
Exploratory Factor Analysis in R

In these notes we will explore a number of functions related to factor analysis that are

available in the R base package as well as several very useful functions in the “psych” library

by William Revelle. To access these functions, load the “psych” library.

> library(psych)

The “psych” library contains many data sets. In the following examples we will use the

“bfi” data. According to the help page:

25 personality self report items taken from the International Personality Item Pool

(ipip.ori.org) were included as part of the Synthetic Aperture Personality

Assessment (SAPA) web based personality assessment project. The data from

1000 subjects are included here as a demonstration set for scale

construction and factor analysis.

Usage

data(bfi)

Format

A data frame with 1000 observations on the following 25 variables.

A1

Am indifferent to the feelings of others.

A2

Inquire about others' well-being.

A3

1

Know how to comfort others.

A4

Love children.

A5

Make people feel at ease.

C1

Am exacting in my work.

C2

Continue until everything is perfect.

C3

Do things according to a plan.

C4

Do things in a half-way manner.

C5

Waste my time.

E1

Don't talk a lot.

E2

Find it difficult to approach others.

E3

Know how to captivate people.

E4

Make friends easily.

E5

Take charge.

N1

Get angry easily.

N2

Get irritated easily.

N3

2

Have frequent mood swings.

N4

Often feel blue.

N5

Panic easily.

O1

Am full of ideas.

O2

Avoid imposing my will on others.

O3

Carry the conversation to a higher level.

O4

Spend time reflecting on things.

O5

Will not probe deeply into a subject.

Details

The 25 items are organized by five putative factors:

Agreeableness, Conscientiousness,

Extraversion, Neuroticism, and Opennness. The scoring

key is created using make.keys,

the scores are found using score.items

Source

The items are from the ipip (Goldberg, 1999). The data are from the SAPA project

(Revelle, Wilt and Rosenthal, 2009), collected Fall, 2006.

The bfi items were written to measure 5 higher-order personality dimensions. Let us

perform a parallel analysis on these data to see if a 5 dimensional solution is reasonable.

3

> data(bfi)

> describe(bfi)

var n mean sd median trimmed mad min max range skew kurtosis se

A1 1 1000 2.29 1.28 2 2.13 1.48 1 6 5 0.87 -0.11 0.04

A2 2 994 4.82 1.12 5 4.98 1.48 1 6 5 -1.08 1.03 0.04

A3 3 989 4.60 1.21 5 4.76 1.48 1 6 5 -1.00 0.60 0.04

A4 4 993 4.76 1.40 5 5.00 1.48 1 6 5 -1.08 0.29 0.04

A5 5 988 4.58 1.15 5 4.70 1.48 1 6 5 -0.76 0.24 0.04

C1 6 997 4.39 1.22 5 4.50 1.48 1 6 5 -0.72 0.00 0.04

C2 7 997 4.22 1.29 4 4.32 1.48 1 6 5 -0.64 -0.18 0.04

C3 8 995 4.28 1.26 5 4.38 1.48 1 6 5 -0.68 -0.13 0.04

C4 9 986 2.63 1.36 2 2.51 1.48 1 6 5 0.51 -0.76 0.04

C5 10 997 3.47 1.52 4 3.48 1.48 1 6 5 -0.09 -1.06 0.05

E1 11 996 2.93 1.58 3 2.84 1.48 1 6 5 0.36 -1.07 0.05

E2 12 994 3.32 1.58 3 3.29 1.48 1 6 5 0.05 -1.16 0.05

E3 13 994 3.98 1.29 4 4.02 1.48 1 6 5 -0.35 -0.55 0.04

E4 14 997 4.42 1.43 5 4.59 1.48 1 6 5 -0.86 -0.19 0.05

E5 15 991 4.38 1.24 5 4.50 1.48 1 6 5 -0.72 -0.03 0.04

N1 16 990 2.83 1.51 3 2.72 1.48 1 6 5 0.46 -0.88 0.05

N2 17 990 3.51 1.53 4 3.52 1.48 1 6 5 0.01 -1.07 0.05

N3 18 997 3.20 1.52 3 3.15 1.48 1 6 5 0.22 -1.06 0.05

N4 19 996 3.06 1.54 3 2.97 1.48 1 6 5 0.35 -0.96 0.05

N5 20 992 2.94 1.55 3 2.84 1.48 1 6 5 0.42 -0.95 0.05

O1 21 994 4.74 1.18 5 4.88 1.48 1 6 5 -0.82 0.13 0.04

O2 22 994 3.93 1.33 4 3.95 1.48 1 6 5 -0.15 -0.75 0.04

O3 23 991 4.32 1.22 5 4.42 1.48 1 6 5 -0.66 -0.05 0.04

O4 24 992 4.83 1.18 5 5.00 1.48 1 6 5 -1.01 0.58 0.04

O5 25 996 2.51 1.22 2 2.39 1.48 1 6 5 0.65 -0.22 0.04

> fa.parallel(bfi)

4

Parallel analysis suggests that the number of factors = 6 and the number of components = 6

5 10 15 20 25

0
1

2
3

4

Parallel Analysis Scree Plots

Factor Number

ei
ge

nv
al

ue
s

of
 p

rin
ci

pa
l c

om
po

ne
nt

s
an

d
fa

ct
or

 a
na

ly
si

s

 PC Actual Data
 PC Simulated Data
 PC Resampled Data
 FA Actual Data
 FA Simulated Data
 FA Resampled Data

Based on theory, we will extract and examine a 5 factor, orthogonal solution. Using the

base package function for maximum likelihood factor analysis:

> ml5.out <- factanal(covmat = cor(bfi, use = "complete.obs"),

+ factors = 5, rotation = "none")

> ml5.out

Call:

factanal(factors = 5, covmat = cor(bfi, use = "complete.obs"), rotation = "none")

Uniquenesses:

A1 A2 A3 A4 A5 C1 C2 C3 C4 C5 E1 E2 E3

5

0.848 0.630 0.642 0.829 0.442 0.566 0.635 0.572 0.504 0.603 0.541 0.457 0.541

E4 E5 N1 N2 N3 N4 N5 O1 O2 O3 O4 O5

0.420 0.549 0.272 0.321 0.526 0.514 0.675 0.625 0.804 0.544 0.630 0.814

Loadings:

Factor1 Factor2 Factor3 Factor4 Factor5

A1 0.248 -0.282

A2 -0.402 0.290 0.215 0.271

A3 -0.413 0.310 0.212 0.207

A4 -0.306 0.273

A5 -0.556 0.294 -0.139 0.198 0.322

C1 -0.193 0.201 0.596

C2 -0.136 0.195 0.537 0.128

C3 -0.274 0.262 0.484 -0.167 0.150

C4 0.432 -0.526 0.180

C5 0.391 -0.401 0.281

E1 0.404 -0.401 0.307 0.126 0.158

E2 0.565 -0.291 0.238 0.266 0.112

E3 -0.438 0.487 -0.119 0.102

E4 -0.552 0.321 -0.345 -0.118 0.197

E5 -0.371 0.482 -0.170 -0.218

N1 0.604 0.587 -0.132

N2 0.573 0.555 -0.199

N3 0.518 0.443

N4 0.588 0.220 0.294

N5 0.418 0.236 0.107 0.276

O1 -0.199 0.363 0.144 0.292 -0.312

O2 -0.147 0.210 0.229 0.278

O3 -0.279 0.441 0.280 -0.310

O4 0.285 0.212 0.477 -0.118

6

O5 0.130 -0.124 -0.120 -0.165 0.335

Factor1 Factor2 Factor3 Factor4 Factor5

SS loadings 4.00 2.635 1.784 1.116 0.961

Proportion Var 0.16 0.105 0.071 0.045 0.038

Cumulative Var 0.16 0.265 0.337 0.381 0.420

The degrees of freedom for the model is 185 and the fit was 0.8649

Notice that, by default, R fails to print loadings lower than an arbitrary threshold. To

see all loadings, we use the print.loadings function and set the cutoff argument to a very

small number.

> print(loadings(ml5.out), cutoff = 1e-05)

Loadings:

Factor1 Factor2 Factor3 Factor4 Factor5

A1 0.248 0.005 -0.044 -0.282 -0.094

A2 -0.402 0.290 -0.069 0.215 0.271

A3 -0.413 0.310 -0.058 0.212 0.207

A4 -0.306 0.046 0.027 -0.003 0.273

A5 -0.556 0.294 -0.139 0.198 0.322

C1 -0.193 0.201 0.596 -0.019 -0.004

C2 -0.136 0.195 0.537 -0.061 0.128

C3 -0.274 0.262 0.484 -0.167 0.150

C4 0.432 -0.021 -0.526 0.180 0.004

C5 0.391 0.056 -0.401 0.281 -0.037

E1 0.404 -0.401 0.307 0.126 0.158

E2 0.565 -0.291 0.238 0.266 0.112

E3 -0.438 0.487 -0.119 0.102 -0.078

E4 -0.552 0.321 -0.345 -0.118 0.197

E5 -0.371 0.482 0.062 -0.170 -0.218

7

N1 0.604 0.587 -0.027 -0.132 0.017

N2 0.573 0.555 0.016 -0.199 0.062

N3 0.518 0.443 -0.008 0.048 0.088

N4 0.588 0.220 0.061 0.294 0.040

N5 0.418 0.236 0.107 0.084 0.276

O1 -0.199 0.363 0.144 0.292 -0.312

O2 -0.012 -0.147 0.210 0.229 0.278

O3 -0.279 0.441 0.094 0.280 -0.310

O4 0.048 0.285 0.212 0.477 -0.118

O5 0.130 -0.124 -0.120 -0.165 0.335

Factor1 Factor2 Factor3 Factor4 Factor5

SS loadings 4.00 2.635 1.784 1.116 0.961

Proportion Var 0.16 0.105 0.071 0.045 0.038

Cumulative Var 0.16 0.265 0.337 0.381 0.420

Obviously, the unrotated solution is difficult to interpret. Later we will see how to use

Jennrich’s Gradient Projection Algorithm to perform various types of rotations on existing

loading matrices. At this point, we will call the GPA rotation algorithms using Revelle’s

very flexible factor routines. For example, to perform a principal axes factor analysis of the

bfi data with varimax rotation,

> pa.out <- factor.pa(r = bfi, nfactors = 5, residuals = FALSE,

+ rotate = "varimax", n.obs = NA, scores = FALSE, SMC = TRUE,

+ missing = FALSE, impute = "median", min.err = 0.001, digits = 2,

+ max.iter = 100, symmetric = TRUE, warnings = TRUE, fm = "pa")

> pa.out

Factor Analysis using method = pa

Call: factor.pa(r = bfi, nfactors = 5, residuals = FALSE, rotate = "varimax",

n.obs = NA, scores = FALSE, SMC = TRUE, missing = FALSE,

impute = "median", min.err = 0.001, digits = 2, max.iter = 100,

8

symmetric = TRUE, warnings = TRUE, fm = "pa")

item PA2 PA1 PA3 PA4 PA5 h2 u2

A1 1 -0.30 0.21 0.79

A2 2 0.62 0.42 0.58

A3 3 0.57 0.37 0.63

A4 4 0.36 0.18 0.82

A5 5 0.67 0.49 0.51

C1 6 0.60 0.42 0.58

C2 7 0.58 0.38 0.62

C3 8 0.62 0.42 0.58

C4 9 -0.65 0.51 0.49

C5 10 -0.55 0.39 0.61

E1 11 -0.36 0.51 0.43 0.57

E2 12 -0.36 0.57 0.51 0.49

E3 13 0.44 -0.37 -0.35 0.45 0.55

E4 14 0.62 -0.41 0.57 0.43

E5 15 -0.50 -0.30 0.45 0.55

N1 16 0.79 0.68 0.32

N2 17 0.76 0.63 0.37

N3 18 0.70 0.51 0.49

N4 19 0.58 0.31 0.53 0.47

N5 20 0.56 0.36 0.64

O1 21 -0.54 0.33 0.67

O2 22 0.39 0.18 0.82

O3 23 -0.59 0.44 0.56

O4 24 -0.49 0.37 0.63

O5 25 0.41 0.18 0.82

PA2 PA1 PA3 PA4 PA5

SS loadings 2.65 2.47 2.04 1.72 1.54

9

Proportion Var 0.11 0.10 0.08 0.07 0.06

Cumulative Var 0.11 0.20 0.29 0.36 0.42

Test of the hypothesis that 5 factors are sufficient.

The degrees of freedom for the null model are 300 and the objective function was 7.54 with Chi Square of 7459.06

The degrees of freedom for the model are 185 and the objective function was 0.88

The number of observations was 1000 with Chi Square = 867.04 with prob < 1e-88

Tucker Lewis Index of factoring reliability = 0.84

Fit based upon off diagonal values = 0.97

Measures of factor score adequacy

PA2 PA1 PA3 PA4 PA5

Correlation of scores with factors 0.92 0.87 0.87 0.85 0.82

Multiple R square of scores with factors 0.85 0.75 0.76 0.72 0.67

Minimum correlation of factor score estimates 0.69 0.51 0.52 0.44 0.33

And to see all loadings

> print(pa.out$loadings, cutoff = 1e-05, digits = 2)

Loadings:

PA2 PA1 PA3 PA4 PA5

A1 0.15 -0.30 -0.02 -0.25 0.18

A2 0.00 0.62 0.10 0.01 -0.14

A3 -0.05 0.57 0.09 -0.04 -0.19

A4 -0.10 0.36 0.17 0.02 0.09

A5 -0.11 0.67 0.07 -0.09 -0.11

C1 0.02 0.01 0.60 0.07 -0.24

C2 0.11 0.08 0.58 0.09 -0.10

C3 0.06 0.17 0.62 -0.07 -0.04

C4 0.26 -0.09 -0.65 0.03 0.11

10

C5 0.28 -0.09 -0.55 0.08 -0.07

E1 0.04 -0.36 0.02 0.51 0.20

E2 0.21 -0.36 -0.09 0.57 0.07

E3 0.00 0.44 0.08 -0.37 -0.35

E4 -0.10 0.62 0.02 -0.41 0.05

E5 0.02 0.19 0.27 -0.50 -0.30

N1 0.79 -0.15 -0.05 -0.18 -0.03

N2 0.76 -0.14 0.02 -0.19 0.03

N3 0.70 -0.06 -0.08 0.02 -0.05

N4 0.58 -0.17 -0.19 0.31 -0.16

N5 0.56 0.03 0.04 0.21 0.09

O1 0.03 0.11 0.11 -0.12 -0.54

O2 -0.05 0.11 0.11 0.39 0.02

O3 0.04 0.21 0.10 -0.20 -0.59

O4 0.20 0.12 0.04 0.26 -0.49

O5 0.08 0.01 -0.06 0.05 0.41

PA2 PA1 PA3 PA4 PA5

SS loadings 2.65 2.47 2.04 1.72 1.54

Proportion Var 0.11 0.10 0.08 0.07 0.06

Cumulative Var 0.11 0.20 0.29 0.36 0.42

The problem of local minima: Varimax

> library(GPArotation)

> pa5.loadings <- print(loadings(pa.out), cutoff = 1e-08)

Loadings:

PA2 PA1 PA3 PA4 PA5

A1 0.154 -0.301 -0.021 -0.254 0.178

A2 -0.002 0.621 0.100 0.012 -0.141

A3 -0.052 0.569 0.092 -0.042 -0.194

11

A4 -0.105 0.364 0.167 0.023 0.090

A5 -0.112 0.674 0.073 -0.088 -0.108

C1 0.016 0.008 0.602 0.066 -0.239

C2 0.114 0.082 0.584 0.088 -0.096

C3 0.059 0.169 0.619 -0.074 -0.045

C4 0.263 -0.089 -0.649 0.033 0.110

C5 0.276 -0.089 -0.547 0.077 -0.066

E1 0.038 -0.358 0.016 0.512 0.196

E2 0.209 -0.360 -0.093 0.568 0.067

E3 -0.003 0.436 0.079 -0.367 -0.350

E4 -0.105 0.623 0.018 -0.408 0.048

E5 0.019 0.194 0.275 -0.500 -0.301

N1 0.789 -0.147 -0.050 -0.182 -0.031

N2 0.756 -0.143 0.018 -0.192 0.028

N3 0.702 -0.060 -0.081 0.025 -0.047

N4 0.581 -0.175 -0.186 0.313 -0.157

N5 0.555 0.025 0.038 0.215 0.085

O1 0.029 0.108 0.111 -0.117 -0.540

O2 -0.050 0.107 0.110 0.387 0.023

O3 0.038 0.210 0.103 -0.199 -0.586

O4 0.204 0.115 0.040 0.260 -0.494

O5 0.085 0.015 -0.060 0.053 0.413

PA2 PA1 PA3 PA4 PA5

SS loadings 2.655 2.468 2.036 1.723 1.539

Proportion Var 0.106 0.099 0.081 0.069 0.062

Cumulative Var 0.106 0.205 0.286 0.355 0.417

> Global.min <- function(A, method, B = 10) {

+ fv <- rep(0, B)

+ seeds <- sample(1e+07, B)

12

+ for (i in 1:B) {

+ cat(i, " ")

+ set.seed(seeds[i])

+ gpout <- GPForth(A = A, Random.Start(ncol(A)), method = method)

+ dtab <- dim(gpout$Table)

+ fv[i] <- gpout$Table[dtab[1], 2]

+ cat(fv[i], "\n")

+ }

+ cat("Min is ", min(fv), "\n")

+ set.seed(seeds[order(fv)[1]])

+ ans <- GPForth(A = A, Random.Start(ncol(A)), method = method,

+ normalize = TRUE)

+ ans

+ }

> Global.min(pa5.loadings, "varimax", 10)

1 -0.5974817

2 -0.5974817

3 -0.5974817

4 -0.5974817

5 -0.5974817

6 -0.5974817

7 -0.5974817

8 -0.5974817

9 -0.5974817

10 -0.5974817

Min is -0.5974817

Orthogonal rotation method varimax converged.

Loadings:

PA2 PA1 PA3 PA4 PA5

A1 -0.15478 0.0215 0.1794 0.248079 0.30470

13

A2 0.00225 -0.1003 -0.1405 -0.000941 -0.62085

A3 0.05229 -0.0922 -0.1932 0.052588 -0.56814

A4 0.10440 -0.1665 0.0904 -0.017147 -0.36485

A5 0.11148 -0.0725 -0.1071 0.099855 -0.67263

C1 -0.01544 -0.6024 -0.2391 -0.063999 -0.00957

C2 -0.11382 -0.5838 -0.0968 -0.086396 -0.08307

C3 -0.05955 -0.6190 -0.0440 0.077388 -0.16817

C4 -0.26289 0.6492 0.1092 -0.035957 0.08856

C5 -0.27530 0.5472 -0.0668 -0.078080 0.08797

E1 -0.03666 -0.0157 0.1932 -0.518326 0.34954

E2 -0.20824 0.0928 0.0640 -0.574842 0.35083

E3 0.00254 -0.0788 -0.3480 0.376327 -0.43025

E4 0.10402 -0.0178 0.0502 0.417613 -0.61658

E5 -0.01943 -0.2746 -0.2983 0.504608 -0.18566

N1 -0.78895 0.0501 -0.0300 0.178121 0.15040

N2 -0.75631 -0.0175 0.0286 0.188107 0.14608

N3 -0.70187 0.0815 -0.0478 -0.026366 0.05972

N4 -0.58075 0.1858 -0.1591 -0.315919 0.16975

N5 -0.55494 -0.0379 0.0836 -0.215772 -0.02859

O1 -0.02885 -0.1115 -0.5389 0.122080 -0.10584

O2 0.05017 -0.1104 0.0207 -0.385443 -0.11307

O3 -0.03863 -0.1026 -0.5850 0.205365 -0.20653

O4 -0.20328 -0.0398 -0.4959 -0.255111 -0.11935

O5 -0.08457 0.0601 0.4129 -0.055461 -0.01540

Rotating matrix:

[,1] [,2] [,3] [,4] [,5]

[1,] -0.999999 6.57e-05 -0.000386 -0.001562 0.000309

[2,] -0.000334 1.95e-04 0.000245 0.015965 -0.999872

[3,] -0.000066 -1.00e+00 0.000329 0.000117 -0.000193

14

[4,] 0.001559 -1.16e-04 -0.005755 -0.999855 -0.015967

[5,] -0.000377 3.29e-04 0.999983 -0.005759 0.000153

The problem of local minima: Oblique Rotation:

> Global.min <- function(A, method, B = 10) {

+ fv <- rep(0, B)

+ seeds <- sample(1e+07, B)

+ for (i in 1:B) {

+ cat(i, " ")

+ set.seed(seeds[i])

+ gpout <- GPFoblq(A = A, Random.Start(ncol(A)), method = method)

+ dtab <- dim(gpout$Table)

+ fv[i] <- gpout$Table[dtab[1], 2]

+ cat(fv[i], "\n")

+ }

+ cat("Min is ", min(fv), "\n")

+ set.seed(seeds[order(fv)[1]])

+ ans <- GPFoblq(A = A, Random.Start(ncol(A)), method = method)

+ ans

+ }

> Global.min(pa5.loadings, "oblimin", 10)

1 0.2531282

2 0.2531282

3 0.2531282

4 0.2531282

5 0.2531282

6 0.2531282

7 0.2531282

8 0.2531282

9 0.2531282

15

10 0.2531282

Min is 0.2531282

Oblique rotation method Oblimin Quartimin converged.

Loadings:

PA2 PA1 PA3 PA4 PA5

A1 -0.23118 0.00263 -0.3010 -0.1490 0.28505

A2 0.00190 0.05602 0.1320 0.0669 -0.63157

A3 0.05057 0.04370 0.0634 0.1341 -0.55458

A4 0.06683 0.15290 0.0681 -0.1529 -0.37906

A5 0.08526 0.01790 0.0217 0.0378 -0.67344

C1 -0.03216 0.61455 0.0847 0.1787 0.08828

C2 -0.14810 0.60356 0.1270 0.0166 -0.03596

C3 -0.14490 0.62916 -0.0339 -0.0438 -0.11523

C4 -0.19524 -0.65266 0.0503 -0.0426 -0.03137

C5 -0.18116 -0.55534 0.1065 0.1297 0.00693

E1 0.05232 0.07418 0.4503 -0.1906 0.30152

E2 -0.07256 -0.03851 0.5408 -0.0506 0.28734

E3 -0.04178 0.01667 -0.2752 0.3271 -0.36409

E4 -0.01162 -0.03905 -0.3211 -0.1029 -0.62857

E5 -0.11866 0.23422 -0.4536 0.2838 -0.08564

N1 -0.81432 -0.02586 -0.0935 0.0291 0.05646

N2 -0.80153 0.04625 -0.1113 -0.0396 0.05288

N3 -0.67679 -0.05949 0.1205 0.0363 -0.04137

N4 -0.45851 -0.15948 0.3824 0.1717 0.08696

N5 -0.52491 0.07051 0.3002 -0.1288 -0.14014

O1 0.01753 0.07143 -0.0639 0.5502 0.00328

O2 0.11779 0.12386 0.4050 -0.0620 -0.13267

O3 -0.00418 0.04964 -0.1242 0.5919 -0.09322

O4 -0.07144 0.02072 0.3444 0.4881 -0.07749

O5 -0.13332 -0.03258 0.0448 -0.4383 -0.11734

16

Rotating matrix:

[,1] [,2] [,3] [,4] [,5]

[1,] -0.9986 0.0332 0.147361 -0.0416 -0.1492

[2,] -0.0232 -0.0645 0.180675 -0.1128 -1.0756

[3,] -0.1166 1.0404 -0.000107 -0.1170 0.0987

[4,] 0.2256 0.0418 1.018511 -0.0383 -0.0818

[5,] -0.1636 0.0622 -0.059143 -1.0601 -0.1904

Phi:

[,1] [,2] [,3] [,4] [,5]

[1,] 1.000 0.1448 -0.1262 -0.127 -0.157

[2,] 0.145 1.0000 -0.0974 0.191 -0.216

[3,] -0.126 -0.0974 1.0000 -0.067 0.281

[4,] -0.127 0.1910 -0.0670 1.000 -0.282

[5,] -0.157 -0.2165 0.2815 -0.282 1.000

Looking Under the Hood

One of the benefits of using R is that it is often possible to inspect the function code to learn

“where the numbers come from.” For instance, to see how R calculates maximum likelihood

factor analysis, we can type factanal at the prompt sign (“>”).

> factanal

function (x, factors, data = NULL, covmat = NULL, n.obs = NA,

subset, na.action, start = NULL, scores = c("none", "regression",

"Bartlett"), rotation = "varimax", control = NULL, ...)

{

sortLoadings <- function(Lambda) {

cn <- colnames(Lambda)

17

Phi <- attr(Lambda, "covariance")

ssq <- apply(Lambda, 2L, function(x) -sum(x^2))

Lambda <- Lambda[, order(ssq), drop = FALSE]

colnames(Lambda) <- cn

neg <- colSums(Lambda) < 0

Lambda[, neg] <- -Lambda[, neg]

if (!is.null(Phi)) {

unit <- ifelse(neg, -1, 1)

attr(Lambda, "covariance") <- unit %*% Phi[order(ssq),

order(ssq)] %*% unit

}

Lambda

}

cl <- match.call()

na.act <- NULL

if (is.list(covmat)) {

if (any(is.na(match(c("cov", "n.obs"), names(covmat)))))

stop("'covmat' is not a valid covariance list")

cv <- covmat$cov

n.obs <- covmat$n.obs

have.x <- FALSE

}

else if (is.matrix(covmat)) {

cv <- covmat

have.x <- FALSE

}

else if (is.null(covmat)) {

if (missing(x))

stop("neither 'x' nor 'covmat' supplied")

have.x <- TRUE

18

if (inherits(x, "formula")) {

mt <- terms(x, data = data)

if (attr(mt, "response") > 0)

stop("response not allowed in formula")

attr(mt, "intercept") <- 0

mf <- match.call(expand.dots = FALSE)

names(mf)[names(mf) == "x"] <- "formula"

mf$factors <- mf$covmat <- mf$scores <- mf$start <- mf$rotation <- mf$control <- mf$... <- NULL

mf[[1L]] <- as.name("model.frame")

mf <- eval.parent(mf)

na.act <- attr(mf, "na.action")

if (.check_vars_numeric(mf))

stop("factor analysis applies only to numerical variables")

z <- model.matrix(mt, mf)

}

else {

z <- as.matrix(x)

if (!is.numeric(z))

stop("factor analysis applies only to numerical variables")

if (!missing(subset))

z <- z[subset, , drop = FALSE]

}

covmat <- cov.wt(z)

cv <- covmat$cov

n.obs <- covmat$n.obs

}

else stop("'covmat' is of unknown type")

scores <- match.arg(scores)

if (scores != "none" && !have.x)

stop("requested scores without an 'x' matrix")

19

p <- ncol(cv)

if (p < 3)

stop("factor analysis requires at least three variables")

dof <- 0.5 * ((p - factors)^2 - p - factors)

if (dof < 0)

stop(gettextf("%d factors is too many for %d variables",

factors, p), domain = NA)

sds <- sqrt(diag(cv))

cv <- cv/(sds %o% sds)

cn <- list(nstart = 1, trace = FALSE, lower = 0.005)

cn[names(control)] <- control

more <- list(...)[c("nstart", "trace", "lower", "opt", "rotate")]

if (length(more))

cn[names(more)] <- more

if (is.null(start)) {

start <- (1 - 0.5 * factors/p)/diag(solve(cv))

if ((ns <- cn$nstart) > 1)

start <- cbind(start, matrix(runif(ns - 1), p, ns -

1, byrow = TRUE))

}

start <- as.matrix(start)

if (nrow(start) != p)

stop(gettextf("'start' must have %d rows", p), domain = NA)

nc <- ncol(start)

if (nc < 1)

stop("no starting values supplied")

best <- Inf

for (i in 1L:nc) {

nfit <- factanal.fit.mle(cv, factors, start[, i], max(cn$lower,

0), cn$opt)

20

if (cn$trace)

cat("start", i, "value:", format(nfit$criteria[1L]),

"uniqs:", format(as.vector(round(nfit$uniquenesses,

4))), "\n")

if (nfit$converged && nfit$criteria[1L] < best) {

fit <- nfit

best <- fit$criteria[1L]

}

}

if (best == Inf)

stop("unable to optimize from these starting value(s)")

load <- fit$loadings

if (rotation != "none") {

rot <- do.call(rotation, c(list(load), cn$rotate))

load <- if (is.list(rot))

rot$loadings

else rot

}

fit$loadings <- sortLoadings(load)

class(fit$loadings) <- "loadings"

fit$na.action <- na.act

if (have.x && scores != "none") {

Lambda <- fit$loadings

zz <- scale(z, TRUE, TRUE)

switch(scores, regression = {

sc <- zz %*% solve(cv, Lambda)

if (!is.null(Phi <- attr(Lambda, "covariance")))

sc <- sc %*% Phi

}, Bartlett = {

d <- 1/fit$uniquenesses

21

tmp <- t(Lambda * d)

sc <- t(solve(tmp %*% Lambda, tmp %*% t(zz)))

})

rownames(sc) <- rownames(z)

colnames(sc) <- colnames(Lambda)

if (!is.null(na.act))

sc <- napredict(na.act, sc)

fit$scores <- sc

}

if (!is.na(n.obs) && dof > 0) {

fit$STATISTIC <- (n.obs - 1 - (2 * p + 5)/6 - (2 * factors)/3) *

fit$criteria["objective"]

fit$PVAL <- pchisq(fit$STATISTIC, dof, lower.tail = FALSE)

}

fit$n.obs <- n.obs

fit$call <- cl

fit

}

<environment: namespace:stats>

Notice, that factanal does not actually perform the heavy lifting: the actual mle loadings

are estimated in a function called factanal.fit.mle. Unfortunately, if we try the previous

method to look at the code of this function we will be disappointed.

>factanal.fit.mle

Error: object 'factanal.fit.mle' not found

Nada! Fortunately, there is a convenient way to access the code using the getAnywhere

function.

> getAnywhere(factanal.fit.mle)

22

A single object matching 'factanal.fit.mle' was found

It was found in the following places

namespace:stats

with value

function (cmat, factors, start = NULL, lower = 0.005, control = NULL,

...)

{

FAout <- function(Psi, S, q) {

sc <- diag(1/sqrt(Psi))

Sstar <- sc %*% S %*% sc

E <- eigen(Sstar, symmetric = TRUE)

L <- E$vectors[, 1L:q, drop = FALSE]

load <- L %*% diag(sqrt(pmax(E$values[1L:q] - 1, 0)),

q)

diag(sqrt(Psi)) %*% load

}

FAfn <- function(Psi, S, q) {

sc <- diag(1/sqrt(Psi))

Sstar <- sc %*% S %*% sc

E <- eigen(Sstar, symmetric = TRUE, only.values = TRUE)

e <- E$values[-(1L:q)]

e <- sum(log(e) - e) - q + nrow(S)

-e

}

FAgr <- function(Psi, S, q) {

sc <- diag(1/sqrt(Psi))

Sstar <- sc %*% S %*% sc

E <- eigen(Sstar, symmetric = TRUE)

L <- E$vectors[, 1L:q, drop = FALSE]

23

load <- L %*% diag(sqrt(pmax(E$values[1L:q] - 1, 0)),

q)

load <- diag(sqrt(Psi)) %*% load

g <- load %*% t(load) + diag(Psi) - S

diag(g)/Psi^2

}

p <- ncol(cmat)

if (is.null(start))

start <- (1 - 0.5 * factors/p)/diag(solve(cmat))

res <- optim(start, FAfn, FAgr, method = "L-BFGS-B", lower = lower,

upper = 1, control = c(list(fnscale = 1, parscale = rep(0.01,

length(start))), control), q = factors, S = cmat)

Lambda <- FAout(res$par, cmat, factors)

dimnames(Lambda) <- list(dimnames(cmat)[[1L]], paste("Factor",

1L:factors, sep = ""))

p <- ncol(cmat)

dof <- 0.5 * ((p - factors)^2 - p - factors)

un <- res$par

names(un) <- colnames(cmat)

class(Lambda) <- "loadings"

ans <- list(converged = res$convergence == 0, loadings = Lambda,

uniquenesses = un, correlation = cmat, criteria = c(objective = res$value,

counts = res$counts), factors = factors, dof = dof,

method = "mle")

class(ans) <- "factanal"

ans

}

<environment: namespace:stats>

24

