0.596

C2 -0.136 0.195 0.537 0.128
C3 -0.274 0.262 0.484 -0.167 0.150
C4 0.432 -0.526 0.180

C5 0.391 -0.401 0.281

El1 0.404 -0.401 0.307 0.126 0.158
E2 0.565 -0.291 0.238 0.266 0.112
E3 -0.438 0.487 -0.119 0.102

E4 -0.552 0.321 -0.345 -0.118 0.197
E5 -0.371 0.482 -0.170 -0.218
N1 0.604 0.587 -0.132

N2 0.573 0.555 -0.199

N3 0.518 0.443

N4 0.588 0.220 0.294

N6 0.418 0.236 0.107 0.276
01 -0.199 0.363 0.144 0.292 -0.312
02 -0.147 0.210 0.229 0.278
03 -0.279 0.441 0.280 -0.310
04 0.285 0.212 0.477 -0.118

05 0.130 -0.124 -0.120 -0.165 0.335

Factorl Factor2 Factor3 Factor4 Factorb
SS loadings 4.00 2.635 1.784 1.116 0.961
Proportion Var 0.16 0.105 0.071 0.045 0.038
Cumulative Var 0.16 0.265 0.337 0.381 0.420

The degrees of freedom for the model is 185 and the fit was 0.8649

Notice that, by default, R fails to print loadings lower than an arbitrary threshold. To
see all loadings, we use the print.loadings function and set the cutoff argument to a very

small number.
> print (loadings(ml5.out), cutoff = 1e-05)

Loadings:

Factorl Factor2 Factor3 Factor4 Factorb
A1 0.248 0.005 -0.044 -0.282 -0.094
A2 -0.402 0.290 -0.069 0.215 0.271
A3 -0.413 0.310 -0.058 0.212 0.207

A4 -0.306 0.046 0.027 -0.003 0.273
A5 -0.556 0.294 -0.139 0.198 0.322
C1 -0.193 0.201 0.596 -0.019 -0.004
C2 -0.136 0.195 0.537 -0.061 0.128
C3 -0.274 0.262 0.484 -0.167 0.150

C4 0.432 -0.021 -0.526 .180 0.004

Cs5 0.391 0.056 -0.401 .281 -0.037

E2 0.565 -0.291 0.238

0
0

E1 0.404 -0.401 0.307 0.126 0.158
0.266 0.112
0

E3 -0.438 0.487 -0.119 .102 -0.078
E4 -0.552 0.321 -0.345 -0.118 0.197
E6 -0.371 0.482 0.062 -0.170 -0.218

N1 0.604 0.587 -0.027 -0.132 0.017
N2 0.573 0.566 0.016 -0.199 0.062
N3 0.518 0.443 -0.008 .048 0.088
N4 0.588 0.220 .061 .294 0.040
N6 0.418 0.236 .107 .084 0.276
01 -0.199 O

02 -0.012 -0.147 .210 .229 0.278

03 -0.279 0.441 .094

0
0 0
0 0
.363 0.144 0.292 -0.312
0 0
0 0.280 -0.310
0 0

04 0.048 0.285 .212 .477 -0.118

05 0.130 -0.124 -0.120 -0.165 0.335

Factorl Factor2 Factor3 Factor4 Factorb
SS loadings 4.00 2.635 1.784 1.116 0.961
Proportion Var 0.16 0.105 0.071 0.045 0.038
Cumulative Var 0.16 0.265 0.337 0.381 0.420

Obviously, the unrotated solution is difficult to interpret. Later we will see how to use
Jennrich’s Gradient Projection Algorithm to perform various types of rotations on existing
loading matrices. At this point, we will call the GPA rotation algorithms using Revelle’s
very flexible factor routines. For example, to perform a principal axes factor analysis of the

bfi data with varimax rotation,

> pa.out <- factor.pa(r = bfi, nfactors = 5, residuals = FALSE,

+ rotate = "varimax", n.obs = NA, scores = FALSE, SMC = TRUE,

+ missing = FALSE, impute = "median", min.err = 0.001, digits = 2,

+ max.iter = 100, symmetric = TRUE, warnings = TRUE, fm = "pa")

> pa.out

Factor Analysis using method = pa

Call: factor.pa(r = bfi, nfactors = 5, residuals = FALSE, rotate = "varimax",

n.obs = NA, scores = FALSE, SMC = TRUE, missing = FALSE,

impute = "median", min.err = 0.001, digits = 2, max.iter = 100,

8

symmetric = TRUE, warnings = TRUE, fm = "pa")
item PA2 PA1 PA3 PA4 PA5 h2 u2

Al 1 -0.30 0.21 0.79
A2 2 0.62 0.42 0.58
A3 3 0.57 0.37 0.63
Ad 4 0.36 0.18 0.82
A5 5 0.67 0.49 0.51
C1 6 0.60 0.42 0.58
C2 7 0.58 0.38 0.62
C3 8 0.62 0.42 0.58
C4 9 -0.65 0.51 0.49
cs5 10 -0.55 0.39 0.61
E1l 11 -0.36 0.51 0.43 0.57
E2 12 -0.36 0.57 0.51 0.49
E3 13 0.44 -0.37 -0.35 0.45 0.55
E4 14 0.62 -0.41 0.57 0.43
E5 15 -0.50 -0.30 0.45 0.55
N1 16 0.79 0.68 0.32
N2 17 0.76 0.63 0.37
N3 18 0.70 0.51 0.49
N4 19 0.58 0.31 0.53 0.47
N5 20 0.56 0.36 0.64
o1 21 -0.54 0.33 0.67
02 22 0.39 0.18 0.82
03 23 -0.59 0.44 0.56
04 24 -0.49 0.37 0.63
05 25 0.41 0.18 0.82

PA2 PA1 PA3 PA4 PAS
SS loadings 2.65 2.47 2.04 1.72 1.54

Proportion Var 0.11 0.10 0.08 0.07 0.06
Cumulative Var 0.11 0.20 0.29 0.36 0.42

Test of the hypothesis that 5 factors are sufficient.

The degrees of freedom for the null model are 300 and the objective function was 7.54
The degrees of freedom for the model are 185 and the objective function was 0.88

The number of observations was 1000 with Chi Square = 867.04 with prob < 1e-88

Tucker Lewis Index of factoring reliability = 0.84
Fit based upon off diagonal values = 0.97
Measures of factor score adequacy

PA2 PA1 PA3 PA4 PA5
Correlation of scores with factors 0.92 0.87 0.87 0.85 0.82
Multiple R square of scores with factors 0.85 0.75 0.76 0.72 0.67

Minimum correlation of factor score estimates 0.69 0.51 0.52 0.44 0.33

And to see all loadings
> print(pa.out$loadings, cutoff = 1le-05, digits = 2)

Loadings:

PA2 PA1 PA3 PA4 PAS
A1 0.15 -0.30 -0.02 -0.25 0.18
A2 0.00 0.62 0.10 0.01 -0.14

A3 -0.05 0.57 0.09 -0.04 -0.19
A4 -0.10 0.36 0.17 0.02 0.09
A5 -0.11 0.67 0.07 -0.09 -0.11
Ci1 0.02 0.01 0.60 0.07 -0.24
c2 0.11 0.08 0.58 0.09 -0.10
C3 0.06 0.17 0.62 -0.07 -0.04
C4 0.26 -0.09 -0.65 0.03 0.11

10

Cs 0.28 -0.09 -0.55 0.08 -0.07
El1 0.04 -0.36 0.02 0.51 0.20
E2 0.21 -0.36 -0.09 0.57 0.07
E3 0.00 0.44 0.08 -0.37 -0.35

E5 .02 0.19 0.27 -0.50 -0.30

N1 .79 -0.15 -0.05 -0.18 -0.03

N2 .76 -0.14 0.02 -0.19 0.03

N3 .70 -0.06 -0.08 0.02 -0.05

N4 .58 -0.17 -0.19 0.31 -0.16

N5 .56 .03 .04 0.21 0.09

o O O o o o o

01 .03 1 .11 -0.12 -0.54

02 -0.05 11 .11 0.39 0.02

03

o

.10 -0.20 -0.59

o O o o o

04 0.20 .12

0

0

0
.04 0.21

0 .04 0.26 -0.49

0

05 0.08 .01 -0.06 0.05 0.41
PA2 PA1 PA3 PA4 PA5
SS loadings 2.65 2.47 2.04 1.72 1.54

Proportion Var 0.11 0.10 0.08 0.07 0.06
Cumulative Var 0.11 0.20 0.29 0.36 0.42

The problem of local minima: Varimax

> library(GPArotation)

> pab.loadings <- print(loadings(pa.out), cutoff = 1e-08)

Loadings:

PA2 PA1 PA3 PA4 PA5
A1 0.154 -0.301 -0.021 -0.254 0.178
A2 -0.002 0.621 0.100 0.012 -0.141
A3 -0.052 0.569 0.092 -0.042 -0.194

11

A4 -0.105 .364 .167 0.023 0.090

A5 -0.112 .674 .073 -0.088 -0.108

0 0
0 0
Ci1 0.016 0.008 0.602 0.066 -0.239
0 0
0 0

Cc2 0.114 .082 .584 0.088 -0.096
C3 0.059 .169 .619 -0.074 -0.045
C4 0.263 -0.089 -0.649 0.033 0.110
Cs5 0.276 -0.089 -0.547 0.077 -0.066
El1 0.038 -0.358 0.016 0.512 0.196
E2 0.209 -0.360 -0.093 0.568 0.067

E3 -0.003 0.436 0.079 -0.367 -0.350
E4 -0.105 0.623 0.018 -0.408 0.048
E5 .019 0.194 0.275 -0.500 -0.301
N1 .789 -0.147 -0.050 -0.182 -0.031
N2 .756 -0.143 0.018 -0.192 0.028

N4

0
0
0

N3 0.702 -0.060 -0.081 0.025 -0.047
0.581 -0.175 -0.186 0.313 -0.157
0
0

N5 .56656 0.025 0.038 0.215 0.085
01 .029 0.108 0.111 -0.117 -0.540
02 -0.050 0.107 0.110 0.387 0.023
03 0.038 0.210 0.103 -0.199 -0.586
04 0.204 0.115 0.040 0.260 -0.494
05 0.085 0.015 -0.060 0.053 0.413

PA2 PA1 PA3 PA4 PAS
SS loadings 2.655 2.468 2.036 1.723 1.539
Proportion Var 0.106 0.099 0.081 0.069 0.062
Cumulative Var 0.106 0.205 0.286 0.355 0.417

> Global.min <- function(A, method, B = 10) {
+ fv <- rep(0, B)
+ seeds <- sample(1e+07, B)

12

+ for (i in 1:B) {

+ cat(i, " ")

+ set.seed(seeds[i])

+ gpout <- GPForth(A = A, Random.Start(ncol(A)), method = method)
+ dtab <- dim(gpout$Table)

+ fv[i] <- gpout$Table[dtab[1], 2]

+ cat(fv[i], "\n")

+ }

+ cat("Min is ", min(fv), "\n")

+ set.seed(seeds[order(fv) [1]])

+ ans <- GPForth(A = A, Random.Start(ncol(A)), method = method,
+ normalize = TRUE)

+ ans

+

> Global.min(pa5.loadings, "varimax", 10)

1 -0.5974817
-0.5974817
-0.5974817
-0.5974817

2
3
4
5 -0.5974817
6 -0.5974817
7 -0.5974817
8 -0.5974817
9 -0.5974817
10 -0.5974817
Min is -0.5974817
Orthogonal rotation method varimax converged.
Loadings:
PA2 PA1 PA3 PA4 PA5
A1 -0.15478 0.0215 0.1794 0.248079 0.30470

13

A2
A3
Ad
A5
C1
Cc2
C3
C4
C5
E1l
E2
E3
E4
Eb
N1
N2
N3
N4
N5
01
02
03
04
05

.00225
.056229
.10440
.11148
.01544
.11382
.05955
.26289
.27530
.03666
.20824
.00254
.10402
.01943
. 78895
. 75631
.70187
.58075
.556494
.02885
.05017
.03863
.20328
.08457

.1003
.0922
.1665
.0725
.6024
.5838
.6190
.6492
.5472
.0157
.0928
.0788
.0178
.2746
.0501
.0175
.0815
.1858
.0379
.1115
.1104
.1026
.0398
.0601

Rotating matrix:
[,1]
[1,] -0.999999

[2,] -0.000334

[3,] -0.000066

6.57e-05 -0.
1.95e-04 O.
-1.00e+00 O.

.1405
.1932
.0904
.1071
.2391
.0968
.0440
.1092
.0668
.1932
.0640
.3480
.0502
.2983
.0300
.0286
.0478
.1591
.0836
.5389
.0207
.5850
.4959
.4129

[,2]

-0.000941

0.052588
-0.017147

0.099855
-0.063999
-0.086396

0.077388
-0.035957
-0.078080
-0.518326
-0.574842
0.376327
0.417613
0.504608
0.178121
0.188107
-0.026366
-0.315919
-0.215772

0.122080
-0.385443

0.205365
-0.255111
-0.055461

[,3]
000386 -0
000245 O
000329 O

-0.62085
-0.56814
-0.36485
-0.67263
-0.00957
-0.08307
-0.16817
0.08856
0.08797
0.34954
0.35083
-0.43025
-0.61658
-0.18566
0.15040
0.14608
0.05972
0.16975
-0.02859
-0.10584
-0.11307
-0.20653
-0.11935
-0.01540

[,4] [,5]
.001562 0.000309
.015965 -0.999872
.000117 -0.000193

14

[4,]

[5,] -0.000377 3.29e-04 0.999983 -0.005759 0.000153

> Global.min <- function(A, method, B = 10) {

+

+

+

+

\%

—

© 00 N O O b~ W N

The problem of local minima: Oblique Rotation:

}

Global.min(pab.loadings, "oblimin", 10)

O O O O O o o o o

0.001559 -1.16e-04 -0.005755 -0.999855 -0.015967

fv <- rep(0, B)
seeds <- sample(1e+07, B)
for (i in 1:B) {

cat(i, " ")

set.seed(seeds[i])

gpout <- GPFoblq(A = A, Random.Start(ncol(4)), method = method)

dtab <- dim(gpout$Table)

fv[i] <- gpout$Table[dtab[1], 2]

cat(fv[i], "\n")
}
cat("Min is ", min(fv), "\n")

set.seed(seeds[order(fv)[1]])

ans <- GPFoblq(A = A, Random.Start (ncol(A)), method

ans

.25631282
.25631282
.2531282
.2531282
.25631282
.2531282
.2531282
.25631282
.2531282

15

method)

10 0.2531282
Min is 0.2531282

Oblique rotation method Oblimin Quartimin converged.

Loadings:

PA2 PA1 PA3 PA4 PA5
A1 -0.23118 0.00263 -0.3010 -0.1490 0.28505
A2 0.00190 0.05602 0.1320 0.0669 -0.63157
A3 0.05057 0.04370 0.0634 0.1341 -0.55458
A4 0.06683 0.15290 0.0681 -0.1529 -0.37906
A5 0.08526 0.01790 0.0217 0.0378 -0.67344
C1 -0.03216 0.61455 0.0847 0.1787 0.08828
C2 -0.14810 0.60356 0.1270 0.0166 -0.03596
C3 -0.14490 0.62916 -0.0339 -0.0438 -0.11523

C4 -0.19524 -0.65266 0.0503 -0.0426 -0.03137
C5 -0.18116 -0.55534 0.1065 0.1297 0.00693
El1 0.05232 0.07418 0.4503 -0.1906 0.30152
E2 -0.07256 -0.03851 0.5408 -0.0506 0.28734
E3 -0.04178 0.01667 -0.2752 0.3271 -0.36409
E4 -0.01162 -0.03905 -0.3211 -0.1029 -0.62857
E5 -0.11866 0.23422 -0.4536 0.2838 -0.08564
N1 -0.81432 -0.02586 -0.0935 0.0291 0.05646
N2 -0.80153 0.04625 -0.1113 -0.0396 0.05288
N3 -0.67679 -0.05949 0.1205 0.0363 -0.04137
N4 -0.45851 -0.15948 0.3824 0.1717 0.08696

N5 -0.52491 0.07051 0.3002 -0.1288 -0.14014
01 0.01753 0.07143 -0.0639 0.5502 0.00328
02 0.11779 0.12386 0.4050 -0.0620 -0.13267
03 -0.00418 0.04964 -0.1242 0.5919 -0.09322
04 -0.07144 0.02072 0.3444 0.4881 -0.07749
05 -0.13332 -0.03258 0.0448 -0.4383 -0.11734

Rotating matrix:

[,1] [,2] [,3] [.4] (,5]
[1,] -0.9986 0.0332 0.147361 -0.0416 -0.1492
[2,] -0.0232 -0.0645 0.180675 -0.1128 -1.0756
[3,] -0.1166 1.0404 -0.000107 -0.1170 0.0987
[4,] 0.2256 0.0418 1.018511 -0.0383 -0.0818
[6,] -0.1636 0.0622 -0.059143 -1.0601 -0.1904

Phi:

[,1] [,2] [,31 [,4] [,8]
[1,] 1.000 0.1448 -0.1262 -0.127 -0.157
[2,] 0.145 1.0000 -0.0974 0.191 -0.216
[3,] -0.126 -0.0974 1.0000 -0.067 0.281
[4,] -0.127 0.1910 -0.0670 1.000 -0.282
[6,] -0.157 -0.2165 0.2815 -0.282 1.000

Looking Under the Hood

One of the benefits of using R is that it is often possible to inspect the function code to learn
“where the numbers come from.” For instance, to see how R calculates maximum likelihood

factor analysis, we can type factanal at the prompt sign (“>").

> factanal

function (x, factors, data = NULL, covmat = NULL, n.obs = NA,
subset, na.action, start = NULL, scores = c("none", "regression",

"Bartlett"), rotation = "varimax", control = NULL, ...)

sortLoadings <- function(Lambda) {

cn <- colnames(Lambda)

17

}

Phi <- attr(Lambda, "covariance")
ssq <- apply(Lambda, 2L, function(x) -sum(x~2))
Lambda <- Lambdal, order(ssq), drop = FALSE]
colnames(Lambda) <- cn
neg <- colSums(Lambda) < 0
Lambda[, negl] <- -Lambdal[, neg]
if (!is.null(Phi)) {
unit <- ifelse(neg, -1, 1)
attr(Lambda, "covariance") <- unit %x*% Phil[order(ssq),

order (ssq)] %*% unit

Lambda

cl <- match.call()

na.act <- NULL

if

3

(is.list(covmat)) {

if (any(is.na(match(c("cov", "n.obs"), names(covmat)))))
stop("'covmat' is not a valid covariance list")

cv <- covmat$cov

n.obs <- covmat$n.obs

have.x <- FALSE

else if (is.matrix(covmat)) {

3

cv <- covmat

have.x <- FALSE

else if (is.null(covmat)) {

if (missing(x))
stop("neither 'x' nor 'covmat' supplied")

have.x <- TRUE

18

if (inherits(x, "formula")) {
mt <- terms(x, data = data)
if (attr(mt, "response") > 0)
stop("response not allowed in formula")
attr(mt, "intercept") <- 0
mf <- match.call(expand.dots = FALSE)
names (mf) [names (mf) == "x"] <- "formula"
mf$factors <- mf$covmat <- mf$scores <- mf$start <- mf$rotation <- mf$contro
mf [[1L]] <- as.name("model.frame")
mf <- eval.parent (mf)
na.act <- attr(mf, "na.action")
if (.check_vars_numeric(mf))
stop("factor analysis applies only to numerical variables")

z <- model.matrix(mt, mf)

+
else {
Z <- as.matrix(x)
if (!is.numeric(z))
stop("factor analysis applies only to numerical variables")
if (!missing(subset))
z <- z[subset, , drop = FALSE]
+

covmat <- cov.wt(z)
cv <- covmat$cov
n.obs <- covmat$n.obs
}
else stop("'covmat' is of unknown type")
scores <- match.arg(scores)
if (scores != "none" && 'have.x)

stop("requested scores without an 'x' matrix")

19

p <- ncol(cv)
if (p < 3)

stop("factor analysis requires at least three variables")
dof <- 0.5 * ((p - factors)"2 - p - factors)
if (dof < 0)

stop(gettextf ("%d factors is too many for ’%d variables",

factors, p), domain = NA)

sds <- sqrt(diag(cv))
cv <- cv/(sds %0% sds)
cn <- list(nstart = 1, trace = FALSE, lower = 0.005)
cn[names(control)] <- control
more <- list(...)[c("nstart", "trace", "lower", "opt", "rotate")]
if (length(more))

cn[names(more)] <- more
if (is.null(start)) {

start <- (1 - 0.5 * factors/p)/diag(solve(cv))

if ((ns <- cn$nstart) > 1)

start <- cbind(start, matrix(runif(ns - 1), p, ns -
1, byrow = TRUE))

}
start <- as.matrix(start)
if (nrow(start) != p)

stop(gettextf ("'start' must have J%d rows", p), domain = NA)
nc <- ncol(start)
if (nc < 1)

stop("no starting values supplied")
best <- Inf
for (i in 1L:nc) {

nfit <- factanal.fit.mle(cv, factors, start[, i], max(cn$lower,

0), cn$opt)

20

if (cn$trace)

cat("start", i, "value:", format(nfit$criterialill]),
"unigs:", format(as.vector(round(nfit$uniquenesses,
4))), "\n")

if (nfit$converged && nfit$criterial[lL] < best) {
fit <- nfit

best <- fit$criterialiLl]

}
if (best == Inf)
stop("unable to optimize from these starting value(s)")
load <- fit$loadings
if (rotation != "none") {
rot <- do.call(rotation, c(list(load), cn$rotate))
load <- if (is.list(rot))
rot$loadings
else rot
}
fit$loadings <- sortLoadings(load)
class(fit$loadings) <- "loadings"
fit$na.action <- na.act
if (have.x && scores != "none") {
Lambda <- fit$loadings
zz <- scale(z, TRUE, TRUE)
switch(scores, regression = {
sc <- zz %x*% solve(cv, Lambda)
if (!'is.null(Phi <- attr(Lambda, "covariance")))
sc <= sc %x% Phi
}, Bartlett = {

d <- 1/fit$uniquenesses

21

tmp <- t(Lambda * d)
sc <- t(solve(tmp %*% Lambda, tmp %*% t(zz)))
b
rownames (sc) <- rownames(z)
colnames(sc) <- colnames(Lambda)
if (!is.null(na.act))
sc <- napredict(na.act, sc)
fit$scores <- sc
}
if (!'is.na(n.obs) && dof > 0) {
fit$STATISTIC <- (n.obs - 1 - (2 x p + 5)/6 - (2 * factors)/3) *
fit$criteria["objective"]
fit$PVAL <- pchisq(fit$STATISTIC, dof, lower.tail = FALSE)
}
fit$n.obs <- n.obs
fit$call <- cl
fit
}

<environment: namespace:stats>

Notice, that factanal does not actually perform the heavy lifting: the actual mle loadings
are estimated in a function called factanal.fit.mle. Unfortunately, if we try the previous

method to look at the code of this function we will be disappointed.

>factanal.fit.mle

Error: object 'factanal.fit.mle' not found

Nada! Fortunately, there is a convenient way to access the code using the getAnywhere

function.

> getAnywhere(factanal.fit.mle)

22

A single object matching 'factanal.fit.mle' was found
It was found in the following places
namespace:stats

with value

function (cmat, factors, start = NULL, lower = 0.005, control = NULL,
)

FAout <- function(Psi, S, q) {
sc <- diag(1/sqrt(Psi))

Sstar <- sc %*% S %*% sc

E <- eigen(Sstar, symmetric = TRUE)

L <- E$vectors[, 1L:q, drop = FALSE]
load <- L %x*% diag(sqrt(pmax(E$values[iL:q] - 1, 0)),
q)
diag(sqrt(Psi)) %x*% load
}
FAfn <- function(Psi, S, q) {
sc <- diag(1/sqrt(Psi))
Sstar <- sc %*h S %*) sc
E <- eigen(Sstar, symmetric = TRUE, only.values = TRUE)
e <- E$values[-(1L:q)]
e <- sum(log(e) - e) - q + nrow(S)
-e
}
FAgr <- function(Psi, S, q) {
sc <- diag(1/sqrt(Psi))

Sstar <- sc %*% S %*% sc

E <- eigen(Sstar, symmetric = TRUE)

L <- E$vectors[, 1L:q, drop = FALSE]

23

load <- L %% diag(sqrt(pmax(E$values[iL:q] - 1, 0)),
q)
load <- diag(sqrt(Psi)) %x% load
g <- load %x% t(load) + diag(Psi) - S
diag(g)/Psi~2
}
p <- ncol(cmat)
if (is.null(start))
start <- (1 - 0.5 * factors/p)/diag(solve(cmat))
res <- optim(start, FAfn, FAgr, method = "L-BFGS-B", lower = lower,
upper = 1, control = c(list(fnscale = 1, parscale = rep(0.01,
length(start))), control), g = factors, S = cmat)
Lambda <- FAout(res$par, cmat, factors)
dimnames(Lambda) <- list(dimnames(cmat) [[1L]], paste("Factor",
1L:factors, sep = ""))
p <- ncol(cmat)
dof <- 0.5 * ((p - factors)"2 - p - factors)
un <- res$par
names (un) <- colnames(cmat)
class(Lambda) <- "loadings"
ans <- list(converged = res$convergence == 0, loadings = Lambda,
uniquenesses = un, correlation = cmat, criteria = c(objective = res$value,
counts = res$counts), factors = factors, dof = dof,
method = "mle")
class(ans) <- "factanal"
ans
}

<environment: namespace:stats>

24

