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One-Dimensional Random Variables

4.1 General Notion of a Random Variable

In describing the sample space of an experiment we did not specify that an
individual outcome needs to be a number. In fact, we have cited a number of
examples in which the result of the experiment was not a numerical quantity. For
instance, in classifying a manufactured item we might simply use the categories
“defective” and ‘“nondefective.” Again, in observing the temperature during a
24-hour period we might simply keep a record of the curve traced by the thermo-
graph. However, in many experimental situations we are going to be concerned
with measuring something and recording it as a number. Even in the above-cited
cases we can assign a number to each (nonnumerical) outcome of the experiment.
For example, we could assign the value one to nondefective items and the value
zero to defective ones. We could record the maximum temperature of the day,
or the minimum temperature, or the average of the maximum and minimum
temperatures.

The above illustrations are quite typical of a very general class of problems: In
many experimental situations we want to assign a real number x to every element
s of the sample space S. That is, x = X(s) is the value of a function X from the
sample space to the real numbers. With this in mind, we make the following
formal definition.

Definition. Let & be an experiment and .S a sample space associated with the
experiment. A function X assigning to every element s € S, a real number,
X (s), is called a random variable.

Notes: (a) The above terminology is a somewhat unfortunate one, but it is so universally
accepted that we shall not deviate from it. We have made it as clear as possible that X
is a function and yet we call it a (random) variable!

(b) It turns out that not every conceivable function may be considered as a random
variable. One requirement (although not the most general one) is that for every real
number x the event {X(s) = x} and for every interval I the event {X(s) € I} have well-
defined probabilities consistent with the basic axioms. In most of the applications this
difficulty does not arise and we shall make no further reference to it.
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(c) In some situations the outcome s of the sample space is already the numerical
characteristic which we want to record. We simply take X(s) = s, the identity function.

(d) In most of our subsequent discussions of random variables we need not indicate
the functional nature of X. We are usually interested in the possible values of X, rather
than where these values came from. For example, suppose that we toss two coins and
consider the sample space associated with this experiment. That is,

S = {HH, HT, TH,TT}.

Define the random variable X as follows: X is the number of heads obtained in the two
tosses. Hence X(HH) = 2, X(HT) = X(TH) = 1, and X(TT) = 0.

S=sample space of &  Ry=possible values
of X

= X(s)

FIGURE 4.1

(e) It is very important to understand a basic requirement of a (single-valued) function:
To every s € S there corresponds exactly one value X(s). This is shown schematically
in Fig. 4.1. Different values of s may lead to the same value of X. For example, in the
above illustration we found that X(HT) = X(TH) = 1.

The space Ry, the set of all possible values of X, is sometimes called the range
space. In a sense we may consider Rx as another sample space. The (original)
sample space S corresponds to the (possibly) nonnumerical outcome of the
experiment, while Rx is the sample space associated with the random variable X,
representing the numerical characteristic which may be of interest. If X(s) = s,
we have S = Ryx. .

Although we are aware of the pedagogical danger inherent in giving too many
explanations for the same thing, let us nevertheless point out that we may think
of a random variable X in two ways:

(a) We perform the experiment & which results in an outcome s € S. We then
evaluate the number X(s).

(b) We perform &, obtaining the outcome s, and (immediately) evaluate X(s).
The number X(s) is then thought of as the actual outcome of the experiment and
Rx becomes rhe sample space of the experiment.

The difference between interpretations (a) and (b) is hardly discernible. It is
relatively minor but worthy of attention. In (a) the experiment essentially ter-
minates with the observation of s. The evaluation of X(s) is considered as some-
thing that is done subsequently and which is not affected by the randomness of &.
In (b) the experiment is not considered to be terminated until the number X(s)
has actually been evaluated, thus resulting in the sample space Rx. Although the
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first interpretation, (a), is the one usually intended, the second point of view, (b),
can be very helpful, and the reader should keep it in mind. What we are saying,
and this will become increasingly evident in later sections, is that in studying
random variables we are more concerned about the values X assumes than about
its functional form. Hence in many cases we shall completely ignore the underlying
sample space on which X may be defined.

ExamPLE 4.1. Suppose that a light bulb is inserted into a socket. The experiment
is considered at an end when the bulb ceases to burn. What is a possible outcome,
say s? One way of describing s would be by simply recording the date and time
of day at which the bulb burns out, for instance May 19, 4:32 p.m. Hence the
sample space may be represented as S = {(d, )| d = date, ¢t = time of day}.
Presumably the random variable of interest is X, the length of burning time. Note
thatonces = (d, 1) is observed, the evaluation of X(s) does not involve any random-
ness. When s is specified, X(s) is completely determined.

The two points of view expressed above may be applied to this example as
follows. In (a) we consider the experiment to be terminated with the observation
s = (d, 1), the date and time of day. The computation of X(s) is then performed,
involving a simple arithmetic operation. In (b) we consider the experiment to be
completed only after X(s) is evaluated and the number X(s) = 107 hours, say,
is then considered to be the outcome of the experiment.

It might be pointed out that a similar analysis could be applied to some other
random variables of interest, for instance Y(s) is the temperature in the room
at the time the bulb burned out. '

ExampLE 4.2. Three coins are tossed on a table. As soon as the coins land on
the table, the “random” phase of the experiment is over. A single outcome s
might consist of a detailed description of how and where the coins landed.
Presumably we are only interested in certain numerical characteristics associated
with this experiment. For instance, we might evaluate

X(s) = number of heads showing,
Y(s)
Z(s) = minimum distance of coins from any edge of the table.

maximum distance between any two coins,

If the random variable X is of interest, we could, as discussed in the previous
example, incorporate the evaluation of X(s) into the description of our experi-
ment and hence simply state that the sample space associated with the experiment
is {0, 1, 2, 3}, corresponding to the values of X. Although we shall very often adopt
precisely this point of view, it is important to realize that the counting of the
number of heads is done after the random aspects of the experiment have ended.

Note: In referring to random variables.we shall, almost without exception, use capital
letters such as X, Y, Z, etc. However, when speaking of the value these random variables
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assume we shall in general use lower case letters such as x, y, z, etc. This is a very important
distinction to be made and the student might well pause to consider it. For example,
when we speak of choosing a person at random from some designated population and
measuring his height (in inches, say), we could refer to the possible outcomes as a random
variable X. We might then ask various questions about X, such as P(X > 60). However,
once we actually choose a person and measure his height we obtain a specific value of X,
say x. Thus it would be meaningless to ask for P(x > 60) since x either is or is not > 60.
This distinction between a random variable and its value is important, and we shall
make subsequent references to it.

As we were concerned about the events associated with the sample space S,
so we shall find the need to discuss events with respect to the random variable X,
that is, subsets of the range space Rx. Quite often certain events associated with
S are “related” (in a sense to be described) to events associated with Ry in the
following way.

Definition. Let € be an experiment and S its sample space. Let X be a random
variable defined on S and let Rx be its range space. Let B be an event with
respect to Rx; that is, B C Rx. Suppose that A is defined as

A = {s €S| X(s) € B}. @.1)

In words: A consists of all outcomes in S for which X(s) € B (Fig. 4.2). In
this case we say that 4 and B are equivalent events.

R

s 5'¢
A B
& N

FIGURE 4.2

Notes: (a) Saying the above more informally, 4 and B are equivalent events whenever
they occur together. That is, whenever 4 occurs, B occurs and conversely. For if 4
did occur, then an outcome s occurred for which X(s) € B and hence B occurred. Con-
versely, if B occurred, a value X(s) was observed for which s € 4 and hence 4 occurred.

(b) It is important to realize that in our definition of equivalent events, 4 and B are
associated with different sample spaces.

ExaMmpLE 4.3. Consider the tossing of two coins. Hence S = {HH, HT,TH,TT}.
Let X be the number of heads obtained. Hence Rx = {0,1,2}. Let B = {l}.
Since X(HT) = X(TH) = 1ifand onlyif X(s) = 1,wehavethat 4 = {HT, TH}
is equivalent to B.

We now make the following important definition.
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Definition. Let B be an event in the range space Rx. We then define P(B) as
follows: )
P(B) = P(A), where A = {s eS| X(s) € B}. 4.2

In words: We define P(B) equal to the probability of the event 4 C S, which
is equivalent to B, in the sense of Eq. (4.1).

Notes: (a) We are assuming that probabilities may be associated with events in S.
Hence the above definition makes it possible to assign probabilities to events associated
with Ry in terms of probabilities defined over S.

(b) It is actually possible to prove that P(B) must be as we defined it. However, this
would involve some theoretical difficulties which we want to avoid, and hence we proceed
as above.

(c) Since in the formulation of Eq. (4.2) the events 4 and B refer to different sample
spaces, we should really use a different notation when referring to probabilities defined
over S and for those defined over Ry, say something like P(4) and Px(B). However,
we shall not do this but continue to write simply P(A4) and P(B). The context in which
these expressions appear should make the interpretation clear.

(d) The probabilities associated with events in the (original) sample space S are, in a
sense, determined by ‘““forces beyond our control” or, as it is sometimes put, “by nature.”
The makeup of a radioactive source emitting particles, the disposition of a large number
of persons who might place a telephone call during a certain hour, and the thermal
agitation resulting in a current or the atmospheric conditions giving rise to a storm
front illustrate this point. When we introduce a random variable X and its associated
range space Ry we are inducing probabilities on the events associated with Ry, which
are strictly determined if the probabilities associated with events in S are specified.

ExaMpPLE 4.4. If the coins considered in Example 4.3 are “fair,” we have
P(HT) = P(TH) = 1. Hence P(HT,TH) = ¥ + ¥ = 4. (The above calcula-
tions are a direct consequence of our basic assumption concerning/the fairness of
the coins.) Since the event {X = 1} is equivalent to the event {HT, TH}, using
Eq. (4.1), we have that P(X = 1) = P(HT, TH) = %. [There was really no choice
about the value of P(X = 1) consistent with Eq. (4.2), once P(HT, TH) had been
determined. It is in this sense that probabilities associated with events of Ry are
induced.)

Nore: Now that we have established the existence of an induced probability function
over the range space of X (Egs. 4.1 and 4.2) we shall find it convenient to suppress the func-
tional nature of X. Hence we shall write (as we did in the above example), P(X = 1) = 3.
What is meant is that a certain event in the sample space S, namely {HT, TH} =
{s| X(s) = 1} occurs with probability 4. Hence we assign that same probability to
the event {X = 1} in the range space. We shall continue to write expressions like
P(X = 1), P(X < 5), etc. It is very important for the reader to realize what these ex-
pressions really represent.

Once the probabilities associated with various outcomes (or events) in the
range space Rx have been determined (more precisely, induced) we shall often



4.2 Discrete Random Variables 59

ignore the original sample space S which gave rise to these probabilities. Thus
in the above example, we shall simply be concerned with Rx = {0, 1,2} and the
associated probabilities (1, 4, ). The fact that these probabilities are determined
by a probability function defined over the original sample space S need not con-
cern us if we are simply interested in studying the values of the random variable X.

In discussing, in detail, many of the important concepts associated with random
variables, we shall find it convenient to distinguish between two important cases:
the discrete and the continuous random variables.

4.2 Discrete Random Variables

Definition. Let X be a random variable. If the number of possible values of
X (that is, Rx, the range space) is finite or countably infinite, we call X a
discrete random variable. That is, the possible values of X may be listed as
X1, X2, ..., Xn, ... In the finite case the list terminates and in the countably
infinite case the list continues indefinitely.

ExaMmpPLE 4.5. A radioactive source is emitting a-particles. The emission of these
particles is observed on a counting device during a specified period of time. The
following random variable is of interest:

X = number of particles observed.

What are the possible values of X? We shall assume that these values consist of
all nonnegative integers. Thatis, Ry = {0, 1,2,...,n,...}. Anobjection which
we confronted once before may again be raised at this point. It could be argued
that during a specified (finite) time interval it is impossible to observe more than,
say N particles, where N may be a very large positive integer. Hence the possible
values for X should really be: 0, 1, 2,..., N. However, it turns out to be mathe-
matically simpler to consider the idealized description given above. In fact, when-
ever we assume that the possible values of a random variable X are countably
infinite, we are actually considering an idealized representation of X.

In view of our previous discussions of the probabilistic description of events
with a finite or countably infinite number of members, the probabilistic description
of a discrete random variable will not cause any difficulty. We proceed as follows.

Definition. Let X be a discrete random variable. Hence Ry, the range space of

X, consists of at most a countably infinite number of values, x;, x5, ... With
« es QO .
each possible outcomme x; we associate a number p(x;) = P(X = Xx;), called

the probability of x;. The numbers p(x;), i = 1,2,... must satisfy the
following conditions: -

(@ p(x;) >0 foralli

& 3 s = L.

=1

4.3)
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The function p defined above is called the probability function (or point probabil-
ity function) of the random variable X. The collection of pairs (x;, p(x),

i=1,2,...,is sometimes called the probability distribution of X.

RX

FIGURE 4.3

Notes: (a) The particular choice of the numbers p(x;) is presumably determined from
the probability function associated with events in the sample space S on which X is defined.
That is, p(x;) = Pls| X(s) = x.]. (See Eqs. 4.1 and 4.2.) However, since we are interested
only in the values of X, that is Rx, and the probabilities associated with these values, we
are again suppressing the functional nature of X. (See Fig. 4.3.) Although in most cases
the numbers will in fact be determined from the probability distribution in some under-
lying sample space S, any set of numbers p(x;) satisfying Eq. (4.3) may serve as proper
probabilistic description of a discrete random variable.

(b) If X assumes only a finite number of values, say x1, ..., xy, then p(x;) = 0 for
i > N, and hence the infinite series in Eq. (4.3) becomes a finite sum.

(c) We may again note an analogy to mechanics by considering a total mass of one
unit distributed over the real line with the entire mass located at the points x1, xs, . . .
The numbers p(x;) represent the amount of mass located at x;.

(d) The geometric interpretation (Fig. 4.4) of a probability distribution is often useful.

p(x) Rx

X)) Xo X3 Xn

FIGURE 4.4 FIGURE 4.5

Let B be an event associated with the random variable X. That is, B C Rx
(Fig. 4.5). Specifically, suppose that B = {x;, x;,,...}. Hence

P(B) = P[s| X(s) € B] (since these events are equivalent)
= Pls| X(s) = xipj = 1,2,...0 = D plxy). (4.4)
=1

In words: The probability of an event B equals the sum of the probabilities of the
individual outcomes associated with B.
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Notes: (a) Suppose that the discrete random variable X may assume only a finite num-
ber of values, say xi, ..., xy. If each outcome is equally probable, then we obviously
have p(x1) = -+ = p(xy) = 1/N.

(b) If X assumes a countably infinite number of values, then it is impossible to have all
outcomes equally probable. For we cannot possibly satisfy the condition >_;—; p(x;) = 1
if we must have p(x;) = c for all i.

(c) In every finite interval there will be at most a finite number of the possible values
of X. If some such interval contains none of these possible values we assign prob-
ability zero to it. That is, if Rx = {x1,x2,...,x.; and if no x; € [a, b], then
Pla< x<b]=0.

ExaMPLE 4.6. Suppose that a radio tube is inserted into a socket and tested.
Assume that the probability that it tests positive equals £; hence the probability
that it tests negative is . Assume furthermore that we are testing a large supply
of such tubes. The testing continues until the first positive tube appears. Define
the random variable X as follows: X is the number of tests required to terminate
the experiment. The sample space associated with this experiment is

S={+,—+,——+,———+,.. .}

To determine the probability distribution of X we reason as follows. The possible
valuesof Xare 1,2,...,n,...(we are obviously dealing with the idealized sample
space). And X = n if and only if the first (n — 1) tubes are negative and the nth
tube is positive. If we suppose that the condition of one tube does not affect the
condition of another, we may write

pm)=PX=n=@"'@, n=12...

To check that these values of p(n) satisfy Eq. (4.3) we note that

o0

3 1 1
nzz:lp(n) Z(l+z+l—6+"')

Note: We are using here the result that the geometric series 1 + r + r2 + - -+ con-
verges to 1/(1 — r) whenever |[r| < 1. This is a result to which we shall refer repeatedly.
Suppose that we want to evaluate P(A), where A is defined as {The experiment ends after
an even number of repetitions}. Using Eq. (4.4), we have

o0

3 3
20 P2 = 1o+ gee +

P(4)

o 256
3 1
=E(l+1s+"')

3 1
161 — {

Oy
[V
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4.3 The Binomial Distribution

In later chapters we shall consider, in considerable detail, a number of important
discrete random variables. For the moment we shall simply study one of these
and then use it to illustrate a number of important concepts.

ExampLE 4.7. Suppose that items coming off a production line are classified
as defective (D) or nondefective (N). Suppose that three items are chosen at
random from a day’s production and are classified according to this scheme.
The sample space for this experiment, say S, may be described as follows:

S = {DDD, DDN, DND, NDD, NND, NDN, DNN, NNN} .

(Another way of describing Sis as S = S; X S, X Sz, the Cartesian product of
S1, S2, and S3, where each S; = {D, N}.)

Let us suppose that with probability 0.2 an item is defective and hence with
probability 0.8 an item is nondefective. Let us assume that these probabilities are
the same for each item at least throughout the duration of our study. Finally let
us suppose that the classification of any particular item is independent of the
classification of any other item. Using these assumptions, it follows that the
probabilities associated with the various outcomes of the sample space S as
described above are

(0.2)3, (0.8)(0.2)2, (0.8)(0.2)?, (0.8)(0.2)2,(0.2)(0.8)?, (0.2)(0.8)?, (0.2)(0.8)?, (0.8)>.

Our interest usually is not focused on the individual outcomes of S. Rather, we
simply wish to know how many defectives were found (irrespective of the order
in which they occurred). That is, we wish to consider the random variable X
which assigns to each outcome s € S the number of defectives found in s. Hence
the set of possible values of X is {0, 1, 2, 3}.

We can obtain the probability distribution for X, p(x;) = P(X = x;)as follows:

X=0 if and only if NNN occurs;
X=1 if and only if DNN, NDN, or NND occurs;
X =2 if and only if DDN, DND, or NDD occurs;
X=3 if and only if DDD occurs.

(Note that {NNN} is equivalent to {X = 0}, etc.) Hence

p(0) = P(X = 0) = (0.8)%, p(l) = P(X = 1) = 3(0.2)(0.8)%,
p(2) = P(X = 2) = 3(0.2)%0.8), pQ3) = P(X = 3) = (0.2)%.

Observe that the sum of these probabilities equals 1, for the sum may be written
as (0.8 + 0.2)3.
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Note: The above discussion illustrates how the probabilities in the range space Rx (in
this case {0, 1, 2, 3}) are induced by the probabilities defined over the sample space S.
For the assumption that the eight outcomes of

= {DDD, DDN, DND, NDD,NND,NDN, DNN, NNN}

have the probabilities given in Example 4.7, determined the value of p(x) for all x € Ry.

Let us now generalize the notions introduced in the above example.

Definition. Consider an experiment & and let A be some event associated with
&. Suppose that P(4) = p and hence P(A) = 1 — p. Consider n independent
repetitions of §&. Hence the sample space consists of all possible sequences
{ay, as, ..., a,}, where each q; is either 4 or 4, depending on whether 4
or 4 occurred on the ith repetition of & (There are 2™ such sequences.)
Furthermore, assume that P(4) = p remains the same for all repetitions.
Let the random variable X be defined as follows: X = number of times the
event A occurred. We call X a binomial random variable with parameters n
and p. Its possible values are obviously 0, 1, 2, ..., n. (Equivalently we say
that X has a binomial distribution.) The individual repetitions of & will be
called Bernoulli trials.

Theorem 4.1. Let X be a binomial variable based on n repetitions. Then
P(X = k) = <’,:> a4 —py %  k=01,...,n (4.5)

Proof: Consider a particular element of the sample space of & satisfying the
condition that X = k. One such outcome would arise, for instance, if the first
k repetitions of & resulted in the occurrence of A4, while the last n — k repetitions
resulted in the occurrence of A4, that is

AAA---AFA4--- A
k n—k

Since all repetitions are independent, the probability of this particular sequence
would be p*(1 — p)*~*. But exactly the same probability would be associated
with any other outcome for which X = k. The total number of such outcomes
equals (%), for we must choose exactly k positions (out of n) for the A’s. But this
yields the above result, since these (7) outcomes are all mutually exclusive.

Notes: (a) To verify our calculation we note that, using the binomial theorem, we
have ko P(X = k) = ko GP*A —p)** = p+ QA —p)* = 1" = 1, as it
should be. Since the probabilities (¢) p¥(1 — p)—* are obtained by expanding the
binomial expression [p + (1 — p)]*, we call this the binomial distribution.

(b) Whenever we perform independent repetitions of an experiment and are interested
only in a dichotomy—-defective or nondefective, hardness above or below a certain
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standard, noise level in a communication system above or below a preassigned threshold—
we are potentially dealing with a sample space on which we may define a binomial random
variable. So long as the conditions of experimentation stay sufficiently uniform so that
the probability of some attribute, say A, stays constant, we may use the above model.

(c) If n is small, the individual terms of the binomial distribution are relatively easy to
compute. However, if n is reasonably large, these computations become rather cumber-
some. Fortunately, the binomial probabilities have been tabulated. There are many
such tabulations. (See Appendix.)

ExaMPLE 4.8. Suppose that a radio tube inserted into a certain type of set has
a probability of 0.2 of functioning more than 500 hours. If we test 20 tubes, what
is the probability that exactly k of these function more than 500 hours, k =
0,1,2,...,20?

If X is the number of tubes functioning more than 500 hours, we shall assume
that X has a binomial distribution. Thus P(X = k) = (3°)(0.2)(0.8)2°~*.

The following values may be read from Table 4.1.

TABLE 4.1.
P(X =0) = 0.012 P(X = 4) = 0.218 P(X = 8) = 0.022
P(X = 1) = 0.058 P(X = 5) = 0.175 P(X = 9 = 0.007
P(X = 2) = 0.137 P(X = 6) = 0.109 P(X = 10) = 0.002
P(X = 3) = 0.205 P(X = 7) = 0.055 P(X = k) = 0t fork > 11
(The remaining probabilities are less than 0.001.)

If we plot this probability distribution, we obtain the graph shown in Fig. 4.6.
The pattern which we observe here is quite general: The binomial probabilities
increase monotonically until they reach a maximum value and then decrease
monotonically. (See Problem 4.8.)

P(x)
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FIGURE 4.6
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ExaMPLE 4.9. In operating a certain machine, there is a certain probability that
the machine operator makes an error. It may be realistically assumed that the
operator learns in the sense that the probability of his making an error decreases
as he uses the machine repeatedly. Suppose that the operator makes n attempts
and that the » trials are statistically independent. Suppose specifically that
P(an error is made on the ith repetition) = 1/(i 4+ 1),i = 1,2,..., n. Assume
that 4 attempts are contemplated (that is, n = 4) and we define the random
variable X as the number of machine operations made without error. Note that
X is not binomially distributed because the probability of “‘success’ is not constant.

To compute the probability that X = 3, for instance, we proceed as follows:
X = 3 if and only if there is exactly one unsuccessful attempt. This can happen
on the first, second, third, or fourth trial. Hence

PO =3 =433t + 3338 +3318+ 1882 - &

ExAMPLE 4.10. Consider a situation similar to the one described in Example 4.9.
This time we shall assume that there is a constant probability p, of making no
error on the machine during each of the first n, attempts and a constant probability
P2 < p;of making no error on each of the next n; repetitions. Let X be the num-
ber of successful operations of the machine during the n = n, + n, independent
attempts. Let us find a general expression for P(X = k). For the same reason
as given in the preceding example, X is not binomially distributed. To obtain
P(X = k) we proceed as follows.

Let Y, be the number of correct operations during the first n; attempts and let
Y, be the number of correct operations during the second n, attempts. Hence
Y, and Y, are independent random variables and X = Y, + Y,. Thus X = k&
if and only if ¥, = rand Y, = k — r, for any integer r satisfying 0 < r < n,
and 0 < k — r < n,.

The above restrictions on r are equivalent to0 < r < nyandk — ny, < r < k.
Combining these we may write

max (0, k — ny) < r < min (k, ny).
Hence we have
min(k,nq)

X~ k) = b <n,1) il — p)"™" (k ’E r) pET( = pyyre ¢,

r=max(0,k—n3)

With our usual convention that (§) = O whenever b > aor b < 0, we may write
the above probability as

PX =K =3 (",‘) Pl = p)" ™ (k "_2 ,) PET( — po) T (46)
r=0

For instance, if p; = 0.2, p, = 0.1, n;, = n, = 10, and k = 2, the above



66 One-Dimensional Random Variables 4.4

probability becomes

2
PX=2=% <1r°) (0.2)(0.8)"°~ (2 10 )(0.’1 =7(0.9)*+" = 0.27,
r=0

—r
after a straightforward calculation.

Note: Suppose that p1 = ps. Inthis case, Eq. (4.6) should reduce to () p¥(1 — p)*—*,
since now the random variable X does have a binomial distribution. To see that this is
so, note that we may write (since n; + nz2 = n)

P(X = k) = pt(1 — pl)”"‘Z] (",‘) (k " ,)'
r=0

To show that the above sum equals (%) simply compare coefficients for the powers of x*
on both sides of the identity (1 + x)"1(1 + x)"2 = (1 + x)"1tne,

4.4. Continuous Random Variables

Suppose that the range space of X is made up of a very large finite number
of values, say all values x in the interval 0 < x < 1 of the form 0, 0.01,
0.02,...,0.98, 0.99, 1.00. With each of these values is associated a nonnegative
number p(x;) = P(X = x;),i =1, 2,..., whose sum equals 1. This situation
is represented geometrically in Fig. 4.7.

We have pointed out before that it might be mathematically easier to idealize
the above probabilistic description of X by supposing that X can assume all
possible values, 0 < x < 1. If we do this,
what happens to the point probabilities p(x;)? £(x)

Since the possible values of X are noncount-
able, we cannot really speak of the ith value

of X, and hence p(x;) becomes meaningless. I | I I I I | i
What we shall do is to replace the function p, 5 I

defined only for x;, x5,..., by a function f
defined (in the present context) for all values
of x, 0 < x < 1. The properties of Eq. (4.3) will be replaced by f(x) > 0 and
Jof(x)dx = 1. Let us proceed formally as follows.

||II|I|I! )

FiGURE 4.7

Definition. X is said to be a continuous random variable if there exists a function
/. called the probability density function (pdf) of X, satisfying the following
conditions:

@) f(x) >0 forall x,
~-c0

(b) f(x)dx = 1. 4.7)

—00
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(©) Foranya, b, with —w < a < b + oo,

we have P(a < X < b) = Jy f(x)dx. (4.8)

Notes: (a) We are essentially saying that X is a continuous random variable if X may
assume all values in some interval (¢, d) where ¢ and d may be —« and + «, respectively.
The stipulated existence of a pdf is a mathematical device which has considerable intuitive
appeal and makes our computations simpler. In this connection it should again be
pointed out that when we suppose that X is a continuous random variable, we are dealing
with the idealized description of X.

(b) P(c < X < d) represents the area under the graph in Fig. 4.8 of the pdf f between
x =cand x = d.

Sx)

X=c x=d

FIGURE 4.8

(c) It is a consequence of the above probabilistic description of X that for any specified
value of X, say xg, we have P(X = xg) = 0, since P(X = xg) = fjgf(x) dx = 0.
This result may seem quite contrary to our intuition. We must realize, however, that if
we allow X to assume all values in some interval, then probability zero is not equivalent
with impossibility. Hence in the continuous case, P(4) = 0 does not imply 4 = 0,
the empty set. (See Theorem 1.1.) Saying this more informally, consider choosing a
point at random on the line segment {x |0 < x < 2}. Although we might be willing to
agree (for mathematical purposes) that every conceivable point on the segment could be
the outcome of our experiment, we would be extremely surprised if in fact we chose
precisely the midpoint of the segment, or any other specified point, for that matter.
When we state this in precise mathematical language we say the event has “probability
zero.” In view of these remarks, the following probabilities are all the same if X is a
continuous random variable:

P(c < X < d), P(c < X < d), P(c < X < d), and P(c < X < d).

(d) Although we shall not verify the details here, it may be shown that the above
assignment of probabilities to events in Ry satisfies the basic axioms of probability
(Eq. 1.3), where we may take {x | — © < x < + o} as our sample space.

(e) Ifafunction f* satisfies the conditions, f*(x) > 0, for all x, and [12 f*(x)dx = K,
where K is a positive real number (not necessarily equal to 1), then f* does not satisfy all
the conditions for being a pdf. However, we may easily define a new function, say f; in
terms of f* as follows:

foy =L IEX) for all x.

Hence f satisfies all the conditions for a pdf.
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(f) If X assumes values only in some finite interval [a, b], we may simply set f(x) = 0
for all x¢£ [a, b]). Hence the pdf is defined for all real values of x, and we may require
that [+2 f(x) dx = 1. Whenever the pdf is specified only for certain values of x, we shall
suppose that it is zero elsewhere.

(g) f(x) does not represent the probability of anything! We have noted before that
P(X = 2) = 0, for example, and hence f (2) certainly does not represent this probability.
Only when the function is integrated between two limits does it yield a probability. We
can, however, give an interpretation of f(x) Ax as follows. From the mean-value theorem
of the calculus it follows that

z4+Az
P(x < XSX+AX)=/ fls)ds = Axf(§), x< &< x+4Ax

z

If Ax is small, f(x) Ax equals approximately P(x < X < x + Ax). (If fis continuous
from the right, this approximation becomes more accurate as Ax — 0.)

(h) We should again point out that the probability distribution (in this case the pdf)
is induced on Ry by the underlying probability associated with events in S. Thus, when
we write P(c < X < d), we mean, as always, Plc < X(s) < d], which in turn equals
Pls|c < X(s) < d], since these events are equivalent. The above definition, Eq. (4.8),
essentially stipulates the existence of a pdf f defined over Ry such that

d
Pls|c < X(s) < d] = / f(x) dx.

We shall again suppress the functional nature of X and hence we shall be concerned only
with Rx and the pdf f.

(i) In the continuous case we can again consider the following analogy to mechanics:
Suppose that we have a total mass of one unit, continuously distributed over the interval
a < x < b. Then f(x) represents the mass density at the point x and [ f(x) dx repre-
sents the total mass contained in the interval ¢ < x < d.

ExAMPLE 4.11. The existence of a pdf was assumed in the above discussion
of a continuous random variable. Let us consider a simple example in which we
can easily determine the pdf by making an appropriate assumption about the
probabilistic behavior of the random variable. Suppose thata point is chosen in the
interval (0, 1). Let X represent the random variable whose value is the x-coordinate
of the chosen point.

Assume: If I is any interval in (0, 1), then Prob[X € ] is directly proportional
to the length of 1, say L(J). That is, Prob[X € I] = kL(I), where k is the constant
of proportionality. (It is easy to see, by taking 7 = (0, 1) and observing that
L((0,1)) = 1 and Prob [X € (0, 1)] = 1, thatk = 1.)

Obviously X assumes all values in (0, 1). What is its pdf? That is, can we find a
function f such that

Pa < X < b) = J?f(x)dx?
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Note thatifa < b < OQorl < a < b,P(a < X < b) = 0and hence f(x) = 0.
If0<a<b<l,Pl@a< X< b)=>b— aand hence f(x) = 1. Thus we find,

1, 0<x<1,
f&x) = 0, elsewhere.
J(x) Sx)
(1, 2
: —x
¥ x=1500 x=2500
FIGURE 4.9 FiGURE 4.10

ExAaMmPLE 4.12. Suppose that the random variable X is continuous. (See Fig.
4.9.) Let the pdf f be given by

f(x)=2x, 0<x<l,
=0, elsewhere.

Clearly, f(x) > 0 and f1*f(x)dx = fi2xdx = 1. To compute P(X < %),

we must simply evaluate the integral f3/2(2x) dx = %.

The concept of conditional probability discussed in Chapter 3 can be meaning-
fully applied to random variables. For instance, in the above example we may
evaluate P(X < 1|3 < X < %). Directly applying the definition of conditional
probability, we have

PA< X<}
111 2)y = 8 =4 >3)
132xdx _ 5/36 _ 5

%hh_lﬁ_n

ExaMPLE 4.13. Let X be the life length of a certain type of light bulb (in hours).
Assuming X to be a continuous random variable, we suppose that the pdf f of X
is given by

f(x) = a/x3, 1500 < x < 2500,

= 0, elsewhere.

(That is, we are assigning probability zero to the events {X < 1500} and
{X > 2500}.) To evaluate the constant a, we invoke the condition [12f(x) dx =
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1 which in this case becomes [%0 a/x*dx = 1. From this we obtain a = 7,

031, 250. The graph of fis shown in Fig. 4.10.

In a later chapter we shall study, in considerable detail, a number of important
random variables, both discrete and continuous. We know from our use of deter-
ministic models that certain functions play a far more important role than others.
For example, the linear, quadratic, exponential, and trigonometric functions play
a vital role in describing deterministic models. We shall find in developing non-
deterministic (that is, probabilistic) models that certain random variables are of
particular importance.

4.5 Cumulative Distribution Function
We want to introduce another important, general concept in this chapter.
Definition. Let X be a random variable, discrete or continuous. We define F

to be the cumulative distribution function of the random variable X (abbre-
viated as cdf) where F(x) = P(X < x).

Theorem 4.2. (a) If X is a discrete random variable,

F(x) = 3 p(x), 4.9)

where the sum is taken over all indices j satisfying x; < x.

(b) If X is a continuous random variable with pdf f,

x

F(x) = ~ f(s) ds. (4.10)

Proof: Both of these results follow immediately from the definition.

F(x)

W= Nl -

1 2 3 FiGure 4.11

ExampLE 4.14. Suppose that the random variable X assumes the three values
0, 1, and 2 with probabilities §, &, and %, respectively. Then

Fx) =0 if x <0,
=} if 0<x<1,
=1 if 1 <x<2,
=1 if x> 2.
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(Note that it is very important to indicate the inclusion or exclusion of the
endpoints in describing the various intervals.) The graph of F is given in Fig. 4.11.

ExAMPLE 4.15. Suppose that X is a continuous random variable with pdf

fx)=2x, 0<x<1,
= 0, elsewhere.

Hence the cdf F is given by
F(x)

if x<0,

0
=/ 2sds = x?
0

if 0<x<1,

=1 if x> 1.
The graph is shown in Fig. 4.12.
F(x)
a1
x
FIGURE 4.12

The graphs obtained in Figs. 4.11 and 4.12 for the cdf’s are (in each case) quite
typical in the following sense.

(a) If X is a discrete random variable with a finite number of possible values,
the graph of the cdf F will be made up of horizontal line segments (it is called a
step function). The function F is continuous except at the possible values of X,
namely, xy, ..., x,. At the value x; the graph will have a “jump” of magnitude
p(x;) = P(X = x;).

(b) If X is a continuous random variable, F will be a continuous function for
all x.

(c) The cdf F is defined for all values of x, which is an important reason for
considering it.

There are two important properties of the cdf which we shall summarize in the
following theorem.

Theorem 4.3. (a) The function F is nondecreasing. That is, if x; < x5, we have
F(x;) < F(x3).
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(b) lim, ,_, F(x) = 0 and lim,_,

F(—o) = 0, F(w) = 1]

F(x) = 1. [We often write this as

0

Proof: (a) Define the events A and B as follows: 4 = {X < x;}, B =
{X < x,}. Then, since x; < x,, we have 4 C B and by Theorem 1.5, P(4) <
P(B), which is the required result.

(b) In the continuous case we have
T

F(—w) = lim f(s)ds = 0,
F(o) = lim f(s)ds = 1.

In the discrete case the argument is analogous.

The cumulative distribution function is important for a number of reasons.
This is true particularly when we deal with a continuous random variable, for in
that case we cannot study the probabilistic behavior of X by computing P(X = x).
That probability always equals zero in the continuous case. However, we can ask
about P(X < x) and, as the next theorem demonstrates, obtain the pdf of X.

Theorem 4.4. (a) Let F be the cdf of a continuous random variable with pdf f.
Then

f0) = 2 Feo),

for all x at which F is differentiable.

(b) Let X be a discrete random variable with possible values x;, xo,. ..,
and suppose that it is possible to label these values so that x; < x < -+ -
Let F be the cdf of X. Then

p(x;) = P(X = x5) = F(xj) — F(xj—1). 4.12)

Proof: (a) F(x) = P(X < x) = fiw f(s)ds. Thus applying the fundamental
theorem of the calculus we obtain, F’(x) = f(x).
(b) Since we assumed x; < x; < ..., we have
Fxj)=P(X=x;UX=x;_1U - UX=Xx))
P +pG— 1D+ -+ pQl)

And
F(Xj_l) = P(X = X1 UX =Xxj_sU" """ U X = x))

pG—D+pG—2)+ -+ p().
Hence F(x;) — F(x;—1) = P(X = x;) = p(x;).
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Note: Let us briefly reconsider (a) of the above theorem. Recall the definition of the
derivative of the function F:

m F(x + h) — F(x)

F’ =1l
*) hl—»O h
o PESx ) = PX < )
-0t h

lim LP(r < X < x + A).
h-—)0+h

Thus if 4 is small and positive,

Px < X< x+h)
h

F(x) = f(x) =

That is, f (x) is approximately equal to the ‘“‘amount of probability in the interval (x, x + 4]
per length A.”” Hence the name probability density function.

ExAMPLE 4.16. Suppose that a continuous random variable has cdf F given by

F(x) = 0, x <0,
=1 —e7 x > 0.

Then F'(x) = e *for x > 0, and thus the pdf fis given by

fx)=¢e7 x20,
= 0, elsewhere.

Note: A final word on terminology may be in order. This terminology, although not
quite uniform, has become rather standardized. When we speak of the probability
distribution of a random variable X we mean its pdf fif X is continuous, or its point
probability function p defined for xi, x2,...if X is discrete. When we speak of the
cumulative distribution function, or sometimes just the distribution function, we always
mean F, where F(x) = P(X < x).

4.6 Mixed Distributions

We have restricted our discussion entirely to random variables which are either
discrete or continuous. Such random variables are certainly the most important
in applications. However, there are situations in which we may encounter the
mixed type: the random variable X may assume certain distinct values, say
X1, . .., Xn, With positive probability and also assume all values in some interval,
say a < x < b. The probability distribution of such a random variable would
be obtained by combining the ideas considered above for the description of discrete
and continuous random variables as follows. To each value x; assign a number
p(x;) such that p(x;) > 0, all j, and such that 3" p(x;) = p < 1. Then define
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a function f satisfying f(x) > 0, f,f Jf(x)dx = 1 — p. For all a, b, with — 0 <
a<b< + o,

b
Pla< X< b)= / Sf(x)dx + > p(x:).

{1:a<z;<b}
In this way we satisfy the condition
PS)=P(—w < X< ) =1

A random variable of mixed type might arise as follows. Suppose that we are
testing some equipment and we let X be the time of functioning. In most problems
we would describe X as a continuous random variable with possible values x > 0.
However, situations may arise in which there is a positive probability that the item
does not function at all, that is, it fails at time X = 0. In such a case we would
want to modify our model and assign a positive probability, say p, to the outcome
X = 0. Hence we would have P(X = 0) = p and P(X > 0) = 1 — p. Thus
the number p would describe the distribution of X at 0, while the pdf f would
describe the distribution for values of X > 0 (Fig. 4.13).

w Jx)
[0 f(x)dx=1—p
P(X=0)=p fx)
pts xi—a x:=b -
FIGURE 4.13 FIGURE 4.14

4.7 Uniformly Distributed Random Variables

In Chapters 8 and 9 we shall study in considerable detail a number of important
discrete and continuous random variables. We have already introduced the
important binomial random variable. Let us now consider briefly an important
continuous random variable.

Definition. Suppose that X is a continuous random variable assuming all
values in the interval [a, b], where both a and b are finite. If the pdf of X is
given by

1
f(x)_b__a’ asxsb,

4.13)
= 0, elsewhere,

we say that X is uniformly distributed over the interval [a, b]. (See Fig. 4.14.)
Notes: (a) A uniformly distributed random variable has a pdf which is constant over

the interval of definition. In order to satisfy the condition [ f: f(x)dx = 1, this constant
must be equal to the reciprocal of the length of the interval.
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(b) A uniformly distributed random variable represents the continuous analog to
equally likely outcomes in the following sense. For any subinterval [c, d], where
a<c<d<b,P(c < X < d)is the same for all subintervals having the same length.
That is,

d——c
b —a

d
P(c < XSd)=/ f(x)dx =

and thus depends only on the length of the interval and not on the location of that
interval.

(c) We can now make precise the intuitive notion of choosing a point P at random
on an interval, say [a, ). By this we shall simply mean that the x-coordinate of the chosen
point, say X, is uniformly distributed over [a, b).

ExAMPLE 4.17. A point is chosen at random on the line segment [0, 2]. What
is the probability that the chosen point lies between 1 and $?
Letting X represent the coordinate of the chosen point, we have that the pdf of
X is given by f(x) = 4,0 < x < 2, and hence P(1 < X < §) = %.
F(x)

/ 1 x

FIGURE 4.15

ExAMPLE 4.18. The hardness, say H, of a specimen of steel (measured on the
Rockwell scale) may be assumed to be a continuous random variable uniformly
distributed over [50, 70] on the B scale. Hence

{

S

25 50 < h <70,
0, elsewhere.

ExAMPLE 4.19. Let us obtain an expression for the cdf of a uniformly distributed
random variable.

F(x) = P(X < x) = / * f(s) ds

=0 if x <a,
=28 i g<x<b,
b—a

=1 if x> b.

The graph is shown in Fig. 4.15.
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4.8 A Remark

We have pointed out repeatedly that at some stage in our development of a
probabilistic model, some probabilities must be assigned to outcomes on the
basis of either experimental evidence (such as relative frequencies, for example) or
some other considerations, such as past experience with the phenomena being
studied. The following question might occur to the student: Why could we not
obtain all probabilities we are interested in by some such nondeductive means?
The answer is that many events whose probabilities we wish to know are so in-
volved that our intuitive knowledge is insufficient. For instance, suppose that 1000
items are coming off a production line every day, some of which are defective.
We wish to know the probability of having 50 or fewer defective items on a given
day. Even if we are familiar with the general behavior of the production process,
it might be difficult for us to associate a quantitative measure with the event: 50
or fewer items are defective. However, we might be able to make the statement
that any individual item had probability 0.10 of being defective. (That is, past
experience gives us the information that about 10 percent of the items are defec-
tive.) Furthermore, we might be willing to assume that individual items are defec-
tive or nondefective independently of one another. Now we can proceed deduc-
tively and derive the probability of the event under consideration. That is, if
X = number of defectives,

PX<50) = S (lgcoo>(o.10)’°(o.90)l°°°—".
k=0

The point being made here is that the various methods for computing prob-
abilities which we have derived (and others which we shall study subsequently)
are of great importance since with them we can evaluate probabilities associated
with rather involved events which would be difficult to obtain by intuitive or em-
pirical means.

PROBLEMS

4.1. A coin is known to come up heads Three times as often as tails. This coin is tossed
three times. Let X be the number of heads that appear. Write out the probability distri-
bution of X and also the cdf. Make a sketch of both.

4.2. From a lot containing 25 items, 5 of which are defective, 4 are chosen at random.
Let X be the number of defectives found. Obtain the probability distribution of X if

(a) the items are chosen with replacement,

(b) the items are chosen without replacement.

4.3. Suppose that the random variable X has possible values 1,2,3,..., and
PX=j)=1/2ij=1,2,...
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(a) Compute P(X is even).
(b) Compute P(X > 5).
(c) Compute P(X is divisible by 3).

4.4. Consider a random variable X with possible outcomes: 0, 1, 2, ... Suppose that
PX=j)=(0 —a)’,j=0,1,2,...

(a) For what values of a is the above model meaningful ?

(b) Verify that the above does represent a legitimate probability distribution.

(c) Show that for any two positive integers s and ¢,

PX>s+t|X>s)=PX20.

4.5. Suppose that twice as many items are produced (per day) by machine 1 as by
machine 2. However, about 4 percent of the items from machine 1 tend to be defective
while machine 2 produces only about 2 percent defectives. Suppose that the daily output
of the two machines is combined. A random sample of 10 is taken from the combined
output. What is the probability that this sample contains 2 defectives?

4.6. Rockets are launched until the first successful launching has taken place. If
this does not occur within 5 attempts, the experiment is halted and the equipment in-
spected. Supposethatthereisa constant probability of 0.8 of havinga successful launching
and that successive attempts are independent. Assume that the cost of the first launching
is K dollars while subsequent launchings cost K/3 dollars. Whenever a successful
launching takes place, a certain amount of information is obtained which may be ex-
pressed as financial gain of, say C dollars. If T is the net cost of this experiment, find
the probability distribution of 7.

4.7. Evaluate P(X = 5), where X is the random variable defined in Example 4.10.
Suppose that ny = 10, n2 = 15, p; = 0.3 and p2 = 0.2.

4.8. (Properties of the binomial probabilities.) 1In the discussion of Example 4.8 a
general pattern for the binomial probabilities (£) p* (1 — p)»—* was suggested. Let us
denote these probabilities by p,(k).

(a) Show that for 0 < k < n we have

prk + 1)/pa(k) = [(n — k)/(k + 1] [p/(A — p)].
(b) Using (a) show that

@) patk + 1) > patk)  if Kk <np— (1 —p),
@ii) putk + 1) = putk) if k=np — (1 — p),
(i) puk + 1) < pak) if k> np— (1 = p).

(c) Show that if np — (1 — p) is an integer, p,(k) assumes its maximum value for
two values of k, namely kg = np — (1 — p)and kg = np — (1 — p) + 1.

(d) Show thatif np — (1 — p)is not an integer then p, (k) assumes its maximum value
when k is equal to the smallest integer greater than kg.

(e) Show that if np — (1 — p) < 0, p(0) > p.(1) > -+ > pa(n) while if np —
1 = p) = 0, pa(0) = pa(1) > pa(2) > -+ > pa(n).
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4.9. The continuous random variable X has pdf f(x) = x/2, 0 < x < 2. Two
independent determinations of X are made. What is the probability that both these
determinations will be greater than one? If three independent determinations had been
made, what is the probability that exactly two of these are larger than one?

4.10. Let X be the life length of an electron tube and suppose that X may be repre-
sented as a continuous random variable with pdf f(x) = be™®*, x > 0. Let p; =
PG < X <j+ 1). Show that p; is of the form (1 — a)a’ and determine a.

4.11. The continuous random variable X has pdf f(x) = 3x2, —1 < x < 0. If
b is a number satisfying —1 < b < 0, compute P(X > b | X < b/2).

4.12. Suppose that fand g are pdf’s on the same interval, say a < x < b.

(a) Show that f + g is not a pdf on that interval.
(b) Show that for every number 3,0 < 8 < 1, Bf(x) + (1 — B)g(x) is a pdf on that
interval.

- Sfx)
4.13. Suppose that the graph in Fig. 4.16

represents the pdf of a random variable X. (a, b)
(a) What is the relationship between a
and b?
(b) Ifa > O0and b > 0, what can you say
about the largest value which b may assume ? | - X
(See Fig. 4.16.) r=-a

FIGURE 4.16

4.14. The percentage of alcohol (100.X) in a certain compound may be considered
as a random variable, where X, 0 < X < 1, has the following pdf:

f) = 20x3(1 — x), 0<x< 1l

(a) Obtain an expression for the cdf F and sketch its graph.

(b) Evaluate P(X < 3).

(c) Suppose that the selling price of the above compound depends on the alcohol
content. Specifically, if 3 < X < %, the compound sells for C; dollars/gallon; other-
wise it sells for C2 dollars/gallon. If the cost is C3 dollars/gallon, find the probability
distribution of the net profit per gallon.

4.15. Let X be a continuous random variable with pdf f given by:

fx) =ax, 0 x<1,

= a, 1 < x< 2
= —ax + 3a, 2<x <3,
=0, elsewhere.

(a) Determine the constant a. (b) Determine F, the cdf, and sketch its graph.
(c) If X1, X2,and X3 are three independent observations from X, what is the prob-
ability that exactly one of these three numbers is larger than 1.5?

4.16. The diameter on an electric cable, say X, is assumed to be a continuous random
variable with pdf f(x) = 6x(1 — x),0 < x < 1.
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(a) Check that the above is a pdf and sketch it.

(b) Obtain an expression for the cdf of X and sketch it.

(c) Determine a number b such that P(X < b) = 2P(X > b).

(d) Compute P(X < 3|3 < X < 2.

4.17. Each of the following functions represents the cdf of a continuous random
variable. In each case F(x) = 0 for x < a and F(x) = 1 for x > b, where [a, b] is
the indicated interval. In each case, sketch the function F, determine the pdf fand sketch
it. Also verify that fisa pdf.. o

(@ F(x) = x/5,0<x<5 (b) F(x) = 2/7)sin"! (W/x),0 < x < 1

) F(x) = e3:, —0 < x <0 d F(x) = x3/2 4+ 1, -1 < x < 1.

4.18. Let X be the life length of an electronic device (measured in hours). Suppose
that X is a continuous random variable with pdf f(x) = k/x*, 2000 < x < 10,000.

(@) For n = 2, determine k.

(b) For n = 3, determine k.

(c) For general n, determine k.

(d) What is the probability that the device will fail before 5000 hours have elapsed ?

(e) Sketch the cdf F(r) for (c) and determine its algebraic form.

4.19. Let X be a binomially distributed random variable based on 10 repetitions of an
experiment. If p = 0.3, evaluate the following probabilities using the table of the binomial
distribution in the Appendix.

(@) P(X < 8) ®b)PX =T (c) P(X > 6).

4.20. Suppose that X is uniformly distributed over [—a, +a], where « > 0. When-
ever possible, determine a so that the following are satisfied.

@PX>1 =3 GYPX>1) =% ) P(X< 3 =07

dPX<dH =03 () P(lxl <1)=P(X|>1.

4.21. Suppose that X is uniformly distributed over [0, a], « > 0. Answer the ques-
tions of Problem 4.20.

4.22, A point is chosen at random on a line of length L. What is the probability
that the ratio of the shorter to the longer segment is less than }?

4.23. A factory produces 10 glass containers daily. It may be assumed that there is a
constant probability p = 0.1 of producing a defective container. Before these containers
are stored they are inspected and the defective ones are set aside. Suppose that there is a
constant probability r = 0.1 that a defective container is misclassified. Let X equal
the number of containers classified as defective at the end of a production day. (Suppose
that all containers which are manufactured ona particular day are also inspected on that
day.)

(a) Compute P(X = 3) and P(X > 3). (b) Obtain an expression for P(X = k).

4.24. Suppose that 5 percent of all items coming off a production line are defective.
If 10 such items are chosen and inspected, what is the probability that at most 2 defectives
are found?

4.25. Suppose that the life length (in hours) of a certain radio tube is a continuous
random variable X with pdf f(x) = 100/x2, x > 100, and O elsewhere.

(a) What is the probability that a tube will last less than 200 hours if it is known that
the tube is still functioning after 150 hours of service ?
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(b) What is the probability that if 3 such tubes are installed in a set, exactly one will
have to be replaced after 150 hours of service ?

(c) What is the maximum number of tubes that may be inserted into a set so that
there is a probability of 0.5 that after 150 hours of service all of them are still functioning?

4.26. An experiment consists of #» independent trials. It may be supposed that because
of “learning,” the probability of obtaining a successful outcome increases with the
number of trials performed. Specifically, suppose that P(success on the ith repetition) =
G+ 1D/G+2,i=1,2,...,n

(a) What is the probability of having at least 3 successful outcomes in 8 repetitions ?

(b) What is the probability that the first successful outcome occurs on the eighth
repetition ?

4.27. Referring to Example 4.10,

(a) evaluate P(X = 2)if n = 4,

(b) for arbitrary n, show that P(X = n — 1) = P (exactly one unsuccessful attempt)
is equal to [1/(n + 1)] 27, (1/0).

4.28. If the random variable K is uniformly distributed over (0, 5), what is the
probability that the roots of the equation 4x2 + 4xK + K + 2 = 0 are real?

4.29. Suppose that the random variable X has possible values 1,2, 3, ...and that
PX=r=k(1-8r"1,0<B<l.

(a) Determine the constant k.

(b) Find the mode of this distribution (i.e., that value of # which makes P(X = r)
largest).

4.30. A random variable X may assume four values with probabilities (1 + 3x)/4,
(1 - x)/4, (1 + 2x)/4, and (1 — 4x)/4. For what values of x is this a probability
distribution ?
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