[2]:

RomanEmperors
July 16, 2021

1 Python script for duration of Roman empire

Source: - El Barmi, H., & McKeague, I. W. (2013). Empirical likelihood-based tests for stochastic
ordering. Bernoulli, 19(1), 295- -307. - Khmaladze, E., Brownrigg, R. and Haywood, J. (2007).
Brittle power: On Roman Emperors and exponential lengths of rule. Statist. Probab. Lett. 77
1248-1257. MR2392795

Durations of rule of Roman Emperors: First column: duration, in years Second column: Indicator
of period

Period 1: 27 BC-235 AD Period 2: 235-284 AD Period 3: 284-395 AD, fase final, periodo recheado
de déspotas

O artigo de Khmaladze, Brownrigg and Haywood (2007) analisaram os tempos de duragdo dos
reinados dos imperadores romanos. Eles verificaram que uma distribuicdo exponencial ajusta-se
bem aos dados implicando que seus reinados terminavam abruptamente. Os autores disseram
que eles tinham um “brittle power” (poder fr’{a}gil). Para justificar esta afirmagao lembre-se da
propriedade “sem mem’{o}ria” da distribuigdo exponencial (ver segdo ?? do livro-texto).

Verifique se o ajuste da distribuicdo exponencial é adequado usando os dados do arquivo Ro-
manEmperors.txt. Ele possui duas colunas de dados. A primeira delas mostra uma lista ordenada
da duragdo em anos dos 70 imperadores romanos, de Augusto, o primeiro deles filho adotivo de
Julio César, a Theodossius, o dltimo grande imperator romano antes da derrocada final do império.
Estes reinados cobrem o periodo de 27 AC a 395 DC. A seguir, use os dados dessa primeira coluna.

import numpy as np

import pandas as pd

import scipy.stats as stats
import scipy as scipy

Reading this text file into a pandas dataframe

dados = pd.read_csv("RomanEmperors.txt", delimiter=r"\s+", header=0)
print(dados)

x = dados['duration']

scipy.__version__
duration period

0 41.585220 1
1 22.573580 1

[2]:

[3]:

[4] :

[4] :

2 3.854894 1

3 13.716630 1
4 13.656400 1
65 11.726220 3
66 14.365500 3
67 16.002740 3
68 16.479120 3
69 15.994520 3

[70 rows x 2 columns]

'1.3.1"

statsmodels is a Python module that provides classes and functions for they,
—estimation

of many different statistical models, as well as for conducting statisticaly
—~tests,

and statistical data exploration.

import statsmodels.api as sm # recommended import according to the docs

empirical cumulative distribution function
ecdf = sm.distributions.ECDF(x)

Visualizing the empirical and fitted cumulative functions
import matplotlib.pyplot as plt
J%matplotlib inline

plot of the empirical cumulative distribution function and the theoretical,
< (exzponetial) F(z)

x2 = np.sort(x) # horizontal grid at the observed sample wvalues
y2 = ecdf(x2) # wvalue of the ecdf at z2 values
y3 = stats.expon.cdf(x2, scale=np.mean(x)) # valor de F(z) teorico (dist,

—egponencial) at =2
plt.step(x2, y2)
plt.plot(x2, y3, ¢ ='r', linewidth=3)

[<matplotlib.lines.Line2D at 0x1c17ba9350>]

10 A

0.8 +

0.6 1

04

0.2 -

0.0 1

[5]: | # Visualizing the histogram and the fitted exzponential density

plt.hist(x, density=1) # normalized histogram (area = 1)

xd2 = np.linspace(min(x), max(x)) # horizontal grid

yd3 = stats.expon.pdf (xd2, scale=np.mean(x)) # valor de F(z) teorico (disty
—exponencial) at zd2

plt.plot(xd2, yd3, c ='r', linewidth=3)

The histograma and density visualization does not send us a clear message
—about the fitness quality of the model

It is a an example where the cumulative function seems to gives a more cleam,
—answer (theta exp is a good fit)

However the real answer is given by the Kolmogorov test

[5]: [<matplotlib.lines.Line2D at 0x1c17£679d0>]

[6]:

[6]:

0112 1

0.10 -

0.08 -

0.06 -

(.04 1

0,02 1

0.00 -

20 30 40

The histograma and density visualization does not send us a clear message about the fitness quality
of the model. It is a an example where the cumulative function seems to gives a more clear answer
(theta exp is a good fit). However the real answer is given by the Kolmogorov test.

The two plots inm the same window

plt

plt.
plt.
plt.
.plot(xd2, yd3, c ='r', linewidth=3)

plt
plt

plt

.figure(figsize=(20, 5))

figure()
subplot(121) # array 1 z= 2 de subplots, drawing in subplot 2
hist(x, density=1) # normalized histogram (area = 1)

.subplot(122) # array 1 = 2 of subplots, drawing in subplot 1
plt.
.plot(x2, y3, ¢ ='r', linewidth=3)

step(x2, y2)

[<matplotlib.lines.Line2D at 0x1c1828bc50>]

<Figure size 1440x360 with O Axes>

[7]:

[8]:

012 10 -
010 -
0.8 -
0.08 -
0.6 -
0.06 -
0.4 -
0.04 -
02 -
0.02 -
0.0 -
'I]Dﬂ - I I ! I !
0 10 220 30 40 0 10 22 30 40

The Kolmogorov test
function in the stats module of the scipy library

Neste caso, temos E(X) = scale = aproxzimadamente a media aritmetica da amostra
—~de X

mx = np.mean(x)

print("A durag8o média dos 70 reinados foi de ",mx, "anos.")

kolmo = stats.kstest(x, cdf='expon', args=(0,mx)) # args requer o parametro
—~loc, mao pode passar apenas scale.

print (kolmo)

A durag8o média dos 70 reinados foi de 8.517532122857142 anos.
KstestResult(statistic=0.1559898592129607, pvalue=0.059263118369621726)

Teste de Kolomogorv-Smirnov

A distribuicdo dos tempos de reinado nos 3 periodos do império Tomano sequiTam,
—~a mesma distribuigdo.

Nao estamos testando se a distribuicdo é exponencial.

Testamos apenas se a distribuicdo do periodo 1 = distridbuicdo do periodo 2,
—ndo tmporta qual seja

esta distribuig¢do comum.

dados["period"] .value_counts()

perl = dados[dados['period']==1]['duration']

[8]:

per2 = dados[dados['period']==2]['duration']
per3 = dados[dados['period']==3]['duration']
ecdfl = sm.distributions.ECDF (perl)
ecdf2 = sm.distributions.ECDF (per2)
ecdf3 = sm.distributions.ECDF (per3)

plot of the empirical cumulative distribution function and the theoretical,
< (exzponetial) F(z)

x1 = np.sort(perl) # horizontal grid at the observed sample values

yl = ecdf1(xl) # wvalue of the ecdf at z2 values

x2 = np.sort(per2) # horizontal grid at the observed sample values

y2 = ecdf2(x2) # wvalue of the ecdf at z2 values

x3 = np.sort(per3) # horizontal grid at the observed sample values

y3 = ecdf3(x3) # wvalue of the ecdf at z2 values

plt.step(x1, y1)

plt.step(x2, y2, ¢ = 'r')

plt.step(x3, y3, ¢ = 'g')

[<matplotlib.lines.Line2D at 0x1c1838e990>]

10 A

0.8 -

0.6 -

0.4 -

0.2 1

0.0 -

Observe como o periodo 2 (em vermelho) teve tempos de reinado substancialmente mais curtos que
os outrso dois periodos. O periodo 3 (em verde) parece ter reinados um pouco mais longos mas...
serd mesmo? Até onde a diferenca entre os periodos 1 e 3 ndo pode ser devido ao mero acaso?

Isto é, serd que a distribuicdo que gera os periodos de reinado dos periodos 1 e 3 nao é a mesma e

a diferenca que vemos nos dados foi uma mera flutuacao aleatéria?

[9]: print(stats.ks_2samp(per2, perl)) # wermelho z azul
print(stats.ks_2samp(per2, per3)) # wvermelho versus verde

print(stats.ks_2samp(perl, per3)) # azul z verde

Na dltima versdo do scipy podemos usar diretamente a funcdo kstest (minhay
—versao

nao & a mais recente...

stats.kstest(per2, per3)

Ks_2sampResult (statistic=0.4373040752351097, pvalue=0.011317720649650753)
Ks_2sampResult(statistic=0.6913875598086124, pvalue=3.499600487877341e-05)
Ks_2sampResult (statistic=0.2885662431941924, pvalue=0.23392828983229197)

TypeError Traceback (most recent call last)

<ipython-input-9-28d848e9b5a6> in <module>
5
6 # Na tltima versdo do scipy podemos usar diretamente a func&o kstest:
----> 7 stats.kstest(per2, per3)

/Applications/anaconda3/1lib/python3.7/site-packages/scipy/stats/stats.py,
—in kstest(rvs, cdf, args, N, alternative, mode)

4795 vals = np.sort(rvs)
4796 N = len(vals)
-> 4797 cdfvals = cdf(vals, *args)
4798
4799 # to not break compatibility with existing code

TypeError: 'Series' object is not callable

	Python script for duration of Roman empire

