[]1:

Python_Probability Distributions

June 10, 2021

1 Random numbers from Base Python

1.1

2.
3.

. Module random from the base Python — It generates A SINGLE pseudo-random number

. To generate an array of random numbers, the most efficient is to use the random module

from numpy.

. Note that the two modules have the same name: random from base and random from numpy

If you need the density, cumulative function or quantile (and random numbers) use the stats
module from the scipy package.

Besides these distributional functionals, it can also generate random numbers from a VERY
LARGE number of distributions: discrete, continuous and multivariate.

Outline of this notebook

. We start with random from base (mostly copied from

https://docs.python.org/3/library /random.html)
Move to explain random from numpy
End with stats from scipy

Module random from base Python

import random

Inttialize the random number generator.
random.seed(123) # random.seed() uses the current system time

2 Basic Algorithm

=

Python uses the Mersenne Twister as the core generator.

It produces 53-bit precision floats and has a period of 2 to the power 19937-1.

The underlying implementation in C is both fast and threadsafe.

The Mersenne Twister is one of the most extensively tested random number generators in
existence.

[23]:

3 Sampling integers

an integer from {0, 1,.., stop-1}
USAGE: random.randrange (stop)
print (random.randrange (7))

Generating an array with 20 random <ntegers from 0 to 11-1
A better way, a more efficient one, ts explained in the next section using the,
—random module from numpy

x = [random.randrange(11) for _ in range(30)]

print(type(x))

print(x)

Selecting from {start, start+l, ..., stop-1}

random.randrange (start, stop) (stop is optional)
x = [random.randrange(3, 11) for _ in range(30)]
print(x)

Another option to select a random integer in {a, a+l, ..., b} (includes b)
random.randint (a, b)

It is an alias for randrange(a, b+1).

print(random.randint (0, 10))

x = [random.randint(2, 5) for
print(x)

in range(10)]

Selecting from {start, start+step, start+2*step, ..., stop-1 } (in fact, the,
—last start+k*step <= stop-1)

random.randrange (start, stop, step) (stop ans step are optional)

x = [random.randrange(3, 11, 2) for _ in range(20)]

print(x)

1

<class 'list'>

(5, 4, 4, 9, 8, 1, 1, 0, 10, 5, 5, 7, 7, 6, 2, 2, 3, 2, 10, 10, 5, 3, 7, 2, 10,
8, 3, 6, 5, 6]

(6, 7, 8, 9, 9, 3, 6, 10, 6, 6, 5, 8, 10, 8, 3, 10, 8, 10, 3, 6, 3, 7, 5, 7, 5,
10, 5, 5, 6, 5]

2
[4, 5’ 5, 2) 5, 5’ 4’ 4, 3’ 2]
(5, 9, 7,3, 7,5,9,7,9,9,3,3,5,5,9,9, 5, 3,9, 3]

4 Sampling from sequences

[33]: # Create a sequence (a python list)
items = ['one', 'two', 'three', 'four', 'five']

Select ONE random element from this list with equal probability
print(random.choice(items))

Select k elements WITH REPLACEMENT (note the ending 's' in choices)
print(random.choices(items , k=2))

Select k elements WITH REPLACEMENT and with probabilities proportional to ay
—~1list of positive weights

w = [10, 5, 30, 5, 100]

x = random.choices(items, weights=w , k=10)

print (type(x))

print(x)

Select k elements WITHOUT replacement. (k <= len(items)) No weights here.
random.sample(items, k=2)

Permuting a list
y = random.sample(items, k=len(items))
print ("Permuted items saved in new list y: ", y)

Permuting in place (permuting and changing the original list)
random. shuffle (items)
items

two

['four', 'three'l

<class 'list'>

['five', 'five', 'five', 'three', 'three', 'one', 'five', 'five', 'five', 'two']
Permuted items saved in new list y: ['five', 'two', 'one', 'three', 'four']

[33]: ['four', 'three', 'five', 'one', 'two']

5 Selecting from continuous intervals

[43]: # Sampling from continuous intervals

Sampling ONE single wvalue in the interval [0,1)
Function random selects a float from the continuous interval [0, 1)
print (random.random())

[]:

Sampling some values from [0,1) (it is better to use the random module from,
—numpy. See below)
x = [random.random() for _ in range(10)]

Rounding these wvalues to exhibit
rounded_x = [round(elem, 3) for elem in x]
print(rounded_x)

We can sample from: wuntform, mormal, lognormal, negative ezxzponential, gamma,
—~beta, and von Mises.

Some examples:

random. triangular(low, high, mode)
print(random.triangular(0,1,0.1))

random.betavariate (alpha, beta)
print(random.betavariate(10, 20))

random. gauss (mu, sigma)
print (random.gauss(0,1))

random.normalvariate(mu, sigma) : slower than gauss, the above function
print(random.normalvariate(O0, 1))

0.8653162277486719
[0.274, 0.501, 0.262, 0.666, 0.801, 0.463, 0.123, 0.465, 0.138, 0.99]
0.4162972144974141
0.3704151557823648
1.6957786065730736
1.7481644881712621

6 Module random from numpy

This random module from NumPy is more flexible than the random module from the Base Python.
It can immediately generate multi-dimensional arrays,

import numpy as np
np.random. seed (444)
np.set_printoptions(precision=3) # Output decimal fmt.

[26] :

6.1 Sampling integers with numpy

Warnings:

wl: function random_integers is deprecated. —---> Use randint instead
W2: function randint is almost like random_integers (it only does noty
—1include the final extreme)

randint (low=a, high=b, size=n): Sampling n integers untformly WITH,
—REPLACEMENT from {a, a+l, a+2, ..., b-1}

(with a < b) Note that b is **not** included

This has the SAME syntax as the randint function from the Base Python random
—module

Sampling 25 values from {2, 3, 4, 5}
x = np.random.randint(2, 5+1, 25)
print(type(x)) # it is a numpy array
print(x)

randint (Low, high): Sampling ONE single integer in {low, low+l, ..., high-1}
X = np.random.randint(5, 11)

print(type(x)) # an integer atom

print(x)

randint (Low, size=10): Sampling 10 integers with replacement from {1, ...,
< low-1}
print(np.random.randint (5, size=10))

randint (low): Sampling ONE SINGLE integer from {1, ..., low-1}
If high is None (the default), then results are from {1,2,..., low-1}.
print(np.random.randint(5))

randint (low, high, size=(n, m)): sampling n*m values from {low, ..., high-1},
—1n array 2 T 4

X = np.random.randint(2, 5+1, size=(2, 4))

print(type(x)) # it is a numpy array

print(x)

<class 'numpy.ndarray'>
[635424422355433355525255 2]
<class 'int'>

10
[0043022240]
2
<class 'numpy.ndarray'>
[[34 2 2]

[4 5 3 5]]

7 Sampling from sequences with numpy

[32]: | # Sampling from sequences with numpy
Function choice
It 7is the **samex* syntaxz from the Base Python random module

numpy.random.choice(items, size=None, replace=True, p=None)
items = 1-D array-like (of integers, floats or strings)

items = ['one', 'two', 'three', 'four', 'five']

X = np.random.choice(items, 10, replace=True, p=[0.1, 0.2, 0.3, 0.2, 0.2])
print (type(x))

print(x)

Permuting a list with numpy

print(np.random.permutation([1, 4, 9, 12, 15]))

print(np.random.permutation(items))

print(np.random.permutation(10)) # random permutation of the integers {0, 1,..
<~.,9} (starts at zero, ends at 10-1)

B
The sample function from numpy is used to sample float. See below...

<class 'numpy.ndarray'>

['two' 'four' 'four' 'two' 'one' 'three' 'one' 'three' 'three' 'five']
[9156 12 1 4]

['three' 'four' 'five' 'two' 'one']

[1273698540]

8 Sampling from continuous intervals

[1:|# Sampling from U(0,1)
numpy.random.unt form(low=0.0, high=1.0, size=None)

x = np.random.uniform(low=0.0, high=1.0, size=(2,4))
print(type(x))
print(x)

b
Sampling from triangular distribution

numpy.random. triangular(left, mode, right, size=None)

X = np.random.triangular(left=0.0, mode=0.1, right=1.0, size=(2,10))

print (type(x))

print(x)

[42]:

import matplotlib.pyplot as plt

h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200, density=True)

plt.show()

e e e i

Sampling from the Student's t-distribution with df degrees of freedom
numpy.random. standard_t (df, size=None)

x = np.random.standard_t(df=3, size=10000)
print (type(x))
print(x)

import matplotlib.pyplot as plt
h = plt.hist(x, bins=200, density=True)
plt.show()

OUBS: mo docs oficial em

https://numpy.org/doc/stable/reference/random/qgenerated/numpy. random.
—standard_t.html

lemos esta afrimacao erronea

So the p-value is about 0.009, which says the null hypothesis has a
—probability of about 997 of being true.

<class 'numpy.ndarray'>
[0.736 1.496 2.152 .. 0.061 -0.637 0.103]

035 1

0.30 1

025 A

0.20 -

015 +

0.10 1

0.05 1

000

T f
=20 -10

[]1:

8.1

N

oGt

10

The

SR

More distributions in numpy

Gaussian: numpy.random.normal(loc=0.0, scale=1.0, size=None)

Pareto: numpy.random.pareto(a, size=None) (it has shape a. We sample X-mu where mu is
the shift; values start at zero)

F-noncentral: numpy.random.noncentral f(dfnum, dfden, nonc, size=None)

Chi-2 noncentral: numpy.random.noncentral__chisquare(df, nonc, size=None)
numpy.random.negative_ binomial(n, p, size=None)

Many others.. BUT SEE WHAT WE CAN DO WITH SCIPY..NEXT

Random numbers in SciPy

. The random module in the numpy library only generates random variables from a limited

number of distributions.

. The scipy library versions will also provide useful functions related to the distribution,

e.g. PDF, CDF and quantiles.

. Probability distribution classes are located in the stats module of the scipy library: scipy.stats

Main methods

main methods associated with probability distribution classes are:

rvs (random numbers),

pdf,

cdf,

sf (survival function),

ppf (quantile fcn or cdf inverse),

stats (Mean, variance, skew, or kurtosis)

It returns numpy arrays

import numpy as np

Example: Gaussian or normal random vartiables: rvus(loc=0, scale=1, size=1,,

—random_state=None)

import scipy.stats as stats

Evaluating the normal density at one single point

fx

= stats.norm.pdf (5.7, 3, 4)

print("density of N(3,4) at the point 5.7 is ", £fx)
print (type(fx), '\n')

Evaluating the normal density at several points

fx

= stats.norm.pdf([4.7, 5.7, 6.7]1, 3, 4)

print("density of N(3,4) at the point 4.7, 5.7, and 6.7 is ", fx)

[]:

print(type(fx), '\n')

Evaluating different normal densities, same sd, at several points

fx = stats.norm.pdf([4.7, 5.7, 6.7], [0, 3, 3], 4)

print("density of N(0,4), N(3,4), and N(3,4) at the points 4.7, 5.7, and 6.7 isy
=", fx)

print(type(fx), '\n')

Evaluating normal densities with different means and sds at several points

fx = stats.norm.pdf([4.7,5.7,6.7], [0, 3, 6.7], [1,4,11)

print("density of N(0,1), N(3,4), and N(6.7,1) at the points 4.7, 5.7, and 6.7,
~is ", fx)

print(type(fx), '\n')

Generating Gaussin random variables

x = stats.norm.rvs(0, 1, 5)

print("Sample of 5 values of N(0,1):", x)
print (type(x), '\n')

Note a small inconsistency: the rvs function reqires loc and scale as tts,
- first arguments but other functions require

them after their other arguments: stats.nmorm.rvs(0, 1, 1000) but stats.norm.
—pdf(5.7, 0, 1)

We can omit the mean and sd if they are the default values BUT then we need to,
—~declare the size parameter

X = stats.norm.rvs(size=b)

print("Sample of 5 values of N(0,1):", x)

print(type(x), '\n')

More statistics:

cdf of N(loc, scale)=N(0,1) of some points

Fx = stats.norm.cdf([-2, -1, 0, 1, 1.96])

print("cdf of N(0,1) at the points -1, -1, 0, 1, and 2 is ", np.round(Fx, 3))
print (type(Fx), '\n')

Statistics of a mormal distridbution: use the stats method

m, v, skew, kurt = stats.norm.stats(moments='mvsk') # 4t is using the standard,
—Gaussian

print('N(0,1) moments: Mean: ', m, ' , variance: ', v, ' , skewness: ', skew, '|
<, kurtosis: ', kurt, '\n')

m, v, skew, kurt = stats.norm.stats(loc=2, scale=4, moments='mvsk') # passing,
—other parameters

print('N(0,1) moments: Mean: ', m, ' , variance: ', v, ' , skewness: ', skew, '
—, kurtosis: ', kurt, '\n')

gx = stats.norm.ppf([0.025, 0.5, 0.95, 0.975], loc=0, scale=1)
print("percentiles of N(0,1) at the probabilities 0.025, 0.5, 0.95, and 0.975,
", np.round(gx, 3))

print(type(qx), '\n')

—are

Ploting the normal density on top of a mormal sample histogram

import matplotlib.pyplot as plt
fig, ax = plt.subplots(l, 1)

o
]

np.linspace(-8, -2, 100)
stats.norm.rvs(loc=-5, scale=1, size=1000)

H
1]

ax.plot(x, stats.norm.pdf(x, loc=-5, scale=1), 'r-', lw=5, alpha=0.6,
—label='norm pdf')

ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
ax.legend(loc='best', frameon=False)

plt.show()

10.1 Main univariate probability distributions and their parameterizations
SciPy has very large list of probability distribution functions. See complete list at:
https://docs.scipy.org/doc/scipy /reference /stats.html

SciPy uses an unusual location-scale parametrization family, even for distributions that do not use
loc-scale parametrization usually.

Distribution = Parameters 10 r.v’s using rvs Example: pdf ou pmf
U(a, b) a=loc,b- stats.uniform.rvs(a, b-a, stats.uniform.pdf(x, a, b-a)
a=scale size=100)
binom size, prob stats.binom.rvs(n, p, size=100) stats.binom.pmf(k, n, p)
poisson mu stats.poisson.rvs(mu=1.5, stats.poisson.pmf(2,
size=100) mu=2.5)
betabinom n,a,b stats.betabinom.rvs(n,a,b,size=7) stats.betabinom.rvs(k, n, a,
b)
nbinom n=sucesses, p stats.nbinom.rvs(n, p, size=100) stats.nbinom.pmf(k, n, p,
loc)
hypergeom M=tot,n=A ,N=stans.hypergeom.rvs(M, n, N, stats.hypergeom.pmf(k, M,
size=) n, N)
zipf a, loc stats.zipf.rvs(a, loc=0, stats.zipf.rvs(k, a, loc=0)
size=100)
beta a, b stats.beta.rvs(a, b, size=) stats.beta.pdf(x, a, b)

10

Distribution = Parameters 10 r.v/s using rvs Example: pdf ou pmf

normal loc, scale(sd) stats.norm.rvs(loc, scale, stats.norm.pdf(x, loc, scale)
size=100)

exp(lambda) scale=1/lambdastats.expon.rvs(scale, size=100) stats.expon.pdf(x, scale)

gamma(a,b) a, shape=1/b stats.gamma.rvs(x, a, scale=, stats.gamma.pdf(x, a,
size=) scale=)

pareto(b, b, loc stats.pareto.rvs(b, loc=1, stats.pareto.pdf(x, b, loc=1)

loc) size=100)

t df, loc, scale stats.t.rvs(df,Joc=0,scale=1,size=) stats.t.rvs(x,df,loc=0,scale=1)

lognorm sdlog

cauchy

chi2 df

£ af1, df

geom p

invgamma shape

logistic

exponweib exponent,

shape
randint low, high stats.randint.rvs(0, 10, size=7) stats.randint.pmf(3, 0, 10)
(disc)

[1:|# Some examples:
Poisson (parameter 4is mu, it is mot the usual lambda)
X = stats.poisson.rvs(mu=2.5, size=10) # sampling 10 Poisson(2.5) wvalues
print("Random sample of 10 values of Poisson(mu=2.5): ", x)

Evaluating different Poisson probability mass function at some points

fx = stats.poisson.pmf ([0, 1, 2, 3, 4], mu=2.5)

print ("probability function of Poisson(2.5) at the points 0:4 is ", np.
—round(fx,2))

print (type(fx), '\n')

x = np.arange(0, 11)

fx = stats.poisson.pnmf(x, mu=2.5)

fig, ax = plt.subplots(l, 1)

ax.plot(x, fx, 'bo', ms=8, label='poisson pmf')
ax.vlines(x, 0, fx, colors='b', lw=5, alpha=0.5)

[1: n, p=20, 0.1
X = np.arange(0, 20)
fx = stats.binom.pnmf (x, n, p)
fig, ax = plt.subplots(l, 1)
ax.plot(x, fx, 'bo', ms=8, label='binom pmf')
ax.vlines(x, 0, fx, colors='b', lw=5, alpha=0.5)

11

[]1:

[1:

[1:

[]:

BetaBinomtial: a binomial distribution with a probability of success p thaty
—follows a beta distribution.

parameters: n=number of trials and and random p ~ Beta(a,b)

n, a, b = 10, 1, 9
x = stats.betabinom.rvs(n, a, b, size=7)

k = np.arange(0, 10)

fk = stats.betabinom.pmf(k, n, a, b)

fig, ax = plt.subplots(l, 1)

ax.plot(k, fk, 'bo', ms=8, label='betabinom pmf')
ax.vlines(k, 0, fk, colors='b', lw=5, alpha=0.5)

contrastando com a binomial

f2k = stats.binom.pmf(k, n, p=0.1)

fig, ax = plt.subplots(l, 1)

ax.plot(k, fk, 'bo', ms=8, label='betabinom pmf')
ax.vlines(k, 0, fk, colors='b', lw=5, alpha=0.5)
ax.plot(k+0.2, f2k, 'ro', ms=8, label='binom pmf')
ax.vlines(k+0.2, 0, f2k, colors='r', lw=5, alpha=0.5)

Distribuicao uniforme

fig, ax = plt.subplots(l, 1)
x = np.linspace(0, 1, 100)
ax.plot(x, stats.uniform.pdf(x),'r-', lw=5, alpha=0.6, label='uniform pdf')

r = stats.uniform.rvs(size=1000)

ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
ax.legend(loc='best', frameon=False)

plt.show()

Ezponential distribution

r = stats.expon.rvs(scale=10, size=1000) # simulating a sample with lambda = 1/
—scale = 0.1

x = np.linspace(0, 60, 100)

fig, ax = plt.subplots(l, 1)

ax.plot(x, stats.expon.pdf(x, scale=10), 'r-', lw=5, alpha=0.6, label='expon,
pdf')

ax.hist(r, density=True, histtype='stepfilled', alpha=0.2, bins=30)
ax.legend(loc='best', frameon=False)

plt.show()

12

[]1:

[]1:

[22]:

fig, ax = plt.subplots(l, 1)

x = np.linspace(0, 3.5, 100)

ax.plot(x, stats.pareto.pdf(x, b=4.5),'r-', lw=5, alpha=0.6, label='pareto pdf')
r = stats.pareto.rvs(b=4.5, size=1000)

ax.hist(r, density=True, histtype='stepfilled', alpha=0.2, bins=100)
ax.legend(loc='best', frameon=False)

plt.show()

Nao ficou bom, fazer uns graficos com varias amostras wvariando b

Distributions have a general form and a “frozen” form.

The general form is stateless: you supply the distribution parameters as arguments to every call.
The frozen form creates an object with the distribution parameters set.

For example, you could evaluate the PDF of a normal(3, 4) distribution at the value 5.7 by
stats.norm.pdf (5.7, 3, 4)

or by

mydist = stats.norm(3, 4)
mydist.pdf(5.7)

import math
from scipy import stats
A = stats.norm(3, math.sqrt(16)) # Declare A to be a mormal random variable

print A.pdf(4) # f(3), the probability density at 3
print A.cdf(2) # F(2), which is also P(Y < 2)
print A.rvs(# Get a random sample from A

10.2 Main multivariate probability distributions

Multivariate Gausstian distribution
import numpy as np

import scipy.stats as stats

import matplotlib.pyplot as plt

using the frozen method

First, create an object "containing" the distribution. Later, eziract,
—samples, density plots, etc

Mean wvector

mu = [0.0, 0.0]

Covariance matriz

sigma = [[4.0, 0.0], [0.0, 1.0]]

Distribution object (frozem method)

distrib = stats.multivariate_normal (mean=mu, cov=sigma)

13

Evaluating the density in the point (1.3, 2.7)
print("Density at [1.3, 2.7]: ", distrib.pdf([1.3, 2.7]))

Evaluating at n=5 2-dim points
x = np.array([[0, 1], [1, 1], [0.5, 0.25], [1, 2], [-1, 011)

dens = distrib.pdf (x)
print("Density at 5 points: ", dens)

Evaluating the CDF of the multivariate normal
print("CDF at [1.3, 2.7]: ", distrib.cdf([1.3, 2.7]))

sampling 500 2-dim vectors from the population object pop ~ N_2(mu, sigma)
using 12345 as a seed

samplex = distrib.rvs(size=500, random_state=12345)

print (samplex.shape)

Scatter plot with the sample generated
plt.scatter(samplex[:,0], samplex[:,1])
plt.axis('equal')

plt.show()

Density plot

x1, x2 = np.mgrid[-5:5:.01, -3:3:.01]
pos = np.dstack((xl, x2))

z = distrib.pdf (pos)

fig = plt.figure()

ax = fig.add_subplot(111,aspect="equal')
ax.contourf (x1,x2,z)

ax.set_x1im(-10,10)

ax.set_ylim(-10,10)

ax.set_xlabel('x1"')

ax.set_ylabel('x2')

ax.set_title('pdf')

Density at [1.3, 2.7]: 0.0016828369534797917

Density at 5 points: [0.04826618 0.04259475 0.07475612 0.00950417 0.07022687]
CDF at [1.3, 2.7]: 0.7395808611024745

(500, 2)

14

[22]: Text(0.5, 1.0, 'pdf')

pdf

10.0
7.5 1
5.0 1
25 1

o 0.0

-2.5 1

=5.0 1

-7.5

-10.0 |
—-10 -5 0 5

15

[23]: from mpl_toolkits import mplot3d
import matplotlib.pyplot as plt
from scipy.stats import multivariate_normal
x = np.linspace(-1, 3, 100)
y = np.linspace(0, 4, 100)
X, Y = np.meshgrid(x, y)
pos = np.dstack((X, Y))
mu = np.array([1, 2])
cov = np.array([[.5, .25],[.25, .511)
rv = multivariate_normal (mu, cov)
Z = rv.pdf (pos)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, Y, Z)
fig.show()

C:\Users\assun\anaconda3\lib\site-packages\ipykernel_launcher.py:15:
UserWarning: Matplotlib is currently using
module://ipykernel.pylab.backend_inline, which is a non-GUI backend, so cannot
show the figure.

from ipykernel import kernelapp as app

[0.35
[0.30
- 025
0.20
"~ 015
- 0.10
- 0.05

[24]: import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import multivariate_normal
from mpl_toolkits.mplot3d import Axes3D
Create grid and multivariate normal

16

[1:

x = np.linspace(-10,10,500)

y = np.linspace(-10,10,500)

X, Y = np.meshgrid(x,y)

pos = np.empty(X.shape + (2,))
posl[:, :, 0] =X

posl[:, :, 11 =Y

Create a frozenm RV object
mean = np.array([1, 2])

cov np.array([[3,0],[0,15]])
rv = multivariate_normal (mean,cov)
Make a 3D plot

fig = plt.figure()

ax = fig.gca(projection='3d")

ax.plot_surface(X, Y, rv.pdf(pos),cmap='viridis',linewidth=0)

ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z axis')
plt.show()

17

	Random numbers from Base Python
	Outline of this notebook

	Basic Algorithm
	Sampling integers
	Sampling from sequences
	Selecting from continuous intervals
	Module random from numpy
	Sampling integers with numpy

	Sampling from sequences with numpy
	Sampling from continuous intervals
	More distributions in numpy

	Random numbers in SciPy
	Main methods
	Main univariate probability distributions and their parameterizations
	Main multivariate probability distributions

