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Capitulo 1

Revisao de Matematica

Estes exercicios visam a uma revisao de fatos basicos de matematica e probabilidade que serao ne-
cessarios durante a disciplina.

1. Teoria de Conjuntos: O objetivo é apenas verificar se vocé estd informado sobre a diferenga con-
ceitual entre conjuntos enumeraveis e nao-enumeraveis. Nao é necessdrio saber provar que um
conjunto é nao-enumeravel. Diga quais dos conjuntos abaixo é um conjunto enumeravel e qual ¢é

nao-enumeravel:
o {0,1,2}
e naturais: N={0,1,2,...}
e inteiros: Z ={...,-2,—-1,0,1,2,...}
e reticulado inteiro no plano: {(z,y); z € Z, y € Z}
e racionais: Q = {p/q; ¢ >0, pe Z, q € N}
e reais: R

e irracionais: R — Q.



2. Propriedades bdsicas de expoentes. Identifique abaixo quais igualdades estao corretas:
o 2ty = (ay)"

‘=it

° (xa)b — xab

o (z/y)* =2/y’

¢ (@) =atty

o atyf = (ay)"!

o (-2t = —a?

o Vat+y? =[x+ yl

Ty _ z Yy
d a_a+a

3. Complete as sentencas abaixo:

e Os pontos (z,y) € R? que satisfazem a equacio 22 + y? = 1 formam ?? no plano real.

e Os pontos que satisfazem a equacio z2 + y? = 4 formam ?7.

e Os pontos que satisfazem a equacdo (z — 2)% + (y + 1)2 = 1 formam ??.

2
e Os pontos que satisfazem a equacao (%)2 + (#) =1 formam 77.
4. Propriedades bdsicas das fungdes exp e log.
e Esboce o gréfico das fungoes f(x) = log(3z+1) e f(z) = exp(3x). Identifique o maior dominio
na reta em que as funcées podem ser definidas.

e Obtenha as derivadas f’(z) das duas fungoes acima.

e Verifique quais das seguintes igualdades sao validas:
— log(zy) = log(x) +log(y).
— log(z +y) = log(z) x log(y).
— exp(z+y) (x) + exp
— exp(x 4+ y) = exp(x) X exp
— log(z/y) = log(x) — log(y).
— exp(ay) = (exp())".
— exp(zy) = exp(z) + exp(y).

= exp

5. Esboce o gréfico da fun¢do f(x) = exp (—3(z — 1)?) e obtenha a sua derivada f’(z). Esta fun¢ao
estd associada com a distribuig¢ao de probabilidade normal ou gaussiana. Faca a mesma coisa com

a funcao g(z) = log(f(x)).
6. A funcao logistica f(z) = 1/(1 + exp(—=z)) é fundamental na andlise de dados.

e Esboce o grafico da funcao logistica considerando o intervalo z € (-3, 3).

e Apenas olhando o grafico de f(z), sem fazer nenhum célculo, diga: (a) qual o ponto z em que
a derivada atinge o valor maximo; (b) a medida que z — o0, o valor da derivada f/(z) vai para
que valor? (c) e quando z — —o0?

e Apenas olhando o gréifico de f(z), sem fazer nenhum calculo, diga dos graficos apresentados
na Figura 1.1 representa a fungao derivada f'(z).

e Obtenha a expressao matemadtica de f’(z) e mostre que ela pode ser expressa como f'(z) =

f(2) (A1 = f(2)).
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Figura 1.1: Qual desses gréficos representa a a funcao derivada f/(z) da funcao logistica f(z) = 1/(1 +
exp(—2))?

7. Ezpansao de Taylor até sequnda ordem. Esta é uma das féormulas mais iteis em matematica. Ela
permite aproximar uma fungao f(z) muito complicada por uma fungdo bem mais simples, um
polinémio de segundo grau. Polinémios de segundo graus sao facilmente derivaveis, possuem raizes
e ponto de maximo ou minimo conhecidos e, muito importante, sao muito ficeis de se integrar.
Assim, ao invés de trabalhar coma fungao complicada f(z), trabalhamos com a sua aproximacao
polinomial.

Precisamos escolher um ponto de referéncia xg e a aproximacao de Taylor vale para os pontos x no
entorno desse ponto de referéncia xg. Este entorno varia de problema para problema. A expansao
de Taylor da fungao f no ponto x préximo de zy é o polinomio P(z) dado por

£() ~ P(z) = f(wo) + f'(@o)(z — o) + 5 f*(x0)(z — w0)?

Essencialmente, todas as fungoes que aparecem na pratica da andlise de dados podem ser aproxi-
madas pela expansao de Taylor.
e Obtenha a expressao aproximada para f(x) = exp(x) para x ~ z¢ = 0.

e Faga um grafico com as duas fungoes, f(x) e sua aproximagao de Taylor de 2a. ordem, para
z € (—1,2).

e Repita com zy = 1: obtenha a expressao aproximada para f(z) = exp(z) para = = zo = 1.
Observe que os coeficientes do polinémio P(x) mudam com o ponto de referéncia x.

e Facga um grafico com as duas fungoes, f(x) e sua aproximagao de Taylor de 2a. ordem, para
z € (—1,2).

Vocé deve obter graficos iguais ao da Figura 1.2.

8. Na expansao de Taylor, boas aproximacoes numa regiao mais extensa em torno do ponto de re-
feréncia 2y podem ser obtidas usando um polinémio de grau mais elevado (o que implica calcular
derivadas de ordens mais elevadas):

f(@) = f(zo) + f'(zo)(x — xo) + %f”(wo)(m —m0)* + %f”’(ﬂfo)(w —x0)% + %f(4)(900)(90 —z0)t + ...



— exp(x)
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Figura 1.2: Aproximacao de Taylor até a segunda ordem de f(x) = e em torno de zp = 0 e em torno de
g = 1.

0 = exp(x)icos(x)
= = Taylor, 20 grau
<« Taylor, 40 grau

Figura 1.3: Aproximacao de Taylor até a segunda e a quarta ordem de f(z) = e*/cos(x) em torno de
xo = 0 no intervalo (—1,1).

Por exemplo, em torno de xg = 0 e usando a expansao até a 4a. ordem , temos

e’ 5 2% 2t
——mltrta?+ T+
cos(z) 3 2
Faca um gréfico de f(x) = e*/cos(x) com a aproximacao até a segunda ordem (basta usar os
primeiros 3 termos acima) e até a quarta ordem para x € (—1,1). Vocé deve obter um gréfico igual

ao da Figura 1.3.

9. Considere a seguinte matriz 5 x 3 contendo dados de 5 apartamentos colocados a venda em BH:

1 153 2 ]

1 107 1
X=[X;|Xs|X3]=|1 238 3
1 179 2
| 1 250 4 |

Cada linha possui dados de um apartamento distinto. A primeira coluna contem apenas o valor
constante 1 e é representada pelo vetor coluna X; € R®. A segunda coluna mostra a rea (em



metros quadrados) de cada apto é representada pelo vetor coluna Xa € R®.. A terceira coluna, X3,
mostra o nimero de quartos do apto. Seja 3 = (8o, 81, 83)! um vetor-coluna 3 x 1.

e Verifique que é valida a seguinte igualdade: X3 = pXg + 61 X1 + #3X3 onde X, X1, X3 sao
os vetores-coluna da matriz X.

e Sejam vy, ..., vy vetores em R® tais como, por exemplo, as 3 colunas da matriz X. Verifique
que o conjunto das combinacoes lineares desses vetores forma um sub-espaco vetorial do R?
(basta checar a definigao de sub-espago vetorial).

e V ou F? O conjunto M(X) das combinagoes lineares das colunas de X é igual a M(X) =
{XB | B € R3} e é um sub-espaco vetorial do R>. Se V, qual a dimensido do sub-espaco
vetorial M(X)?

10. Uma manipulagao algébrica que é muito comum em estatistica envolve uma decomposigao de soma
de quadrados. Seja = (x1,...,x,)/n a média aritmética de x1, ..., x,. Verifique que:

o > (xi— 7)? = > x? — nz
e Seja a € R uma constante qualquer. Some e subtraia Z dentro da expressao ao quadrado em
> i (z; — a)?, expanda a expressio ao quadrado e conclua que > .(z; —a)? = Y, (z; — T)? +

n(z — a)?.
e A partir do item anterior, conclua que o valor de a € R que minimiza Y_,(; — a)? é o valor
a=1z.
11. Nosso curso precisa usar varios resultados de dlgebra de matrizes. Seja x = (x1,...,2,) um vetor-

coluna n x 1 e A uma matriz n x n. A’ indica a matriz transposta de A. As seguintes identidades
matriciais sado fundamentais em nosso curso. Verifique que elas estao corretas, checando que o lado
direito ¢é igual ao lado esquerdo.
e X' Ax= Zi,j .Z‘il'inj
e O comprimento (ao quadrado) do vetor x é¢ 3. 2% e pode ser obtido fazendo a seguinte conta
matricial: x’ x = Y, 22, Assim, x’ x é um escalar, um nimero real.

e A operacao reversa do item anterior, x x’, ndo é um escalar mas sim uma matriz simétrica

n x n com elemento (¢, j) dado por z;z;.

12. O vetor gradiente é a extensao do conceito de derivada para fungoes de R™ para R. Para ser mais
concreto, vocé pode imaginar a altura f(x) = f(x1,22) de uma superficie f para cada posi¢ao
X = (71, 22) do plano R2. Seja

fR* — R
x — f(x)
o vetor gradiente num ponto arbitrario (zg,yo) do plano é definido como:
V:R*> — R?

of
(zo,90) — Vf(zo,y0) = [ 5 ]
W 1 (@o.y0)

As derivadas parciais sdo avaliadas no ponto (z,y). O vetor gradiente aponta na dire¢ao de cresci-
mento mdzimo da fun¢do f em torno do ponto (z,y).

Vetores serdao sempre representados como vetores-coluna neste livro. O vetor gradiente € um vetor-
coluna.



13.

Figura 1.4: Gréfico da fungao z = f(z,y) = 22/4 + 42 /2.

Considere z = f(z,y) = 2% /4+y?/2. A superficie definida por esta funcdo ¢ um paraboléide eliptico
(ver Figura 1.4). Esta é uma superficie em forma de tigela. O fundo da tigela estd na origem (0, 0).
A figura abaixo mostra as curvas de nivel, definidas por f(z,y) = ¢ dessa superficie. As curvas de
nivel sdo as elipses z%/4 +y%/2 = c.

e Mostre que o vetor gradiente num ponto (x,y) é dado por V f(z,y) = [x/2,y].

e Esboce alguns desses vetores gradientes em diferentes pontos do grafico das curvas de nivel da
Figura 1.4.

e Suponha que x é um ponto de méximo ou de minimo da fungdo f(x). Sabe-se que Vf(x) =
0= (0, O)T nestes pontos de maximo ou de minimo. Explique intuitivamente por qué isto deve
ocorrer usando que o vetor gradiente aponta na direcao de crescimento maximo da funcao.

A derivada mede o quanto f(x) varia quando x sofre uma pequena perturbagao. Os matematicos
perceberam que a quantidade desta variagdo em f(x) dependia da direcdo da perturbacao com
relacdo a x. Imagine que passamos de um ponto x para outro ponto x + hu onde u = (u1, uz) é um
vetor de comprimento 1 e A > 0 é um valor real positivo. A variagao no valor da funcao f é dada
por f(x+ hu) — f(x). Esta variagdo depende de trés coisas:

(a) ela depende do ponto x em que estamos. Em certos pontos x, a variacao pode ser grande. Em
outros pontos, ela pode ser pequena.

(b) Ela depende de h, do quanto nos afastamos do ponto x em que estamos. Se h for muito
pequeno, praticamente nao saimos de perto de x e a variagao tipicamente vai ser pequena
(supondo que a fungao é continua). Aumentando h, nés nos afastamos de x e a fungao f pode
mudar drasticamente.

(c) Diferente do caso uni-dimensional, a variagdo depende também da dire¢ao em que nos afasta-
mos de x.

Por exemplo, se f(z1,r2) = x3+23, a funcdo f é chamada de paraboléide e seu grafico pode ser visto
na Figura 1.4. Observe que a funcao f ¢ igual a distancia ao quadrado entre o ponto x = (z1,z2) € a
origem 0 = (0, 0). Portanto, se nos movimentarmos ao longo dos circulos concéntricos centrados na
origem, o valor de f(x1,x2) nao varia e sua derivada deveria ser zero. Isto é, suponha que estamos



|

28 abril 2016
6 horas (Brasilia)

Figura 1.5: Esquerda: Gréfico da fungdo f(z1,z2) = #? + x3. Direita: Curvas de nivel de temperatura
no dia 26 de abril de 2016, 6 horas (horario de Brasilia.

num ponto x = (r1,xs) qualquer, a uma distancia r = \/a% + 23 da origem (0,0). Suponha que
nos movimentamos ligeiramente, mas ainda mantendo a mesma distancia r da origem. Isto é, nos
movimentamos andando um pouco ao longo do circulo de raio r em torno da origem. Neste caso,
a funcao f ndo muda de valor e portanto sua variacao nesta direcdo é igual a zero. Um ligeiro
movimento ao longo da direcao tangente ao circulo concéntrico deveria implicar numa derivada
igual a zero.

Por outro lado, se nos movimentarmos em outras diregoes, a variacao de f pode ser positiva ou
negativa. Por exemplo, se sairmos do ponto x = (x1,x2) nos afastando na dire¢do do vetor x =
(z1,22) (ao longo da linha que conecta o ponto & origem), a fungao vai aumentar de valor. Veja o
grafico. Se nos aproximarmos do centro ao longo dessa linha que conecta x = (x1,x2) e a origem,
a funcéo f diminui o seu valor.

Quando h é pequeno, a variagdo f(x 4+ hu) — f(x) no valor da fungao f é obtida calculando a
derivada direcional ao longo da dire¢ao do vetor u = (uy,u2) de comprimento um. Esta derivada
diceional é o produto interno do vetor gradiente V f(x) pelo vetor u. Isto é

f(x+hu) = f(x)+h Vf(x)eu (1.1)

Considerando a f(z1,72) = 3 + 23, o paraboléide mostrado na Figura 1.4, responda:

e Qual o vetor gradiente V f(x)? Esboce este vetor para alguns pontos do plano. Como este
vetor gradiente varia?

Obtenha o valor aproximado de f(x + hu) usando (1.1) nas seguintes situagoes:
—x=(1,1),h=01eu=(1/v2,1/V2).
— Como acima, exceto que u = —(1/v/2,1/v/2).
— Como acima, exceto que u = (1/v/2, —1/v/2).
e Por qué os resultados foram tao diferentes nos trés casos acima? Desenhe as curvas de nivel
da fungao, o vetor gradiente no ponto x = (1,1) e os trés vetores u considerados.

Identifique o ponto em que a funcao varia pouco em qualquer direcao u. Isto é intuitivo? Olhe
a Figura 1.4.

Obtenha o valor aproximado de f(x + hu) usando (1.1) quando x = (0,0), h = 0.1 e u =

(u1,u).



14.

15.

16.

Figura 1.6: Gréficos de fungoes f(x,y) e suas curvas de nivel.

Considere o mapa de curvas de nivel de temperatura na Figura 1.5. Se vocé estiver em Brasilia,
em que dire¢ao vocé deve mover-se para dimininuir ao maximo a temperatura? Se T'=T'(x,y) é a
funcao temperatura como funcao da localiza¢ao no mapa, qual é o gradiente VT'(zp, yp) na posicao
(zp,yp) correspondente a Brasilia. O que acontece com a temperatura se fizermos um pequeno
deslocamento (xp + s,yp + t) movendo-nos perpendicularmente ao gradiente V7. Isto é, (s,t) é
um pequeno vetor perpendicular ao vetor VT'(xp,yp).

A Figura 1.6 mostra duas fungoes f(x,y) com suas curvas de nivel. Identifique os pontos no plano
onde o vetor gradiente V f(z,y) é o vetor zero. De forma aproximada, identifique também alguns
pontos em que este vetor terd comprimento maximo.

Ezxpansao de Taylor multivariada de primeira ordem. Seja

fR* — R

x — f(x)

uma funcdo que mapeia vetores x € R™ em escalares f(x). Fixe um ponto de referéncia xg =
(210, - .-, Tno). Podemos obter uma aproximagao para o valor de x se x é um ponto no entorno de
xg. Esta aproximacao é uma forma polinomial envolvendo as coordenadas de x. A aproximagao de
primeira ordem é dada por:

)~ fx0) + (VS (x0) o (x—x0) (12)
1 — 10

= soa+ [l e | (13)
Ty — Tno

onde x’ é o vetor x transposto (um vetor-linha, 1 x n). Observe que o vetor gradiente V f(xg) é
avaliado no ponto de referéncia xg = (z19, ..., Zno)-

e Considere a funcio f(z,y) = 22 + exp(zy) e obtenha a aproximacdo de Taylor de primeira
ordem usando xg = (1, 1). Repita usando xg = (—1,1).

e Verifique que nos dois casos acima a aproximacao de Taylor de primeira ordem é um plano
que passa pelo ponto (x g, f(x0) (isto é, o plano encosta na superficie f(x) no ponto xg) e que
possui inclinagoes ao longos dos eixos dadas pelas derivadas parciais (availadas em xp). Este
é o plano tangente a superficie passando pelo ponto (x g, f(xp).

e Considere agora uma funcao f(x) = f(z1,22,...,2,) = /T1Z2...Tp + cos(x1 + ...+ x,) €
obtenha a aproximagao de Taylor de primeira ordem usando xo = (1,1,...,1).



17. Segunda ordem na expansao de Taylor multivariada. Seja

18.

fR*" — R

x — f(x)

uma funcdo que mapeia vetores x € R™ em escalares f(x). Fixe um ponto de referéncia xo =

(2104 ..., Tno). Defina a matriz hessiana n X n num ponto xo como sendo
r9f >f f 7
Bxl Ox10x2 *tt Oz10xh
*f 2f > f
0z20 2 *tt Ozeldxn
Hf(xp) = | “™% 0% o (1.4)
o2 f 2%f 2%f
| 02,071 0z2 T 0xZ

onde cada uma das derivadas parciais de segunda ordem 92 f/ Ox;0x; ¢é avaliada no ponto xg.

Queremos uma aproximacao para o valor de f(x) onde x estd em torno do ponto de referéncia xg.
Sejad = (dy,da,...,dy) =x— %o = (x1 — o1, T2 — T2, ..., Ty — Ton). A aproximagao de segunda
ordem para x é

%(X—Xo)“Hf(Xo) * (x —x0) (1.5)

= f(xo) +Z o, (x0) Zaxlax] did; (1.6)

Q

f(x) f(x0) + (Vf(x0))"® (x — o) +

Considere a fungao f(z,y) definida para (z,y) € R? de forma que f(x,y) = v exp(—(2? + 3?)/2).
e Obtenha a matriz hessiana em dois casos: primeiro, usando xg = (1,1) e depois, usando
X0 = (0, 0)

e Obtenha a aproximagao de segunda ordem de Taylor para f(x,y) com (z,y) em torno do ponto
(1,1).

e Obtenha a aproximacao usando xg = (0, 0).

O conceito de derivada pode ser estendido para funcoes f de R™ em R™. Neste caso, a derivada ¢é
uma matriz m X n. Seja

f:R" — R™
x — f(x)=(fi(x),..., fm(x))

onde cada componente f;j(x) é uma funcao de R" para R. A derivada Df(x) no ponto de re-
ferénciaxg é dado por df;/0z; avaliado em Xg.

e Suponha que f : R? — R3 é dada por

f(x) = f(xz,y) = (fi(z,y), fa(z,y)) = (2® cos(y), sin(zy), exp(z + y))

Obtenha a derivada desta fun¢ao no ponto xo = (1,2).
e Seja f(z) = (z,222,32%) onde € R. Obtenha a derivada de f em x = —1.

e A matriz D f(x) pode ser vista como composta dos m vetores gradientes V f; associados com
as fungdes escalares fj(x). Explique esta afirmativa. Isto é, qual a relagdo entre a matriz
Df(x) e os m vetores gradientes V f;?



Seja f(x) = Ax onde A é uma matriz m X n e x é um vetor-coluna n x 1. Obtenha a derivada
Df(x). Ela depende do ponto x?

Seja f(x) = x’Ax onde A é uma matriz quadrada n x n, x é um vetor-coluna n x 1 e x’
significa a transposicao de x. Obtenha a derivada D f(x). Ela depende do ponto x7? O que é
esta derivada se A for uma matriz simétrica? (RESP: Df(x) = x'(A + A’); sim, depende de
X; no caso simétrico temos D f(x) = 2x'A).

19. Toda reta nao-vertical no plano pode ser representada por uma equagao do seguinte tipo: y =

Bo + B1x onde By e $1 sao ntmeros reais e chamados de coeficientes da reta.

Esboce no plano as seguintes retas: y =2+ x; y = -2 —2z; y =2x; e y =4+ 0x (= 4).
Qual a interpretacao geométrica dos coeficientes By e 817

Por qué uma reta vertical nao pode ser representada pela expressao y = Bg + f1x? Se vocé
quiser representar algebricamente uma reta vertical, como poderia fazé-lo?

Reparametriza¢ao: Considere a seguinte representacao y = [y + f1(xz — 1). Ela continua a
representar uma reta? Qual a interpretacao dos coeficientes By e (51 nesta representagao?

Suponha que uma reta no plano seja escrita como y = By + S1x. Queremos que esta mesma
reta seja representada pela expressao = ag + a1(z — 1). Qual a relacdo entre os coeficientes

(ap,a1) e (Bo, B1)?

20. Um ponto em R3 é representado como (x1,x2,y). Considere a expressiao y = By + f1z1 + Paz2

onde By, B1 e B2 sdo constantes. Por exemplo, escolhendo By = 2, 1 = 0.1 e By = —1.7, temos

y=2+40.1z1 — 1.725. O conjunto dos pontos (x1,x2,y) que satisfazem esta expressdo formam um

objeto geométrico no espaco. Que objeto é este? O que representam os coeficientes [y, 51 € B2 em

termos deste objeto geométrico?



Capitulo 2

Probabilidade Basica

2.1

1.

Espacos de Probabilidade

O experimento aleatério consiste em lancar um mesmo dado independentemente duas vezes em
sequéncia e observar o resultados nas faces faces. Escreva uma representagao para o espago amostral
Q. Identifique os seguintes eventos como subconjuntos de Q: (a) O primeiro dado possui face maior
que 4; (b) O primeiro dado possui face maior que 3 e o segundo dado possui face maior 4; (c) O
segundo dado possui face maior que 4; (d) A soma das duas faces é igual ou maior que 10; (e) pelo
menos uma das faces é par; (f) as duas faces somadas resultam em niimero maior ou igual a 13.

Solugao: (e): obtenha por complementaridade: todos os elementos de €2 exceto aqueles em que
ambas as faces sejam nimeros impares. (f) 0.

O experimento aleatério consiste em selecionar um ponto completamente ao acaso do quadrado
unitdrio Q = [0, 1]? do plano euclidiano. A probabilidade de o ponto aleatério venha de uma regido
que ocupe metade do quadrado é 1/2. A probabilidade de que venha de uma regido que ocupa
1/4 da drea de Q é 1/4. De maneira geral, como 2 possui area total igual a 1, a probabilidade
P(A) de um certo evento A é simplesmente a drea determinada pelo evento A. Sejam A = {(z,y) :
x<1/2ey <1/2}, B={(z,y) :x <1/dey < 1/4}, C = {(z,y) : ® < 1/40Uy < 1/4} e
D = {(1/2,1/2)} (D é o conjunto formado apenas pelo ponto central). Obtenha: P(A), P(B),
P(B¢), P(C), P(AUC), P(AU B°), P(D), P(AN D).

Solugao:
o P(A) =(1/2)2=1/4; P(B) = (1/4)? = 1/16;
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P(B)=1-P(B)=1-1/16 = 15/16
P(C) =1/4+1/4x 3/4="7/16

(
(
e P(AUC)=PA)+P(C)—P(ANC)=1/447/16 — (1/41/2 + 1/41/4) = 8/16
o P(AUBS) =P(Q) = 1
e P(D)=0
e P(AN D) =P(0) = 0.

3. Considere o exemplo do micro-mercado com apenas 3 produtos possiveis: A, B, e C. Obtenha o
evento representando as seguintes situagoes: (a) levar o produto A, mas nao o produto C; (b) levar
o produto A e talvez também o produto C; (c) levar o produto A e também o produto C; (d) nao
levar nenhum produto; (e) levar o produto A e nao levar nenhum produto; (f) um cliente levar o
produto A em duas compras sucessivas; (g) levar o produto Z; (h) um cliente levar o produto A e
o préximo cliente também levar o produto A.

Solugao: (a) F = {A,AB}; (b) E = {A,AB,AC, ABC}; (c) E = {AC,ABC}; (d) E = {0};
(e) E = 0 (veja que (d) e (e) sao diferentes); (f) esta situagdo ndo possui representagao em €.
Os estados do mundo considerados nao levam em conta o id do cliente nem o segume no tempo.
Isto implica que ndo podemos representar essa situagdo como um evento (subconjunto desse Q) e
portanto nao teremos associar uma probabilidade para ele. (g) como no caso anterior, o produto
Z nao entrou no conjunto {2 e portanto nao temos eventos e nem podemos calcular probabilidades
associadas com Z; (h) a representagdo (2 nao envolve nenhum aspecto temporal, esse evento nao
tem representagao em ().

4. Uma funcao de probabilidade P satisfaz aos trés axiomas de Kolmogorov. Prove as seguintes
propriedades derivadas destes trés axiomas:
(P1) P(A®) =1—-P(A)
(P2) 0 <P(A) <1 para todo evento A € A.
(P3) se Al C AQ — ]P’(Al) < P(AQ)
(P4) P (UZO:1 A;) < 2211 P(A;)
(P5) P(AUB) =P(A) +P(B) —P(AN B). Esta propriedade é o caso geral de P(AU B)
5. Para medir a reacao a certo video postado na web, os comentarios sucessivos de usudrios sao
classificados como positivos (P) ou negativos (N). Isto é feito até que dois comentdrios positivos

sucessivos ocorram ou quatro comentdrios sejam postados, aquilo que ocorrer primeiro. Descreva
um espaco amostral €} para este experimento aleatério.

Solucao:

Q = {PP, NPP, NNPP, PNPP, NNNN, PNNN,
NPNN, NNPN, NNNP, PNPN, NPNP, PNNP}



6. Um experimento A /B numa pagina da Web tenta inferir se uma mudanca de layout na pagina leva
a um maior numero de clicks num certo anincio. Um ntmero r de clientes acessando a péagina é
acompanhado. No primeiro experimento, cada cliente é acompanhado por até 2 minutos ao fim dos
quais passa-se a acomapnhar o proximo cliente. Assim, os r clientes sdo sequencialmente com o
sistema monitorando apenas um deles de cada vez. O experimento é encerrado quando o primeiro
dos r clientes clica no antincio (sem verificar o que os demais clientes farao) ou quando chegarmos
ao cliente r sem que nenhum deles tenha clicado no andncio. Descreva um espaco amostral (2
para este experimento aleatério. Num segundo experimento, todos r clientes sao acompanhados
registrando-se para cada um deles se o anincio foi clicado ou nao. Descreva um espago amostral 2
para este segundo experimento aleatério.

Solugao: Representando por C' um clique e por N um nao-clique, temos:

Q={C, NC, NNC, NNNC, ..., N...NC, N...NN}.
N—— S——

r—1 termos r termos

No segundo experimento, temos

Q= {(a,a2,...,a;):a;,=NouC parai=1,...r}

7. Num experimento de HCI, cada usuario deve ordenar suas preferéncias com relacao a quatro objetos
rotulados como a, b, ¢ e d. Descreva um espaco amostral 2 para este experimento aleatério consi-
derando um unico usudrio. Considere os eventos A e B definidos da seguinte forma: A representa
os resultados em que a estd entre as duas primeiras posicoes na ordenagao. O evento B significa
que b foi colocado numa posicdo par. Mostre o que sdo os elementos w € ) que representam A, B,
ANBe AUB.

Solugao: 2 é o conjunto de todas as 4! permutagoes da 4-upla abcd. A é o subconjunto da
2 x 3! 4-uplas em que a estd na primeira ou segunda posicdo. B é o subconjunto da 2 x 3! 4-uplas
em que b estd na segunda ou na quarta posigdo. A N B = {cadb,dacb,abcd, abdc, acdb, adcb} e
AU B = {azzz, raxx, rbrx, xxxb} onde = representa um dos outros simbolos.

8. Um lote contém itens com pesos iguais a 5,10, 15, ..., 50 quilos. Suponha que pelo menos dois itens
de cada peso sao encontrados no lote. Dois itens sao escolhidos do lote. Denote por X denota o
peso do primeiro item escolhido e Y o peso do segundo item. Portanto o par de nimeros (X,Y")
representa um tnico resultado do experimento. Usando o plano euclidiano, descreva um espago de
amostragem e os seguintes eventos: (a) A = {(z,y) : x =y} (b) B={(z,y) : * <y} (c) o segundo
item é duas vezes mais pesado que o primeiro item. (d) o primeiro item pesa 10 quilos a menos do
que o segundo item. (e) O peso médio dos dois itens é superior a 40 quilos.

Solugao: (a) A ={(5,5),(10,10),...,(50,50)}

(b) B ={(5,10), (5,15),...,(5,50),(10,15),...,(10,50),...,(45,50)}

(¢) C = {(5,10), (10, 20), (15, 30), (20, 40), (25, 50)}

(d) D = {(5,15), (10, 20), (15, 25), (20, 30), (25, 35), (30, 40), (35, 35), (40, 50)}
(e) E = {(50,50), (50,45), (45, 50), (50, 40), (40, 50), (45, 45), (45, 40)}
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Figura 2.1: Espaco amostral € e eventos (a) - (e) para problema 9.

9. Uma varidvel binaria inicia-se com o valor F. Ela recebe o valor T' (true) em algum momento
aleatério X no intervalo de tempo entre 0 e 1. Em algum momento Y posterior e antes do tempo
t =1, ela volta a ficar com o valor F' (false). O resultado do experimento é o par (X,Y’). Descreva
um espago amostral {2 para este experimento aleatério. Descreva e marque no plano os seguintes
eventos: (a) A varidvel recebe T antes do tempo 0.5. (b) A varidvel possui o valor T = TRUEFE por
um periodo de tempo menor ou igual a 0.1 (c) A varidvel tem valor 7' no tempo z onde z é algum
instante fixo no intervalor [0, 1]. (d) A varidvel torna-se 7' em um tempo z; e volta a ser F' antes
de z3 (com 0 < 21 < 29 < 1). (e) A varidvel possui o valor 7' por um tempo pelo menos duas vezes
mais longo que com o valor F.

Solugao: A Figura 2.1 mostra em vermelho o espago amostral 2 e os eventos das letras (a) a (e).
O cédigo R para as figuras estd abaixo:

plotaux = function()
plot(c(0,1), c(0,1), type="n", xlab="X", ylab="Y");
polygon(c(0,0,1),c(0,1,1))

par (mfrow=c(2,3), pty="s")

plotaux(); polygon(c(0,0,1), c(0,1,1), col="red")
plotaux(); polygon(c(0,0.5,0.5,0), c(0,0.5,1,1), col="red")
plotaux(); polygon(c(0,0,0.9,1),c(0,0.1,1,1),col="red")
plotaux(); polygon(c(0,0,1), c(0,1,1))

segments(0.7, 0.7, 0.7, 1, col="red", lwd=2)

plotaux(); polygon(c(0,0.4,0.4,0),c(0.7,0.7,1,1),col="red")



10.

11.

12.

13.

plotaux(); polygon(c(0, 1/3, 0),c(2/3,1,1),col="red")

Eu usei 2 =0.7em (c) e 21 = 0.4 e 29 = 0.7 em (d). Para a letra (e), queremos que o tempo total
com valor F' (que é x + (1 — y)) seja pelo menos duas vezes maior que o tempo com o valor T' (que
é y — x). Assim, queremos y —x > 2(x + 1 — y), o que implica em y > 2/3 + x.

Numa rede social, um individuo possui 10 links sendo 4 deles homens e 6 mulheres. Um proce-
dimento de amostragem esta coletando dados da rede e extrai um dos links completamente ao
acaso verificando que é mulher. Se um segundo link, diferente do primeiro, é extraido, qual a
probabilidade de que seja mulher?

Solugao: Apés extrair um link mulher, restam 9 links, sendo 5 deles de mulheres. Portanto a
probabilidade ¢ 5/9.

Em cada linha da tabela abaixo temos algumas atribuicoes de probabilidade para um espaco amos-
tral 2 composto por cinco elementos. Diga quais delas sao atribuigoes validas.

wr w2 W3 wqg  Ws
A;]103 0.2 —-0.1 04 02
A 10.1 0.2 0.1 04 0.2
A3 1.0 1.2 1.0 1.2 1.0
A4 0.0 0.0 0.0 1.0 0.0
A5 102 0.2 0.2 0.2 0.2
A1 0.1 0.2 0.3 04 0.2
A7 100 00 0.5 0.0 0.5
Ag |0 0 0 0 0.9999

Solugao: As linhas Ay, A3, Ag, Ag ndo sdo atribuigoes validas.

Uma tarefa é repetida até que o primeiro sucesso seja registrado. O espago amostral é formado por
Q ={1,2,3,...}, o conjunto dos inteiros nao-nulos e positivos representando o nimero de tentativas
até que o primeiro sucesso ocorra. Sugere-se que a chance do primeiro sucesso ocorrer na k-ésima
tentativa seja dada por P(k) de acordo com os possiveis modelos abaixo. Diga quais sdo modelos
probabilisticos validos.

(a) P(k) = (0.1)(0.9)*~! para k € Q

(b) P(k) = (0.1)(0.9)* para k € Q

(c) P(k) = (0.9)*~! para k € Q

(d) P(1) = 0.73 e P(k) = (0.03)(0.9)*~! para k > 2

Solugao: (a) e (d) sdo as corretas.

Um servidor s6 pode ter trés tipos diferentes de causas de falhas, A, B e C. As causas de falhas
nao co-ocorrem, apenas um tipo delas ocorre se existe uma falha. Suponha que A ocorra duas vezes
mais frequentemente que B, senda esta quatro mais frequente que C. Quando ocorre uma flaha,
qual é a probabilidade de que ela seja devida a cada um dos trés tipos?
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15.

Solucao: Como as falhas nao ocorrem, se houver uma falha deve ser causada por uma, e apenas
uma delas. Assim, supondo que ocorre uma falha, temos

1=P(AUBUC)=P(A) +P(B) +P(C)
Sabems que P(A) = 2P(B) e que P(B) = 4P(C'). Portanto,
1=2(4P(C)) +4P(C) + P(C) = 13P(C) .

Em conclusao, P(C) =1/13, P(B) = 4/13 e P(A) = 8/13.

Suponha que A, B e C sejam eventos tais que P(A) =1/4, P(B) =1/4 ¢ P(C) = 1/2. Além disso,
P(ANB)=1/8 e P(ANC) =1/8. Marque V ou F:

(a) PFAUBUC) =1
(b) P(BNC) =1/8
(¢c) P(AUB) =3/8
(d) P(AUBUC) <1
(e) P(C) >P(AUB)
(£) P(

fYP(ANBNC)<1/8

Solucao: FFVVVV
Na letra (e), 1/2 =P(C) > 1/4+1/4—-1/8 =P(A) + P(B) —P(AN B) = P(AU B). Na letra (f),
P(ANBNC)<P(ANB)=1/8.

Prove que, para dois eventos A; e Ay quaisquer, temos que P(A; U Ay) < P(A;) +P(Az). A seguir,
talvez usando inducéo, prove que para quaisquer n eventos Ay, As, ..., A,, temos que

P(AyUAyU...UA,) <P(4))+P(A2) +...+ P(4,) .

Solugao: Temos A3 U Ay = A U (Az N AS) com A; e Ay N A§ sendo disjuntos (verifique isto).
Assim,

]P)(Al U AQ) = P(Al U (A2 N A{i)) = ]P)(Al) + P(AQ N Ai) < P(Al) + ]P)(AQ)

Por inducao, suponha que o resultado valha para n eventos. Entao

P(AJUAsU...UA,UA, 1) SP(B)+ (Apy1) <P(A1) +P(A2) + ... +P(A,) +(Ant1)

B hip. inducao

16. The events A and B in a probability space have probabilities P(A) = 0.55 and P(B) = 0.62.

Why these events can not be mutually exclusive?

(a)

(b) What is the probability that the events occur together if they are independent?

(c) What is the probability that at least one of the two events will occur if they are independent?
)

(d) Suppose that P(B|A) = 0.5 and therefore, that A and B are not independent. What is the
probability that at least one of the two events will occur?
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Solugao: (a) If they were mutually exclusive, we should have P(AU B) = P(A) +P(B) = 0.55 +
0.62 > 1.0. No event can have probability larger than 1.0. (b) It will be the product of their
probabilities: 0.55%x0.62. (c¢) P(AUB) = P(A)+P(B)—P(ANB) = 0.55+0.62—0.55x0.62. (d) Again,
we want P(AU B) =P(A) + P(B) — P(AN B). We are given that 0.5 = P(B|A) = P(AN B)/P(A)
and therefore P(AN B) = 0.5 x 0.62 = 0.31. Hence, P(AU B) = 0.55 + 0.62 — 0.31.

Temos n objetos distintos e o interesse é na ordenagao aleatéria que um algoritmo produz desses
n objetos. Descreva um espaco amostral ) para este segundo experimento aleatério. Em seguida,
suponha que uma teoria sugere que o algoritmo produza ordenagoes completamente ao acaso, todas
com a mesma chance de ocorrer. Se isto for verdade, qual a atribuicao de probabilidades que deve
ser feita a cada resultado possivel?

Solucao: Sejam 1,2,...,n os indices dos objetos. Em matematica, existem duas maneiras comuns
para representar permutacaoes, ambas fazendo uso de uma letra grega, tal como o para representar
cada permutagao. A primeira delas é escrever os elementos a serem permutados numa linha, e a
nova ordem na linha debaixo. Por exemplo, se n = 5, uma permutagao seria

1 2 3 4 5
g =
2541 3

A linha debaixo mostra os valores da linha de cima permutados: 25413. Outra notagao tipica é usar
uma fungao bijetiva do conjunto X = {1,2,...,n} no préprio conjunto X. Assim, todo elemento
i € X possui uma imagem o(i). Sendo a fungao bijetiva, todo elemento j de X é a imagem de um
unico elemento ¢ de X (isto é, para todo j € X existe um tnico i € X tal que o(i) = j).

O espacgo amostral é composto pelo conjunto de todas as permutagoes dos n simbolos em X e isto é
representado por Sx. Este conjunto é um grupo, uma estrutura matematica com ricas propriedades
mas que nao vai ns interessar aqui.

A atribuicao de probabilidade é a mais simples de todas no caso de espagos amostrais finitos:
P(w) = 1/#K. Isto é, a probabilidade é constante e igual ao inverso da cardinalidade de €.

Considere a situacao do problema 17 onde os elementos do espago amostral sao constituidos pelas
permutacoes de n objetos distintos. Nem sempre vamos querer atribuir uma probabilidade igual
para todas as permutagoes possiveis. Filipe Arcanjo inspirou o artigo Almeida et al. (2019),
intitulado “Random Playlists Smoothly Commuting Between Styles”, onde este problema apareceu.
Filipe tinha uma playlist favorita com um nimero n muito grande de cancoes. Ele ouvia esta playlist
todos os dias ao ir e vir entre o trabalho e sua casa. Ele queria uma ordem diferente todos os dias
para nao ficar entediado ao ouvir a playlist. Além disso, ele queria que as transicoes entre musicas
sucessivas fosse suave, sem passar de um estilo musical para outro muito diferente numa tnica
transicao. Este problema pode ser pensado entao como o de selecionar ao acaso uma permutacao
das cangoes mas dando maior probabilidade deselecao aquelas fazem uma transicao suave. Seja x;
um vetor com caracteristicas numéricas que captam aspectos harmonicos, melddicos e de ritmo de
cada cancao. Defina uma funcao de distancia entre os pares de cancoes com base nestes vetores,

d(i, 7) = lxi = x4,

tal como a distancia euclidiana entre eles. Como isto pode ser usado para determinar uma atribuigao
de probabilidade para selecionar e ouvir uma ordencao das cangoes com a desejada caracteristica
de transicao suave entre os pares sucessivos de musicas?
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20.

Solugao: Seja o uma permutacao dos n simbolos. O elemento ¢ € Sx onde Sx é o conjunto de
todas as permutacoes dos n simbolos em X.Entao uma possibilidade é

P(o) = %exp (-5261(0(@' - 1),0—(i))> >0,
=2

onde S > 0 é uma constante positiva e K é um fator de normalizagdo, a soma sobre todas as
permutacoes do fator exponencial do lado direito acima.

Temos um conjunto de n simbolos distintos e queremos escolher k deles aleatoriamente em sequéncia
de forma que, em qualquer momento, os elementos disponiveis possuem a mesma probabilidade de
serem selecionados. Por exemplo, considere um conjunto de 4 musicas (a, b, ¢, d) dos quais queremos
escolher duas delas em sequéncia. Isto implica que a sequéncia bd deve ser considerada diferente
da sequéncia db. Ouvir o mesmo sub-conjunto de cangoes em diferentes ordens causam impressoes
diferentes. Especifique o espago amostral desse experimento e atribua probabilidades considerando
que todas as sequéncias de tamanho k dentre n objetos distintos possuem a mesma probabilidade
de serem selecionados.

Solugao: Seja S ={1,2,...,n}. O espaco amostral ) é
Q={w=(i1,...,1); ij € {1,2,...,n} e todos distintos}

Para atribuir probabilidades, precisamos contar o niimero de maneiras de escolher k objetos dentre
n deles. Pense em preencher cada uma das k posicoes em sequéncia. Para a primeira posicao temos
n objetos para escolher. Fixado um objeto qualquer nesta primeira posi¢ao,podemos escolher o
segundo dentre os n — 1 restantes. Assim, o nimero de sequéncias ordenadas de tamanho 2 com
n objetos é n(n — 1) = n!/(n — 2)!. Teremos n — 2 elementos para preencher as duas primeiras.
Assim, temos n(n — 1)(n — 2) sequéncias ordenadas de 3 posi¢oes dentre n objetos. De maneira
geral, teremos

n(n—l)...(n—(k—l)):m.

Assim, P(w) = 1/#Q = (n — k)!/nl.

Depois do exercicio 19 vocé pode fazer este. Vocé estd selecionando um sub-conjunto de k elementos
a partir de uma conjunto maior com n elementos distintos mas sua ordenagao é irrelevante. S6
interessa o sub-conjunto de k elementos selecionados e nao uma ordem associada a eles. Nao importa
se a selecao tenha sido feita sequencialmente ou se foi tomada como um lote de k elementos tirads
ao mesmo tempo de dentre os n disponiveis. Obtenha espaco amostral €2 e uma atribuicao de
probabilidade tal que P(w) é um valor constante.

Solugao: Se estivéssemos selecionando uma amostra ordenada de k elementos dentre n estariamos
na situagao do exercicio 19 e neste caso existem n!/(n — k)! resultados possiveis. Mas a ordem nao-
importa e contamos vérias vezes o mesmo sub-conjunto mudando sua ordem. Portanto, neste
problema onde a ordem naoimporta o nimero anterior n!/(n — k)! deve ser reduzido. Acontece que
cada conjunto nao-ordenado de k elementos distintos pode ser ordenado de k! maneiras diferentes.
Isto é,

# seq ordenadas = # seq nao-ordenadas X k!
n!
(n—k)!

= # seq nao-ordenadas X k!



Esta contagem aparece tantas vezes em matematica que acabarecebendo um simbolo e nome espe-

n n!
(k):k! (n—k)!

Portanto, se w é um dos subconjuntos de tamanho k dentre n elementos temos

cial, o coeficiente binomial:

P(w):(n_k)! k1

C()

21. Suponha que os trés digitos I, 2 e 3 sejam escritos em ordem aleatériade forma que toda permutacgao

tem a mesma chance de ser escolhida. (a) Qual é a probabilidade de que pelo menos um dos digitos
ocupe seu lugar natural? Isto é, qual a probabilidade de que 1 ocupe a primeira posi¢ao ou que
2 ocupe a segunda ou que 3 ocupe a terceira posicao? Pode ser mais facil obter a probabilidade
do evento cmplementar e mais tarde subtrair de 1 esta probabilidade encontrada.(b) Repita esta
andlise com os digitos 1, 2, 3 e 4. (c) Procure derivar uma férmula recursiva para obter o resultado
para os digitos 1,2, 3,...,n em funcao dos resultados para n — 1,ng,....

Solugao: (a) Temos Q2 = Sx onde X = {1,2,3} (conjunto das permutagoes de elementos de X)
e P(w) =1/3! = 1/6. Seja A3 o evento em que nenhum dos trés digitos ocupa seu lugar natural.
Isto significa que A3 = {(2,3,1),(3,1,2)} e portanto P(A) = 2/6 = 1/3 e a probabilidade desejada
é1—P(A) =2/3. Vamos chamar de D3 = # A3 = 2, a cardinalidade de Aj.

(b) Temos Q = Sx onde X = {1,2,3,4} e P(w) = 1/4! = 1/24. Vamos agora obter A4, o conjunto
das permutacoes que atendem o critério de nao possuirem digitos em suas posigoes naturais. A
simples enumeracao de todas as 16 permutagoes possiveis permite selecionar aquelas nove que sao
as validas: Ayq = {4312,2413,2341, 4123, 3421, 3142,2143,3412,4321}. Seis delas podem ser obtidas
a partir de As. Cada uma das duas permutagoes em As gera 3 novas configuragoes em A4. Considere
inicialmente a permutagao 2 3 1 € A3. Precisamos introduzir uma posi¢ao adicional a ser ocupada
pelo digito 4. Coloque inicialmente esta posicao no final da sequéncia: 2 3 1 4. Esta sequéncia nao
¢é vélida pois 4 ocupa sua posicao natural. Entretanto, se trocarmos as posicoes desse digito 4 com
qualquer um dos outros digitos na sequéncia teremos uma permutacao valida. De fato, trocando os
digitos da la. posi¢do com a 4a. temos 4 3 1 2. Trocando a 2a e a 4a, temos 2 4 1 3 e trocando a
3a. e ada. temos 2 3 4 1. Em seguida, usando o outro elemento de A3 e completando a 4a. posigao
com o digito 4, 3 1 2 4, basta trocar o digito 4 com cada um das trés posicoes anteriores obtendo:
4123 ao0trocar a la. ea4a., 34 21 ao trocar a 2a. e a 4a., 3 14 2 ao trocar a 3a. e a 4a.

Para completar A, faltam as permutagoes 4321,3412,2143. Elas sdo obtidas da seguite forma.
Deixe 1 na sua posicao natural e os demais digitos fora das posicoes naturais: 1 3 2 7. Coloque 1
na 4a. posicao e introduza 4 na la. obtendo: 4 3 2 1. Comecando com 3 2 1 ? troque o 2 com 4
criando 3 4 1 2. Finalmente, comegando com 2 1 3 ? troque o 3 com 4 criando 2 1 4 3.

A probabilidade de que pelo menos um dos digitos ocupe seu lugar natural é entao 1 —9/24 = 5/8.

(c) Para generalizar, seja D,_1 o nimero de elementos em A,_;. Acrescente uma posigao no final
para o digito n e troque cada um dos n — 1 digitos nos elementos de As com n. Isto resulta em
(n—1)D,,_; elements validos para A,. Os elementos vélidos restantes sao obtidos usando os D,,_9
elementos e trocando o digito n com cada um dos n — 1 em suas posi¢oes naturais smando entao
(n — 1)C5 elementos vélidos em A,,. Portanto, terminamos com D,, = (n — 1)(Dp—1 + Dp—2).
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Este problema é chamado de derangement (desarranjo). Uma andlise mais aprofundada mostra
que a probabilidade de nao haver coincidéncia com n digitos converge muito rapidamente para
1/e ~ 0.37 & medida que n aumenta. O simbolo e designa o nimero de Euler, e ~ 2.71828. Com
n = 5 ja temos a probabilidade igual a 0.37 quando arrendondamos para duas casas decimais.
Assim, curiosamente, a chance de desarranjo nao depende de n. Seja n grande ou pequeno (maior
que 5), a probabilidade é praticamente constante e igual a 1/e. Talvez intuitivamente esperdssemos
que, com n bem grande, alguma coincidéncia fosse acontecer. Isto nao é verdade. Este problema
aparece sob vérias versoes diferentes. Por exemplo, n individuos entregam seus chapéus (o problema
é antigo) na entrada e, na saida, os chapéus sao devolvidos de forma completamente aleatéria. Qual
a probabilidade de que ninguém tenha recebido seu préprio chapéu?

Sejam Q = [0,1] e f(w) uma densidade de probabilidade. Marque V' ou F' nas afirmagoes abaixo:

e P([a,b]) =b—a se [a,b] C[0,1].

e Como a integral de f(w) sobre [0,1] é igual a 1 temos f(w) < 1 para todo w € [0, 1].

Podemos ter f(w) > 1 para todo w € [0, 1].
x) pode ser descontinua.

)
x) nao pode ter dois ou mais pontos de maximo.
x) = 2z é uma densidade valida.

)

I
I
I
I

r) = 12(x — 0.5)% é uma densidade valida.

Nao podemos ter f(x) — oo quando x — 1 porqué a densidade deve integrar 1 no intervalo
[0, 1].

Solucao: VFFVFVVF

Considere uma sequéncia infinita de lancamentos sucessivos de uma moeda. Apresente uma repre-
sentacao {2 para os resultados possiveis desse experimento aletorio conceitual. Nessa representacao,
diga quais sdo os subconjuntos associados com os seguinte eventos: (a) o nimero de langamentos
necessarios até o aparecimento da primeira cara é maior que 2; (b) os cinco primeiros langamentos
sao cara; (c) o ndmero total de caras é finito; (d) a tltima cara da sequéncia aparece antes do
lancamento 500;

Solugao: Q = {(a1,a2,...):a; €{0,1}} = {0,1}*>. Nesta representagio, a; é o resultado do
i-ésimo langamento e o valor a; = 0 significa que saiu coroa, e o valor 1 significa cara. (a) E =
{weQiai+ar=0}; (b)) E={weQ:iar+ar+...+a5=5};(c) E={weQ:)  a <oo};(d)
E={weQ:a;=0VYi>500}.

Uma moeda honesta é langada repetidamente até observarmos a primeira coroa. Apresente uma
representagao ) para os resultados possiveis desse experimento aletério conceitual e diga qual a
probabilidade de cada elemento w € ). A seguir, obtenha as probabilidades da ocorréncia dos
seguintes eventos: (a) a primeira coroa aparece num lan¢amento par. (b) a primeira coroa aparece

num langamento impar. (c) a primeira coroa aparece depois do terceiro langamento.
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Solugao: € = {1,01,001,0001,00001,...}. Nesta representagao, 0 siginifca cara e 1 representa
coroa. Para w € Q temos P(w) = 1/2" onde n é o comprimento do string w. (a) > 5o, 1/2% =
1/441/424+1/454 ... = 1/41_711/4 =1/3. (b) Como o primeiro langamento de coroa tem de ser par
ou fmpar e nao pode ser os dois a0 mesmo tempo, esse evento é o complementar do evento em (a), o
qual tem probabilidade 1/3. Assim, este evento possui probabilidade 1—1/3 = 2/3. (c¢) Novamente,
usando a ideia de evento complementar, a probabilidade de que a primeira coroa ndo apareca
depois do terceiro langamento é a probabilidade de que ela apareca no primeiro, segundo ou terceiro
lancamentos e essas realizacdes sdo disjuntas. Assim, a probabilidade é 1—(1/4+1/42+1/43) = 0.67.

Esta questao foi feita no Quora, https://bit. ly/2FsRLHs. E possivel gerar um tridangulo
aleatério, uniformemente escolhido de todas as possiveis formas triangulares? Isto é, como gerar
triangulos de forma que nenhum deles tenha mais chance de ser selecionado que nenhum outro.

Solucao: Esta solugao é a resposta dada por Alon Amit https://www.quora.com/profile/
Alon-Amit no Quora (ver link acima). Yes.

The most reasonable interpretation of “possible triangle shapes” is “triangles up to similarity”.
Similar triangles have the same “shape”, while non-similar ones don’t.

(If you wish to also include the size of the triangle then the answer becomes No. It also doesn’t seem
reasonable to interpret the question in this way.) Similarly classes of triangles are determined by

the angles, and the angles are numbers between 0 and 7. To choose a random triangle uniformly,
we need to uniformly pick three angles «, 5,y with o+ 8+~ = w. This can be done in many ways,
but here’s a very simple and concrete one.

In order to ensure we aren’t skewing and double-counting, we’ll force the angles to be ordered
« > [ > ~. This isn’t strictly necessary, but it’s easier to visualize the space of options.

We don’t need to pick v: it’s simply m — a — 8. So we just need to pick a and 3, ensuring that:
0<pf<a<w

BST{'—O[,

to ensure that v > 0
T — S 2/8 )

to ensure that v < .

Therefore, the space of allowed pairs («, 3) looks like the (first triangle in the left hand side of
Figure 2.2). Any point inside the red region corresponds to a legal pair (o, 3), where « is the
z-coordinate and 3 is the y-coordinate. The third angle, -, is of course 7 — o — S.

Don’t worry about the fact that some inequalities are closed and some open. We’re sampling from
a continuum, and the edges have probability (measure) 0. Specifically, some of the points marked
in this diagram don’t correspond to actual triangle (which ones do?)

How do you sample inside such a polygon? There are many methods, but perhaps the easiest one
is to randomly pick a point inside the square containing our region and reject it if it falls outside
the polygon.

In this view, it’s easy to answer questions like: what is the probability that a random triangle
is acute? Given our approach to defining the sample space, the answer is 1/4, as you can easily
discover (ver o lado direito da Figura 2.2).
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Figura 2.2: Um espago amostral para selecionar tridngulos aleatérios com ditribuica uniforme. A partir

desse espaco, podemos responder a questoes tais como: what is the probability that a random triangle is

acute? E a proporc¢ao da area hachurada em relagao ao triangulo 2.

27.

There are many other methods to choose “random triangles”, and they usually lead to different
probability measures on the space of triangles. Our approach focuses on uniform sampling from
the space of all possible combinations of angles.

Seja [0, 1]? o quadrado de drea unitdria no plano. Queremos selecionar aleatoriamente sub-quadrados
da forma [0, X]? dentro de [0,1]2. E claro que o problem se resume a selecionar o lado X aleatori-
amente. Entretanto, queremos selecionar de forma que a area do quadrado tenha uma distribuicao
uniforme sobre o conjunto de &reas possiveis. Isto é, seja Q = X? a drea do quadrado selecionado
de alguma forma. Temos @ € [0,1]. Queremos que P(Q € (a,b)) = b—apara 0 < a < b < 1.
Por exemplo, queremos selecionar quadrados de forma que P(Q < 1/2) = P(Q > 1/2) e que
P(Q<1/4)=P(Q >3/4) =P(Q € (1/4,1/2).

Alguém sugere uma maneira simples: selecione o lado X € [0,1] com distribuigdo uniforme. Por
exemplo, usando R, use runif (1). Mostre que isto nao gera quadrados com distribuicao uniforme
(os quadrados gerados tenderao a ser pequenos). (DICA: Mostre que P(Q < 1/2) # P(Q > 1/2)).
DESAFIO EXTRA: Procure descobrir com que densidade vocé deveria selecionar X de forma que
os quadrados tenham &rea escolhida uniformemente em [0, 1].

Solugdo: Temos
P(Q <1/2) =P(X?<1/2) =P(X <1/v2)=1/v2=0.71
enquanto que
P(Q>1/2)=P(X?>1/2)=P(X >1/v2)=1-1/v/2=0.29

Parece entao que devemos selecionar os X pequenos (digamos, menores que 1/2) com menos chance
do que os X grandes. Como fazer isto? Seja a € [0, 1] um valor qualquer de érea para o quadrado
selecionado. Queremos que P(X? < a) = a para todo a. Isto é, queremos P(X < \/a) = a. Se
selecionamos o lado X com a densidade f(z), queremos entao que

a:P(X<\/a):/0af(x)dx

Vamos dar um chute buscando uma densidade de forma polinomial: f(z) = cz*. Quais deveriam ser
os valores de c e k, se é que eles existem? Substituindo esta expressao hipotetica para a densidade,

a= /Oaf(:):)dac—/Oacavkdav—c(\léa_’)_klJrl

devemos ter:
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Como isto deve valer para todo a, temos de ter os expoentes de a iguais: 1 = (k+ 1)/2, o que
implica que £ = 1. Assim, o problema se reduz a ter a = ca/(1 4+ 1) para todo a, o que implica
que ¢ = 2. De fato, f(z) = 2z é uma desnidade valida. Além disso, se vocé calcular mathbbP(Q <
a) =P(X < /a), vocé vai encontrar esta probabilidade igual a a, como desejado.

Probabilidade Condicional e Independéncia

Se A C B temos P(B|A) =1 > P(B). Assim, a ocorréncia de A aumenta a probabilidade de B
para seu valor maximo possivel, que é 1. Temos certeza que B ocorreu pois A é parte de B. E o
contrario? Mostre que, se B C A, podemos concluir que P(B|A) > P(B). Isto é, se B é parte de A,
saber que A ocorreu tende a aumentar a chance de B ocorrer. Intuitivamente, se B for uma grande
parte de A devemos ter P(B|A) ~ 1.

. No momento do diagnéstico de um cancer de estomago para um paciente qualquer, definimos o

evento B como sendo o evento em que o paciente tem pelo menos mais 1 ano de vida. Suponha
que P(B) = 0.70. Seja A o evento em que um paciente de cancer de estomago tenha uma autépsia
confirmando que o tumor é benigno. Imaginamos que P(B|A) seja maior que 0.70. Explique como as
probabilidades P(B) e P(B|A) poderiam ser estimadas com base numa grande amostra de pacientes
de cancer de estomago. Que frequéncias relativas vocé usaria para estimé-las?

Um ponto aleatério (x,y) é escolhido completamente ao acaso no disco de raio unitario centrado
na origem. Temos Q = {(z,y) € R? : 22 + y? < 1} e a probabilidade de um evento E C Q é dada
por P(E) = ( drea de E)/( area do circulo ) = |E|/m. Seja A o evento “distancia entre o ponto
escolhido e a origem é menor que 1/2” e B o evento “a coordenada = do ponto escolhido é maior
que y”. Mostre que os eventos A e B sao independentes. Veja que nao é 6bvio que isto seja verdade,
precisamos verificar matematicamente que a definicdo de independéncia é véalida neste exemplo.

Marque V ou F' nas afirmacoes abaixo:

e Se ANB = entdao A e B sao eventos independentes.
e Se A C B entdao A e B sdo eventos independentes.

e Se P(B|A) = P(B) dizemos que B é independente de A. A ordem dos eventos nao importa
pois isto implica que P(A|B) = P(A) e portanto que B também é independente de A.

e P(BJA) > P(B) se, e somente se, P(AN B) > P(B) x P(A).

Mostre que, se P(A) = 0, entdao A é independente de qualquer outro evento B. Isto faz sentido

intuitivamente?

Um evento A é independente de si mesmo se, e somente se, P(A) = 0 ou P(A) = 1. Prove isto em
uma linha.

Se A e B sao independentes entdo A e B¢ também sao independentes (e também A€ e B, e ainda
A€ e B€). Prove isto usando que A = (AN B€) U (AN B). Aproveite e responda: A e A° sdo
independentes?

Se A, B,C sdo eventos mutuamente independentes, mostre que C' é independente de A N B, de
AN B¢ de A°N B€. Isto é, mostre que, por exemplo, P(AN BN C) =P(A)P(B)P(C), etc.

Usando o resultado acima, mostre que, se A, B,C sdo eventos mutuamente independentes, C' é
independente de A U B. Dica: escreva AU B como uma intersegdo de conjuntos.
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Sabemos que P(B|A) pode ter uma valor muito diferente de P(A|B). Entretanto, existe uma
amrracao entre estes valores. Mostre que, se B é um evento 5 vezes mais provavel que outro evento
A, entdao P(B|A) também é 5 vezes maior que P(A|B). De maneira geral, mostre que

P(B|A) P(B)

P(A|B) P(A)
Responda V ou F' no contexto de testes de diagnéstico do virus HIV:

e Sensitividade é a probabilidade de que um individuo tenha TESTE+ e HIV +.
e Sensitividade é a probabilidade de que um individuo com HIV 4+ tenha resultado TEST E+.
e Sensitividade é a probabilidade de que um individuo com resultado TEST E+ seja HIV +.

e Falso positivo ocorre se o teste indica positivo quando o paciente é HIV +

Considere dois eventos A e B. Dizemos que B aumenta as chances de A, denotado B " A, se
P(A|B) > P(A), isto é, se saber que B ocorreu aumenta a probabilidade de ocorrer A. Da mesma
forma, dizemos que B diminui as chances de A, denotada B \ A, se P(A|B) < P(A). As afirmagoes
a seguir sao verdadeiras ou falsas? Justificar suas respostas.

e Se B M A, entao A / B (isto é, a propriedade de um evento aumentar a probabilidade de
outro é simétrica)

e SeB "AeA 7C,entao B / C (isto é, a propriedade de um evento aumentar a probabili-
dade de outro é transitiva)

e Se B M A, entao B\, A (isto é, se B aumenta a chance de A, ele diminui a chance de néo-A)

e AN, A (a propriedade reflexiva vale)

Um sistema é chamado “k out of n” se funcionar de forma confiavel quando pelo menos k de seus
n componentes estao trabalhando; Em outras palavras, o sistema usa redundancia para garan-
tir robustez a falha. Como exemplo, considere uma matriz redundante de discos de baixo custo
(RAID) na qual se usa n discos para armazenar uma cole¢cao de dados. Enquanto pelo menos
k estiverem funcionando, os dados podem ser lidos corretamente. Suponha que os discos falhem
independentemente e que a probabilidade de um falha de disco individual em um periodo de um
ano é p.

e (a) Suponha que temos uma matriz de discos n = 3 que pode sobreviver a uma falha (k = 2). O
que é o nimero esperado de falhas de disco em um ano? Em funcao de p, qual é a probabilidade
que toda a matriz continuara a funcionar sem perda de dados apés um ano?

e (b) Suponha que temos um array de discos n = 5 que pode sobreviver a duas falhas (k = 3). O
que é numero esperado de falhas de disco em um ano? Em fungao de p, qual é a probabilidade
que toda a matriz continuara a funcionar sem perda de dados apds um ano?

e (c) Suponha p = 0.1. Qual é mais confidvel (tem maior probabilidade de nao perder nenhum
dado em um ano), o RAID da parte (a) ou parte (b)?

e (d) Suponha p = 0.6. Qual é mais confidvel, o RAID da parte (a) ou parte (b)?

A Figura 2.3 mostra exemplos de falso positivo e falso negativo. Explique estes erros em termos de
probabilidades condicionais P(A|B) explicando o que sao os eventos A e B em cada um dos dois
erros.

Leia o delicioso artigo Chances are sobre a regra de Bayes do matemdtico Steven Strogatz no
New York Times: http://opinionator.blogs.nytimes.com/2010/04/25/chances-are/. Ste-
ven é bastante conhecido por seu artigo Collective dynamics of small-world networks na revista
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Figura 2.3: Falso positivo e falso negativo

Nature em 1998. Como uma medida do impacto deste artigo, ele foi o mais citado sobre redes
entre 1998 e 2008 considerando todas as disciplinas cientificas, bem como o sexto mais citado -
sobre qualquer tema - em fisica. Usando a regra de Bayes, verifique que a resposta de 9% para
P(cancer| mamografia +) é correta.

Sejam A, B e C trés eventos com probabilidade positiva (isto e’, P(4) > 0, P(B) > 0 e P(C) > 0).
Mostre que
P(ANBNC)=PABNC)P(B|C)P(C)

Dica: Faca BN C = D e aplique a definigao de probabilidade condicional em P(A N D). A seguir,
aplique de novo esta definicao em P(D) =P(BNC)

Mostre que P(AN B) = P(A)P(B) implica que P(A|B) =P(A).

Definimos A 1 B|C se P(A|BNC) = P(A|C). Mostre que A | B|C se, e somente se, P(ANB|C) =
P(A|C) P(B|C).

Problema de Monty Hall. Leia a descricao deste problema em http://en.wikipedia.org/wiki/
Monty_Hall_problem. Faca um pequeno exercicio de simulagdo em que voce repete o jogo um
grande nimero de vezes (100 mil, digamos) e testa as duas possiveis estratégias em cada jogo. Um
jogador SEMPRE troca as portas. O outro nunca troca. Verique qual estratégia é mais eficiente
(quem vence mais frequentemente)

Da Wikipedia: http://en.wikipedia.org/wiki/Three_Prisoners_problem. Three prisoners, A,
B and C, are in separate cells and sentenced to death. The governor has selected one of them at
random to be pardoned. The warden knows which one is pardoned, but is not allowed to tell.
Prisoner A begs the warden to let him know the identity of one of the others who is going to be
executed. ”If B is to be pardoned, give me C’s name. If C is to be pardoned, give me B’s name.
And if I'm to be pardoned, flip a coin to decide whether to name B or C.”

The warden tells A that B is to be executed. Prisoner A is pleased because he believes that his
probability of surviving has gone up from 1/3 to 1/2, as it is now between him and C. Prisoner A
secretly tells C the news, who is also pleased, because he reasons that A still has a chance of 1/3
to be the pardoned one, but his chance has gone up to 2/3. What is the correct answer?

Faca um estudo de simulagao similar ao do problema anterior para achar a resposta de maneira
empfirica.

Da wikipedia: http://en.wikipedia.org/wiki/Boy_or_Girl_paradox. Martin Gardner published
one of the earliest variants of the Boy or Girl paradox in Scientific American. He phrased the pa-
radox as follows:



e Mr. Jones has two children. The older child is a girl. What is the probability that both
children are girls?

e Mr. Smith has two children. At least one of them is a boy. What is the probability that both
children are boys?

22. Do Buzz de Terence Tao, https://profiles.google.com/114134834346472219368/buzz/G5DnA8EL7D3.
Another interesting place where one can contrast classical deduction with Bayesian deduction is
with regard to taking converses. In classical logic, if one knows that A implies B, one cannot then
deduce that B implies A. However, in Bayesian probability, if one knows that the presence of A
elevates the probability that B is true, then an observation of B will conversely elevate the prior
probability that A is true, thanks to Bayes’ formula: if P(B|A) > P(B), then P(A|B) > P(A).

Prove este resultado.

23. Usando probabilidade para fazer perguntas delicadas num questionario. Exemplos de perguntas
delicadas para as quais queremos saber a probabilidade de uma resposta SIM:

e Voceé ja fumou baseado alguma vez?
e Voceé ja roubou algum objeto numa loja?

e Vocé é a favor do aborto? Etc.

O ENTREVISTADO rola um dado bem balanceado e NAO MOSTRA O RESULTADO AO EN-
TREVISTADOR. Se sair 1, 2 ou 3, o entrevistado responde SIM ou NAO & pergunta delicada. Se
sair 4, 5 ou 6, ele responde SIM ou NAO & seguinte pergunta alternativa: o dltimo digito de sua
conta bancdria (ou de sua identidade) é par?

Quando o entrevistador ouve a resposta (digamos, SIM), ele nao sabe a qual das duas perguntas o
entrevistado esta respondendo, se a delicada ou aquela sobre o digito.

Suponha que a proporcao de entrevistados respondendo SIM ao entrevistador foi 0.32. A amostra
e’ bastante grande de modo que supomos P(SIM) ~ 0.32.

Use a lei de probabilidade total para expandir P(STM) em fungao dos dois resultados possiveis do
dado e sugira uma estimativa para a probabilidade P(SIM||dado = 1,2, 3).

24. Suppose that the probability of mothers being hypertensive (high blood pressure) is 0.1 and fathers
is 0.2. Find the probability of a child’s parents both being hypertensive, assuming both events are
independent. Note: we would expect these two events to be independent if the primary determinants
of hypertensivity were genetic, however if the primary determinants were environmental then we
might expect the two events not to be independent.

25. Num teste de diagndstico, a sensibilidade é a probabilidade de que o teste seja positivo dado que o
individuo realmente seja doente: P(7"+ |D+). Um sin6nimo muito usado para esta probabilidade
no contexto de recuperagao de informacéo é recall. As afirmativas abaixo foram ouvidas pelo autor
em diferentes ocasioes. Explique cada uma das sentencas.

e “Aumentar muito o recall é praticamente nao deixar passar um caso positivo”.
e Uma alta sensibilidade significa uma alta taxa de “verdadeiros positivos”.

e Em recuperacao de informacao, recall é a proporcao de documentos recuperados que sao
relevantes. Coloque este problema no arcabouco de sensibilidade (isto é, faca a equivaléncia
com “teste positivo”, “doente”, etc.)



2.3 Classificacao e probabilidade condicional

O pacote rpart do R implementa o algoritmo de arvores de classificacao. O objetivo dos préximos
exercicios é manusear algumas fungdes basicas do pacote. Uma excelente (e mais completa) introdugao
¢é a vignette descrevendo o uso do pacote em https://cran.r-project.org/web/packages/rpart/.
Caso vocé prefira fazer este problema usando Python, pegue o dataset stagec descrito abaixo no site
http://www-eio.upc.edu/~pau/cms/rdata/datasets.html.

1. Comece instalando o pacote rpart e a seguir carregand-o na sessao de trabalho. Peca informacao

sobre o dataset stagec:

library(rpart) # carregue o pacote rpart
help(stagec) # info sobre dataset stagec do pacote rpart

Este é um conjunto de dados de 146 pacientes com cancer de prostata em estagio C'. Este cancer é
potencialmente curdvel e um dos procedimentos é a remocao cirurgica da area afetada. Infelizmente,
para alguns dos pacientes a doenca retorna. O principal interesse ao coletar esses dados é descobrir

quais os fatores associados com a recidiva (ou retorno) do cancer.

A principal varidvel é o status da progressdo do cancer, pgstat, uma varidvel bindria indicando se
o cancer retornou ou nao ao final do periodo de acompanhamento pds-cirirgico. A variavel pgtime
é o tempo que levou para o cancer retornar (nos casos em que pgstat = 1) ou o tempo do dltimo
follow-up ou acompanhamento (nos casos em que pgstat = 0). Esta varidvel pgtime nao serd

usada neste exercicio.

As demais varidveis no dataset estao potencialmente associadas com o retorno do cancer.

e age: idade, em anos
e ecet: se o paciente recebeu terapia endécrina precocemente (=2) ou nao (=1).

e g2: porcentagem de células na fase G2 medida por citometria de fluxo (técnica usada para
medir caracterAsticas fisicas e quimicas de células). A fase G2 é das fases da divisdo celular
por mitose e a divisao celular desregulada ¢é a causa central de canceres.

e grade: grau de desenvolvimento do tumor no momento da cirurgia medido pelo sistema Far-

TOow.

e gleason: outra medida do grau de desenvolvimento do tumor no momento da cirurgia, pelo

sistema Gleason.

e ploidy: o status pléide do sistema via citometria de fluxo com valores iguais a: dipléide
(células normais) e dois tipos de células com cromossomos irregulares e precursoras de células
cancerigenas: tetrapléide e aneuploide.

Queremos descobrir quais desses fatores afetam a probabilidade de pgstat = 1. Queremos mais
que isto. Queremos descobrir também como eles afetam esta probabilidade. Nao um de cada vez,
separadamente, mas todos eles ao mesmo tempo, agindo talvez de forma interativa e em sinergia.

Vamos denotar pgstat por Y. Queremos saber que fatores (ou varidveis) X, Xo, ... fazem com
que P(Y =1) #P(Y = 1| X3, X»,...) e como esta probabilidade é alterada. Para isto, vocé vai usar
rpart com o cédigo abaixo. O primeiro comando substitui a varidvel bindria e numérica pgstat
por outra com o mesmo nome mas estruturada como um fator. Os seus valores possivei sdao os
rétulos Prog (progressao ou retorno do cancer) e No (sem retorno ao fim do estudo). Em seguida,
fixamos a semente para a geracao de nimeros aleatorios. Com indx temos os indices da amostra
de treinamento (a ser usada para criacao da arvore) e de teste (para avaliar a qualidade do modelo
gerado). Finalmente, chamamos a fungao rpart e plotamos o resultado bem como printamos a
arvore com os detalhes da segmentacao recursiva realizada.
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Figura 2.4: 11.

stagec$pgstat <- factor(stagec$pgstat, levels = 0:1, labels = c("No", "Prog"))
set.seed(35) # semente aleatoria

ntreino = as.integer(0.8 * nrow(stagec))

indx = sample(l:nrow(stagec), ntreino)

stagec_treino = stagec[indx,] # amostra de treinamento

stagec_teste = stagec[-indx,] # amostra de teste, para avaliar arvore

arv_fit <- rpart(pgstat ~ age + eet + g2 + grade + gleason + ploidy,
data = stagec_treino, method = ’class’) # ajute com rpart

# resultados

printcp(arv_fit) # exibir os resultados

summary (arv_fit) # resumo detalhado das segmentacoes

# plot da arvore

plot(arv_fit)

text(arv_fit, cex=0.7) # textos nos ramos

# um plot mais informativo

plot(arv_fit, uniform=TRUE, main="Cancer de Prostata")

text(arv_fit, use.n=TRUE, all=TRUE, cex=.7)

O resultado grafico deve ser exatamente a drvore de classificagao no lado esquerdo da Figura 2.4.

Com base nesta figura e nos resultados da arvore, responda:

e Quais variaveis foram usadas e quais nao foram usadas na arvore obtida pela segmentacao

recursiva do rpart?

e Forneca estimativas de probabilidades condicionais para as folhas da arvore. Isto é, forneca

uma estimativa numérica para P(Y = 1|X1, Xs,...) em cada folha (né terminal) da arvore

especificando o conjunto de atributos X’s e seus valores em cada né final.

e V ou F: Como a eet ndo apareceu na arvore, isto sugere (pois nao é uma prova definitiva)

que:
(a) P(Y =1) =P(Y = 1] eet = yes) = P(Y = 1| eet = no);

(b) Os eventos eet = yes e eet = no sao independentes do evento ¥ = 1.

e Para avaliar a qualidade do modelo gerado, use os dados selecionados em stagec_teste (20%
do total) e que nao foram usados na construgao da arvore. Eles imitam os novos casos que
chegarao no futuro ao usar a arvore. Verifique os erros cometidos com os comandos abaixo:



# Classe predita para cada exemplo do conjunto de teste
fitted.results <- predict(arv_fit, newdata=stagec_teste, type=’class’)
head(fitted.results)

# Tabela de confusao - erros e acertos

table(fitted.results, stagec_teste$pgstat)

Calcule valores aproximados para as seguintes probabilidades: (a) probabilidade de predizer
a classificagao correta, chamada de acurdcia do método. (resp: 2/3) (b) dado que um caso foi
predito como Prog, a probabilidade de que ele realmente seja Prog, chamada de precisao do
método. (resp: 3/5) (c) dado que um caso realmente é Prog, obter a probabilidade de que ele
seja predito pela drvore como Prog, chamada de revocagao (ou recall) do método. (resp: 1/2)

Com uma amostra de dados pequena como neste exemplo, as arvores sao instaveis. Amos-
tras ligeiramente diferentes podem levar a arvores muito distintas. Isto é consequéncia da
caracteristica gulosa (greedy) do algoritmo e do alto impacto das primeiras segmentagoes no
restante da drvore. Para verificar isto, refaca a drvore com outra amostra de 80% dos dados
resetando set.seed(12) e repetindo os comandos seguintes. Vocé deve obter a arvore do lado
direito da Figura 2.4. Compare com a arvore do lado esquerdo. Uma excelente solucao para
este problema de instabailidade é usar as florestas aleatdrias, uma colecao de arvores baseada
em muitas sub-amostras dos dados originais.

Para entender melhor por que as arvores sao instaveis, use table (stagec$grade, stagec$gleason)
para fazer uma tabela cruzando os valores das varidveis grade e gleason do dataframe original.
Estas duas varidveis sao formas diferentes de medir o estdgio do mesmo cancer no momento da
cirurgia. Podemos esperar que eles produzam resultados similares de alguma forma. Verifique

que de fato, a “diagonal” da tabela gerada contém a maior parte dos dados da matriz original.

Isto significa que uma das varidveis é capaz de predizer muito bem a outra. Isto também pode
significar que se uma dessas variaveis é escolhida é bem possivel que a outra nao traga muita
informacao adicional e seja descartada pela arvore. Pequenas mudancas nos dados podem
fazer a escolha pender para uma dessas varidveis em detrimento da outra.






Capitulo 3

Variaveis Aleatorias

T
T

Esta lista de exercicios visa ao aprendizado de algumas das caracteristicas das principais distribuicoes
de probabilidade. Vocé vai se familiarizar com seus principais aspectos visuais e quantitativos, vai apren-
der a simular estas distribuicées no R e a verificar se um conjunto de dados segue uma determinada
distribuicao usando o teste qui-quadrado e de Kolmogorov.

Vamos aprender um poucos sobre as seguintes distribuicoes:

e Discretas: binomial, Poisson, geométrica, Pareto-Zipf
e Continuas: uniforme, gaussiana (ou normal), log-normal, gama, beta, Pareto.

O R possui um conjunto de fungoes para trabalhar com as principais distribuicoes de probabilidade.
Todas operam com uma sintaxe similar. O primeiro caracter do nome da funcao identifica o que vocé
quer fazer com ela: gerar niimeros aleatdrios, calcular uma probabilidade, uma probabilidade acumulada
ou um quantil. Os caracteres seguinte identificam a distribuicao.

Por exemplo, se quisermos trabalhar com a distribuicao binomial com n = 10 repeticéoes e probabi-
lidade de sucesso € = 0.15 podemos usar:

e rbinom(13, 20, 0.15): gera um conjunto de 13 inteiros aleatérios, cada um deles seguindo uma
binomial Bin(n = 20, theta = 0.15).

e dbinom(13, 20, 0.15): se X ~ Bin(20,015), este comando calcula a fungdo de probabilidade
P(X = 13) = p(13) para as v.a’s discretas. Podemos passar vetores como argumento. Por exemplo,
dbinom(c(10, 11, 12), 20, 0.15) retorna o vetor (P(X = 10),P(X =11),P(X = 12)).

e pbinom(13, 20, 0.15): Calcula a funcao de probabilidade acumulada F no ponto 13. Isto é,
calcula F(13) = P(X < 13) onde X ~ Bin(20,015).
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pbinom(0.20, 20, 0.15): Calcula o quantil z associado com a de probabilidade acumulada 0.20.
Isto é, calcula o valor de z tal que F(z) = P(X < x) = 0.20. Como X é uma v.a. discreta que acu-
mula probabilidades aos saltos, a probabilidade acumulada até x pode ser apenas aproximadamente
igual a 0.20.

As fungoes correspondentes para uma gaussiana sdo rnorm, dnorm, pnorm, gnorm. Se quisermos

trabalhar com uma gaussiana N (u, 0?), com valor esperado p = 10 e sigma = 2:

rnorm (100, 10, 2): gera um conjunto de 100 valores aleatérios independentes de uma v.a. X ~
N(10,22).

dnorm(11.25, 10, 2): retorna o valor da densidade f(z) de N(10,2) no ponto x = 11.25. Isto é,
retorna f(11.25). O comando dnorm(c(11.25, 13.15), 10, 2) retona um vetor com os valores

(f(11.25), £(13.15)).

pnorm(11.25, 10, 2): Calcula a funcao de probabilidade acumulada no ponto 11.25. Isto é,
calcula F(11.25) = P(X < 11.25) onde X ~ N(10,22).

prorm(0.20, 10, 2): Calcula o quantil x tal que F(z) = P(X < z) = 0.20. Como X é uma v.a.
continua que acumula probabilidades continuamente, a probabilidade acumulada até x é exatamente
igual a 0.20.

Para uma Poisson, sao as seguintes: rpois, dpois, ppois e gqpois. Para a exponencial, temos rexp,

dexp, pexp e gexp. Para conhecer todas as distribuigoes disponiveis no R, digite ?distributions ou,

equivalentemente, help(distributions).

3.1

1.

Variaveis aleatorias discretas

Seja X ~ Bin(10,0.4). Para obter e plotar (veja Figura 3.2) os valores da funcao de probabilidade
P(X = k) e da funcao de probabilidade acumulada F(z) uso os seguintes comandos:
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Figura 3.1: Fungao de probabilidade P(X = k) (esquerda) e da fungao de probabilidade acumulada F(x)
(direita) de uma v.a.binomial Bin(n = 10,60 = 0.40).

x <- 0:10

px <- dbinom(x, 10, 0.40)

par (mfrow=c(1,2)) # janela grafica com uma linha de 2 plots

plot(x, px, type = "h") # para usar linhas verticais at\’{e} os pontos (x,px)
Fx <- pbinom(x, 10, 0.35)

plot(x, Fx, type = "s") # o argumento "s"

e Sua vez agora. Obtenha o grafico das probabilidades P(X = k) e da fungdo de probabilidade
acumulada [F(z) para uma v.a. X ~ Bin(n = 20,60 = 0.15). Em seguida, responda as questoes
abaixo.



Qual o valor k em que P(X = k) é maxima? Quanto é esta probabilidade maxima?

VISUALMENTE, obtenha uma faixa de valores (a,b) na qual a probabilidade de X € (a,b)
seja proxima de 1. Procure grosseiramente obter a faixa mais estreita possivel.

O valor (tedrico) de E(X) no caso de uma binomial é nf. Como é o comportamento da fungao
P(X = k) no entorno deste valor E(X)? Ela tem valores P(X = k) relativamente altos?

Confirme esta impressao calculando P(a < X < b) usando a fungdo dnorm ou pnorm do R. Por
exemplo, se eu quiser P(5 < X < 8), uso sum(dnorm(5:8, 20, 0.15) ou entdo pbinom(8,
20, 0.15) - pbinom(5-0.01, 20, 0.15). Porque eu subtraio 0.01 de 5 na chamada da
segunda funcao?

Use gbinom para obter o inteiro k tal que F(k) = P(X < k) ~ 0.95.

Verifique o valor da probabilidade acumulada exata F(k) obtida com o inteiro acima usando
pbinom.

Gere 1000 valores aleatérios independentes de X ~ Bin(n = 20,0 = 0.15). Estes valores
cairam, em sua maioria, na faixa que vocé escolheu mais acima? Qual a porcentagem de
valores que caiu na faixa que vocé escolheu?

Compare os valores das probabilidades P(X = k) para k = 0,...6 e as frequéncias relativas
destes inteiros nos 100 valores simulados.Sao parecidos?

2. Este problema é similar ao anterior, usando agora a distribuicao de Poisson.
e Obtenha o gréfico das probabilidades P(X = k) e da fungao de probabilidade acumulada F(x)
para uma v.a. X ~ Poisson(\) usando dois valores: A = 0.73 e A = 10.
e O valor k em que P(X = k) é maximo é proximo de E(X) = A?
e Obtenha um intervalo de valores (a, b), o mais curto possivel gosseiramente, para o qual P(X €
(a,b)) ~ 1.
e Usando ppois do R, calcule P(a < X <b).
e Gere 200 valores aleatérios independentes de X ~ Poisson(\) com os dois valores acima para
A
e Compare os valores das probabilidades P(X = k) para k = 0,...6 e as frequéncias relativas
destes inteiros nos 100 valores simulados.Sao parecidos?
3. Este problema ¢ similar ao anterior, usando agora a distribuicao discreta de Pareto, também cha-

mada de distribuicao de Zipf. Ver http://en.wikipedia.org/wiki/Zipf’slaw. A distribuigao de

Pareto (discreta ou continua) nao esté disponivel em R a nao ser em alguns pacotes especializados.

Entretanto, nao é necessario usar estes pacotes ja que ela é facilmente simulada ou calculada. Ve-

remos técnicas de simulagao Monte Carlo em breve, entdo apenas aceite por enquanto o algoritmo

abaixo.

A distribuigao discreta de Pareto possui suporte igual a {1,2,..., N} onde N pode ser infinito.

Além de N, ela possui um outro parametro, o > 0. A func@o massa de probabilidade é dada por
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onde C' é uma constante escolhida para que as probabilidades somem 1. Observe que C' é dada por

=2

1 1

= 1+a
C — k

Se N for um numero finito, nao existe uma expressao analitica para esta soma e ela deve ser
calculada somando-se os valores. Se IN for infinito, a expressao acima é chamada de funcao ¢ de

Riemann:
o

=1 1 <
C(1+a):;k1+azf‘(l+a)/() —— (3.1)

(ver http://en.wikipedia.org/wiki/Riemann_zeta_function).

Para alguns valores especificos de «, a funcao zeta ((1 4+ «) tem valores conhecidos exatamente.
Por exemplo, para a = 1 é possivel mostrar que

§(2)—§: R T o T
_k_1k2— 22 32 ...—6N .

Exceto nestes casos particulares, no caso de N = 0o, a constante C' = 1/((1+4«) deve ser aproximada
numericamente somando-se um ntumero grande de termos da série ou calculando numericamente
a integral em (3.1). Por exemplo, para = 1/2, temos ((1 + 1/2) ~ 2.612, e para a = 2, temos
(14 2) ~1.202.

Tendo um valor para a constante C', podemos plotar os valores de P(X = k) e também da funcao
de probabilidade acumulada F(k) ja que

k k
F(k) =P(X <k) =S P(X =) :czﬂ%.
i=1 i=1
e Usando os valores a = 1/2,1,2, obtenha em R o grifico das probabilidades P(X = k) e da
fungao de probabilidade acumulada F(x) para uma v.a. X ~ Zipf(a) com N = co. Em R,
nao chame a constante de integracao de c pois este é o nome da funcao de concatenacao de
vetores e, como um defeito do R, ele nao avisa que vocé estd sobrepondo uma funcao-base
crucial. Faga a escala horizontal variar nos inteiros de 1 a 20. Obtenha F(x) usando o comando
cumsum que retorna o vetor de somas acumuladas de um vetor.

e Pelo grafico, as probabilidades parecem cair rapido, talvez exponencialmente. Mas isto nao é
verdade. O comportamento dessa queda quando k aumenta é a principal razao propriedade
que faz com que a distribuigao power-law de Pareto (ou Zipf) seja tao importante na prética
da andlise de dados. Para entender como as probabilidades diminuem em direcdo a zero a
medida que k cresce, obtenha a raz ao entre valores sucessivos de P(X = k). Isto é, mostre
que

P(X=k+1) [ k \'™
P(X =k) k+1
Perceba agora que, quando k cresce, k/(k + 1) é sempre menor que 1 mas cada vez mais

préximo de 1 e portanto
PX=k+1)~P(X =k)

se k for bem grande. As duas probabilidades serdao pequenas mas quase idénticas. Isto é, a
medida que k cresce, as probabilidades decaem muito lentamente, quase nadaquando kfor bem
grande.

e Quando a > 0 crescer, 0 que vocé esperar acontecer ao gerar inteiros Zipf com estes « grandes
em relagdo a geracao com « apenas ligeiramente maior que 1.



e Faga um gréfico dos pontos (log(k),log(P(X = k). O resultado é o que vocé esperava? Usando
abline(log(C), -(1+alpha)), sobreponha uma reta com intercepto log(C) e inclinag ao
-1+ a).

e Chega de andlise tedrica, vamos simular por MOnte Carlo alguns valores Zipf agora. A fungao
R abaixo faz isto para voceé:

rzipf = function(nsim = 1, alpha = 1, Cte = 1/1.645)

res = numeric(nsim)
for(i in 1:nsim){

x = -1
k=1
F=p-= Cte
U = runif (1)
while( x == -1){
if(UKF) x=k
else{
p = p * (k/(k+1))"(1+alpha)
F=F+p
k = k+1
}
}
res[i] = x
}
res

Por default, a funcao assume a = 1 e fornece também a constante C'. Para gerar nsim = 400
valores com estes argumentos default, basta digitar rzipf (400). Para gerar 400 valores de
uma Zipf com o = 1/2 e com a constante C' = 1/2.612 determinada por este valor de «, basta
digitar rzipf (400, 1/2, 1/2.62).

Agora, a tarefa: gere 400 valores de Zipf com o = 1/2,1, 2 (as constantes estao no texto acima).
Verifique que apesar da maioria dos valores ficar num intervalo limitado, valores extremamente
grandes (relativamente aos demais) sao gerados com facilidade. Repita a geragao algumas vezes
para observar este efeito. Reporte na lista apenas uma dessas repeticoes.

4. Verifique se existe algo errado em cada uma das seguintes atribuicoes de argumentos aos parametros
de algumas distribuicoes de probabilidade:

e Bernoulli(6 = 1.5)

Bin(12.5,0.5)

Bin(25,0.5,0.5)

Poisson(A = —2)

Bin(25,0.03)

Poisson(A = 2.5)



3.2

2.

3.

Solugao: (a): argumento deve ser um nimero em [0, 1]; (b): primeiro argumento deve ser um
inteiro positivo; (c): requer apenas dois argumentos. (d) A nao pode ser negativo. (e): vélido. (f):
valido. Apesar da Poisson colocar massa de probabilidade apenas sobre os inteiros nao-negativos,
o seu parametro A pode ter um valor que é um inteiro.

Variaveis aleatorias continuas

. Este problema trata da distribuicdo gaussiana ou normal, a mais importante distribuicdo na andlise

de dados. Ela é uma v.a. continua com suporte na reta real R = (—o00,00) e com densidade de
probabilidade dependendo de dois parametros, i e o:

fa) = a—exp (—; ("””;“)2>

Neste exercicio vocé vai se familiarizar com a distribuicao gaussiana.

e Divida a tela grafica 2 x 2 e desenhe o grafico das densidades de probabilidade de uma N (0, 1)
na posigao (1, 1) da janela, uma N(2,1) na posigao (1,2), uma N(0,4) na posi¢ao (2,1) e uma
N(2,4) na posicao (2,2).

e Qual o ponto z em que f(x) assume o valor maximo? Este ponto depende dec? E a altura
f(z) no ponto de méximo, ela depende de o?

e No caso da gaussiana, o parametro o controla a variagdo em torno de p. Para uma N(10,5)
verifique que adrea debaixo da densidade entre 10 — 2 x /5 e 10 + 2 x v/5 é aproximadamente
igual a 0.95. Use a funcao pnorm para isto. Este é um resultado geral: no caso de uma
gaussiana, a chance de observar um valor distante mais de 20 de do valor esperado e central
w éaproximadamente 0.05.

e Gere 200 valores aleatérios independentes de X ~ N(u,0) com p e o escolhidos por voce.
Faga um histograma forgando a drea toal ser igual a 1 (argumento prob=T) e sobreponha a
curva da densidade gaussiana que vocé usou. Eles se parecem?

Verifique o que estd errado em cada uma das seguintes atribuigoes de argumentso aos parametros
de algumas distribuicoes de probabilidade:

N(0, 1, 2.5) —; deveria ter apenas 2 parametros
Beta(-2, -2)
Beta(1,1)= U(0,1)

N(1, 0) —¢ 20 parametr e’ a variancia, que deve ser j 0

e Gama(a, a - b) onde a=3 e b = 6 —, segundo parametro e’ a-b=-3 e deveria ser |, 0

Um campeonato de futebol tem n times e cada um deles joga duas partidas conta cada um dos
outros n — 1 times, uma vez em casa e uma vez fora de casa. Como usual, um time pode ganahar 0,
1 ou 2 pontos ao final de uma partida. Suponha que os resultados dos jogos sao todos independentes
uns dos outros e que os times possuam a mesma habilidade de forma que a probabilidade de vencer



qualquer partida é sempre 1/2 para qualquer time. Nesta situagao idealizada, qual a distrbuicao do
numero de pontos X que um time terd ao final do campeonato? Qual é a E(X) e a V(X)? Colocar
grafico real e verificar se esta préximo do real.

. Em um cassino, os jogadores usam n dados bem balanceados de 6 lados. Se um 6 aparecer em
qualquer um dos dados, o jogador nao recebe nada. Se nenhum 6 aparecer, o jogador recebe a soma
(em ddlares) dos valores nas faces dos dados. O jogador é livre para escolher n, o nimero de dados.
a) Derive uma férmula para o retorno esperado do jogador (o total de délares ganhos). Tragar este
pagamento para valores de n de 1 a 20. Qual é o menor n que maximiza o retorno esperado? b)
Suponha que o jogador opte por lancar n = 10 dados. Qual é o nimero esperado de valores de
dados distintos que aparecem? Ou: qual é o niimero esperado de faces que aparecem pelo menos
uma vez?

. Seja X ~ exp(1/3). Isto é, X ~ exp(A) com A = 1/3. Isto implica que a densidade f(z) é igual a

sex <0

0,
fx) = { (1/3)exp(—x/3), sex >0

Calcule E(X), F(z) e P(X > 3).

. X é uma v.a. com distribuicao Pareto continua com parametros m e «. Isto é,

Fx () Osezxz<m
xr) =
X c/z M se x > m

onde a constante de integracao c é dada por ¢ = am®.

Calcule F(z) = P(X < z). Calcule também E(X) para a > 1 (a integral E(X) nao existe se
0<a<l).

Para simular 1000 valores de uma Pareto e visualizar os resultados com R, basta digitar:

m=1; alpha=1

x = m*(1-runif (1000)) " (-1/alpha)
par (mfrow=c(1,2))

hist(x); plot(x)

Repita estes comandos algumas vezes. Veja como valores muito extremos de X sao gerados com
facilidade.

. O arquivo vadiscreta.txt possui uma tabela de dados com n = 200 itens e k = 6 atributos, todos
discretos. Podemos assumir que os itens sao replicacoes independentes de um mecanismo aleatério.
Queremos encontrar um modelo probabilistico para cada coluna-atributo da tabela.

Para cada uma das colunas, vamos assumir que os n = 200 itens sao realizagoes independentes de
uma mesma v.a. discreta. As 3 primeiras colunas possuem 5 valores possiveis. Isto é, o suporte das
v.a.s é o conjunto {1,2,3,4,5}. Embora os valores possiveis sejam os mesmos nos trés atributos,
as probabilidades associadas sao diferentes.



k

0 1 2 3 4 ) 6 7 8

0BS 215 1485 5331 10649 14959 11929 6678 2092 342
ESP | 165.22 | 1401.69 | 5202.65 | 11034.65 | 14627.60 | 12409.87 | 6580.24 | 1993.78 | 264.30
DIF | 49.78 83.31 128.35 | -385.65 331.40 -480.87 97.76 98.22 77.70

Tabela 3.1: Numero k de filhos do sexo masculino em 53680 familias de tamanho 8. OBS sao os niimeros

observados na Alemanha no século XIX e ESP sdo os nimeros esperados sob o modelo binomial. A linha
DIF ¢ a diferenca entre as linhas OBS e ESP.

Para o primeiro atributo, acredita-se que os cinco valores sejam igualmente provaveis.

Para o segundo atributo, deseja-se verificar se as probabilidades sao similares a outras cinco pro-
babilidades deduzidas de uma teoria. Esta teoria afirma que a chance de observar k decai expo-
nencialmente com k. Isto é, na segunda coluna queremos verificar se temos P(X = k) = cf* onde
6 € (0,1) é uma constante e ¢ é outra constante necessaria para que as probabilidades somem 1.
Mostre que este modelo implica em ter as razoes entre probabilidades sucessivas constantes e iguais
a0:

para k=1,2,3,4.

Para o terceiro atributo, existe uma outra populagao similar que foi exaustivamente estudada e
para a qual encontrou-se o seguinte:

k 1 2 3 4 )

P(X =k)|0.44 | 0.11 | 0.12 | 0.32 | 0.01

Estime as probabilidades P(X = k) para k = 1,...,5 em cada coluna usando as frequéncias
relativas de cada categoria. A seguir, verifique informalmente (usando graficos ou comparagoes
simples de tabelas de ndmeros) se os modelos para cada um dos atributos é compativel com os
dados observados.

Nao quero que vocé saia pesquisando para encontrar maneiras 6timas de resolver o problema.
Também nao estou esperando nem pedindo que vocé use o teste qui-quadrado ou Kolmogorov.

. Em seu livro cléssico Statistical Methods for Research Workers, Ronald A. Fisher, o maior génio

estatistico que ja existiu, analisa alguns dados referentes ao ntimero de filhos do sexo masculino
entre familias com um ntimero total de filhos igual a 8. Os dados foram coletados por A. Geissler
em uma regiao da Alemanha no periodo de 1876 a 1885. O livro de Fisher tem uma péagina na
wikipedia, http://en.wikipedia.org/wiki/Statistical_Methods_for_Research_Workers.

E bem conhecido que os nascimentos do sexo masculino sao ligeiramente mais numerosos do que
os nascimentos do sexo feminino. Suponhamos que a probabilidade de uma crianca ser do sexo
masulino seja 6 > 0.5. Suponha que os 8 nascimentos sucessivos numa familia de tamanho 8 sejam
independentes. Assuma também que 6 é o mesmo para todas as familias e para os 8 nascimentos
ao longo de uma sequéncia familiar. Entdao o niimero X de meninos numa familia de tamanho 8
seguiria uma distribuicao binomial: X ~ Bin(8,0).

A linha OBS na Tabela 3.1 mostra o nimero de familias com k filhos do sexo masculino na populacao
de 53680 familias com exatamente 8 filhos. A linha FSP mostra o ntimero esperado de familias
com k meninos dentre os 8 filhos se 0 modelo binomial se aplicar.

Impressionava que algumas centenas de familias tivessem todos os seus 8 filhos homens ou todos
mulheres. Estas centenas de familias nao representavam um excesso em relagdo ao que se espera
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sob 0 modelo binomila? Se as familias diferissem nao sé pelo acaso associado com a distribuigao
binomial, mas também por uma tendéncia por parte de alguns pais para produzir homens ou
mulheres, os dados nao seriam bem ajustados por uma binomial. Imagine, para tomar um exemplo
muito extremo, que cada familia escolhese um valor 6 para sua probabilidade de gerar meninos.
Ap6s escolher “seu” 6, ou a sua “moeda”, cada familia a jogasse para cima 8 vezes de acordo com
o modelo binomial. Suponha que as familias retirassem os seus €’s de uma urna onde houvessem
apenas dois tipos de valores e em iguais proporcoes: # = 0.01 e § = 0.99. Neste caso, veriamos nos
dados um actimulo de familias nas categorias extremas (com 0 ou 1 ou ent@o com 8 ou 7 filhos),
sem muitas familias com ntmero intermediario de filhos homens.

E claro que nao vemos nada tao extremo nos dados acima. Fisher escreve: The observed series
differs from expectation markedly in two respects: one is the excess of unequally divided families;
the other is the irregularity of the central values, showing an apparent bias in favour of even values.
No biological reason is suggested for the latter discrepancy, which therefore detracts from the value
of the data. The excess of the extreme types of family may be treated in more detail by comparing
the observed with the expected ...

e Para verificar sua compreensao do problema, obtenha os nitimeros esperados que estdo na
Tabela 3.1.

e Calcule a estatistica qui-quadrado neste problema (vocé deve obter um valor de X? = 91.87).
e Qual a distribuicaode referéncia desta estatistica?

e Qual o p-valor associado com esta estatistica? (DICA: use pchisq para obter o p-valor igual a
0.0 (numa aproximagcao até 15 casas decimais))

No livro classico Statistical Methods for Research Workers de Ronald A. Fisher, ele apresenta alguns
dados de contagens de leveduras de cerveja (fungos) obtidas através da observagdo humana num
microscopio (hemocitémetro). Um édrea de 1 milimetro quadrado foi dividido em 400 quadrados
de area igual e foi contado o nimero de fungos em cada um deles. A tabela 3.2 mostra quantos
quadradinhos tiveram k fungos. Ela também mostra os ntimeros esperados segundo um odelo de
Poisson.

Obtenha a coluna de nimeros esperados segundo o modelo Poisson. Em seguida, use o teste qui-
quadrado para testar se os dados sao compativeis com esta hipdtese.

Este exercicio usa o teste de Kolmogorov. Gere 100 valores i.i.d. de uma N(0,1) e teste se eles de
fato vem de uma N (0, 1) usando o teste de Kolmogorov. EmR, vocé pode usar o comando ks.test
para isto:

x = rnorm(100)
ks.test(x, "pnorm", 0, 1)

Repita estes comandos 1000 vezes. Colete os valores da estatistica D e do p-valor nestas 1000
simulagoes. Faca um histograma padronizado dos 100 valores de D. Qual é o intervalo dentro
do qual vocé pode esperar os valores de D quando o modelo proposto coincide com o processo
geradorde dados?

Faa um histograma dos p-valores obtidos. Ele deve ter uma distribuicao aproximadamente uniforme

no intervalo (0,1). Qual a proporcao dosp-valores simulados que ficaram menores que 0.057




k | Obs | Esp
0 0] 3.71
1 20 | 17.37
2 43 | 40.65
3 53 | 63.41
4 86 | 74.19
5 70 | 69.44
6 54 | 54.16
7 37 | 36.21
8 18 | 21.18
9 10 | 11.02
10 5| 5.16
11 2 2.19
12 2| 0.86
13 0| 0.31
14 0| 0.10
15 0| 0.03
16 0| 0.03
Total | 400 400

Tabela 3.2: Contagens de leveduras de cerveja em 400 quadrados e valores esperados segundo modelo

Poisson.

11.

12.

13.

Um exercicio simples e importante. Vocé deve coletar algum conjunto de dados, QUALQUER UM,
com pelo menos 100 instancias e pelo menos dois atributos. Pelo menos um dos atributos deve ser
numérico. Os dados podem ser, por exemplo, os tamanhos de seus arquivos pessoais, dados de uma
rede de computadores, dados extraidos de textos ou imagens. O fundamental é que vocé mesmo
colete ou obtenha os dados. Nao devem ser entregues dados de bases conhecidas e disponiveis na
web em repositérios de dados.

Em seguida, vocé deve tentar ajustar uma distribuicao, qualquer uma, a um dos atributos em seus
dados usando o teste qui-quadrado ou o teste de Kolmogorov.

7?7 Vou ficar surpreso se vocé conseguir ajustar alguma coisa. Portanto, nado hdnenhuma expectativa

da minha parte de que vocé consiga, nesta altura do curso, fazer um ajuste de alguma distribuicao.
27
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2

Prove que m = E(Y') minimiza E(Y — m)?®. Dica: soma e subtraia E(Y'), expanda o quadrado e

tome esperanca de cada termo. A seguir, derive com relagao a m.

3.3

Ajuste de distribuicao

. O R possui uma funcao, ks.test(), que implementa o teste de Kolmogorov. Suponha que x é

um vetor com n valores numéricos distintos. Entao ks.test(x,"pnorm",m,dp) testa se x pode
vir da distribuicao N(m,dp), uma normal (ou gaussiana) com média p =m e desvio-padrao o =dp.



Outras distribuigdes s@o possiveis substituindo o string "pnorm": as pré-definidas em R (veja com
?distributions) ou qualquer outra para a qual vocé crie uma funcao que calcula a funcao distri-
buicao acumulada tedrica.

> ks.test(x, "pnorm")
One-sample Kolmogorov-Smirnov test

data: x
D = 0.0805, p-value = 0.876
alternative hypothesis: two-sided

A saida de ks.test() fornece o valor de D,, = max, |F},(z) — F(z)| e o p-valor (a esta altura
talvez ji tenhamos aprendido o conceito de p-valor). Dissemos em sala que se \/nD,, estiver
aproximadamente entre 0.4 e 1.4, podemos aceitar o modelo (ndo ha evidéncia nos dados para
rejeitar o modelo). Se y/nD,, > 1.36, rejeitamos o modelo.

Gere alguns dados com n = 50 de uma normal qualquer e use a funcao ks.test() para verificar
se o teste rejeita o modelo. Faca o teste de dois modos: use o modelo correto que vocé usou para
gerar seus dados e depois use um modelo diferente deste alterando, por exemplo, o valor de u ou o.

. Implemente em R uma funcao para calcular o resultado de um teste de Kolmogorov. A fungao
estard restrita a testar apenas o modelo normal com com média p =m e desvio-padrao ¢ =dp que
devem ser fornecidas pelo usuério ou obtidas dos préprios dados (default) usando a média aritmética
(comando mean()) e o desvio-padrao amostral (raiz da saida do comando var()). Nao se preocupe
em lidar com os casos extremos (usudrio fornecer vetor nulo, fornecer vetor com valores repetidos,
ete).

Observagao importante: pode-se provar que D,, = max, |F,(z) — F(z)| assume seu valor em um
dos pontos de salto de F,(x), ou imediatamente antes de x; ou em x;, onde z; é um dos valores do
vetor.

. Obtenha duas amostras de dados estatisticos, uma com valores de v.a.’s discretas e outra com
dados continuos, ligados de alguma forma a problemas de seu interesse. Postule um modelo de
dados i.i.d. para cada lista com uma distribuicao de probabilidade que vocé acredita que possa se
ajustar aos dados. Calcule a qualidade do ajuste da sua distribui¢ao usando o teste qui-quadrado
de Pearson. Exponha as dificuldades ou duvidas préticas ou tedricas nao-cobertas no curso que
voce talvez encontre neste exercicio.

. Distribui¢ao de Zipf. Considere um longo texto (ou varios textos juntos). Algumas palavras apare-
cem pouco, sao raras. Outras aprecem com muita frequéncia. Por exemplo, no portugés brasileiro
(ver http://www.linguateca.pt/), temos a seguinte tabela de frequéncia (ocorréncia aproximada
da palavra em cada bloco de texto de um milhao de palavras):



palavra posto (rank) | frequéncia (por 1M)
de 1 79607
a 2 48238
ser 27 4033
amor 802 174
chuva 2087 70
probabilidade 8901 12
interativo 14343 6
algoritmo 21531 3

Imagine o seguinte experimento: escolha uma palavra ao acaso do texto. Note que escolhemos
do texto, onde algumas palavras aparecem repetidas varias vezes, e nao de uma lista de palavras
distintas (como num indice, onde cada palavra aparece apenas uma vez. Seja Y a v.a. indicando o
posto (ou rank) da palvra escolhida. Por exemplo, se a palavra escolhida é amor o valor de Y é 802.
Se a palavra escolhida é de, o valor de Y é 2. E 6bvio que os valores de Y estao concentrados em
valores baixos: com maior probabilidade devem ser escolhidas aa palvras que aparecem com mais
frequéncia no texto. Qual a distribuicao de Y? Depende da lingua? Depende do assunto tratado
na colecao de textos? Estudiosos dizem que um modelo de distribui¢o de probabilidade ajusta-se a
uma ampla classe de problemas: a distribuicao de Zipf.

Os valores possiveis de Y sao iguais a 1,2,3,...,N. As vezes, o numero N nao é conhecido ou é
simplesmente ignorado pois jogamos fora a informagado sobre as palavras muito pouco frequentes

(com posto muito alto). A distribuicao de Zipf diz que

c
onde # é uma constante que varia de problema para problema e ¢ é a constante de normalizacao.
Isto é, como 1 =), P(Y = k), teremos

(3.2)

_ 1
X 1/RE

O fato fundamental na distribuicao de Zipf é que as probabilidades decaem de forma polinomial

C

com k. O parametro # costuma ser um valor proximo de 1.

Se tomarmos logaritmo dos dois lados de (3.2), temos
log(P(Y = k)) = log(c) — Olog(k) = a — 0 log(k) .

Assim, no caso de uma distribuicao de Zipf, um plot de log(P(Y = k)) versus log(k) deveria exibir
uma linha reta cuja inclinacao seria o negativo do parametro 6 (tipicamente, aproximadamente,

1),

Na tabela acima, temos a frequéncia ny em 1 milhao de algumas palavras do portugués, bem como
seu rank. Probabilidades sdo aproximadamente a frequéncia relativa de modo que P(Y = k) ~ 1100

e portanto
log(c) — Olog(k) = log(P(Y = k)) ~ log(ny/10°)

0 que implica em
log(ng) ~ (log(c) — 61log(10)) — dlog(k)

Assim, para checar se uma distribui¢o de Zipf ajusta-se aos dados, podemos fazer um scatter-plot
dos pontos (log(k),log(ng)) e verificar se eles caem aproximadamente ao longo de uma linha reta.
Ajustando uma reta (por minimos quadrados ou regressao linear, por exemplo) podemos encontrar
uma estimativa para 6.



e Da Wikipedia: Zipf’s law states that given some corpus of natural language utterances, the
frequency of any word is inversely proportional to its rank in the frequency table. Thus the
most frequent word will occur approximately twice as often as the second most frequent word,
three times as often as the third most frequent word, etc. For example, in the Brown Corpus
of American English text, the word "the”is the most frequently occurring word, and by itself
accounts for nearly 7% of all word occurrences (69,971 out of slightly over 1 million). True
to Zipf’s Law, the second-place word ”of”accounts for slightly over 3.5% of words (36,411
occurrences), followed by “and”(28,852). Only 135 vocabulary items are needed to account for
half the Brown Corpus. Explique como a equagao (3.2) implicaria que the frequency of any
word is inversely proportional to its rank. A resposta é simples e direta, ndo tem nada sutil

ou complicado aqui.

e Use os dados da tabela acima para fazer o scatter-plot dos pontos (log(k),log(ng)). Em R,
basta fazer summary (Im(y ~ x)) onde y e x sdo os vetores com log(ny) e log(k), respectiva-
mente. Qual o valor da inclinagao? RESP: -0.999.

e Um excelente material sobre Zipf e Pareto: http://arxiv.org/abs/cond-mat/0412004

5. A distribuicao de Poisson é muito usada para modelar dados de contagens. Por exemplo, ela pode
ser usada para modelar o nimero de mortes por certa doenca numa regiao durante um ano, o
numero de falhas num software descobertas num certo periodo de desenvolvimento, o nimero de

requisicoes de um certo recurso numa rede, etc.

Se Y tem distribuicao de Poisson entao ela possui um ntmero infinito de valores possiveis: 0,1,2, ...
com probabilidades associadas dadas por P(Y = k) = A¥exp(—\)/k! onde A\ > 0 é um parametro
controlando a forma da distribuicao.

e Se o conjunto de valores possiveis é infinito, como é possivel explicar que a soma ) _, P(Y = k)
das probabilidades nao seja infinita?

e Mostre que ), P(Y = k) = 1 (consulte qq livro de probab ou a web)

e Mostre que E(Y) = >, kP(Y = k) = X (isto mostra qual o significado do parametro \).
Pode-se mostrar (nao precisa fazer isto) que a variancia V(Y) = A. Isto é, no caso Poisson,
E(Y) = A = V().

e Supondo que A = 0.3, use a fungao dpois do R para calcular P(Y = 2).

e Supondo que A = 0.3, use a fungao ppois do R para calcular P(Y > 3).

e Supondo que A = 0.3, use a funcao rpois do R para simular 3 mil valores de Y ~ Poisson(0.3).
Com a amostra gerada, use a proporcao de vezes em que Y > 3 para estimar P(Y > 3) =
0.0036. Verifique também que a média aritmética dos 300 valores gerados é aproximadamente
igual a A.

e Repita os itens 4 a 6 usando A = 3.

6. A distribuicao Gama é muito flexivel, adotando formas muito distintas dependendo de seus parametros
a e [ (veja na wikipedia). Existe mais de uma forma de parametrizar a distribuicdo gama. A
mais comum (e usada como default pelo R) é aquela em que a densidade de probabilidade de
Y ~ Gamma(c, 3) é dada por f(z) =0sex <0e, se x >0, por

f(z) = cx® Lexp(—pz) .

onde ¢ é uma constante para que a area total debaixo da curva seja 1.
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e Usando rgamma do R, gere 350 valores de uma gama com a =9 e § = 3. Faca um histograma
padronizado destes niimeros gerados e, usando lines e dgamma, sobreponha a curva densidade.
Ficam parecidos?

e Teoricamente, temos E(Y) = a/f = 9/3 = 3. Calcule a média aritmética dos 350 nimeros
gerados e compare com E(Y). Eles ser aproximadamente iguais.

e Usando pgamma, faga um grafico da distribui¢do acumulada tedrica de uma gama com o = 9
e = 3. Sobreponha o gréfico da distribuicao acumulada empirica: eles se parecem? O script
abaixo foi usado para algo similar num dos slides do curso:

set.seed (1)

dados <- rnorm(30, 10, 2) # gera 30 valores de uma N(10,2)

Fn <- ecdf(dados) # calcula a funcao dist acum empirica

plot(Fn, verticals= T, do.p=F, main="", xlab="x", col="blue", xlim=c(3, 16))
x <- seq(3, 16, by=0.1)

y <- pnorm(x, 10, 2) # calcula a acumulada teorica de uma N(10,2)

lines(x,y, col="red")

Gere n = 100 valores aleatérios em (0, 1) e guarde num vetor x. Repita isto e guarde o resultado em
y. Faca um gréfico de dispersao (scatterplot) de = versus y (o objetivo é apenas fazer um scatterplot
qualquer). Como vocé poderia gerar y se vocé quisessem que seus valores dependessem de alguma
forma do valor correspondente x?

2

. Seja Y uma v.a. com valor esperado E(Y) = p e varidncia V(Y) = 0. Prove a desigualdade de

Tchebyshev: P(|Y — p| > ko) < 1/k%. OBS: Qualquer livro de probabilidade (ou a web) possui a
demonstracao.

. Aplique a desigualdade de Tchebyshev com k = 1,2,4,6,10. O que acontece com a cota (bound)

dado pela desigualdade? Como ¢ o seu decaimento?

Seja X ~ exp(1/3). Isto é, X ~ exp(A) com A = 1/3. Calcule E(X), V(X), F(z) e P(X > 3).
RESP: E(X) =3; V(X)=3% F(z) =0se z <0 e F(x) =1 — exp(—/3), para x > 0; P(X > 3) =
exp(—3/3) = 0.37. Veja que, embora o valor esperado E(X) seja igual a 3, temos P(X > 3) < 1/2.
No caso geral, E(X) = 1/X; V(X) = 1/A%;, F(z) =0se x <0 e F(z) = 1 — exp(—\z), para z > 0;
P(X > 3) = exp(—3\).

Use o método da transformada inversa com a funcao F(x) calculada no exercicio anterior para gerar
1000 valores aleatérios de X ~ exp(1/3). Faga um histograma (normalizado com area 1) dos 1000
valores gerados e sobreponha o grafico da funcao densidade de probabilidade (dada por f(z) =0
sex <0e f(z) =(1/3)exp(—z/3), se x > 0). Calcule a média aritmética e compare com o valor
tedrico E(X) = 3.

Gere uma uma segunda amostra de tamanho 1000 e recalcule a média aritmética. Verifique que
o valor tedrico E(X) = 3 permanece o mesmo mas que a média aritmética varia de amostra para
amostra.
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RESP: Como F(z) = 1 — exp(—x/3) entdao X = —3log(l —U) ~ exp(1/3) se U ~ U(0,1). Script
em R (f significa comentario):

x <- -3%log(1l-runif(1000)) # runif(n) gera n v.a.’s U(0,1)
mean (x)
hist(x, prob=T) # normaliza com o argumento prob=

# sobrepondo o grafico da densidade:
grid <- seq(0, 20, length=100) # vetor com pontos no eixo x
y <- dexp(grid, rate=1/3) # densidade exp(1/3) nos pontos de grid

lines(grid, y, type = "1") # adiciona linhas ao grafico anterior
# Podemos tambem calcular diretamente o valor da funcao densidade

hist(x, prob=T) #normaliza com o argumento prob=
y <- 1/3 * exp(-grid/3)

lines(grid, y, type = "1") # adiciona ao grafico anterior

# R tem varias funcoes para gerar v.a.’s de distribuicoes conhecidas
x <- rexp(1000, rate=1/3) # gera 1000 v.a.’s exp(1/3)

x <- rnorm(1000, m=10, sigma=2) # gera 1000 v.a.’s N(10, 272)

x <- rgamma (1000, alpha=3, beta =2) # 1000 Gamma(3,2)

X é uma v.a. com distribuicao Pareto com parametros m e a = 2. Isto é,

Fx(z) = { 0 seailﬁ m

c/z*t sex >m

onde a constante de integracao ¢ é dada por ¢ = am®. Calcule F(z) = P(X < z).
Calcule também E(X) para a > 1 (a integral E(X) nao existe se 0 < o < 1).
RESP: F(z) =0sex <meF(z)=1— (m/x)*. Temos
oo o
E(X) = / z c/zTt de = / c/z® dr = ¢/((1 — )z 1) = am/(a — 1)

m m

Usando o método da transformada inversa, gere 1000 valores de uma Pareto com a =4 e m = 1.
Gere outros 1000 valores de uma Pareto com a = 2,1, e 0.5. Qual o efeito de diminuir o em diregéao
a zero? Compare E(X) com os valores gerados nos casos em que « > 1.

RESP: Como F(z) = 1 — (m/z)® para x > m, temos a v.a. X = F1(U) = m/(1 — U)Y/* com
dstribuigdo Pareto com parametros m e a. Se m =1 e o = 2, temos X = 1/sqrtl — U. Tomando
a=1,temos X =1/(1-U) e, se @ = 1/2, temos X = 1/(1 — U)2. Usando um script R (Note a
ESCALA dos 4 graficos abaixo e compare E(X) com os valores gerados nos casos em que o > 1):

x4 <- 1/(1-runif (1000))~(0.25) # gera 1000 v.a.’s Pareto m=1 e alpha=4
x2 <- 1/sqrt(1-runif (1000)) # gera 1000 v.a.’s Pareto m=1 e alpha=2

x1 <- 1/(1-runif (1000)) # Pareto m=1 e alpha=1

x05 <- 1/(1-runif (1000))"2 # Pareto m=1 e alpha=1/2

par(mfrow=c(2,2)) # divide a janela grafica numa matriz 2x2

plot(x4) # grafico da **sequencia** de valores gerados

plot(x2); plot(x1); plot(x05)



14.

15.

Verifique como valores extremos sdo facilmente gerados pela Pareto. Tomando m =1 e a = 0.5,
calcule P(X < 10). A seguir, calcule P(X > 10¥) para k = 2, 3,4, 5.

RESP: Com m = 1e a = 0.5, F(z) = P(X < z) = 1 — 1/sqrtz para x > 0. Assim, P(X <
10) = 0.68. Isto ¢, 68% dos valores gerados numa simulagao serdo no méaximo iguais a 10. Temos
P(X < 100) = 1/4/100 = 0.1. Portanto, 10% dos valores gerados numa simula¢io devem maiores
que 100. Muito maiores? P(X < 1000) = 0.03 ou 3% dos valores gerados sao maiores que 1000.
Temos P(X < 10000) = 0.01 e P(X < 100000) = 0.003 e finalmente P(X < 1000000) = 0.001.
Assim, 1 em cada 1000 valores gerados serao maiores que 1 milhdo mesmo que a maioria (68%)
sejam menores que 10.

Durante a Segunda Grande Guerra, foram mapeados os locais atingidos por bombas ao sul de
Londres. A drea foi dividida em n = 576 quadradinhos, cada um com 0.25km?2. O niimero total de
bombas que atingiu a regiao foi 537. Seja X; o niimero de bombas no quadradinho 7. Vimos em
sala que um bom modelo para as contagens X7, ..., X576 supoem que elas sejam instancias de uma
variavel aleatéria Poisson(\).

Neste exercicio vamos verificar que o teste qui-quadrado permite eliminar escolhas incorretas para
a distribuicao de X. Vamos supor que a contagem de bombas ACRESCIDA DE UMA UNIDADE
siga a distribuigao logaritmica com paramatro 6 € (0, 1), que é definida da seguinte forma:

e Valores possiveis: {1,2,3,...}

° P(Y:k):m %parakzlﬂ,...,

— —1 [
® Com ]E(Y) = Tog(1-0) 1—0*

OBS: Como 6 € (0,1), temos log(1 —#) < 0. Esta é a razao para o sinal de menos na expressao
da funcao de probabilidade acima. Vocé deve ter notado que somamos 1 a X pois o nimero de
bombas pode ser zero e a distribuicao logaritimica comeca de 1. Isto é, supomos que ¥ = X + 1
siga a distribuicao logaritimica.

e Estime E(Y) usando a média aritmética X + 1 e obtenha assim uma estimativa de §. RESP:
y=1+0.9323 e 6 = 0.696.

e A seguir, preencha os valores esperados do némero de quadrados com k bombas na tabela

abaixo. Por exemplo, o niimero esperado com 0 bombas é dado por

-1 o

576 x P(X =0) =576 x P(Y =1) = —
log(1—0) 1

=576 x 0.585 = 336.96

k 0 1 2 3 4 5 e acima
Obs 229 211 93 35 7 1
Esp 336.96 77 (O O N /4

Para a ultima categoria, use P(X >5) =1 — Z?Zl P(X =j).

e Embora seja ébvio que a distribuicao logaritimica nao se ajusta a estes dados, calcule a es-
tatistica qui-quadrado a partir das diferencas entre os valores observados e esperados nesta
tabela.

e Obtenha o p-valor com o comando 1-pchisq(qq, df) onde ggq ¢é o valor da estatistica qui-
quadrado e df é o nimero de graus de liberdade.



16. Use os dados das contagens mensais de cirurgias cardiovasculares infantis em hospitais discutido
em sala de aula para verificar se, para cada hospital, podemos assumir que as suas contagens
Y1,Ys,...,Y, sejam i.i.d. e sigam uma distribuicao de Poisson com parametro A\. Os dados estao
no arquivo cirurgia.txt. Use o script cirurgia.R para iniciar sua analise. Eu deixei todos os comandos
necessarios para fazer a analise com o Hospital 1. Considere os seguintes exercicios:

e Faca um teste qui-quadrado para o SETIMO hospital da tabela (linha 7). Usando a fungao
pchisg, calcule o p-valor associado com a hipdtese ou modelo assumido (isto é, i.i.d. Poisson(\))).

e EXERCICIO OPCIONAL, BONUS (PONTO EXTRA SE ENTREGAR): Generalize o cédigo
anterior fazendo uma fungao em R para executar estes cdlculos para cada um dos hospitais da
tabela. Vocé vai precisar considerar a criacao das classes de valores que vai variar de hospital
para hospital.

e O teste qui-quadrado é interessante porqué é um teste geneérico, pode ser usado para com
qualquer modelo para a distribuicdo de uma variavel aleatéria. Entretanto, supondo que a
distribuicao é uma Poisson, podemos explorar alguns aspectos especificos desta distribuigao
para avaliar se o modelo ajusta-se aos dados observados. Uma dessas formas, puramente
visual, é a seguinte:

— Mostre que, se Y ~ Poisson(\), entao rp, =P(Y =k)/P(Y =k+1)=(k+ 1)/

— Tomando logaritmo natural dos dois lados da igualdade acima, temos log(ry) = — log(\)+
log(k +1). Assim, um gréfico de log(r) versus log(k + 1) deveria mostrar uma linha reta
com coeficiente angular 1 e intercepto que vai variar com o valor de A.

— Estime 7 pela razao fr = ng/ng1 onde ng é o nimero de elementos da amostra que sao
iguais a k. Faga o gréfico de log(fx) versus log(k + 1) e verifique se aparece aproximada-
mente uma reta de inclinacao 1. Faga isto APENAS PARA O HOSPITAL 7 para entregar
(se quiser fazer mais, fique aa vontade!)

e Uma outra forma simples de verificar se 0 modelo de Poisson ajusta-se aos dados que estao
num vetor y € o teste de dispersao:
— Numa v.a. Poisson, o valor esperado E(Y) = \ é igual & variancia da v.a. V(Y).
— Estime E(Y) pela média aritmética m das observagoes no vetor y (usando mean(y) no R).
— Estime V(Y') pela variancia v da amostra (usando var (y) no R).

— Calcule a razao v/m, que deveria ser préxima de 1 se o modelo Poisson é correto.

Como avaliar se v/m estd préximo de 17 Se n é o comprimento do vetor de contagens vy,
pode-se mostrar que (n — 1)v/m segue aproximadamente uma distribui¢do qui-quadrado
(ela aqui de novo) com n — 1 graus de liberdade.

— Usando os dados do HOSPITAL 7, calcule o p-valor deste teste.

17. Os primeiros 608 digitos da expansao decimal do nimero 7 tem as seguintes frequéncias:

k o 1 2 3 4 5 6 7 8 9

Obs 60 62 67 68 64 56 62 44 58 67
Esp 77 7?7 0?7 %0 o0 707 7

Estes dados sao compativeis com a suposicao de que cada digito é escolhido de forma completamente
aleatéria? Isto é, de acordo com uma distribuicao uniforme discreta sobre os possiveis digitos?




18.

19.

20.

21.

Vamos usar a desigualdade de Tchebychev,

X —u 1
P(F ) <0) < 5

para gerar um intervalo de predicao para X. Suponha que X possua uma distribuigao de probabili-
dade arbitraria com E(X) = yu = 120 e Var(X) = 0? = 102. Usando a desiguadade de Tchebychev,
mostre que o intervalo (120 4 45) = (75, 165) devera conter pelo menos 95% dos dados gerados de
X, qualquer que seja a distribuicao de X.

Suponha agora que sabemos algo mais sobre a distribuicao de X. Este conhecimento adicional
reduz substancialmente a incerteza acerca dos valores gerados da distribuicdo. Agora, usando o
comando gnorm do R, mostre que o intervalo que conterd 95% dos valores de uma amostra de X é
120 4+ 1.96 % 10 = (100.4, 139.6).

Gere uma amostra de tamanho n = 100 de uma normal com u = 10 e 0 = 1. Faga o qgplot da
amostra usando o comando qgnorm(x). Repita isto 10 vezes. O grafico ficou na forma de uma
linha reta todas as vezes?

Refaga este exercicio gerando os seus dados de uma distribuicao Cauchy com parametro de locagao
i = 10 e escala 0 = 1: rcauchy(100, 10, 1). Para comparar a distribuicdo N(10,1) e a
Cauchy(10,1), use os seguintes comandos:

x <- seq(4, 16, by=0.01)

yc <- dcauchy(x, location = 10, scale = 1)

yn <- dnorm(x, mean = 10, sd = 1)

plot(x, yn, type="1")

lines(x, yc, 1lty=2)

legend("topright", c("normal", "Cauchy"), lty=1:2)
ggnorm(rcauchy (100, 10, 1))

No site http://www.athenasc.com/prob-supp.html vocé encontra exercicios SUPLEMENTARES
de Bertsekas and Tsitsiklis. Considerando o arquivo relacionado ao capitulo 3, faga os seguintes
exercicios: 2, 8,9, 21(b).

Obtenha os dados de fragmentos de vidro coletados pela policia forense do livro All of Statis-
tics no site: http://www.stat.cmu.edu/~larry/all-of-statistics/index.html Estime a den-
sidade da primeira varidvel (refractive index) usando um histograma e um estimador de densidade
baseado em kernel. Experimente com diferentes bins para o histograma e bandwidths para o kernel.
Veja como fazer isto em R no enderego: http://www.statmethods.net/graphs/density.html.

O comando bésico para a estimativa de kernel é da forma: density(x, kernel = "gauss") onde
o kernel gaussiano é o escolhido. Outras opgoes incluem: "epanechnikov", "rectangular",
"triangular", "biweight", "cosine", "optcosine". A escolha default do bandwidth é cal-

culada com a seguinte férmula (conhecida como a regra de bolo de Silverman):

_ . R —1/5
h= O.Qmm{a, 1.34} n



22.

23.

onde R = qo.75 — qo.25 ¢ a diferenca entre o 1° e 0 3° quartis e que pode ser calculado usando-se, por
exemplo, o comando IQR(x). Verifique qual o valor deste bandwidth h de Silverman e, a seguir,
calcule a estimativa de kernel usando o dobro e a metade deste valor (isto é, usando 2h e h/2).
Compare os resultados obtidos visualmente. Qual parece representar melhor a densidade f(x) dos
dados?

Gragas ao Braulio Veloso (obrigado!), este exercicio pede que vocé use o modelo Bag of Words para
classificar alguns textos. O vocabulério foi construido com 12 livros de Ficgao, Humor e Religiao,
com trés livros em cada categoria. As stop-wordsforam eliminadas (as palavras muito comuns mas
que nao discriminam os textos tais como preposigoes e artigos).

Existem 4 aquivos. Um deles, FreqTreinoNoStopWords.csv, possui a frequéncia das bases de
treino (foram usados 4 livros por categoria). Ele possui 4 campos. O primeiro campo & um string
com a palavra. O diciondrio estd ordenado. As strings que sao constituidas somente de nimeros
ficaram nas primeiras linhas do arquivo. As demais palavras estdo mais abaixo no csv. Os outros 3
campos sao as frequéncias das palavras em cada tipo de livro na seguinte ordem: livros de Ficcao,
Humor e Religiao.

Os outros 3 arquivos sdo para teste, com um livro por categoria. A resposta correta das categorias
das bases de treino é:

e livroTeste0: humor
e livroTestel: religiao

e livroTeste2: Ficcao

Ignorando a resposta correta, vocé deve tentar classificar cada arquivo teste em uma das categorias
possiveis usando as ideias discutidas em sala e presentes nos slides.

O comportamento de uma v.a. nas caudas de sua densidade f(z) é muito importante. Esta frase
quer dizer que a forma com que a densidade f(z) decai a medida em que |z| cresce (vaia para
infinito) influencia muio o tipo de dado que serd observado numa amostra. Para apreciar este fato,
voceé val comparar o comportamento nas caudas de duas distribuicoes de probabilidade: a gaussiana
padrio, que tem densidade fi(z) o exp(—22/2), e a distribuicao t-Student com 2 graus de liberdade
(df), com densidade fo(x) o 1/(1 + 22/2)%/2.

e Faum grafico com a sobreposiA§A £0 das duas densidades usando os comandos dnorm e dt (com
o argumento df=2) no intervalo (—5,5). Compare o comportamento das duas densidades para
x longe de zero. Veja que, visualmente, nA £0 parece ter tanta diferenca entre as duas.

e Gere uma amostra com n = 500 pontos de cada uma das duas distribuicdes e compare a
dispersao dos pontos amostrais. Veja que elas sao drasticamente diferentes

Solugao: Cddigo R e resultado na Figura ?7.

x = seq(-5, 5, by=0.01)
f1 = dnorm(x)

f2 = dt(x, df=2)
set.seed(123)

sl = rnorm(500)

s2 = rt(500, df=2)

par (mfrow=c(1,2))
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Figura 3.2: Comparando caudas das distribuicbes gaussiana padrao e t-Student com df = 2 graus de
liberdade.

plot(x, f1, type="1")
lines(x, f2, col="blue")
plot(s2, pch="x", col="blue")
points(s1)

Solugao: Por aqui depois de resolver verbatim em solution.



Capitulo 4

Transformacao de uma v.a.

1. Seja U ~ U(0,1). Mostre que W =a+ (b —a)U ~ U(a,b).

Solugao: Claramente, se U € [0, 1] entao W € [a,b]. Para w € [a, b], temos (w—a)/(b—a) € [0, 1].
Segue-se que

P(Wgw):uv(aﬂba)Ugw):p<U§lg_—Z> _w-a

e a densidade de W é igual a f(w) = F'(w) = 1/(b—a) para w € [a,b]. Assim, W possui denisdade
constante em [a, b] e portante possui distrbui¢do uniforme neste intervalo.

2. Seja U ~ U(0,1). Mostre que W =1—-U ~ U(0,1).

Solugao: W € [0,1] pois U € [0,1]. Além disso,
PW<w)=PQl-U<w)=PU>1-w)=1-(1-w)=w.

Para w € [0,1], a densidade de W ¢é igual a f(w) = F'(w) = 1 e portanto W ~ U(0, 1).

3. Se U ~ U(0,1), encontre a distribui¢ao de probabilidade de X = —log(1 —U)/3.

o1
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Figura 4.1: Gréfico do histograma de 50 mil valores de X = cos(f) onde 6 ~ U(0,27). A linha continua
representa a densidade de probabilidade da v.a. X e dada por f(z) = 1/(7v1 — 22) para x € (—1,1).

Solugao: Se U € |0, 1] teremos X € [0,00). Para z € [0, 0o, temos

_log(1-0)

3 <z)=PU<1—-e3)=1—¢3

F(z) =P(X <z)=TP(
Portanto, a densidade de X no eixo positivo é igual a
fla) =F(x) =3¢~

que ¢é a densidade de uma v.a. com distribui¢ao exponencial com parametro \ = 3.

. Se 8 ~ U(0,27), encontre a distribuigao de probabilidade de X = cos(6).

Solugao: Fazendo o desenho de um circulo, encontramos o seguinte: se x € [0,1),

27 —2 S
P(X <z) =P(cos(f) < x) = P(arccos(z) < 0 < 2w —arccos(x)) = T ;rccos(x) = 1—%8(30)
T T

Se z € (—1,0), temos

P(X <z)=P(m — arccos(—z) < 0 < w + arccos(—z)) = arccos(~z)
s

Assim,
arccos(—x)/m se —1<z<0
F(z) =P(X <z) = (=)/
1 —arccos(z)/m se0 <z <1
e a densidade de X ¢ a derivada dessa funcao acumulada. Lembrando da derivada do arco cosseno,

temos
1

f@) = ——;
Observe que esta densidade vaia para mais infinito quando z se aproxima dos extremos do intervalo.
A Figura 4.1 mostra um histograma de 50 mil valores de X = cos(f) onde 6 ~ U(0,27). A
linha continua representa a densidade de probabilidade f(x). Veja que, apesar do angulo 6 ser

para — 1<z <1.

uniformemente distribuido em (0,27), o cosseno do angulo nao é uniformemente distribuido em

(—=1,1). A densidade é concentrada em valores de cossenos préximos dos extremos -1 e 1.



theta = runif (50000, 0, 2*pi)

x = cos(theta)

hist(x, prob=T, breaks=50, main="")
xx = seq(-1,1,by=0.01)

yy = 1/(pi*sqrt(1-xx~2))

lines(xx, yy, lwd=4, col="blue")

. Os primeiros 608 digitos da expansao decimal do nimero 7 tém as seguintes frequéncias:

k o 1 2 3 4 5 6 7 8 9

Obs 60 62 67 68 64 56 62 44 58 67
Esp 77 27 7?7 70 7 070 o7 7?

Estes dados sao compativeis com a suposi¢ao de que cada digito é escolhido de forma completamente
aleatéria? Isto é, os digitos podem ser considerados como valores escolhidos de acordo com uma
distribui¢ao uniforme discreta sobre o elementos do conjunto {0,1,2,...,9}? Obtenha Obtenha o
valor esperado de cada digito e compare com os valores observados usando o teste qui-quadrado.

. O R possui uma funcao, ks.test(), que implementa o teste de Kolmogorov. Suponha que x é
um vetor com n valores numéricos distintos. Entao ks.test(x,"pnorm",m,dp) testa se x pode
vir da distribuicao N(m,dp), uma normal (ou gaussiana) com média ; = m e desvio-padrao o =
dp. Outras distribuigoes sdo possiveis substituindo o string "pnorm": as pré-definidas em R (veja
com ?distributions) ou qualquer outra para a qual vocé crie uma fungdo que calcula a funcao
distribuicao acumulada tedrica.

> ks.test(x, "pnorm")
One-sample Kolmogorov-Smirnov test

data: x
D = 0.0805, p-value = 0.876
alternative hypothesis: two-sided

A safda de ks.test() fornece o valor de D,, = max, |Fj,(z) — F(z)| e o seu p-valor. Dissemos
em sala que se \/nD,, > 1.36, rejeitamos o modelo. Caso contrario, ndo hd muita evidéncia nos
dados para rejeitar o modelo (nao quer dizer que o modelo seja correto, apenas nao conseguimos
rejeita-lo).

Gere alguns dados com n = 50 de uma normal qualquer e use a funcao ks.test() para verificar
se o teste rejeita o modelo. Faca o teste de dois modos: use o modelo correto que vocé usou para
gerar seus dados e depois use um modelo diferente deste alterando, por exemplo, o valor de u ou o.

. Implemente em R uma funcao para calcular o resultado de um teste de Kolmogorov. A fungao
estard restrita a testar apenas o modelo normal com com média y =m e desvio-padrao o =dp que
devem ser fornecidas pelo usudrio ou obtidas dos préprios dados (default) usando a média aritmética
(comando mean()) e o desvio-padrao amostral (raiz da saida do comando var()). Nao se preocupe
em lidar com os casos extremos (usudrio fornecer vetor nulo, fornecer vetor com valores repetidos,
ete).
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Figura 4.2: Gréfico da fungao h(x) usada para criar a v.a. Y = h(X) onde X ~ Unif(0,1).

Observacio importante: pode-se provar que para encontrar D,, = max, | Fy,(z) — F(x)| basta varrer
os pontos de salto de F),(z), olhando o valor de F,(z) imediatamente antes de z; ou no préprio
ponto x;, onde x; ¢ um dos valores do vetor de dados observados.

8. Seja Y = h(X) onde X ~ Unif(0,1). A funcao h(x) é mostrada no grafico da Figura 4.2. A partir
dessa figura, é possivel obter aproximadamente os valores da f.d.a. Fy (y) sem fazer nenhum célculo
explicito, apenas no olhometro. Dentre as opgoes abaixo, decida qual o valor que melhor aproxima

Fy (y).

e [Fy(0.9) é aproximadamente igual a: (a) zero, (b) 0.01 (c) 0.5 (d) 0.8 (e) 0.95 (f) um.
e [y (1.1) é aproximadamente igual a: (a) zero, (b) 0.01 (c) 0.5 (d) 0.8 (e) 0.95 (f) um.
e [y (1.8) é aproximadamente igual a: (a) zero, (b) 0.01 (c) 0.5 (d) 0.8 (e) 0.95 (f) um
e [y (2.1) é aproximadamente igual a: (a) zero, (b) 0.01 (c) 0.5 (d) 0.8 (e) 0.95 (f) um.

9. Transformagao de v.a.’s: Seja X o lado de um quadrado aleatério. A v.a. X é selecionada de uma
distribuicao Unif(0,1). A 4rea do quadrado formado com lado X é a v.a. Y = X2,

e Calcule o comprimento esperado do lado do quadrado E(X).

e Obtenha também a drea esperada E(Y). E verdade que E(Y) = (E(X))?? Ou seja, a area
esperada E(Y) ¢ igual & (E(X))?, a drea de um quadrado cujo lado tem comprimento igual ao
comprimento esperado?

e Qual a distribui¢ao de Y7 Isto é, obtenha Fy (y) para y € R. item Derive Fy (y) para obter a
densidade fy (y) e faca seu gréfico. Qual a regiao onde mais massa de probabilidade é alocada?
O que é mais provavel, um quadrado com drea menor que 0.1 ou maior que 0.97

10. Refaca o exercicio anterior considerando o volume aleatério V = X3 do cubo aleatério formado
com o lado X ~ Unif(0, 1).




11.

12.

13.

14.

Refaga o exercicio anterior considerando o volume aleatério V = (4/3)7X? da esfera aleatéria
formada com o raio X ~ Unif(0, 1).

Supondo X continua com densidade f(x) e A um subconjunto da reta real. Complete os passos da

deducao abaixo preenchendo os locais indicados por 77.
PO )= [ fonte = [ Ta(o) fa)de = B(Re(27)
77 7?7

Solucao: O correto é

PO €)= [ f@)e = [ Ta@)f()de = BT (X)

Preste atencao a notacao: as vezes, usamos X; as vezes, x. Isto é proposital e possui um significado
diferente em cada caso: X é uma v.a. (portanto, tem duas listas de nimeros associadas com as
quais pode-se calcular probabilidads ou esperancgas), enquanto = é apenas um ponto da reta.

Seja Y = h(X) = 1+ X' onde X ~ U(0,1), uma uniforme no intervalo real (0,1). Isto &,
a probabilidade de que X caia num intervalo (a,b) contido em (0,1) é o comprimento b — a do
intervalo. A Figura 4.2 mostra o grafico desta transformacgao.

e Os valores possiveis de Y formam o intervalo (??7,77). Complete os locais marcados com “?7”.

e Analisando a Figura 4.2 verifique aonde o intervalo (0,0.8) no eixo x é levado pela trans-
formagao no eixo y = h(z). Faga o mesmo com o intervalo de mesmo comprimento (0.8, 1).
Conclua: P(Y € (1.2,2.0)) é maior ou menor que P(Y € (0,1.1))?

e Sejam os eventos B = [V < ??7] e A = [X < 1/ V2], onde 1/ V2 =~ 0.933. Os eventos A ¢ B
devem ser sao iguais. Qual o valor de “7777?

e Considerando a distribuigao de Y, calcule Fy (y) = P(Y < y) para qualquer y € R mapeando
o evento [Y < 1/2] e um evento equivalente [X € S] e calculando P(X € S5).

e Derive Fy(y) para obter a densidade f(y) de Y. Esboce a densidade e com base no gréfico,
sem fazer contas, responda: o que é maior, P(Y < 1/2) ou P(Y > 1/2)?

Considere a f.d.a. F(z) = P(X < z). Quais afirmagbes abaixo sao corretas?

e [F(z) é uma fungao aleatéria.

e Se X é uma v.a. discreta entdo F(z) possui saltos em todos os pontos onde X tem massa de

probabilidade maior que zero.

F(z) mede a probabilidade de X ser menor que média.

F(x) é uma funcao deterministica.

e [F(x) sé pode ser calculada depois que uma amostra é obtida.
()

x) é a mesma funcao, qualquer que seja a amostra aleatoria de X.




15.

16.

17.

Exercicio para verificar aprendizagem de notagao: Seja X1, Xo,..., X, uma amostra de uma v.a.
Considere a f.d.a. empirica

F(x) = — no. elementos leqz
n

Explique por tque isto é equivalente a escrever

A " Iix<e " sea) (X
f(z) = Zzln[XzS ] _ iz (n ] (Xi)

Considere a f.d.a. empirica F(z) = > I[X; < z]/n baseada numa amostra aleatéria de X. Quais
afirmagoes abaixo sao corretas?
e () é uma funcio aleatoria.

e Se X é uma v.a. discreta entao Iﬁ‘(x) possui saltos em todos os pontos onde X tem massa de
probabilidade maior que zero.

[F(z) mede a probabilidade de X ser menor que média.

e F(x) é uma funcao deterministica.

[} [ ]
=SEE=SH

é a mesma, qualquer que seja a amostra aleatoria de X.
é

°
=

)
x) s6 pode ser calculada depois que uma amostra é obtida.
)
)

(
(
(z
(

a mesma funcao, qualquer que seja a amostra aleatoria de X.

Em finangas, o valor presente (hoje) de um capital ¢ a ser pago daqui a T anos é dado por
V = cexp(—0T) onde § é a taxa de juros anual. Um valor tipico é § = 0.04, o que corres-
ponde a 4% anuais de juros. Imagine que ¢ é o capital a ser pago por uma apdlice de seguros a
um beneficidrio quando um individuo falecer. Se T' é o tempo de vida futuro (e aleatério) deste
individuo, V' = cexp(—dT) representa o valor atual (presente, no instante da assinatura do con-
trato da apdlice) deste capital futuro e incerto. Para precificar o seguro e estabelecer o prémio a ser
cobrado do segurado, a seguradora precisa calcular o valor esperado E(V'). Supondo que T possui
uma distribuigao exponencial com parametro A = 1/40 (ou média igual a 40), obtenha E(V). OBS:
a densidade de uma exponencial com parametro A é dada por

f(t):{ 0, set <0

Xe ™M set >0



Capitulo 5

Simulacao Monte Carlo

1. Discutimos alguns métodos para geragao de v.a.’s em sala tais como aceitagao/rejei¢ao e transfor-
mada inversa. Eles podem ser usados para gerar numeros aleatérios com quase qualquer distri-
buicao. No entanto, para as distribuicoes mais importantes, existem técnicas especificas que sao
melhores do que estas técnicas mais gerais.

A distribuigdo normal (ou gaussiana) é uma das mais importantes em probabilidade por causa do
Teorema Central do Limite. O método mais conhecido e mais usado para gerar gaussianas é o de
Box-Mueller: gere duas v.a.’s Xj e Xo i.i.d. com distribui¢do uniforme em [0, 1]. Pode-se provar

Y] =sin(27X1)y/—21n X,

que

Yo = cos(2rX1)y/—21n Xy

sao gaussianas independentes com y =0e o = 1.

Aqui estd um cédigo em R para gerar nsim gaussianas independentes N(0,1) (com média 0 e
variancia 1) com este método de Box-Mueller:

minharnorm = function(n) sqrt(rexp(n, 0.5)) * cos(runif(n, 0, 2 * pi))

o7
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Figura 5.1: Top: A probability density function f(x). Bottom: your turn: sketch the cumulative
distribution function F(z) associated with the density f(z). No need to

Estamos usando que, se Xo ~ U(0,1), entdao —2log(X2) ~ exp(1/2).

Gere 10 mil valores N(0,1) com esta funcao e crie um histograma padronizado (com area 1, ar-
gumento prob=T). Compare o histograma dos dados simulados com a densidade gaussiana exata
sobrepondo a densidade ao histograma (Crie uma grade e calcule dnorm; a seguir use lines). S&o
parecidos?

2. Here’s a fun exercise that will intuitively teach you how the inverse transform method works. Figure
5.1 shows on top a probability density function f(z). Imagine what would be a histogram of values
sampled from this density function. Let’s check if the inverse transform method is able to generate
random numbers following this distribution. Sketch freehand on the bottom graph the cumulative
distribution function F(z) associated with that density. There is no need to go overboard with the
drawing but try to match the horizontal scales in the top and bottom graphs.

Next, mentally sample some values in the (0, 1) interval in the vertical axis of the bottom graph.
Try to sample following the uniform distribution U(0, 1). Use the curve you sketched to obtain the
inverse image in the horizontal axis of the points you sampled on the vertical (0,1) interval. Do the
inverted sampled points seem to come from the density f(x)? For example, are they around where
the density is centered (at x = 10)? Are they within the interval where the density is concentrated
(the interval (7,13))?




3. Considere a densidade de probabilidade

10.

fl@)=ve  z€[0,1]

Escreva uma fungdo em R para gerar v.a.’s com esta distribui¢ao usando (a) o método da trans-
formada inversa, e (b) um método de aceitagao-rejeicao usando a densidade uniforme para propor
valores. Gere 10000 nimeros com cada um dos dois métodos e mostre seus resultados num histo-
grama. Quantos valores da U (0, 1) foram necessarios gerar pelo método de aceitacao-rejeicao para
obter os 1000 valores da densidade acima?

. Seja U ~ U(0,1). Mostre que W = a + (b — a)U ~ Uf(a,b). A partir desse resultado, como

gerar numeros aleatérios seguindo uma distribuigdo uniforme no intervalo (a,b) sabendo-se gerar
U ~ U(0,1), uma uniforme no intervalo (0,1)?

Exercicio com os dogs de Mosteller

Exercicio com random walk - binomial - Feller. Obter por simulacao a distribuicao da proporcao
do tempo de lideranca —;, arc sin (p)

Branching process por simulacao. Teorema de extincao de Galton-Watson.

Genetic drift

Numa companhia de seguros, a tarefa é simular a perda financeira agregada L que a companhia
pode experimentar no préximo ano em um tipo de apdlice. A perda é dada por L = X7 +...+ Xy
onde N é o numero aleatério de sinistros que irao ocorrer com os muitos segurados e X; é a perda
monetaria associada com o i-ésimo sinistro.

Supondo que N ~ Poisson(1.7) e que os X; s@o i.i.d. com distribuigao exp(1/10), obtenha um valor
simulado de L usando os seguintes valores i.i.d. U(0,1): 0.672 para obter o valor simulado N; e
o que for necessario da sequéncia 0.936, 0.984, 0.198, 0.659, 0.379 para obter os X; e assim obter
um valor para L. Repita o exercicio obtendo um segundo valor simulado para L com a seguinte
squ%éncia de valores i.i.d. U(0,1): 0.013, 0.834, 0.926, 0.648, 0.717, 0.169.

Solugao: Os valores acumulados P(X < k) para k =0, 1,2, 3,4 de uma Poisson(1.7) sao iguais a
0.183, 0.493, 0.757, 0.907, 0.970. Assim, para a primeira simulacao, temos N =2 e L = X1 + Xo
onde X7 = —1010g(0.936) = 0.661 ¢ X; = —1010og(0.984) = 0.161. Portanto, o valor simulado de
L é L =0.822. Na segunda simulagao, N =0 e assim L = 0.

X e Y sao duas varidveis aleatdrias continuas com fungoes distribuicoes acumuladas distintas e
iguais a F(x) e Fy(y), respectivamente, com inversas F; '(u) e Fy '(u). Verifique se as afirmagdes
abaixo sao verdadeiras para duas distribuigoes genéricas F; e Fy distintas:
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12.

o Fi(X)~U(0,1)

e Se um valor X maior que a mediana de sua distribuigao for observado, entao o valor F;(X)
serd maior que 1/2.

e Se U > 0.5 entdo F; ' (U) > F1(0.5).

e F;Y(F1(X)) tem a mesma distribuicio que Y.

e F5(Y) e F1(X) possuem a mesma distribuigao.

o Fh(X) e Fi(X) possuem a mesma distribuigao (atencao: este item é diferente do anterior).

o F;1(U) e F7H(U) sdo id.d.

o IH(Y) e Fi(X) sao ii.d.

Solugao:

e Correto, demonstrado nestas notas de aula.

e A mediana é m = F| L(0.5). Como a funcdo F; é crescente entdo X > m implica que
Fi(X)> Fi(m)=05

e Correto, similar ao item acima.

e Correto: Se U ~ U(0,1) entdo F, "(U) ~ Y. Como Fy(X) ~ U(0,1), segue o resultado.

e Correto: F5(Y) e F1(X) tem distribuicao U (0, 1).

e Incorreto: A varidvel aleatéria F»(X) nao possui distribuigao U(0, 1), em geral. Para enxergar
isto, esboce um grafico de F» supondo que ela refere-se a uma distribuicdo normal padrao e
que X tem distribui¢do concentrada no intervalo (0,2). Entao P(F3(X) < 0.5) = 0.

e Incorreto: Fy, "(U)~Y e F;'(U) ~ X e X e Y possuem distribuicoes distintas.

e Incorreto: elas sdo i.d. pois ambas sao U(0,1) mas podem nao ser independentes se X e YV
forem correlacionadas. Intuitivamente, imagine que X e Y possuem correlagao préxima de 1.
Entao F5(Y) < 0.5 se Y estiver abaixo da sua mediana. Neste caso, com alta probabilidade,
X também estard abaixo de sua mediana e assim Fi(X) também serd menor que 0.5.

Mostrar que razao de densidade de gama sobre Pareto, para quaisquer parametros, vai a zero se x
vai a infinito. Isto mostra que Pareto tem caudas mais pesadas que a gama.

Solugao: A razao das duas densidades, de uma gama com parametros o > 0 e 8 > 0, e uma
Pareto com parametros a > 0 e g > 0, para x > xg, ¢ dada por
fo(z) Ko le P

— -k a+ta —Bx
@) ey %% — 0

quando = — oo pois o decrescimento exponencial em e ?* domina o crescimento polinomial em
a+a

X

Seja ¢ > xp uma constante qualquer, possivelmente muito grande. Mostrar que, se X é Pareto,
entdo P(X < ¢)/P(X > c¢) decresce para zero se o decresce para zero. Assim, efeito de diminuir «
é aumentar a chance relativa de valores grandes (acima de c).
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Solugao:

Como c¢/xy > 1, se a | 0 ent@o a razdo acima também decresce para zero. Assim, a cauda
superior fica mais relativamente com mais massa de probabilidade (mais pesada) que a parte inferior
dadistribuicao. Isto implica que valores maiores que ¢ podem ter probabilidade de ocorréncia bem
alta bastando que « seja suficientemente pequeno. [

Podemos usar simulacao Monte Carlo para estimar integrais da forma

7= /A g(z)dz

onde ¢ é uma funcéo qualquer e A é uma regido do espaco euclidiano R*. Para fazer isto, considere
um retangulo k-dimensional D que contenha A e com volume vol(D). Seja X um vetor uniforme-
mente distribuido no retangulo D (basta gerar uma v.a. uniforme para cada eixo coordenado do
retangulo). Seja Y = g(X) se X € Ae Y =0, caso contrario. Pode-se mostrar que

E(Y) =E(g(X)) = /Dg(ﬂf)voltD)df“ = /Ag(x)voltD)dx N voﬁm g

Gere uma grande amostra Xy, Xo,..., X,, de v.a.’s i.i.d com a mesma distribuicao que X e use a

aproximagao

7z

QSRjSS::]E(YW k:%(}ﬁ-+...%—}%)

Use esta técnica para estimar a integral dupla
I = // e~ Vaty? dz dy
Q

na regiao semicircular € definida por

x2+y2§1, xz > 0.

Use simulagdo Monte Carlo para estimar o volume do elipséide
2 2
2 Y z
— 4+ — <1.
x° + 1 + 16>

Vocé pode assumir que o elipséide estd contido no paralelepipedo [—1, 1] x [—2, 2] x [—4,4]. O valor
exato do volume é conhecido e é igual a 32/3 m = 33.51.

Solucao: Aqui vai:

#D=[-1,1] x [-2, 2] x [-4, 4]
volD = 2%4%8
set.seed(123)

x = runif (10000, -1, 1)
y = runif (10000, -2, 2)
z = runif (10000, -4, 4)

mean(x"2 + y~2/4 + z72/16 <= 1) * volD
[1] 33.9072
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Use o0 método de transformada inversa para obter uma amostra Monte Carlo de uma distribuigao
exp(\) que possui densidade de probabilidade

f(z) = 0, sex <0
] Xexp(=Az), sex >0

Para isto, use a fungado de densidade acumulada: F(z) = 1 — exp(—Az) se z > 0. Escolha vocé
mesmo algum valor para A

Solugao: Aqui vai, com A =5 (portanto, com E(X) =1/5=0.2):

lambda = 5

u = runif (10000)

x = - 1/lambda * log(l - u)
hist (x)

Vocé ja sabe gerar de uma exponencial com A = 1 e densidade g(x). Suponha que vocé queira gerar
nimeros aleatérios de uma distribui¢ao Gama com parametros o = 3 e § = 2. Isto é, vocé quer
gerar nimeros aleatérios com uma densidade

f(m):{o, sex <0

4.0z% exp(—2x), sex >0

Mostre que f(z)/g(z) atinge seu ponto de maximo em x = 2. Obtenha ent@o o valor da constante c
tal que f(z)/(cg(z)) < 1 para todo = e use esta razdo para encontrar c e fazer uma amostragem de
f(x) por aceitagao-rejeigao (c = 2.44 deve ser suficiente, nas minhas contas). Qual a porcentagem
de valores gerados que foram rejeitados?

Uma seguradora possui uma carteira com 50 mil apodlices de seguro de vida. Nao é possivel prever
quanto cada pessoa val viver mas é possivel prever o comportamento estatistico dessa massa de
segurados. Atudrios estudam este fenémeno e ja identificaram uma distribuicdo excelente para o
tempo de vida X de adultos: a distribuicao de Gompertz que possui densidade de probabilidade
fx(z) dada por:

f(z) = Be® exp <—10g G- 1)> = Bc™S(z)

para z > 0, onde B > 0 e ¢ > 1 sao constantes positivas que alteram o formato da funcao
densidade. Evidentemente, f(z) = 0 para z < 0 pois nao existe tempo de vida negativo. A funcao
de distribuicao acumulada é igual a

_ B(c"-1)
Fx(x)=1—¢ To&e©

para x > 0 e Fx(z) = 0 para z < 0. Usando dados recentes de uma seguradora brasileira, podemos
tomar B = 1.02 x 107% e ¢ = 1.0855.

e Com os parametros B e ¢ acima, desenhe a curva densidade de probabilidade (use valores x
entre 0 e 100 anos).



e SEM FAZER NENHUMA conta, apenas olhando a curva que vocé gerou, responda:
— P(X < 40) é aproximadamente igual a 0.03, 0.10, ou 0.207

— Deslize mentalmente um pequeno intervalo de um ano e considere todas as probabilidades
do tipo P (X € [k,k + 1)) onde k é um natural. Qual a idade em que esta probabilidade
¢é aproximadamente maxima: aos k = 60,70 ou 80 anos de idade?

— O que é maior, a probabilidade de morrer com mais de 100 anos ou de morrer antes de
completar 10 anos de idade?

Inverta a funcao de distribuicao acumulada, mostrando que

F~'(u) = log (1 — log(c) log(1 — u)/B) / log(c)

onde u € (0,1).

Use 0 método da transformada inversa para gerar 50 mil valores independentes de de X.

Com estes numeros simulados, calcule aproximadamente P(X > 80|X > 50). Isto é, calcule
aproximadamente a chance de sobreviver pelo menos mais 30 anos dado que chegou a completar
50 anos de idade.

A seguradora cobra um prémio de 2 mil reais por uma apodlice de seguro de vida que promete
pagar 100 mil reais a um beneficidrio no momento exato de morte do segurado. A apdlice é
vendida no momento em que os 50 mil individuos nasceram (alterar esta hipdtese para que
apenas adultos comprem a apdlice dé trabalho e nao muda o essencial do exercicio). Ela
coloca o dinheiro rendendo juros de 5% ao ano de forma que dentro de ¢ anos os 2 mil reais
terao se transformado em 2 x exp(0.05¢). Se o individuo falecer muito cedo, ela terd uma perda
financeira. Se ele sobreviver muito tempo, seu prémio vai acumular juros suficiente para cobrir
o pagamento do beneficio.

Para a carteira de 50 mil vidas que vocé gerou, calcule aproximadamente a probabilidade de
perda da seguradora usando simulagao Monte Carlo.

18. Use Importance Sampling para estimar valores associados com X, uma v.a. com distribuicao Gama
com parametros o = 3 e § = 2 e densidade:

f(x):{o, sex <0

4.52% exp(—2x), sex >0
Use a distribuicdo exponencial com A = 1 para gerar suas amostras. Vocé sabe que para gerar
W ~ exp(1) basta tomar W = log(U) onde U ~ U(0, 1).

A esperanca E(X) é conhecida analiticamente e é igual a E(X) = 1.5. Verifique se a média
ponderada da sua amostra tem um valor préximo deste valor.

Use sua amostra para obter valores aproximados das seguintes quantidades que, neste caso simples,
podem ser obtidas analiticamente (ou com métodos numéricos bem precisos):

e DP(X)=+/V(X)=0.75 onde V(X) = E(X?) — E(X)?
e P(X >4.3) =E(I[X > 4.3]) = 0.0086

e E(10e=*I[2 < X < 3]) (este nimero é o valor presente atuarial de um seguro de equipamento
que paga 10 unidades se uma certa maquina falhar entre 2 e 3 anos de seu inicio). Isto é, este
seguro cobre apenas falhas que ocorrem entre e 2 e 3 anos de vida do equipamento.




19.

20.

No problema anterior, imagine que vocé nao sabe que a constante de normalizacao da densidade
f(x) sejaigual a 4.5. Use SIR (Sampling Importance Resampling) para obter uma amostra de f(x)
e a seguir estime as mesmas quantidades do problema anterior.

No método de de aceitagao-rejeicao queremos amostra de uma densidade-alvo f(x) mas usamos
uma amostra retirada de uma densidade g(x) de onde sabemos gerar. Precisamos escolher uma
constante M tal que f(x) < Mg(x) para todo x. Mostre que M > 1. DICA: integre dos dois lados
da desigualdade.



Capitulo 6

Vetores Aleatorios

1. Considere a distribuicao conjunta sobre trés varidaveis X,Y,Z, que assumem possiveis valores

{z1,..., 21}, {v1,...,xm} e {z1,..., 2, }, respectivamente.

e Em geral, quantos niimeros sao necessarios para especificar a funcao de massa de probabilidade
conjunta p(z,y,z) =P(X =z,Y =y, Z = 2)?

e Suponha que nos seja dada a tabela de valores para p(x;,y;,2;). Anote uma equagao que
especifique o distribuigdo marginal, p(z), em funcao desta tabela.

e Agora, suponha que queremos calcular a distribuigao condicional p(z|z). Descrever como
calcular isso a partir de uma tabela com a probabilidade conjunta.

2. Considere as varidveis aleatérias X € {0,1} e Y € {—1,0,1} com distribuigao de probabilidade

conjunta dada pela tabela abaixo:

65



X | -1 0 1
002 04 02
1100 01 0.1

e Oqueé P(X =1Y =1)7

e Qual é a probabilidade de que Y > 0, dado que X = 07
Encontre E(Y)

Qual é o valor esperado de 3X + 17

e X e Y sao independentes?

Suponha que tenhamos outra varidvel aleatéria Z que seja independente de Y e tenha proba-
bilidades marginais P(Z = 0) = 0.2 ¢ P(Z = 1) = 0.8. Escreva a tabela para a distribuicao de
probabilidade conjunta do vetor (Y, Z).

3. Consideramos um modelo probabilistico para um problema de diagnéstico de falhas. Uma variavel
binéaria C representa a integridade de uma unidade de disco num certo instante de tempo ¢t: C; =0
significa que ela esta operando normalmente em t e C; = 1 significa que ela esta em estado de
falha. A unidade é monitorada continuamente usando um sensor de temperatura e um sensor de
choque. Em cada instante ¢, sdo registradas duas caracteristicas binarias, X; e Y;. Temos X; = 1 se
o drive foi sujeito a choque (por exemplo, caiu), durante o periodo. E temos X; = 0, caso contrério.
Definimos Y; = 1 se a temperatura da unidade de disco esteve acima de 70 graus Celsius no periodo,
e Y; = 0, caso contréario. A tabela abaixo define a funcao de massa de probabilidade conjunta num
instante ¢ dessas trés variaveis aleatérias:

xr y ¢ pxyve(x,y,c)
0 0 O 0.10
0 1 0 0.20
1 0 0 0.20
1 1 0 0.10
0 0 1 0.00
0 1 1 0.10
1 0 1 0.05
1 1 1 0.25

Fornega o valor numérico das probabilidades abaixo:

e Qual é a probabilidade P(C' =1)7

e Qual é a probabilidade P(C' =0|X =1,Y =0)?

e Qual é a probabilidade P(X =0,Y = 0)?

e Qual é a probabilidade P(C' = 0|X = 0)?

e 530 X e Y independentes? Justifique sua resposta.

e X e Y sao condicionalmente independentes dado C7 Isto é, temos P(X = z,Y = y|C =¢) =
P(X =z|C =c)P(Y =y|C =¢)?

4. Num jogo digital, mamonas assassinas movem-se na tela ao acaso (ver Figura 6.1). Cada mamona
movimenta-se de acordo com um modelo probabilistico préprio para nao tornar o jogo mondtono.



Figura 6.1: Jogo digital com mamonas assassinas perseguindo usudrio no chao da imagem.

O movimento de cada uma delas é muito simples: a cada instante ¢ (em fragoes de segundo), ela
movimenta-se de acordo com uma v.a. Xy ~ N(0,1). Ela movimenta-se na direcao norte-sul com
probabilidade § = 1/2 ou na direcao leste-oeste com probabilidade 1 — 6 = 1/2. As diregdes e
tamanhos das movimentacoes sao independentes entre si em cada instante de tempo e em instantes
sucessivos também. Qual é a distribuicao de probabilidade aproximada da localizacdo de uma
mamona assassina num tempo ¢ se ela partiu da origem (0,0)? Suponha agora que # > 1/2 do
forma que ela tenha uma tendencia a preferir movimentar-se na direcao vertical. O que muda no
resultado anterior? E se X; ~ N(0,0?).

. Num jogo digital, mamonas assassinas movem-se na tela ao acaso (ver Figura 6.1). Cada mamona
movimenta-se de acordo com um modelo probabilistico préprio para nao tornar o jogo mondétono.
O movimento de cada uma delas é muito simples: a cada instante ¢ (em fragoes de segundo), ela
movimenta-se de acordo com uma v.a. Z; ~ N(1,1) na dire¢ao norte-sul e de acordo com uma v.a.
W; ~ N(0,1/16) na direcao leste-oeste. As v.a.s Z; e W; s@o independentes entre si. Além disso,
Z1,23,...sao independentes bem como Wi, W, .. ..

e Simule o movimento de uma mamona assassina por 50 instantes de tempo. Repita a simulacao
algumas vezes para ter uma ideia do tipo de movimento que a mamona assassina faz. Quais

as principais caracteristicas qualitativas da sua movimentacao?

e Dado que a manona assassina estd numa posigao (x,y) num certo instante de tempo, qual a
distribuicao de probabilidade de sua posiado um, dois e tres passos a frente?

e Dado que a mamona estava na posi¢ao (x,y) num certo instante, determine um retangulo R
no plano que tenha eixos paralelos ao sistema de coordenadas e tal que, com probabilidade
95%, a mamona esteja dentro de R

e Usando o teorema do limite central, qual é a distribuicao de probabilidade aproximada da
localizacdo de uma mamona assassina se ela partiu da origem (0,0)?

. Considere o conjunto de dados iris do R digitando os seguintes comandos:

iris

dim(iris)

names (iris)

plot(iris[,3], iris[,4])

plot(iris$Petal.length, iris$Petal.Width, pch=21,
bg=c("red","green3","blue") [unclass(iris$Species)])

setosa <- iris[iris$Species == "setosa", 1:4]



plot(setosa)
mean (setosa)
cov(setosa)
cor(setosa)

Os dados em setosa sdo uma amostra de exemplos do vetor aleatério X = (X7, Xo, X3, X4) para
a espécie setosa. X1 € o Sepal Length, X é o Sepal Width, X3 é o Petal Length e X4 é o Petal
Width. Assuma que a distribuigdo conjunta do vetor X é uma normal multivariada de dimensaao 4
com parametros p = (u1, pi2, i3, pa) € matriz de covariancia ¥ de dimensao 4 x 4. Use os resultados
obtidos no R (e apenas DUAS casas decimais) para responder as seguintes questoes:

e Forneca uma estimativa para o vetor p e para a matriz X.

e A partir da matriz de correlagdes entre os pares de v.a.’s (e do plot de dispersao dos pontos),
quais os grupos que sao mais correlacionados?

e Obtenha a distribuicao do sub-vetor X* = (X, X3).

e Obtenha a distribuicado CONDICIONAL do sub-vetor X* = (X3, X3) quando sdo conhecidos
os valores de (X3, Xy).

e Obtenha agora distribuigago CONDICIONAL do sub-vetor X* = (X1, X3) quando é conhecido
apenas o valor de Xs.

e Obtenha também distribuigdo CONDICIONAL do sub-vetor X™* = (X3, X3) quando é conhe-
cido apenas o valor de Xj.

e Comparando as trés ultimas respostas que vocéforneceu, qual das duas variaveis isoladamente,
X5 ou X4, diminui mais a incerteza acerca de X3?7 Isto é, se vocé tivesse de escolher apenas
uma delas, X2 ou Xy, qual vocé iria preferir se seu objetivo fosse predizer o valor de X3?7 A
resposta é a mesma se o objetyivo for predizer X7

e Considere a melhor preditora para X3 que vocé escolheu, dentre Xs ou X4, na questdao an-
terior. Digamos que tenha sido Xy. Avalie quanto conhecer a outra varidvel (neste caso,
X2) reduz ADICIONALMENTE a incerteza acerca de X3. Isto é, compare Var(Xs3|X4) com
Var(Xs3| X, Xy).

7. Seja Z = (Z1,Z2,Z3) um vetor de variaveis i.i.d. (independentes e identicamente distribuidas)
N(0,1). Isto é, Z segue uma distribuigao normal multivariada com valor esperado esperado (0,0, 0)
e matriz 3 x 3 de covaridncia igual a identidade I. Vocé aprendeu a gerar estas v.a.’s na lista
anterior.

Queremos agora gerar um vetor aleatério X = (X7, X2, X3) seguindo uma normal multivariada com
valor esperado p = (pu1, 2, 3) = (10,20, —50) e com matriz de covariancia

4 9 -14
Y= 9 30 —44
—14 —-44 94

Para isto, siga os seguintes passos em R (em matlab, use comandos similares):

e Encontre uma matriz L tal que LL! = 3. Uma matriz com esta propriedade é aquela obtida
pela decomposi¢ao de Cholesky de matrizes simétricas e definidas positivas. Em R, isto é
obtido pelo comando L = t(chol(Sigma)).

e Gere z, um vetor 3-dim com v.a.’s iid N(0,1).

e A seguir, faca



x =mu + L %% z

Gere uma amostra de tamanho 2000 dos vetores z 3-dim e armazene numa matriz amostra de
dimensao 2000 x 3. A seguir, calcule a média aritmética dos 2000 valores de cada coordenada de x
e compare com os trés valores do vetor p. Eles devem ser parecidos.

Usando a amostra, estime os 9 valores da matriz de covaridncia 3. Chame esta matriz estimada
de S. Verifique que as estimativas sao proximas dos valores verdadeiros que vocé usou para gerar
seus dados. Por exemplo, estime o elemento 019 da matriz X por

1 2000
S12 = 2000 ;(%1 — Z1)(xi2 — T2)

onde T e T2 sao as médias aritméticas dos 2000 valores observados das v.a.’s 1 e 2. Os termos oj;
da diagonal principal sao estimados por

| 2000
R 72
%9~ 2000 ;(x” %)
1=
O comando cov(x) calcula a matriz S diretamente (usando 1999 no denominador, ao invés de
2000). Procure calcular vocé os termos da matriz S para ter certeza de que vocé estd entendendo
o que estamos fazendo.

. A matriz X é estimada a partir dos dados substituindo o operador tedrico e probabilistico E pela
média aritmética dos nimeros especificos da amostra. Assim, o;; é estimado por sua versao empirica
sij. Qual a diferenca entre o;; e s;;7 Uma maneira de responder a isto é notar que s;; vai ter um
valor ligeiramente diferente cada vez que uma nova amostra for gerada, mesmo que a distribuigao
de probabilidade permaneca a mesma. J& o;; nao vai mudar nunca, é fixo e determinado pela
distribui¢ao de probabilidade.

Seja p a matriz 3 X 3 de correlacao com elemento
COV(Xi, XJ)

Observe que p;; = 1. Esta matriz p é estimada pela matriz R, cujos elementos sdo obtidos a partir

pij = Corr(X;, X;) =

dos dados da amostra. Assim, p;; é estimado por

rij = 8ij//5ii8jj
Calcule as matrizes p e R e compare-as.

Este é um dos sentidos que empregamos a expressao aprendizagem: usamos os dados observados
para aprender (ou inferir) sobre o mecanismo aleatério que gerou estes mesmos dados. Isto é,
aprendemos sobre p e 3 através de (Z1,Z2) e de S.

. Usando a distribuicao de X do problema anterior, seja b um vetor k-dimensional e C uma matriz
k x 3 formada por constantes. Uma das propriedades da normal multivariada é que a distribuigao
do vetor b + CX de dimensao k é normal com vetor de médias b 4+ Cpu e matriz de k X k covariancia
CXC!. Use esta propriedade para obter a distribuicio das seguintes varidveis:

e Distribuicao marginal de Xi, de X5 e de X3.

e Distribuicao de um indicador composto pelas 3 varidveis: T = 0.4X; + 0.3X5 + 0.3X5.

e Distribuigao de um indicador composto pelas 3 varidveis normalizadas: 7' = 0.4(X; — 10)/2 +
0.3(X3 — 20)/+/30 + 0.3(X3 + 50) /1/94.
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e Distribuigao conjunta de (X; — Xo,4X; + 2X5 — X3).

e Distribuigao conjunta de (X1,aX; + bXs + ¢X3). onde a,b, c s@o constantes reais. Em par-
ticular, encontre a covariancia entre X; e o indicador Y = aX; 4+ bXs + cX3 formado pela
combinacao linear de X1, Xo e X3.

Considere um vetor X = (X1,..., X,) com distribuigio normal multivariada. E possivel mostrar
que, com probabilidade 1 — «, o vetor aleatério X deve cair dentro da elipse D? = ¢ onde ¢ = X;%(Ol)
é o quantil (1 — «)100% de uma distribuigao qui-quadrado com p graus de liberdade onde p é a
dimensao do vetor X. No caso particular de um vetor bidimensional, o valor de ¢ associado com a
probabilidade 1 — o = 0.95 é igual a ¢ = 9.21 ou ¢ &~ 9.2. Assim, se X = (X1, X3) estiver fora dessa
elipse (isto é, se D? > 9.2), o ponto pode ser consirado um tanto anémalo ou extremo.

O arquivo stiffness.txt contem dois tipos de medigoes da rigidez de pranchas de madeira, a pri-
meira aplicando uma onda de choque através da prancha, ea segunda aplicando uma vibracao a
prancha. Estime o vetor p = (u1, p2) e a matriz ¥ usando os dados do amostra e a seguir calcula
o valor de D? para cada ponto da amostra. Qual deles parece extremo? Olhando as duas varidveis
INDIVIDUALMENTE seria possivel detectar estes pontos extremos?

Considere um vetor X = (X3, X2) com distribui¢do normal bivariada com vetor esperado u =
(1, p2) e matriz de covariancia

011 P~/011022

> =
pvolloa 0922

Usando o resultado dos slides, mostre que a distribuicio condicional de (X2|X; = x1) é N (e, 02)

onde
0992 r1 — M1
= 2 + —(®1 — 1) = po + 02— F———
fe = [ m/an( p1) = p2 + py/ e
e

0; = on(l-p?)

A partir desses resultados, verifique se as afirmacoes abaixo sao V ou F:

e Saber que o valor X7 = x7 estd dois desvios-padrao acima de seu valor esperado (isto é,
(1 — p1)/+/o11 = 2) implica que devemos esperar que X3 também fique dois desvios-padrao
acima de seu valor esperado.

e Dado que X; = 1, a variabilidade de X2 em torno de seu valor esperado é maior se x1 < 1
do que se x1 > u.

e Conhecer o valor de X (e assim eliminar parte da incerteza existente) sempre diminui a
incerteza da parte aleatdria permanece desconhecida (isto é, compare a variabilidade de Xj
condicionada e nao-condicionada no valor de X7).

e (. é uma funcao linear de x.

Regressao linear e distribui¢io condicional: Vamos considerar um modelo (na verdade, mais uma
caricatura) de como a renda do trabalho Y de um individuo qualquer esté associada com o nimero
de anos de estudo X desse mesmo individuo. Vamos supor que, para um individuo com X = z anos
de estudo teremos a renda Y como uma variavel aleatoria com distribuicao normal com esperanca
E(Y|X = 2) = g(z) = 300 + 100 * z e varidncia 0> = 502. Responda V ou F as afirmacoes abaixo:

e Se X = 10 para um individuo (isto é, se ele possui 10 anos de estudo), entdo a sua renda é
uma varidvel aleatéria com distribuigdo N (1300,502).

o E(Y) =300 + 100 * .



13.

14.

e E(Y|X =2x) =300+ 100 * x.
o V(Y) =502
e V(Y|X =) =502

Duas varidveis aleatérias continuas com densidade conjunta fxy (z,y) sdo independentes se, e so-
mente se, a densidade conjunta é o produto das densidades marginais:

fxv(z,y) = fx(@)fy(y) .

Mostre que X e Y sao independentes se o vetor (X,Y’) seguir uma distribuigdo unforme num
retangulo [a, b] x [c,d] e densidade

1/A, se (z,y) € [a,b] X [¢,d]

0, caso contrario

Ixy(z,y) = {

onde A = (b—a)(d — ¢) é a drea do retangulo. Para isto, obtenha as marginais fx(z) e fy(y)
e mostre que seu produto é igual & densidade conjunta. Verifique também que X e Y seguem
distribuicoes uniformes. Assim, no método de aceitagao-rejeicao, podemos gerar facilmente dessa
densidade uniforme: simlesmente gere X e Y independentemente com distribuicoes uniformes.

Gerar uma amostra aleatéria com 300 instancias do vetor aleatério (X, Y) com densidade

0.1 (2 +sin(2mz) +sin(27y)), se (z,y) € D
Fly) =9, ) .
, caso contrario

O suporte D é um poligono dentro do quadrado [0, 3] x [0, 3] que pode ser visualizado com estes

comandos:
poligx = ¢(1,1,0,1,2,3,2,2,1)
poligy = <¢(0,1,2,3,3,2,1,0,0)

plot(poligx, poligy, type="1")

Gere uma amostra com distribui¢ao uniforme no quadrado, que tem densidade g(z,y) = 1/9 no qua-
drado [0, 3]?, e retenha cada ponto ((x,y) gerado com probabilidade p(z,y) = f(z,vy)/(Mg(z,y)).
Verifique que podemos tomar M > 3.6. Vou usar M = 3.6.

Para visualizar a densidade conjunta f(z,y) na regiao maior do quadrado [0, 3] x [0, 3], dentro do
qual estd a regiao D, digite:

f <- function(x,y){ 0.1*(2+sin(2*pi*x)+sin(2*pix*y)) }
eixox = eixoy = seq(0,3,length=101)
z = outer(eixox, eixoy, f)

Observe que o suporte de g é maior que o de f. Teoricamente, isto ndo é problema: pontos
gerados dentro quadrado mas fora do poligono D devem ser retidos com probabilidade p(z,y) =
flx,y)/(Mg(z,y)) = 0/(M/9) = 0. Isto é, eles devem ser rejeitados com probabilidade 1. Assim,
antes mesmo de calcular p(z,y), verifique se cada ponto esté dentro de D: se nao estiver, elimine-o.
Se D tiver uma forma muito complicada (como a forma da Lagoa da Pampulha ou o contorno de
Minas Gerais), vocé vai precisar de algoritmos geométricos sofisticados que fazem isto de forma
eficiente. No nosso caso, a forma do poligono é muito simples. Complete o cédigo abaixo para
obter uma funcao que testa se (x,%) € [0, 3]? esté dentro de D (ou proponha um cédigo melhor que
0 meu):
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eixoy

Figura 6.2: Amostra de f(z,y) junto com poligono D.

dentroD = function(x,y){

dentro = F

if(x >= 1 & x <= 2) dentro =T

else{
if((x > 2) & (y >= -1+x) & (y <= 5-x)) dentro =T
else

}

return(dentro)

}

A seguir, faga a amostragem de f(z,y). Vocé poderd visualizar sua amostra, armazenada na matriz
mat, junto com a densidade no poligono usando os seguintes comandos, que geram a Figura 6.2:

image (eixox, eixoy, z)
lines(poligx, poligy, lwd=2)
points(mat, pch="*")

Note como as areas mais claras sao aquelas que estao com maior densidade de pontos aleatorios
enquanto as areas mais vermelhas possuem densidade mais baixa.

A fungao persp nativa no R desenha graficos de perspectiva de uma superficie sobre o plano x-y.
Digite demo (persp) no console para ter uma ideia do que esta funcao pode fazer. A seguir, faga
vocé mesmo os graficos de quatro diferentes fungdes de densidade de probabilidade f(z,y) de um
vetor aleatério bivariado (X,Y).

o f(z,y) = (2m) L exp (—(2* + ¥*)/2), a densidade de uma gaussiana bivariada com varidveis
independentes e marginais X ~ N(0,1) e Y ~ N(0,1). A constante de integracao é igual a
1/(2m). Faca a superficie considerando a regiao [—4,4] x [—4,4] do plano (x,y).

Py —14
e f(z,y) = (27V0.51) Lexp (— i +y1 02 it

de uma gaussiana bivariada de varidveis nao-independentes, com correlagao p = 0.7, e com
marginais X ~ N(0,1) e Y ~ N(0,1).

o f(x,y) =|sin(r)|/(44r) onde r = \/x2 + y2. Faca a superficie considerando a regiao [—10, 10] x
[—10,10] do plano (z,y) dividindo-a em uma grade 30 x 30.

) em [—4,4] x [-4,4]. Esta é a densidade



(z,y) = 0.5exp(—(x/3 + y + /zy/4)) no retangulo [0, 6] x [0, 3].

/
° f(x,y)::(l5*g(x,y)+{l5*h(x,y)enl[—4,4]xf—4,4]ondeg(x,y)::(2ﬂ)*1exp(——0£24—y2)/2)
(como no item 1) e h(z,y) = 2 Lexp (—4(z — 2)? — 4(y — 2)?)

O script a seguir exemplifica como fazer o grafico de uma densidade bivariada usando a primeira
densidade da lista acima.

seq(-4, 4, by = 0.2) # usando o parametro by

seq(-4, 4, length = 41) # usando o parametro length

# use outer:
z <- outer(x, y, FUN = function(x,y) exp(-(x"2 + y~2)/2) /(2%pi) )

# outer retorna uma matriz em que na posicao (i,j) temos o valor
# de FUN avaliado com x=x[i] e y=y[j]

# Faca o grafico 3-dim da superficie
persp(x, y, z)

# mudando alguns parametros de persp

persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue")

# mais algumas mudancas

persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col
ltheta = 120, shade = 0.75, ticktype = "detailed",
xlab = "x", ylab = "y", zlab = "densidade f(x,y)")

"lightblue",

I

# Quando a funcao a ser passada como argumento de FUN for muito longa ou complexa
# basta defini-la separadamente e passar apenas o seu nome como argumento para FUN.
# Exemplo:

f <- function(x,y){
exp(-(x"2 + y~2)/2) /(2%pi)

z <- outer(x, y, FUN=f)
persp(x, y, z)

I

# Um procedimento alternativo usando a funcao mesh do R:
# crie um reticulado no plano (um grid)

M <- mesh(x, y))

# com a funcao "with", calcule uma funcao em cada ponto do grid retangular
# o valor de retorno eh uma matriz identica ’a z anterior.

z <= with (M, exp(-(x"2 + y~2)/2) /(2%pi))
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persp(x, y, z)

Instale o pacote plot3D, criado por Karline Soetaert e baseado na fungao persp(). A vinheta (vig-
nette, em ingés) do pacote plot3d mostra alguns graficos muito bonitos. Carregue o pacote e digite

os seguintes comandos no console: exemplo(persp3D), exemplo (Surf3D) e exemplo(scatter3D)

para ver exemplos. Além disso, tente este cddigo abaixo para ver o belo histograma tri-dimensional

da Figura 6.3. (script adaptado de http://blog.revolutionanalytics.com/2014/02/3d-plots-in-r.
html).

O dataframe quakes fornece informagoes sobre 1000 terremotos com magnitude maior que 4.0 na
escala Richter em torno da ilha Fiji na Oceania a partir de 1964. A longitude e latitude do epicentro
desses 1000 eventos sao as duas primeiras colunas do dataframe. Podemos ver a posi¢ao do epicentro
como um vetor aleatério (X,Y’) com certa densidade de probabilidade f(x,y).

# veja alguma informacao sobre o dataframe
help("quakes")

dim(quakes) # verifique a dimensao do dataset

plot(quakes$long, quakes$lat) # scatterplot dos terremotos em lat-long
grid(20,20) # adiciona uma grade 30 x 30 ao plot

o histograma tri-dim conta o numero de terremotos em cada celula

do grid e levanta uma pilastra cuja altura e’ proporcional a esta contagem

#

#

# Este histograma e’ uma versao grosseira da densidade de probabilidade f(x,y)

# que gera os pontos aleatorios. Voce ja’ consegue imaginar a densidade f(x,y)

# a partir do plot bi-dimensional imaginando altiras maiores nas areas com maior
#

densidade de pontos

# agora, o histograma 3-dim
# Carregue o pacote plot3D
require(plot3D)

# particione os eixos x e y
lon <- seq(165.5, 188.5, length.out = 30)
lat <- seq(-38.5, -10, length.out = 30)

# conte o numero de terremotos em cada celula do grid
xy <- table(cut(quakes$long, lon), cut(quakes$lat, lat))

# veja o uso da funcao cut acima.
# aproveite para ler sobre ela pois e’ muito util.

?7cut
# obtenha o ponto medio em cada celula do grid nos eixos X e y

xmid <- 0.5*%(lon[-1] + lon[-length(lon)])
ymid <- 0.5%(lat[-1] + lat[-length(lat)])



# passando argumentos para os parametros de controle da margem da janela grafica
par (mar = par("mar") + c(0, 0, 0, 2))

# 0 histograma 3D, na versao default. Cores ajudam a visualizar as alturas das barras

hist3D(x = xmid, y = ymid, z = xy)

# Mudando os parametros que controlam o angulo de visao e a posicao do observador
hist3D(x = xmid, y = ymid, z = xy, phi = 5, theta = 25)

# Tirando as cores, pondo rotulos nos eixos e titulo no grafico
hist3D(x = xmid, y = ymid, z = xy, phi = 5, theta = 25, col = "white", border = "black",
main = "Earth quakes", ylab = "latitude", xlab = "longitude", zlab = "counts")

# Agora uma visao bem mais trabalhada: aumentando o eixo z para criar espaco para os pont
hist3D(x = xmid, y = ymid, z = xy,

zlim = c(-20, 40), main = "Earth quakes",

ylab = "latitude", xlab = "longitude",

zlab "counts", bty= "g", phi = 5, theta = 25,
shade = 0.2, col = "white", border = "black",

d = 1, ticktype = "detailed")

# Acrescentando os pontos no grafico acima, agora uma visao realmente linda:
with (quakes, scatter3D(x = long, y = lat,
z = rep(-20, length.out = length(long)),
colvar = quakes$depth, col = gg.col(100),
add = TRUE, pch = 18, clab = c("depth", "m"),
colkey = list(length = 0.5, width = 0.5,
dist = 0.05, cex.axis = 0.8, cex.clab = 0.8) ))

17. Seja f(z,y) = k(x4 y+ xy) uma densidade de probabilidade do vetor continuo (X,Y") com suporte
na regiao [0, 1] x [0,1]. O valor de k é uma constante de normalizacao que faz a integral ser igual
al.

Obtenha k.

Faga o grafico 3-dim da densidade conjunta.

Obtenha a densidade marginal fx(z) e faga seu grafico. Avalie esta densidade marginal no
ponto z = 0.2 e em x = 0.5.

Obtenha a densidade condicional fx|y (z|y) para x e y genéricos. Se y = 0.2, qual é a densidade
condicional fx|y(z|y = 0.2)?7 Repita com y = 0.9.
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Figura 6.3: Epicentro de terremotos em Fiji com o histograma 3d.



Capitulo 7

Distribuicao Gaussiana Multivariada

Estes exercicios exploram as distribuigoes marginais e condicionais associadas com uma normal mul-
tivariada. Lembre-se: se A é uma matriz de constantes e Y um vetor aleatério com E(Y) = p e matriz
de covariancia Cov(Y) = X, entao

E(AY)=Ap=A E(Y)

Cov(AY) = AXA' = A Cov(Y) A/

1. Considere o conjunto de dados iris do R digitando os seguintes comandos:

iris

dim(iris)

names (iris)

plot(iris[,3], iris[,4])

plot(iris$Petal.Length, iris$Petal.Width, pch=21,
bg=c("red","green3","blue") [unclass(iris$Species)])

setosa <- iris[iris$Species == "setosa", 1:4]

plot(setosa)

mean (setosa)

cov(setosa)

cor (setosa)

7



Os dados sd@o uma amostra de exemplos do vetor aleatério X = (X1, X9, X3, X4) onde X; é o
Sepal Length, X9 é o Sepal Width, X3 é o Petal Length e X4 é o Petal Width. Assuma que
a distribuicdo conjunta do vetor X ¢é uma normal multivariada de dimensado 4 com parametros
p = (u1, 2, 13, pa) € matriz de covariancia 3 de dimensao 4 x 4. Use os resultados obtidos no R
(e apenas DUAS casas decimais) para responder as seguintes questoes:

e Forneca uma estimativa para o vetor pu e para a matriz X.

e A partir da matriz de correlagdes entre os pares de v.a.’s (e do plot de dispersao dos pontos),
quais os grupos que sao mais correlacionados?

e Obtenha a distribuicao do sub-vetor X* = (X7, X3).

e Obtenha a distribuigado CONDICIONAL do sub-vetor X™* = (X1, X3) quando sao conhecidos
os valores de (X3, Xy).

e Obtenha agora distribuigao CONDICIONAL do sub-vetor X* = (X1, X3) quando é conhecido
apenas o valor de Xs.

e Obtenha também distribuigao CONDICIONAL do sub-vetor X* = (X3, X3) quando é conhe-
cido apenas o valor de Xj.

e Comparando as trés ultimas respostas que vocéforneceu, qual das duas variaveis isoladamente,
X5 ou Xy, diminui mais a incerteza acerca de X3?7 Isto é, se vocé tivesse de escolher apenas
uma delas, Xo ou X4, qual vocé iria preferir se seu objetivo fosse predizer o valor de X3?7 A
resposta é a mesma se o objetyivo for predizer X7

e Considere a melhor preditora para X3 que vocé escolheu, dentre Xo ou X4, na questao an-
terior. Digamos que tenha sido Xj. Avalie quanto conhecer a outra varidvel (neste caso,
X2) reduz ADICIONALMENTE a incerteza acerca de Xs. Isto é, compare Var(Xs|X4) com
V(LT‘(Xg’XQ, X4)

2. Seja Z = (Z1,Z2,Z3) um vetor de varidveis i.i.d. (independentes e identicamente distribuidas)
N(0,1). Isto é, Z segue uma distribui¢ao normal multivariada com valor esperado esperado (0,0, 0)
e matriz 3 X 3 de covariancia igual a identidade I. Vocé aprendeu a gerar estas v.a.’s na lista
anterior.

Queremos agora gerar um vetor aleatério X = (X7, X9, X3) seguindo uma normal multivariada com
valor esperado p = (pu1, 2, 3) = (10,20, —50) e com matriz de covariancia

4 9 14
Y= 9 30 —44
—14 —-44 94

Para isto, siga os seguintes passos em R (em matlab, use comandos similares):

e Encontre uma matriz L tal que LL! = ¥. Uma matriz com esta propriedade é aquela obtida
pela decomposi¢ao de Cholesky de matrizes simétricas e definidas positivas. Em R, isto é
obtido pelo comando L = t(chol(Sigma)).

e Gere z, um vetor 3-dim com v.a.’s iid N(0,1).

e A seguir, faca

x =mu + L %x% z



Gere uma amostra de tamanho 2000 dos vetores z 3-dim e armazene numa matriz amostra de
dimensao 2000 x 3. A seguir, calcule a média aritmética dos 2000 valores de cada coordenada de x
e compare com os trés valores do vetor p. Eles devem ser parecidos.

Usando a amostra, estime os 9 valores da matriz de covaridncia 3. Chame esta matriz estimada
de S. Verifique que as estimativas sao préximas dos valores verdadeiros que vocé usou para gerar
seus dados. Por exemplo, estime o elemento o192 da matriz ¥ por

2000
1

= 5000 (xin — Z1)(Ti2 — T2)
i=1

S12
onde Z1 e T2 sao as médias aritméticas dos 2000 valores observados das v.a.’s 1 e 2. Os termos o
da diagonal principal sao estimados por

| 2000
R 52
535 = 3000 ;(fﬁ] ;)
O comando cov(x) calcula a matriz S diretamente (usando 1999 no denominador, ao invés de
2000). Procure calcular vocé os termos da matriz S para ter certeza de que vocé estd entendendo
o que estamos fazendo.

. (INCOMPLETO) A matriz ¥ é estimada a partir dos dados substituindo o operador tedrico e
probabilistico E pela média aritmética dos ntimeros especificos da amostra. Assim, o;; é estimado
por sua versao empirica s;;. Qual a diferenca entre o;; e s;;7 Uma maneira de responder a isto é
notar que s;; vai ter um valor ligeiramente diferente cada vez que uma nova amostra for gerada,
mesmo que a distribuicao de probabilidade permaneca a mesma. Ja o0;; nao vai mudar nunca, é
fixo e determinado pela distribuicao de probabilidade.

Seja p a matriz 3 x 3 de correlagao com elemento
COV(XZ', XJ)

Observe que p;; = 1. Esta matriz p é estimada pela matriz R, cujos elementos sao obtidos a partir

Pij == COH‘(XZ‘,X]‘) =

dos dados da amostra. Assim, p;; é estimado por
rij = 8ij//SiiS5;
Gerando por Monte Carlo uma amostra de tamanho 200, calcule as matrizes R e p e compare-as.

Repita gerando uma nova amostra de tamanho 200 e compare novamente as duas matrizes.

Este é um dos sentidos que empregamos a expressao aprendizagem: usamos os dados observados
para aprender (ou inferir) sobre o mecanismo aleatdério que gerou estes mesmos dados. Isto é,
aprendemos sobre p e 3 através de (Z1,Z2) e de S.

. Entendendo a variabilidade de R. Vocé viu no exercicio anterior que p # R. A matriz p nao muda
enquanto sua estimativa R dependen da amostra instanciada da distribui¢do. Até onde R pode ir?
Quao diferentes podem ser p e R?

Simule a matriz de dados amostra de dimensdao 200 x 3 um grande nimero de vezes. Digamos,
simule amostra 5000 vezes. Em cada uma dessas simulacoes de amostra, calcule a matriz de cor-
relagao empirica R. Fagca um histograma dos 5000 valores obtidos para R;;, um grafico-histograma
separado para cada par (i, 7).



Os valores de R;; oscilam em torno do correspondente p;;? Qual o desvio-padrao aproximado de
cada R;;? Pode obter este DP no olhometro.

. Seja X' = (X1, X3, X3, X4) um vetor aleatério com vetor esperado E(X) = p = (0,1,0, —

matriz de covariancia

30 2 2

> _ 01 0

21 9 =2

2 0 -2 4

Particione X como

X1

1

X — X5 _ X

X3 X (2)
X4
onde XM ¢ X@ possuem dimenséo 2. Defina

A:[l—l] eB= 1_1]
1 2

e as combinacdes lineares AX() ¢ BX (). Obtenha os seguintes elementos:

e A matriz de correlacao p de X.
o E(XM)

o E(AXW)

e Cov(X™)

e Cov(AX(M)

o E(X®)

e E(BX®)

e Cov(X®)

e Cov(BX®)

Solugao: Seja V = diag(o11, 022, 033, 044) a matriz diagonal 4 x 4 formada pelas variancias de cada
uma das 4 varidveis de X. Entao a matriz de correlagdo p de X é dada por

p = v-1/2sy-1/2

[ 1/V3 30 2 2 1/v/3
B 1 01 1 0 1
B 1/v/9 2 1 9 -2 1/v9
I 1/V4 2 0 -2 4 1/V4
1 0 0.38 0.58 |
_ 0 1 033 0
N 0.38 0.33 1.0 —0.33
| 0.58 0 —0.33 1|

Em R:




mat

= matrix(c(3, 0, 2, 2, 0, 1, 1, 0, 2, 1, 9, -2, 2, 0, -2, 4) ,ncol=4)

round(diag(1/sqrt(diag(mat))) %*% (mat %*% diag(l/sqrt(diag(mat)))), 2)

BX) = ()
E(AXM) =E(X; - X3)=0—-1=—1

Cov(X™M) = [ 3 (1) ]

Observe que AX®) = X — X, é um escalar, uma varigvel aleatéria, um vetor de dimensao 1.
Portanto, a sua matriz de covariancia é de dimensao 1 x 1 contendo simplesmente a variancia
da v.a.: Cov(AX™M) = Cov(X; — X») = V(X — X3). Podemos obter esta variancia com nossa
férmula geral para obter a matriz de covariancia de uma transformacao linear de um vetor
aleatoério:

Cov(AXM) = ACov(X™M)A’

- o]

= 4=V(X; - X,)

E(X(2)) = (_01)

Temos

1 -1 | (X3 X3 — X4
BX®?) = —
) - (e

E(BX?) = BE(X"?) = [ 1 _; ] <Zi> - <00+_ 2(<_—11)>> - (—12)

Cov(BX?)) = BCov(X®)B’
1 -1
12

B 17 -1
N -1 17

M

6. Seja X = (X1, X, X3) um vetor aleatério com distribuigdo normal multivariada com g = (p1, po, pg)’ =
[~1,0,2) e

1 -2 0
=] -2 50
0 0 2

Obtenha a distribuigdo marginal de cada uma das v.a.’s

e de

1 1
Yi=-X1—~

1
Xo+-X
4 2t g

1 1 1
Yo=-X;+-X9— =X
2= 1+4 27 543



Obtenha também a distribuigdo conjunta de Y7, Ys).
DICA: Escreva (Y7,Y2) como AX onde A é uma matriz 2 x 3 de constantes.

Solugao: Y possui distribui¢ao gaussiana. Se ¢; = (1/4,—1/4,1/2)" ent@o o valor esperado é igual

a
1 1 1
E(Y1) =E(¢|X) =cjp == T e s = -1/4+0+2/2=3/4

e a variancia é

1 —2 0 1/4
V(Yl):c’lzclz[1/4 ~1/4 1/2] 2 5 0 || —1/4 | =9/8
0 0 2 1/2

Similarmente, fazendo co = (1/4,1/4,—1/2)’, encontramos Y, ~ N(—5/4,5/8).

O vetor (Y7,Y2) possui distribui¢ao normal bivariada com quase todos os seus parametros ja calcu-
lados. Falta apenas a correlagdo (ou covariancia) entre Y7 e Y3):

Y, 3/4 7/8 77
G ([ [ o)

O valor faltante é obtido facilmente como o elemento 21 da matriz:
<)
ch

Outra opcao mais simples é usar a propriedade da bilinearidade do operador covariancia:

COV(Z (lz‘Xi, Z ijj) = Z aibjCov(Xi, Xj) = a’Zb
i J

e e

que é igual a —3/4.

2
Assim,
COV(Yl,YQ) = COV(X1/4—X2/4+X3/2,X1/4+X2/4—X3/2)
= e
1 -2 0 1/4
- [1/4 ~1/4 1/2] 2 50 1/4
0 0 2 ~1/2
= -3/4
Portanto,

v 3/4 7/8 —3/4
<Y2) ~ N2 ([ —5/4 ] : [ —3/4  5/8 D

. Seja X = (X1, X2, X3)" um vetor aleatério com distribui¢ao normal multivariada com g = (1, pg, u3) =
[—1,0,2] e

1 -2 0
YX=|-2 50
0 0 2

Quais das seguintes variaveis aleatérias sao independentes?

oXleXz



° XQ (§] X3

[ ] (Xl, XQ) € X3

o (X1+X2)/2e X3

o Xy e Xy +5X1/2—X3
Solucao: Numa normal multivariada Y = (Y7,...,Y},)’, duas de suas varidveis aleatérias i e j sao
independentes se, e somente se, o elemento (7, j) da matriz de covariancias (ou de correlagoes) é igual
a zero. Para sub-vetores de Y o memso resultado vale olhando-se para a matriz 3 particionada.
Assim,

e X e X9: nao sao independentes

e X, e X3: sdo independentes

(X1, X2) e X3: s@o independentes pois o bloco formado por X 3 e 39 3 ¢é igual a zero.

(X1 + X2)/2 e X3: sao independentes pois g(X1, X2) = (X1 + X2)/2 é uma funcao apenas de
X1 e Xs, que sao independentes de X3.

X9 e g(X1,X9,X3) = X2+ 5X1/2 — X3: séo independentes. Usando a bilinearidade da
covariancia, calculamos

COV(XQ, X2—|-5X1/2—X3) = COV(XQ, X2)+(5/2)COV(X2,Xl)—COV(XQ,Xg) = 5+(5/2)(—2)—0 =0

. Leia os slides 165 e seguintes do material Top09-NormalMult.pdf. Eles apresentam o uso da
distancia aleatdria de Mahalanobis para deteccdo de anomalias. A distancia de Mahalanobis entre
um ponto aleatério gaussiano X em RP? e o seu perfil esperado E(X) = p é dada por

D= (X -p)SH(X —p).

onde ¥ é a matriz p X p de covariancia de X. Lembre-se que a densidade da normal multivariada
é baseada nesta medida de distancia.

Como X é um vetor aleatério gaussiano, a medida D? é um niimero aleatério: possui uma faixa de
valores possiveis e probabilidades associadas.

e A quantidade D? tem um valor tipico (ou valor esperado): E(D?) =77.

3

e D? possui um afastamento tipico de seu valor esperado, seu DP. O desvio-padrao de D? é:
V(D?) =77.

e Mais que isto, niio somente estes dois resumos da distribuicdo de D? sdo conhecidos mas a
prépria distribuicio de D? é conhecida. D? ~?7.

e Fixando uma constante ¢ qualquer, o conjunto de pontos x € RP que satisfazem D? = ¢
formam um elipséide em p dimensoes. Isto é, os pontos x que estdo a uma distancia D? igual
a ¢ do seu perfil esperado formam um elipséide. Quais sao os eixos deste elipsdide e os seus
tamanhos relativos?

o I possivel mostrar que, com probabilidade 1 — a, o vetor aleatério X deve cair dentro da
elipse D? = ¢ onde ¢ = Xf,(oz) é o quantil (1 — «)100% de uma distribuigao qui-quadrado
com p graus de liberdade onde p é a dimensao do vetor X. No caso particular de um vetor
bidimensional, o valor de ¢ associado com a probabilidade 1 — a = 0.95 é igual a ¢ = 9.21.
Assim, se X = (Xi, X3) estiver fora dessa elipse (isto é, se D? > 9.21), o ponto pode ser
consirado um tanto anémalo ou extremo.



O arquivo stiffness.txt contém quatro tipos de medicoes da rigidez de pranchas de madeira. A
primeira é obtida aplicando-se uma onda de choque através da prancha, a segunda aplicando-se
uma vibracao a prancha e as outas duas sao obtidas por meio de testes estaticos. Assuma que
cada as 4 medigoes em uma prancha sao instancias de um vetor Ny(u, ). Estime o vetor u e
a matriz4 x 4 ¥ usando os dados do amostra. A seguir, usando estes valores estimados como
se fossem os verdadeiros valores de p e X, calcule o valor de D? para cada ponto da amostra.
Quais pontos parecem extremos? Olhando as varidveis INDIVIDUALMENTE ou em pares
através de scatterplots seria possivel detectar estes pontos extremos? Faga scatterplot dos
dados para entender sua resposta.

Solugdo: E possivel deduzir que, se X ~ N,(p, 2), entdo D? segue uma distribuicio qui-quadrado
com p graus de liberdade. Isto permite obter E(D?) = p e também V(D?) = 2p. Os eixos do elipséide
estdo na direcdo dos autovetores da matriz X e com tamanhos proporcionais a raiz quadrada de
seus autovalores.

stiffness = matrix(scan("stiffness.txt"), ncol=5, byrow=T)
x = stiffness[,1:4]

mu = apply(x, 2, mean)

sigma = cov(x)

n = nrow(x)

desvio = x - matrix(mu, nrow=nrow(x), ncol=ncol(x), byrow=T)

d2meu = diag(desvio %*% (solve(sigma) %x*% t(desvio)))

# comando acima calcula D2

# R possui um comando proprio (e mais eficiente) para isto: mahalanobis
d2 = mahalanobis(x, mu, sigma)

# verificando que meu comando ineficiente calculou a mesma coisa
plot(d2, d2meu)

# identificando as anomalias
anomalias = d2 > qchisq(0.95,4)

x [anomalias,]

nanom = sum(anomalias)

# plotando e marcando em vermelho as anomalias

pairs(rbind(x, x[anomalias,]), pch="*", col=rep(c("black", "red"), c(n, nanom)))

Scatterplot das 4 varidveis com as anomalias marcadas em vermelho estao na Figura 7.1.

. Considere os dados do data frame iris do R. Este é um famoso conjunto de dados na comunidade
de aprendizagem de maquina. Ele foi analisado inicialmente por Ronald Fisher quando desenvolveu
em 1936 a técnica de andlise de componentes principais (PCA). Ele contem medicoes de 150 flores
iris. Em cada flor, foram feitas quatro medidas: o comprimento e a largura das pétalas e das
sépalas em centimetros. Além disso, cada uma das 150 flores pertence a uma de trés espécies
distintas: Iris setosa, Iris virginica e Iris versicolor. Sao 50 flores de cada espécie. Veja detalhes
em https://en.wikipedia.org/wiki/Iris_flower_data_set.

Os seguntes comandos geram um primeira visao dos dados:
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Figura 7.1: Scatterplot das variaveis de stiffness. Anomalias estdo marcdas em vermelho.

head(iris) # las linhas do data frame iris

dim(iris)  # dimensao do data frame

?iris # help sobre o data frame

pairs(iris[,1:4]) # matriz de pares de scatterplots com as 150 flores

Notamos que em cada grafico existem dois grupamentos de dados. Provavelmente, estes grupa-
mentos correspondem a diferentes espécies de flores. Medidas de diferentes espécies costumam ter
diferentes distribuigoes de probabilidade, com seus valores concentrados em diferentes intervalos.

Para verificar esta afirmacao, vamos colorir cada flor de acordo com sua espécie:

titulo = "Iris Data (red=setosa,green=versicolor,blue=virginica)"
pairs(iris[,1:4] ,main=titulo, pch=21, bg = iris$Species)

A espécie virginica é bem diferente das outras duas. Embora menos discrepantes, vemos claramente
que cada uma dessas duas, setosa e wversicolor, possuem medidas ocupando regioes diferentes em
cada plot. Vamos analisar apenas uma das espécies, setosa, colocando os seus dados num novo data

frame.

setosa <- iris[iris$Species == "setosa", 1:4]

pairs(setosa) # plots de pares das 4 variaveis

apply(setosa, 2, mean) # media aritmetica de cada variavel
cov(setosa) # estimativa da matriz de covariancia

cor (setosa) # estimativa da matriz de correlacao

round(cor (setosa),2) # valores arrendondados em duas casas decimais

Estes dados s@o uma amostra de 50 exemplos do vetor aleatério X = (X1, X9, X3, X4) onde X;
é o comprimento da sépala, X5 é a largura da sépala, X3 é o comprimento da pépala e X4 é a



largura da pépala. Assuma que a distribuicdo conjunta do vetor X é uma normal multivariada de

dimensado 4 com parametros g = (p1, p2, i3, f14) € matriz de covariancia ¥ de dimensao 4 x 4. Use

os resultados obtidos no R como estimativas para os valores desconhecidos do vetor @ e da matriz

de covariancia X e da matriz de correlagao 3. A seguir, responda as seguintes questoes:

Forneca uma estimativa para o vetor u e para a matriz X e p.

A partir da matriz de correlagao entre os pares de v.a.’s (e do plot de dispersao dos pontos),
quais as varidaveis que sao mais correlacionadas? E quais sdo menos correlacionadas?

Obtenha a distribuicaio MARGINAL do sub-vetor X* = (X, X3), o comprimento e largura
da sépala.

Obtenha a distribuigao CONDICIONAL do sub-vetor X* = (X3, X3) quando sao conhecidos
os valores x3 e x4 das v.a.’s (X3, X4). Obtenha esta distribuigdo para dois valores genéricos 3
e x4. A seguir use dois valores especificos: z3 = 1.8 e x4 = 0.6, dois valores relativamente altos
para estas varidveis. Compare DP; = /V(X;) com /V(X1|X3 = 1.8, X4 = 0.6), o desvio
padrao da variavel X, condicionada nos valores de X3 e Xj.

Obtenha agora a distribuigao CONDICIONAL do sub-vetor X* = (X3, X3) quando é conhe-
cido apenas o valor de X3.

Obtenha também distribuicaio CONDICIONAL do sub-vetor X* = (X7, X3) quando é conhe-
cido apenas o valor de Xjy.

Comparando as trés ultimas respostas que vocéforneceu, qual das duas varidveis isoladamente,
X3 ou X4, diminui a incerteza acerca de X5 mais fortemente? Isto é, se voceé tivesse de escolher

apenas uma delas, X3 ou X4, qual vocé iria preferir se seu objetivo fosse predizer o valor de
X57

Considere a melhor preditora para Xy que vocé escolheu, dentre X3 ou X4, na questao anterior.
Digamos que tenha sido X4. Avalie quanto conhecer a outra varidvel (neste caso, X3) reduz
ADICIONALMENTE a incerteza acerca de X3. Isto é, compare V(X3|X4) com V(X3|X3, X4).

Solucao: Para o problema das flores setosa:

Estimativas de p e X:

> apply(setosa, 2, mean) # estimativa de mu
Sepal.Length Sepal.Width Petal.Length Petal.Width

5.006 3.428 1.462 0.246
> round(cov(setosa),3) # estimativa de Sigma
Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 0.124 0.099 0.016 0.010
Sepal.Width 0.099 0.144 0.012 0.009
Petal.Length 0.016 0.012 0.030 0.006
Petal.Width 0.010 0.009 0.006 0.011

A partir da matriz de correlacdo cor(setosa), o comprimento X; e a largura X5 das sépalas
sao as varidveis mais correlacionadas: p1o = 0.74. A largura da sépala X9 e o comprimento da
pétala X3 sao as menos correlacionadas, com pa3 = 0.18.

A distribui¢ao do sub-vetor X* = (X3, X3), o comprimento e largura da sépala, vem direta-
mente dos elementos 1 e 2 de p e do bloco da matriz 3:

X, 5.006\ [ 0.124 0.099
X* = ~ No(p[1:2],S[1:2,1:2)) = N
<X2) 2(ull:2], 31 :2,1:2)) 2((3.428)’[0.099 o.144]>



e A distribui¢ao condicional de X* = (X1, X3) quando sdo conhecidos os valores (x3,x4) das

v.a.’s (X3, X4).

(2) ) @i i zi) ~ Nz (m, V)

onde, usando a notacao das notas de aula,

¥
X
¥

_1({*3 —
Ml) +2122221< ° ,U«3>

H2 T4 — [4
-1
5.006 + 0.016 0.010 0.030 0.006 r3 — 1.462
3.428 0.012 0.009 0.006 0.011 x4 — 0.246

5.006 n 0.399 0.712 r3 — 1.462
3.428 0.247 0.702 x4 — 0.246

Para z3 = 1.8 e x4 = 0.6 temos

o 5.006 N 0.387\ _ (5.393
- \3.428 0.332)  \3.760

Quanto a matriz de covariancia V para a distribuicdo condicional, temos

Vv

PR MIPS S 3o

|

0.124
0.099

0.110
0.088

-1
0.099 | | 0.016 0.010 0.030 0.006 0.016 0.012
0.144 0.012 0.009 0.006 0.011 0.010 0.009
0.088
0.134 | °

Temos DP; = /V(X;) = 1/0.124 = 0.352 e /V(X1]| X3 = 1.8, X4 = 0.6) = /0.110 = 0.332.

e Queremos a distribuicao condicional do sub-vetor X* = (X1, X2) quando é conhecido apenas

o valor de X3 = 1.8. Neste caso, é como se a variavel X4 nao existisse: ela nao esta envolvida.

Vamos obter a distribuicao conjunta do vetor (X, X2, X3) e entdo usar a nossa férmula de

condicional da normal mutivariada. Para obter a distribui¢ao marginal de (X7, X2, X3), basta

olhar p e 3 e ignorar as entradas associadas com Xj.

Temos

ni o011 012 013 5.006 0.124 0.099 0.016
~ N3 o s 021 022 023 = N3 3.428 , 0.099 0.144 0.012
w3 031 032 033 1.462 0.016 0.012 0.030

Dividindo este vetor em dois blocos, representados por letras em negrito e com indexacao
ligada aos blocos (e nao as varidveis), podemos usar as férmulas derivadas em sala de aula:

Temos

X1
X2
X3

"1 o11 012 013
my i1 T })
~ N. , o o o =~ N. ,
) 3([#2:| [ 21 22 23}) 3({ m2} {221 oo

H3 031 032 033

X
( 1> ’Xg =18~ N2 (m,V)
Xo



onde, usando a notacao das notas de aula,

e A distribui¢ao condicional do sub-vetor X* = (X, Xs) quando X, = 0.6 é obtida de forma

m

DITIEED HES 2 3%

= my + 21222_21(132 — mg)

- (")

011
021

0.124

0.099

[ 0.115
0.093

5.006
3.428

5.006
3.428

012

022

0.009 |
0.144

0.093 |
0.139

idéntica ao item anterior: Temos

onde

-]
- (3o [3233]
(i)« (

o1 ] 3] 1 (1.8 — i)

0.016

0.030) 7 (1.8 — 1.462)
0.012

— 1.462)

0.180 5.186
0.135 3.563

o _

13 ] [0-33] ! |: 031 032 :|
023

[ 0.016

1
0015 ] [0.030] [ 0.016 0.012 }

X
( 1) ’X4 =0.6 ~ N2 (m,V)
Xo

= mi+ 21222_21(:1:2 —my)

- ()

5.006
3.428

5.006
3.428

( >l
- () [82?2]
(1)« (

o1 ] (o441 (0.6 — pua)

0.010

0.011] 1 (0.6 — 0.246)
0.009

0.322 5.328
0.290 3.718

DTS WS S 3o

011
021

0.124

0.099

[ 0.115
0.091

g12
022

0.009 |
0.144

0.091 |
0.136

014 —1
] [044] [ o41 042 }
024

[ 0.010

01117 o. .
0‘009][00 ] [0010 0009}



10. Seja X = (X1, X2, X3)" um vetor aleatério com distribui¢ao normal multivariada com g = (u1, 2, 13)’

11.

e Temos V(X3|Xy = 0.6) = 0.136 < 0.139 = V(X3|X3 = 1.8). Assim, saber que X4 = 0.6
leva a uma menor incerteza acerca do valor de Xs que aquela que resta quando X3 = 1.8.
Para predizer Xs, saber o valor de X4 é melhor que saber o valor de X3. Observe que
0.139 = V(X3| X3 = 1.8) = V(X3| X3 = z) para todo z, bem como 0.136 = V(X2| X4 = 0.6) =
V(X2|X4 = z) para todo x. Portanto, a conclusao sobre a maior reducao da incerteza de Xo
alcancada pelo conhecimento do valor de X3, ndo depende dos valores especificos x3 = 1.8 e
x4 = 0.6 usados no exercicio. Teriamos a mesma conclusao com quaisquer dois valores para
T3 e T4 pois as variancias condicionais nao variam com x3 e xg4.

e Entre X3 e X4, a melhor preditora de X5 é X4. Acrescentar o conhecimento sobre o valor de
X3 ao conhecimento de que X4 = 0.6 reduz pouco a variabilidade (ou incerteza) acerca de Xo:

0.134 = V(X5|X3 = 1.8, X4 = 0.6) < V(X2| X4 = 0.6) = 0.136 < V(X5) = 0.144

[-1,0,2] e
1 -2 0
E=|-2 50
0 0 2

Seja b um vetor k-dimensional e C uma matriz k x 3 formada por constantes. Uma das propriedades
da normal multivariada é que a distribuicao do vetor b + CX de dimensao k é normal com vetor de
médias b + Cp e matriz de k x k covariancia CEC?. Use esta propriedade para obter a distribuicao
das seguintes variaveis:

e Distribuicao marginal de X, de X3 e de X3.

e Distribuicao de um indicador composto pelas 3 varidveis: T = 0.4X; + 0.3X5 + 0.3X3.

e Distribuigao de um indicador composto pelas 3 varidveis normalizadas: T' = 0.4(X; — 10)/2 +
0.3(X2 —20)/v/30 4 0.3(X3 + 50)/v/94.

e Distribuigao conjunta de (X7 — Xo,4X; + 2X5 — X3).

e Distribuigao conjunta de (Xi,aX; + bXa2 + ¢X3). onde a,b,c sdo constantes reais. Em par-

ticular, encontre a covariancia entre X7 e o indicador Y = aXj 4+ bXs + ¢X3 formado pela
combinacao linear de X1, Xo e X3.

Considere um vetor X = (X1,..., X)) com distribui¢do normal multivariada. E possivel mostrar
que, com probabilidade 1 — a, o vetor aleatério X deve cair dentro da elipse D? = ¢ onde ¢ = X%(a)
é o quantil (1 — a)100% de uma distribuicao qui-quadrado com p graus de liberdade onde p é a
dimensao do vetor X. No caso particular de um vetor bidimensional, o valor de ¢ associado com a
probabilidade 1 — o = 0.95 é igual a ¢ = 9.21 ou ¢ &~ 9.2. Assim, se X = (X1, X2) estiver fora dessa
elipse (isto é, se D? > 9.2), o ponto pode ser consirado um tanto anémalo ou extremo.

O arquivo stiffness.txt contem dois tipos de medigoes da rigidez de pranchas de madeira, a pri-
meira aplicando uma onda de choque através da prancha, ea segunda aplicando uma vibragao a
prancha. Estime o vetor u = (u1, p2) e a matriz ¥ usando os dados do amostra e a seguir calcula
o valor de D? para cada ponto da amostra. Qual deles parece extremo? Olhando as duas varidveis
INDIVIDUALMENTE seria possivel detectar estes pontos extremos?




12. Considere um vetor X = (X1, X3) com distribuigdo normal bivariada com vetor esperado p =

(1, p2) e matriz de covariancia

oV olloos 099

Use a propriedade geral que fornece a distribuicao condicional em vetores k-dimensionais gaussianos

> [ 011 P/ 011022

para obter o caso especial em que temos vetores bi-dimensionais como neste exercicio. Mostre que
a distribuicao condicional de (X2|X; = x1) é N(ue, 02) onde

092 T — p1
Pe = p2+ py [ —— (@1 — p1) = p2 + pvo22———
‘ 011( ) Vo1

07 = om(l — p°)
A partir desses resultados, verifique se as afirmacoes abaixo sao V ou F:

e Saber que o valor X7 = x7 estd dois desvios-padrao acima de seu valor esperado (isto é,
(x1 — p1)/+/o11 = 2) implica que devemos esperar que X3 também fique dois desvios-padrao
acima de seu valor esperado.

e Dado que X; = 1, a variabilidade de X2 em torno de seu valor esperado é maior se x7 < 1
do que se ©1 > u.

e Conhecer o valor de X; (e assim eliminar parte da incerteza existente) sempre diminui a
incerteza da parte aleatéria permanece desconhecida (isto é, compare a variabilidade de X»

condicionada e nao-condicionada no valor de Xj).

e (. é uma fungao linear de z;.

Solucao: Usando a formula matricial para a distribuicao condicional no o caso bivariado, temos
(X3 X1 = x1) ~ N(jte, 02) onde

pe = p2+ 1935 (11— )
= p2+pyonoa (1/o11) (z1 — p1)

T1 — M1
= M2+ p\022 —F—
H2 T p o

ol = Yoo — N12%5) Yo
022 — py/o11022 (1/011) pyv/or1022
022 — P2022

= on(l-p%

[}

Quanto as afirmacdes:

e F: Se (x1 —p1)/\/011 = 2, o valor de X3 vai oscilar em torno de seu valor esperado condicional
que serd p. = pg + p2,/o22. Como |p| < 1, temos o incremento |p2,/022| < 2,/022, ou seja,
menor que 2 desvios-padroes.

e F: pois V(X2| X1 = z) = 02 = 092(1 — p*) nao depende de z.

e V: pois V(Xo| X1 = ) = g9a(1 — p?) < 090 = V(X2) ja que p? < 1.

e V: pois

1 — M1
E(Xo|X1 =21) = pc = p2 + pv/o22 —— =a+b(z1 — 1),

VO11

uma funcao linear de x;.



13.

14.

Considerando o exercicio naterior, mapeie a férmula da distribuicao condicional de um sub-vetor
dados os valores do restante do vetor de uma normal multivariada pode ser interpretada de forma
similar que no caso bivariado. (COMPLETAR AQUI)

Regressao linear e distribui¢ao condicional: Vamos considerar um modelo (na verdade, mais uma
caricatura) de como a renda do trabalho Y de um individuo qualquer esté associada com o nimero
de anos de estudo X desse mesmo individuo. Vamos supor que, para um individuo com X = z anos
de estudo teremos a renda Y como uma varidvel aleatéria com distribuigdo normal com esperanca
E(Y|X = x) = g(x) = 300 + 100 * 2 e varidncia 02 = 502. Responda V ou F as afirmagoes abaixo:

e Se X = 10 para um individuo (isto é, se ele possui 10 anos de estudo), entao a sua renda é
uma varidvel aleatéria com distribuigao N (1300, 502).

E(Y) = 300 + 100 * .

e E(Y|X =x) =300+ 100 x z.
e V(Y) =502
o V(Y|X =) =502






Capitulo 8

Modelos multivariados gaussianos

8.1

1.

PCA: Componentes Principais

Este exercicio é praticamente a mesma coisa que foi feito para o eemplo das das faces (ver capitulo de
PCA no livro-texto). Ele foi extraido da pagina web do livro The Elements of Statistical Learning,
por Hastie, Tibshirani e Friedman. Este excelente livro esta disponivel para download gratuito e
legal na pagina http://statweb.stanford.edu/~tibs/ElemStatLearn/.

O objetivo é construir um algoritmo em R para a classificagao de digitos escritos & mao. Os dados
sao uma parte da base US Postal Service Database e correspondem a digitalizacdo de niimeros de
CEP escritos a mao em correspondéncias enviadas pelo correio americano. Estes dados estdo na
pagina do livro, onde é chamado de ZIP code (¢ o tltimo da lista de datasets).

O conjunto de dados refere-se a dados numéricos obtidos a partir da digitalizacao de digitos escri-
tos & mao a partir dos envelopes pelo Servigo Postal dos EUA. Imagens em preto e branco foram
normalizadas em termos de seu tamanho de forma a caber em uma caixa de pixels 20 x 20, preser-
vando a sua razao de aspecto (aspect ratio). As imagens resultantes contém niveis de cinza como
um resultado da técnica de anti-aliasing usada pelo algoritmo de normalizacdo. As imagens foram
centradas em uma imagem 28 x 28 calculando o centro de massa dos pixels e traduzindo a imagem
de modo a posicionar este ponto no centro da matriz 28 x 28. O resultado final sao imagens 28 x 28

93



k | precisao média | revocacao média
5 77 77
6 77 77
20 77 77

Tabela 8.1: Precisao e revocacao do método de classificacdo de digitos como fungao do nimero k de
autovetores.

em tons de cinza.
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Figura 8.1: Imagens dos digitos 4 da base USPS.

A Figura 8.1 mostra os digitos 4 da base de dados. O objetivo do exercicio é inteiramente analogo
ao de reconhecimento de faces. Queremos um método de classificacdo de novas imagens de digitos
manuscritos. Assim, vocé devera:

e Usando um conjunto de treinamento, criar uma regra de classificagdo de novas imagens de
digitos. Use os primeiros k autovetores da matriz de covariancia entre os pixels para fazer esta
regra de classificacao. Vocé deve fazer seus calculos com k = 5,10, 15, 20.

e Usando apenas a amostra de TESTE, crie uma tabela de contingéncia 10 x 10 de confusao C.
Nesta matriz C' as linhas representam a classe verdadeira do digito (de 0 a 9) e a coluna a
classe em que ele foi alocado. Na entrada Cj; vocé deve colocar o niimero de itens (ou imagens)
que cairam naquela categoria cruzada. Crie esta tabela com os quatro valores distintos de
k = 5,10, 15, 20.

e Calcule a proporcao total das imagens da amostra de teste que caem na diagonal principal.
Esta é uma medida global de classificacao correta do método. Para qual valor de k esta
proporcao fol maxima?

e Preencha uma tabela como a que estd abaixo:



Precisao média é a média aritmética da precisao das 10 classes e definida como:

9
1 Cii
pm_EZCH

com Cjy sendo a soma da linha ¢ na matriz de confusdo. Revocacao média é a média aritmética

da revocagao das 10 classes e definida como:

9

com C4; sendo a soma da coluna i na matriz de confusdo. Mais detalhes sobre precisao (pre-

cision) e revocagao (recall) podem ser vistos no verbete Precision and recall na wikipedia. Ver
também http://wuw.text-analytics101.com/2014/10/computing-precision-and-recall-for.
html.

2. Neste exercicio, vocé vai gerar alguns vetores gaussianos tri-dimensionais que, de fato vivem em
duas dimensoes.

require (MASS)

nsims=200

Sigma = matrix(c(3,2,2,4),2,2)

pts = mvrnorm(nsims, c(1, 2), Sigma)
pts = cbind(pts, 3*pts[,1]+4*pts[,2])
pairs(pts)

library(scatterplot3d)
scatterplot3d(pts)

library(rgl)
plot3d(pts, col="red", size=3)

A = matrix(c(1, 0, 0, 1, 3, 4), 3, 2, byrow=T)
var.pts = A %), Sigma %*) t(A)
var.pts

round (cov(pts),2)

eigen(var.pts)
eigen(cov(pts))

e Quais os parametros p e 3 da distribuicao gaussiana do vetor pts?

e Por que o comando round (cov(pts),2) nado gera exatamente 3 (ignore o erro de aproximagao
puramente numérico, ndo estocastico).

e Qual o menor autovalor de 37

Agora, um conjunto de dados simulado que estd quase completemente contido num plano do R3.



x <- rnorm(1000)

y <= rnorm(1000)

z <= 3 + 1.2%x - 1.2%y + rnorm(1000, sd=0.3)
d2 <- data.frame(x,y,z)

open3d ()

plot3d(d2)

Isto mostra que nao precisamos realmente de 3 dimensoes. Esta massa de pontos vive pratica-
mente num espaco de dimensao 2. Este espaco de dimensao 2 é aquele gerado pelas 2 primeiras
componentes principais.

Agora, um exemplo com dados reais:

?trees # girth = circunferencia
pairs(trees)

x= log(trees)

pairs(x)

scatterplot3d(x)

plot3d(x, col="red", size=3)
eigen(cov(x))

Solugao: O vetor (X, X3) possui distribui¢do normal bivariada com vetor esperado p = (1,2) e
3 2
2 4

O vetor X = (X7, X2, X3) possui distribuigao normal multivariada de dimensao 3 com vetor espe-

matriz de covariancia

2:

rado
10
X1 X1 1
EX)=E|(A = AE = 1 =
) ( <Xb>) <<Xé>> ’ <2>
3 4 11
e matriz de covariancia dada por
10 3 2 17
3 2 1 0 3
ASA'= |0 1 [2 4][0 . 4]— 2 4 22 | =
3 4 17 22 139

O objeto cov(pts) contém a matriz AXA’. O objeto var.pts contém uma estimativa empirica
desta matriz, uma estimativa baseada nas 200 instancias de dados que vocé gerou. Para a amostra
de tamanho nsims, estas duas matrizes sao similares.

O comando round(cov(pts),2) calcula a estimativa empirica da matriz var.pts= AXA’. Esta
dltima matriz é fixa. A estimativa cov(pts) varia de amostra para amostra. Se nsims nao for
muito pequeno, cov(pts) e AX A’ devem ser parecidas, como é o caso neste exercicio.

Com a amostra gerada por mim, obtive min(eigen(var.pts)$values) igual a 9.841374 x 10~ e
min(eigen(cov(pts))$values) igual a 6.915267x 10712, Os valores sdo préximos, ambos préximos
de zero. O menor autovalor de cov.pts é exatamente zero, e isto pode ser verificado se tentamos
fazer uma decomposicao de Cholesky:



> chol(var.pts)
Error in chol.default(var.pts)
the leading minor of order 3 is not positive definite

O algoritmo implementado em R para obter os autovalores de var.pts obtem apenas uma apro-
ximagao numérica para os reais autovalores e autovetores. De acordo com a péagina de help da funcao
eigen, temos: Computing the eigendecomposition of a matrix is subject to errors on a
real-world computer: the definitive analysis is Wilkinson (1965). All you can hope
for is a solution to a problem suitably close to x. So even though a real asymmetric
x may have an algebraic solution with repeated real eigenvalues, the computed solution

may be of a similar matrix with complex conjugate pairs of eigenvalues.

O segundo bloco de comandos gera também uma gaussiana tri-dimensional. Como x1 = rnorm(1000)
ex2 = rnorm(1000) geram independentemente vetores gaussianos N (0, 1) entao (X1, X2) ~ Na(02, bslz)
onde bs0 = (0,0)" e I é a matriz identidade 2 x 2.

O vetor (X1, X2, X3) tem a distribuicao de suas duas primeiras coordenadas j& determinadas acima:

X1 0 1 0 J13
X5 ~ N3 0 ) 0 1 o093
X3 3 031 032 033

A terceira coordenada X3 =3+ 1.2X; —2.3X9 + € onde ¢ ~ N (0, 0.32)7 independente de X7 e Xo.
Assim, os elementos que faltam para determinar a distibui¢ao de (X7, Xo, X3) s@o os seguintes:

E(X3) =E(B3+1.2X; —23Xo+¢) =34+ 1.2E(X;) +23E(X2) +E(e) =3+0+04+0=3
e, pela independéncia entre X1, X3 € €,

033 = V(Xg) = V(?) +1.2X7 — 23X + 6)
= (1.2)°V(X1) + (—2.3)?V(X3) + V(e)
= 144+4529+1.0="7.73

enquanto que

o13 = o031 = Cov(X1, X3)
Cov(X7y,3+1.2X7 — 23X, +¢)
(1.2)Cov (X1, X1) — 2.3Cov(X71, X2) + Cov(X7y,€)
= 12V(X;)—23x (0)+0=12

€
023 = 032 = COV(XQ,Xg)
= COV(XQ, 3+1.2X7 —2.3Xo + 6)
= 1.2Cov(X2, X1) — 2.3Cov (X2, X3) + Cov(Xa,¢€)
= 12x0-23V(X2)+0=-23
Assim,
X3 0 1 0 1.2
X9 | ~ N3 01, 0 1 —2.3

X 3 12 —23 7.73




8.2 Analise Fatorial

1. Neste exercicio, vocé vai analisar os dados de uma andlise quimica de vinhos. Vocé vai ler uma
matriz com 178 amostras de diferentes vinhos. Haverd uma linha para cada vinho. A primeira
coluna indica o cultivar do vinho (entenda como o tipo de uva usada na fabricagdo do vinho)
tal como Sauvignon Blanc, Cabernet ou Chardonnay (rotulados como 1, 2 ou 3). As 13 colunas
seguintes contém as concentracoes de 13 diferentes compostos quimicos na amostra.

O objetivo é diferenciar entre os 3 tipos de vinho com base na sua composi¢ao quimica representada
pelo vetor 13-dimensional X. Vocé precisa criar uma regra para predizer o tipo de vinho (a primeira
coluna) a partir das 13 varidveis de composi¢ao quimica. Vamos verificar que,ao invés de usarmos
as 13 varidveis, poderemos nos basear em dois indices, os dois rimeiros PCAs, que resumem toda a
variabilidade simultdnea das 13 varideis.

Estude o script R abaixo. De propésito, ele tem uma quantidade minima de comentarios. Procure
identificar o que cada linha esta fazendo.

WARNING: o help da fungéo prcomp é confuso, misturando PCA e andlise fatorial nas explicagoes.

arq = "http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data"
wine=read.table(arq, sep=",")

head(wine)

pairs(wine[,2:6])

round (100*cor (wine[,2:14]))

round (apply(wine[,2:14], 2, sd),2)

wine.pca = prcomp(winel[,2:14, scale. = TRUE)
summary (wine.pca)

wine.pca$sdev

sum((wine.pca$sdev) "2)

screeplot(wine.pca, type="lines")

# Barplot das variancias acumuladas

barplot (cumsum(wine.pca$sdev~2) /sum(wine.pca$sdev~2))

# os dois primeiros PCA’s explicam aprox 60% da variancia total
# os 5 primeiros explicam aprox 80%

# Os autovetores

dim(wine.pca$rot)

# 0 1o autovetor

wine.pca$rot[,1]

# 0 20 autovetor
wine.pca$rot[,2]

# Coordenadas dos pontos ao longo do primeiro componente
fscorel = wine.pca$x[,1]

# Coordenadas dos pontos ao longo do segundo componente



fscore2 = wine.pca$x[,2]

# plot dos pontos projetados
plot(fscorel, fscore2, pch="*", col=winel[,1]+8)

Seja X; = (Xi1,...,Xi13) a linha ¢ da matriz wine. Seja Z; = (Z;1, ..., Z;13) a linha i da matriz
wine PADRONIZADA. Isto é, Z;; = (X;; — Zj)/s; onde Z; é a média aritmética e s;

‘e 0 desvio-padrao da coluna j da matriz wine. Esta matriz padronizada é obtida com o comando
scale(wine[2:14]):

z

z = scale(wine[2:14])
round (apply(z, 2, mean), 5)
round(apply(z, 2, sd), 5)

Vamos considerar Z; como um vetor-coluna 13-dimensional. Ao invés de usarmos o vetor Z;,
estamos usando apenas o vetor Y; composto pelos dois indices formados pelos dois primeiros com-
ponentes principais:

Yi

Y, =
Yo,

V1%
V/2 ZZ

onde vi e vo sao os dois primeiros autovetores da matriz de correlacao de X.

e Preencha os locais com (7?7) com os valores numéricos corretos (duas casa decimais apenas):

Yio = ("Zun+ () Zio+ (1) Zi3 +—...%—(??)ZZJ3

e O tultimo grafico do acript R acima é um plot dos pontos Y; dos 178 vinhos. Identifique trés
regides do plano Y7, Yo que podem ser usadas para classificar futuras amostras de vinhos em
uma das trés categorias. Pode apenas esbogar grosseiramente no grafico a mao livre.

e Suponha que uma nova amostra de vinho tem sua composi¢ao quimica medida e encontra-se
x = (13.95,3.65,2.25,18.4,90.18,1.55,0.48,0.5,1.34,10.2,0.71, 1.48, 587.14)

Obtenha seu vetor z, as suas coordenadas (y1,y2) e prediga o seu tipo. Confira sua resposta
no final desta lista.

Solugao: Para o problema do vinho:

x = c(13.95, 3.65, 2.25, 18.4, 90.18, 1.55, 0.48, 0.5, 1.34, 10.2, 0.71, 1.48, 587.14)
z = (x - apply(wine[,2:14], 2, mean))/apply(wine[,2:14], 2, sd)

y1 = sum( wine.pca$rot[,1] * z)

y2 = sum( wine.pca$rot[,2] * z)

plot(fscorel, fscore2, pch="x", col=winel[,1]+8)

points(yl, y2, pch="x", cex=4)




Figura 8.2: Para quem gosta de cerveja, uma Indian Pale Ale de alta qualidade produzida em BH.

2. Cerveja de excelente qualidade comega a ser produzida no Brazil em pequenas cervejarias e um dos

centros mais ativos é a regidao metropolitana de Belo Horizonte, em especial Nova Lima. Se vocé

gosta, experimente a Kud Kashmir (Figura 8.2).

O arquivo beer.txt ¢ um dataset da péagina de Karl Wuensch, East Carolina University. Uma

nova cervejaria estd interessada em conhecer o comportamento de escolha do consumidor de cerveja

artesanal. Um grupo de 231 consumidores avaliaram a importancia de sete qualidades ao decidir

se deve ou nao comprar uma cerveja. Para cada qualidade, foi dada uma nota numa escala de 0 a

100 para sua importancia. As sete qualidades ou varidveis sdo as seguintes:

e COST: baixo custo por volume (300ml de cerveja)
e SIZE: grande tamanho da garrafa (volume)
ALCOHOL: alto percentual de dlcool da cerveja
e REPUTATION: boa reputagdo da marca

e COLOR: a cor da cerveja

e AROMA: agradével aroma da cerveja

e TASTE: gosto saboroso da cerveja

A varidvel SES é uma categoria de status socioeconémico (valores maiores significam status mais

elevados). A varidvel grupo nao é explicada, nao sei do que se trata. Ignore-a durante o exercicio.

O script abaixo executa o seguinte: Leia os dados numa matriz. Use summary(beer) (ou olhe

os dados na tela) para verificar que existem 11 NAs na varidvel AROMA. Obtenha a matriz de

covariancia S das 7 variaveis de qualidade e verifique que os seus desvios-padrao nao sao muito

distintos. Obtenha a matriz de correlacao R.

beer = as.matrix(read.table("beer.txt", header=T))
summary (beer)

S = var(beer[,1:7], na.rm=T)
S
sqrt(diag(S)) # sd’s not very different

R = cor(beer[,1:7], use ="complete.obs")

round (100*R)



Voceé deve gastar um tempo olhando a matriz de correlacao R, a menos que ela seja muito grande.
Vocé esta planejando usar PCA ou FA para capturar a esséncia das correlacoes nesta matriz. Ob-
serve que ha muitas correlacoes grandes e médias em R. Todas as variaveis tem algumas correlacoes
grandes, com a excec¢ao de reputation que é moderadamente (e negativamente) correlacionada com
todo o resto. E ¢bvio que existe uma estrutura de correlagdo entre as varidveis.

O pacote corrplot permite visualizar a matriz de correlacio R de um jeito muito legal. Veja em
http://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html. Ins-
tale e carregue este pacote. Faca um grafico na forma da matriz R em que cada célula possui
uma elipse representando grau de correlagao entre as duas variaveis. Quanto mais achatada e pa-
recida com uma linha reta, mais correlacionadas sao as duas varidveis. Se a elipse for parecida
com um circulo, é sinal de que a correlacao é préxima de zero. Neste caso, a imagem estard quase
transparente. Correlagbes positivas sao azuis, negativas sao vermelhas.

library(corrplot)

corrplot (R, method = "ellipse")

# plotando as elipses e os valores das correlacoes

corrplot.mixed(R, upper = "ellipse")

# rearranjando as linhas e colunas para agrupar variaveis com correlacoes parecidas
corrplot.mixed(R, order = "AQE", upper = "ellipse", cl.align = "r")

Parece haver dois grupos de variaveis, um formado por COST, ALCOHOL, SIZE e outro formado por
COLOR, AROMA, TASTE. Elas sao bem positivamente correlacionadas dentro de cada grupo e, ao
mesmo tempo, pouco correlacionas com as variaveis do outro grupo. Uma varidvel, REPUTATION,
forma um grupo a parte, sendo fracamente e negativamente correlacionada com todas as outras
seis.

Gere uma nova matriz eliminando as poucas linhas em que existem NAs. A seguir, obtenha os
autovetores e autovalores da matriz de covariancia S com a funcao eigen. Vamos trabalhar com
matriz de covariancia porque os desvios-padrao das setes vari’aveis sao parecidos.

newbeer = na.omit(beer)

S = cov(newbeer[,1:7])

fit = eigen(S) # usa o algoritmo QR em cima da matriz S
# autovalores

fit$values

# autovetores

fit$vectors

Na analise acima, tivemos de gerar a matriz de covariancia e, a seguir, passa-la a fungao eigen.
A funcdo eigen nao enxerga mais os dados originais, somente a matriz R. Outra maneira é
fornecer diretamente a matriz X de dados n X p e pedir que os componentes principais da matriz de
covariancia induzida (ou da matriz de correlacao) seja calculada. A funcao prcomp faz isto através
da decomposicao SVD de X.

pca.beer = prcomp(newbeer[,1:7])

# Se quiser obter PCA da matriz de correlal\c{c}\"{a}o, use
# pca.beer = prcomp(newbeer[,1:7], scale. = TRUE)



# Os 7 autovetores

pca.beer$rot

# 0Os 7 autovalores
(pca.beer$sdev) "2

# verifique que os autovetores acima sao os mesmos daqueles retornados por eigen.
# verifique que os autovetores tem norma euclidiana = 1.

# Por exemplo, o 1o PCA:

sum(pca.beer$rot[,1]72)

# Grafico scree com os 7 autovalores (ou variancias de cada PCA)
plot(pca.beer)

# Barplot das variancias acumuladas indicando a escolha de 2 PCAs
barplot (cumsum(pca.beer$sdev=2))

# Resumo

summary (pca.beer)

# Note que o quadrado da linha Standard deviation acima eh igual aos autovalores
# obtidos com fit$values

# Vamos usar apenas os dois los PCs para representar R com dois fatores
# Carga do Fator = sqrt(LAMBDA) * EIGENVECTOR

cargafatl = pca.beer$sdev[1] * pca.beer$rot[,1]

cargafat2 = pca.beer$sdev[2] * pca.beer$rotl[,?2]

# matriz de cargas
L = cbind(cargafatl, cargafat2)

rownames (L) = rownames(R) [1:7]

round(L, 2)

plot(L, type="n",x1lim=c(-40, 20), ylim=c(-10, 25))
text (L, rownames(L))

abline (h=0)
abline (v=0)

A interpretagao dos resultados obtidos nao é simples. Com os eixo rotacionados conseguiremos

um resultado bem mais interpretdvel. Nao existe uma rotina nativa em R para obter a rotacao

otima dos fatores no caso da estimagao pelo método de componentes principais. Em R, a rotagao

otima estd implementada apenas para a estimagao das cargas L por meio do método de méxima

verossimilhanca, um método que veremos em breve. Para o caso do método de componentes

principais, o ultimo grafico mostra que uma rotacdo horaria de aproximadamente 90° + 15° ou

/2 + 15(m/180) deve colocar a maioria dos pontos em apenas um dos dois eixos ortogonais:



# Fazendo manualmente uma rotacao horaria de pi/2+15%pi/180
phi = pi/2 + 15%(pi/180)
T = matrix(c(cos(phi), -sin(phi), sin(phi), cos(phi)), ncol=2, byrow=T)

Lstar = L %*% T # usando a multiplicacao por linha da matriz L

plot(Lstar, type="n", xlim=c(-20, 30), ylim=c(-15, 35))
text(Lstar, rownames(L))
abline(h=0); abline(v=0)

round(Lstar,?2)

A interpretagéo dos fatores é bem mais simples agora. O primeiro fator tem cargas positivas e
grandes em COLOR, AROMA, TASTE e uma carga negativa moderada em REPUTATION. Algém com
uma nota (ou escore) muito elevado neste fator é alguém que preza e diferencia qualidades ligadas
ao paladar da cerveja e também seus seus aspectos estéticos. Este componente poderia ser chamado
de Degustador.

Os individuos que tiverem seu segundo fator muito positivo terao dado notas altas para os as-
pectos de COST, ALCOHOL, SIZE e, ao mesmo tempo, dado uma nota moderadamente baixa para
REPUTATION. Alguém que possui uma nota muito alta neste segundo fator é alguém que gosta de
muita cerveja barata e com muito dlcool, e nao se importa muito com a reputacao da cerveja. Este
componente poderia ser chamado de Bebum Barato.

Para obter uma estimativa das variancias dos fatores especificos (isto é, da matriz W), usamos o
codigo abaixo:

matpsi = diag(diag(S - Lstar %x*% t(Lstar)))
round (matpsi, 2)

sum( (S - Lstar %*) t(Lstar) - matpsi)~2 )/sum(S72)

O tltimo comando mostra que a matriz residual ¥ — L*(L*)’ — ¥ tem uma soma de suas entradas
(ao quadrado) muito pequena em comparagaocom a soma das entradas na matriz de covariancia 3
(apenas 0.005303857 ou 0.5%).

No nosso modelo, os individuos recebem escores independentes destes dois fatores. Eles nao sao
fatores competidores, um individuo pode receber altas doses dos dois fatores. Ele pode gostar de
tomar muita cerveja com muito dlcool e que seja barata. Isto é, ter um escore alto no fator 2. Ao
mesmo tempo, este mesmo individuo pode apreciar também as cervejas mais refinadas, mais caras
e com mais sabor e aroma. Isto é, ter um escore alto também no fator 1. Em suma, ele pode ser
um esteta que adora se embebedar.

Para encontrar uma estimativa dos escores dos dois fatores para cada um dos 220 individuos que
restaram na matriz newbeer apds eliminar as 11 linhas com NAs, usamos o procedimento de re-
gressao linear. Lembre-se que o modelo de andlise fatorial estabelece que as 7 notas do individuo ¢
é representada por

Xi:LL+L* Fi—i—ei

(7x1)  (7x1) (7x2)(2x1) (7x1)
onde F, = (Fy;, Fy;) sao os escores (ou as doses) que o individuo ¢ possui dos fatores 1 e 2. Como
observamos diretamente X; e como estimamos a média populacional g e a matriz de cargas rota-
cionadas L*, podemos usar minimos quadrados ou regressao linear para estimar os escores Fj; e
Fy;.



Por exemplo, o primeiro individuo na matriz newbeer tem a sua representacao fatorial estimada

por

[ 90 | (47251 [ o011 3174 | [ ey ]

80 43.50 484 3207 éa1

70 46.50 3.09  30.19 " éa1

X;= |20 | =p+LF +é& = | 4825 | + | —12.95 —10.83 Flf + | en

50 51.00 25.81  0.05 2 és1

70 44.75 24.79  —1.37 é61
| 60 | 6725 | | 2294 —2.28 | | en |

A matriz L* estd na matriz Lstar no final do script R e é a mesma para todos os individuos. O
vetor fi também é o mesmo para todos os individuos e é obtido simplesmente tomando a média
aritmética de cada uma das sete qualidades de modo que p é aproximadamente igual ao resultado
do comando mu = apply(newbeer[,1:7], 2, mean).

> apply(newbeer[,1:7], 2, mean)
COST SIZE ALCOHOL REPUTAT COLOR AROMA TASTE
47.25 43.50 46.50 48.25 51.00 44.75 67.25

Assim, para o individuo 7 podemos estimar seus escores F}; e Fy; pelos valores Fi; e Fo; que
minimizam o comprimento (ao quadrado) da diferenga entre X; e 1 + L*F;:
argmin || X; — o — L*F;||?
F'.

1

Ou seja, para o individuo @ = 1, queremos o vetor F; que minimize a norma euclidiana (ao quadrado)

do vetor -~ _ ~ _
90 — 47.25 011 31.74
80 — 43.50 484  32.07
70 — 46.50 3.00  30.19 .
X, —p—LFy=|20-4825 | — | —12.95 —10.83 F”
50 — 51.00 25.81  0.05 21
70 — 44.75 2479  —1.37
606725 | | 2294 2.8 |

O seguinte codigo em R faz isto através de loop sobre as linhas da matriz newbeer:

## Factor scores dos n=220 individuos
factors = matrix(0, nrow=nrow(beer), ncol=2)
mu = apply(newbeer[,1:7], 2, mean)
for(i in 1:nrow(newbeer)){

y = newbeer[i, 1:7] - mu

factors[i,] = Im(y ~ O + Lstar)$coef
}

Podemos visualizar os fatores de cada um dos 220 individuos pedindo um plot da matriz factors:

plot(factors, xlab="fator 1", ylab="fator2")

# mas... onde estao os 220 individuos?
# Varios individuos poduziram o MESMO vator x --> estimamos com os mesmos fatores

plot(jitter(factors, amount=0.05), xlab="fator 1", ylab="fator2")



Como varios individuos produziram o mesmo vetor X; seus fatores F; também coincidem. Assim,
o comando jitter foi usado. Ele perturba as coordenadas de cada ponto aleatoriamente com um
ruido uniforme entre —amount e +amount. No novo plot, podemos enxergar todos os individuos.

Respostas

e Para o problema do vinho:

x = c(13.95, 3.65, 2.25, 18.4, 90.18, 1.55, 0.48, 0.5, 1.34, 10.2, 0.71, 1.48, 587.14)
z = (x - apply(wine[,2:14], 2, mean))/apply(wine[,2:14], 2, sd)

y1 = sum( wine.pca$rot[,1] * z)

y2 = sum( wine.pca$rot[,2] * z)

plot(fscorel, fscore2, pch="x", col=winel[,1]+8)

points(yl, y2, pch="#*", cex=4)

8.3 Analise Discriminante

COMPLETAR






Capitulo 9

Classificacao

1. Replicar a andlise de classificacao usando a fungdo LDA de Fisher em duas paginas da web
(uma sendo a sequéncia da seguinte): http://www.aaronschlegel.com/discriminant-analysis/
e https://www.r-bloggers.com/classification-with-linear-discriminant-analysis/. Os
dados nao estao imediatamente visiveis apontado pelas paginas mas eu os coloquei na pagina da
nossa disciplina.

2. Replicar a anélise usando LDA de Fisher que estd na seguinte pédgina da web: https://www.
datascienceblog.net/post/machine-learning/linear-discriminant-analysis/.

3. Existem duas classes ou populacoes, 1 e 2, presentes nas proporcoes positivas 7 e o com 71+ = 1.
Suponha que o vetor aleatério continuo X = (X7,...,X,) com p varidveis possua as densidades
fi1(x) e fa(x) quando o individuo pertence & populagao 1 ou 2, respectivamente. Sejam ¢(1|2) o custo
do erro de classificar erradamente no grupo 1 um individuo que seja do grupo 2. Analogamente,
defina o custo do outro erro ¢(2|1). A regiao 6tima R; de classificagdo no grupo 1 é dada pela
seguinte regiao do espaco RP:

_ AR c<1r2m}
Ry = {X € RP tais que () > 1)

Note que a ordem das populagbes na ultima fragao é oposta a ordem na razao das densidades. Isto

é, comparamos f1/fa com o /7.

e Suponha que ¢(1|2) = ¢(2|1) e que m; = m2. Neste caso, a regra 6tima fica reduzida a uma
simples comparacao. Qual é esta regra de classificagao?

e Imagine agora que m = 0.01 e que ¢(1]2) = ¢(2|1). Para tornar as coisas mais concretas,
suponha que a populacdo 1 sejam portadores de certo virus e a populacdo 2, os demais. A
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regra simples do item acima fica modificada. Agora nao basta que fi(x) seja maior que
f2(x). Ela precia ser bem maior que fa(x). Quantas vezes maior f1(x) deve ser para que
classifiquemos o item com caracteristica x em 17

e Suponha que os custos de ma-classificagdo sejam muito diferentes. O custo de classificar o
portador do virus como sao pode custar-lhe a vida ou a vida de outras pessoas. Por outro
lado, o individuo saudavel ser classificado como infectado custa mais exames confirmatorios,
algumas medidas de isolamento e outras coisas que sao relativemente menos custosas. Suponha
que ¢(1|2) seja 10 vezes menor que ¢(2|1). Neste caso, com w1 = 0.01, como a regra do item
acima fica modificada?

4. Um programa é usado para classificar fotos de gatos (populagao 1) versus fotos de nao-gatos (po-
pulacdo 2). As fotos da populagao 1 (fotos de gatos) sdo chamadas de relevantes. O classificador
seleciona algumas fotos para classificar no grupo 1 baseado em features aleatérias no vetor X.
A regra de classificacdo é representada pela fungao bindria D(X) que assume os valores 1 ou 2
dependendo do vetor aleatério X cair ou nao na regiao R; de classificagao no grupo 1.

Havera erros nesta classificacao e queremos torna-los pequenos. Duas métricas muito populares
para avaliar a qualidade de um classificador s@o: precisdo (precision, em inglés) e revocac¢do (recall,
em inglés). A palavra revocagao nao é muito usada na linguagem diaria. Ela siginifica “fazer voltar,
retornar, chamar novamente”. Pode significar também revogacao, anulamento de um contrato mas
nao é este o significado relevante para nosso contexto.

e Precisao: P(foto € gatos | classificado como gato ) = P(X € 1|D(x) = 1)
e Revocacao: P( classificado como gato [foto € gatos ) =P(D(x) =1|X € 1)

E claro que, tanto para precisao quanto para revocagao, quanto maior, melhor. Precisao e revocacao
s@o probabilidades condicionais usando os mesmos eventos A e B mas um deles é P(A|B) enquanto
o outro é simplemente P(B|A). Sabemos que estas probabilidades podem ser muito diferentes. A
Figura 9.1, retirada da pagina Precision_and recall na Wikipedia, mostra itens nas suas classes
reais: relevante (pop 1) ou nao (pop 2). Mostra também a sua classificagdo na classe 1 (os itens
dentro da elipse central) ou na classe 2 (os restantes). A Figura ainda mostra as probabilidades
precisao e revocagao como diagramas de Venn dos eventos envolvidos.

Marque V ou F nas afirmativas a seguir:

e A precisdo mede o quanto os resultados da classificagao sao tteis.
e A revocagao mede o quanto os resultados da aplicagao da regra de classificacao sao completos.

e A soma de precisdo e revocacgao ¢é igual a 1.
P(Xel)
P(D(x)=1)

Existe um trade-off entre precisao e revocacao: se aumentarmos uma métrica, a outra tem de

e Precisao = Revocagao x

diminuir.

Solucao: VVFVF

5. Existem duas classes ou populacoes, 1 e 2, presentes nas proporgoes positivas 71 e o com 7wy +7w2 = 1.
Suponha que 7 &~ 0. O vetor aleatério continuo X = (X7i,..., X)) com p varidveis possui as
densidades fi(x) e fa(x) quando o individuo pertence & populacdo 1 ou 2, respectivamente. Seja



relevant elements
1

false negatives true negatives

selected elements

How many selected How many relevant

items are relevant? items are selected?

Precision = Recall = ——

Figura 9.1: Retirado da Wikipedia.

¢(1)2) o custo do erro de classificar erradamente no grupo 1 um individuo que seja do grupo 2.
Analogamente, defina o custo do outro erro ¢(2[1). A regra de classificagdo é representada pela
fungao bindria D(X) que assume os valores 1 ou 2 dependendo do vetor aleatério X cair ou nao na
regiao R; de classificagdo no grupo 1.

e Uma regra de decisdao que vai errar pouco serd atribuir a classe 2 a todo e qualquer item:
D(X) = 2 para todo valor de X. Obtenha a probabilidade de classificagdo errada. A proba-
bilidade é proxima de zero?

e Se o custo de ma-clasificacao for também desbalanceado, com ¢(2[1) >> ¢(1|2), a estratégia
anterior pode ser muito ruim. Obtenha o custo esperado de ma-classificagao (ECM) da regra

anterior.

Solugao: m e ECM = ¢(2|1)m

. Vocé quer classificar objetos em duas classes, 1 ou 2, com base numa tnica varidvel X, um vetor
de dimensao 1, usando a regra de classificagdo 6tima. Seja fi(x) = (1 — |z|)/2 para x € (—=1,1) a
densidade de X na populacao 1 e fa(z) = (1 — |z — 0.5])/2 para —0.5 < z < 1.5 a densidade de X
na populagao 2. Suponha que os custos de classificacao errada sao ¢(2] € 1) = a e ¢(1] € 2) = 2a.
Além disso, assuma que p;1 = 0.3 epy =1 —p; =0.7.

e Esboce as duas densidades de probabilidade num gréfico.
e Identifique as regioes de classificagao étima Ry e Ra.
e Assumindo que p; = po, identifique as regioes.

e Assuma agora que, além das probabilidades a priori, os custos também sao iguais.




7. Na populacao 1, o vetor X possui distribuicao N,(pq,21) e distribuicdo Np(ps, 32) na populagao
2. Seja dz(x, p) a distancia de Mahalanobis avaliada com os parametros p;, e Xj da populagao k.
Mostre que a regra de classificacdo étima implica que um novo objeto com medigoes x é alocado a

populagao 1 se
R

(%, i) — dB(x, prg) + log () <k
| 2]

onde |A| = det(A). Encontre a constante k em funcao dos custos e probabilidades a priori p; e
p2 =1 — p1. Obtenha esta constante no caso de custos iguais e p; = po.

8. Quando temos g > 2 populacgoes, a regra de classificacao étima aloca x a populacao j para a qual

g
> pifi(x)elj| € i)
i=1
i#]
é minimo. As probabilidades a priori p1,...,ps somam 1 e ¢(j| € i) é o custo de classificar em j

um individuo da populacao i. Mostre que a regra vista em sala de aula é equivalente a esta no caso
de g = 2 populagoes.

9. Suponha que f(x) é a densidade de uma gaussiana N,(p, 3) para x € RP. Sejam A1 < Ap < ...\,
os autovalores de 3 com os correspondentes autovetores ey, ...,e,. Responda V ou F:

e A chance de observar um valor x distante do perfil médio p decresce mais réapido se nos
afastarmos de p ao longo da direcao e;.

e Se os autovalores \; forem todos iguais, os pontos x que tem a mesma chance de serem
selecionados ficam localizados em esferas centradas em p.

e A regra de classificagdo 6tima para duas populagées com X1 = 35 projeta ortogonalmente
cada dado x ao longo do autovetor com menor autovalor.

10. Thomson e Randall-Maciver (1905) escavaram e obtiveram cranios que, de acordo com o local em
que foram encontrados, puderam ser datados em cinco periodos distintos da hiséria do império
egipcio.

e the early predynastic period (circa 4000 BC)

e the late predynastic period (circa 3300 BC)

e the 12th and 13th dynasties (circa 1850 BC)

e the Ptolemiac period (circa 200 BC)

e the Roman period (circa 150 BC)
Measurements in mm on of 30 male Egyptian skulls from each period were taken. The variables
are:

e MB: Maximal Breadth of Skull

e BH: Basibregmatic Height of Skull

e BL: Basialveolar Length of Skull

e NH: Nasal Height of Skull
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Figura 9.2: Medicoes em cranios encontrados em sitios arqueologicos.

Queremos analisar os dados para determinar se existem diferencas na distribuicao de probabilidade
dos tamanhos dos cranio ao longo do tempo. Isto é, a distribuicao estatistica dos tamanhos de
cranios variou ao longo do tempo? Antropdlogos teorizam que uma mudanca no tamanho do cranio
ao longo do tempo é uma evidéncia da miscigenecao dos egipcios com populagoes de imigrantes ao
longo dos séculos.

REF: Thomson, A. and Randall-Maciver, R. (1905) Ancient Races of the Thebaid, Oxford: Oxford
University Press. Data also found in: Manly, B.F.J. (1986) Multivariate Statistical Methods, New
York: Chapman & Hall.

Leia os dados do arquivo EgyptianSkull.txt, crie duas classes (ou populagoes) agregando as
duas primeiras e as duas dltimas e deletando os cranios do periodo intermediario, das 12a. e 13a.
dinastias (cerca de 1850 a.C.).

Separe 4 dos cranios para alocar a uma das duas populacoes. Crie a regra de classificacdo com os
cranios restantes em duas situagoes: com 31 = X9 e com X7 # Xj. (solugao no final do capitulo).

Examples of the character images generated by these procedures are presented in Figure 9.3. Each
character image was then scanned, pixel by pixel, to extract 16 numerical attributes. These at-
tributes represent primitive statistical features of the pixel distribution. To achieve compactness,
each attribute was then scaled linearly to a range of integer values from 0 to 15. This final set of
values was adequate to provide a perfect separation of the 26 classes. That is, no feature vector
mapped to more than one class. The attributes (before scaling to 0-15 range) are:

(a) The horizontal position, counting pixels from the left edge of the image, of the center of the
smallest rectangular box that can be drawn with all on pixels inside the box.

) The vertical position, counting pixels from the bottom, of the above box.
) The width, in pixels, of the box.
d) The height, in pixels, of the box.
) The total number of “on” pixels in the character image.
)

The mean horizontal position of all “on” pixels relative to the center of the box and divided
by the width of the box. This feature has a negative value if the image is “leftheavy” as would
be the case for the letter L.

(g) The mean vertical position of all “on” pixels relative to the center of the box and divided by

the height of the box.

(h) The mean squared value of the horizontal pixel distances as measured in 6 above. This attribute
will have a higher value for images whose pixels are more widely separated in the horizontal
direction as would be the case for the letters W or M.
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Figura 9.3: Examples of the character images from which features were extracted.

The mean squared value of the vertical pixel distances as measured in 7 above.

The mean product of the horizontal and vertical distances for each ”on” pixel as measured in
6 and 7 above. This attribute has a positive value for diagonal lines that run from bottom left
to top right and a negative value for diagonal lines from top left to bottom right.

The mean value of the squared horizontal distance times the vertical distance for each “on”
pixel. This measures the correlation of the horizontal variance with the vertical position.

. The mean value of the squared vertical distance times the horizontal distance for each “on”
pixel. This measures the correlation of the vertical variance with the horizontal position.

The mean number of edges (an” onA “A” pixel immediately to the right of either an “on” pixel
or the image boundary) encountered when making systematic scans from left to right at all
vertical positions within the box. This measure distinguishes between letters like “W” or “M”
and letters like “T” or “L”.

The sum of the vertical positions of edges encountered as measured in 13 above. This feature
will give a higher value if there are more edges at the top of the box, as in the letter “Y”.

The mean number of edges (an "onA “A” pixel immediately above either an “off” pixel or the
image boundary) encountered when making systematic scans of the image from bottom to top
over all horizontal positions within the box.

The sum of horizontal positions of edges encountered as measured in 15 above. A data file of
the 16 attribute values and outcome category for each of the 20,000 stimulus items is on file
with David Aha (aha@ics.uci.edu). The set of 20,000 unique letter images was organized
into two files. Sixteen thousand items were used as a learning set and the remaining 4000
items were used for testing the accuracy of the rules.




12. Este exercicio foi extraido da pagina web do livro The Elements of Statistical Learning de Has-
tie, Tibshirani e Friedman (2009), editado pela Springer-Verlag: http://statweb.stanford.edu/
~tibs/ElemStatLearn/ Este é um dos melhores livros de Machine Learning no momento. Clique
no link Data e no link ZIP code para encontrar os dados e a sua descricao .

Normalized handwritten digits, automatically scanned from envelopes by the U.S. Postal Service.
The original scanned digits are binary and of different sizes and orientations; the images here have
been deslanted and size normalized, resulting in 16 x 16 grayscale images (Le Cun et al., 1990).

The data are in two gzipped files, and each line consists of the digit id (0-9) followed by the 256
grayscale values.

There are 7291 training observations and 2007 test observations, distributed as follows: 01234 5
6 7 89 Total Train 1194 1005 731 658 652 556 664 645 542 644 7291 Test 359 264 198 166 200 160
170 147 166 177 2007

or as proportions: 0123456789 Train 0.16 0.14 0.1 0.09 0.09 0.08 0.09 0.09 0.07 0.09 Test 0.18
0.13 0.1 0.08 0.10 0.08 0.08 0.07 0.08 0.09

Encare cada Assim, as porpor¢oes Alternatively, the training data are available as separate files per
digit (and hence without the digit identifier in each row)

The test set is notoriously “difficult”, and a 2.5% error rate is excellent. These data were kindly
made available by the neural network group at AT&T research labs (thanks to Yann Le Cunn).

Solucoes

Problema dos cranios:

# R script for some basic classification and
# lda = linear discriminant analysis

skull <- read.table(file="EgyptianSkull.txt",header=T)

dim(skull)
head (skull)

period = skulll[,5]

period[skull[,5] < -3000] = 1

period[skull[,5] < -1000 & skull[,5] > -3000] = 2
period[skull[,5] > -1000] = 3

colsk = c("red","green","blue") [period]
pairs(skull[,1:4], main="Egyptian skull", pch=21, bg=colsk)

# pch=21 specifies the marker type. See help(pch)
# bg = background colour of the marker
# In our example we want a different colour for each period.

# Os pontos das tres classes parecem bem misturados.
# Parece dificil ser capaz de classifica-los sem muito erro.



# Vamos fixar a atencao nos dois periodos mais extremos para

# trabalhar apenas com duas classes

skull = skull[period == | period == 3, 1:4]
row.names (skull) = 1:120
period = period[period == 1 | period == 3]

period[period==3] = 2

colsk = c("red","blue") [period]
pairs(skull([,1:4], main="Egyptian skull, 2 periods", pch=21, bg=colsk)

# separando alguns dados, 2 de cada periodo,
# para classificar posteriormente:

teste = skull[c(23, 52, 88, 111), 1]
treino = skull[-c(23, 52, 88, 111), ]
period.treino = rep(1:2, c(58,58))

# Visualizando os conjuntos de teste e treino
colsk = c("red","blue") [period]

colsk[c(23, 52, 88, 111)] = "green"

mark = rep(21, nrow(skull))

mark[c(23, 52, 88, 111)] = 22
pairs(skull[,1:4], pch=mark, bg=colsk)

# Regra de classificacao otima supondo Sigma_1 = Sigma_2
# vetor de medias das 4 variaveis

mul = apply(treino[period.treino ==1, ], 2, mean)

mu2 = apply(treino[period.treino ==2, ], 2, mean)
matcovl = cov(treino[period.treino ==1, ])
matcov2 = cov(treino[period.treino ==2, ])

matcov = (matcovl + matcov2)/2

mahal

maha2

mahalanobis(teste, mul, matcov)

mahalanobis(teste, mu2, matcov)

mahal - maha?2
# 0 segundo ponto eh alocado a popl, os demais a pop2
# Assim, cometemos um erro com o primeiro ponto, que

# deveria ser alocado a popl

# Agora, vamos refazer os calculos supondo Sigma_1 != Sigma_2

mul = apply(treino[period.treino ==1, ], 2, mean)

mu2 = apply(treino[period.treino ==2, ], 2, mean)
matcovl = cov(treinol[period.treino ==1, ])

matcov2 = cov(treinol[period.treino ==2, ])

detl = log(det(matcovl))

# este termo adicional, log da matriz de covariancia,
# precisa ser subtraido da distancia de Mahalanobis

det2 = log(det(matcov2))



d1
d2

mahalanobis(teste, mul, matcov) - detl

mahalanobis(teste, mu2, matcov) - det?2

di1-d2

Como a amostra e’ muito pequena, vamos avaliar a classificacao
omitindo um ponto x de cada vez da base, ajustando os parametros
mu e Sigma SEM ESTE ponto x e calculando

a distancia de Mahalanobis entre x e mu

Esta seia a distancia que usariamos caso quisessemos alocar

o0 novo ponto x usando os outros dados.

Vamosavaliar as taxas de erro cometidos.

Assumimos custo iguais e proporcoes iguais nas

H OH OH HF OH OH H OH R

duas populacoes

maha = matrix(0, nrow=nrow(skull), ncol=2)

popl = skull[period == 1, ]

pop2 = skull[period == 2, ]

mul = apply(popl, 2, mean); mu2 = apply(pop2, 2, mean)
matcovl = cov(popl); matcov2 = cov(pop2)

detl = log(det(matcovl)); det2 = log(det(matcov2))

for(i in 1:60){
auxl = popll[-i,]
pop2[-i,]
muli = apply(auxl, 2, mean)

aux?2

mu2i = apply(aux2, 2, mean)
matcovlii = cov(popl[-i,])
matcov2i = cov(popl[-i,])
detli = log(det(matcovii))
det2i = log(det(matcov2i))
maha([i,1]
mahali,?2] mahalanobis(popl[i,], mu2, matcov2) - det2
maha[i+60,1] = mahalanobis(pop2[i,], mul, matcovl) - detl
maha[i+60,2] = mahalanobis(pop2[i,], mu2i, matcov2i) - det2i

mahalanobis(popl[i,], muli, matcovli) - detli

difmaha = mahal[,1] - mahal,2]
boxplot(difmaha ~ period)

## Vemos que a maioria dos pontos da popl possuem distancia de
## Mahalanobis a popl menor que a distancia a pop 2 (isto eh,
## difmaha < 0 quando popl ==1), enquanto o oposto ocorre

## com os pontos da pop2.

# binaria indicando quem seria classificado em pop2
class2 = difmaha > O



tabmaha = table(class2, period)
tabmaha

# proporcao de acerto global
sum(diag(tabmaha)) / sum(tabmaha)
# acerta 65.8), dos dados, independentemente de onde venham

# propocao de acerto dentro de cada populacao, estimativa de

# P(classif em k | pertence a k)

prop.table(table(class2, period), margin = 2)

# Acerta 61.7) para x vindo da popl e acerta 70% para x vindo de pop2

# A probab reversa: P(pertence a k | classif em k)
prop.table(table(class2, period), margin = 1)

# 67.3% dos classificados na pop 1 sao, de fato, da popl
# 64.6%, dos classificados na pop 2 sao, de fato, da pop2




Capitulo 10

Iterated Expectation

1. Suppose that X and Y are independent random variables. Prove that

V(XY) = ooy + pxoy + pyok

Solucao: We have

V(XY) =E(V(XY | X)) + V(E(XY | X))
(X*V(Y | X)) + V(XE(Y | X))
(X%0%)) +V (Xpy)

AR (X2) + 13V (X)

= oy (0% + %) + 1iox

= oyo% +ukoy +pyok

E
=E
E

Note that the V(XY) = 020% when px = py = 0.

2. The variance of a random variable Y can be decomposed into two parts:

V() =E V(Y | X))+ V(E(Y | X))

Consider the i.i.d. samples of the vector (X,Y") in Figure 10.1 representing six different joint distribu-
tions f(z,y). Without doing any calculations, tell which of these six distributions have E (V(Y | X))
substantially larger than V (E(Y | X)). That is, in which cases do we have the first component do-

minating the overall V(Y)? Verify in which cases we have the opposite inequality, and when we

have the two terms approximately equal.

Solugao: Considering the plot in position (i, ) in the Figure, we have:

E(V(Y | X)) >> V(E(Y | X)): plots in (1, 3); (2, 1); (2,3)
E(V(Y | X)) << V(E(Y | X)): plots in (1,1); (2,1); (2,2)
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Figura 10.1: Samples from 6 different joint distributions f(x,y). In each of them, compare the relative
sizes of E (V(Y | X)) and V(E(Y | X)).

3. The table below shows the joint distribution of the discrete random vector (X,Y).

r=0|x=1|2z=2
y=20 0.1 0.2 0.20
y=1 0.1 0.05 0.25
y=21| 0.05 0.0 0.05

Obtain the marginal distribution of the variables Y and X.

Using the marginal distribution of Y, obtain E(Y) and V(Y).

Obtain the three conditional distributions (Y'|X = z). That is, find conditional distributions
(Y|X =0), (Y|X =1),and (Y|X =2).

Obtain the three values E(Y|X = z) for 2z = 0,1, 2.

E(Y|X) is a random variable. Provide the two lists that describes its distribution.
Find E(Y') again by using E[E(Y|X)].

Likewise, find again V(Y') by using E[V(Y|X)] + VIE(Y]X)].

4. Write a code to simulate n = 1000 values of the random vector (X,Y’). It has a joint distribution
specified in two steps. First, X ~ U(0, 10). Next, (Y|X =z) ~ U(z/3, 2x).

e What is the set of possible values for Y7 That is, what is the support set of the continuous
random variable Y7
e Execute your code and plot the generated sample.

e Make a histogram of the simulated Y values. Does it look like a uniform distribution? If not,
how is the density spread over the support set? Which region has higher density?

e Based on the simulated sample, estimate E(Y') and V(Y').

5. Considering the random vector (X,Y) of the previous exercise:

e Obtain the theoretical expressions for E(Y|X = z) and V(Y|X = x).
e Visualize these expressions in your plot with the generated sample.

e Use the theoretical expressions above to obtain E(Y) using E[E(Y|.X)].



e Obtain V(Y') calculating E[V(Y|X)] + VIE(Y|X)].

e Compare these exact values for E(Y') and V(Y') with the estimated values you obtained in the

previous exercise based on your sample.

6. A source transmits signals, and a single signal requires a random number N of time units to be
transmitted. Let N be a geometric random variable with P(N = j) = a(1 —a)/~! for j = 1,2,...
and a € (0,1). This source also receives messages, and they arrive randomly. During a time unit,
at most one message arrives with probability p and no new message arrives with probability 1 — p.
The possible arrival of a message in a given time unit is independent of the possible arrival in the
other time intervals. Let K be the number of new messages that arrived during the transmission
of a single signal. Find E(K) and V(K) using iterated expectation.

Solugao: Given N = n, we have (K|N = n) ~ Bin(n,p). Therefore, E(K|N = n) = np and
V(K|N =n)np(1 — p). We have then

p

E(K) = E[E(K|N)] = EVp] =

and

V(K)

E[V(K|N)] + VIE(K|N)]
E[Np(1 —p)] + V[Np]
p(1—p)E[N] + p*V[N]

91l —a

—p(l—p)t +
=p(l=p) +p" 3

_ap(l—p) +p*(1—a)
a?

7. Someone argued that intuitively we can obtain V(Y) in two steps. First, obtain v(xz) = V(Y |X = x)
for each possible value of X. Next, average these v(x) values by taking their weighted average using
the probabilities associated with X as weights. That is, take

Blu(X)] = BV(Y X)) = [ VYIX =a)fx()ds = [ ola)fx(e)da

However, this is not correct. Show that, in fact, V(Y') > E[V(Y|X)] for any two random variables
X and Y.

Solucao: We already learned that
V) =EVY | X))+ V(EY | X)) =EV(Y [ X))

because, being a variance, we must have V(E(Y | X)) >0

8. Some of the following are VALID conditional expectations, some are not. Which ones are valid?



e EY|X]=1

e EY|X]=X

¢ E[Y|X] =Y

e E[Y|X] = X xcos(X)

o E[Y|X] = XY
Solucao:

e E[Y|X] = 1: valid. The conditional expectation of Y is constant and equal to 1, it does not
depend on X.

E[Y|X] = X: valid. The conditional distribution of ¥ values varies around X.

]
e E[Y|X] =Y invalid. The conditional expectation of ¥ must be a function of X, not of Y.
e E[Y|X] = X *cos(X): valid, a function of X.
e E[Y|X] = XY invalid. It can not depend on Y.

9. Some of the following are VALID conditional variances, some are not. Which ones are valid?
Suppose that X ~ U(—1,1).

e VY|X]=1

o V[Y|X] =X

o V[Y|X]=Y

e V[Y|X] = X x*cos(X)
o V[Y|X] = XY



Capitulo 11

Teoremas Limite: LGN e TCL

Os exercicios abaixo sao do curso de Patrick Breheny na Univ de Kentucky, o autor do material que
usei em sala de aula: https://myweb.uiowa.edu/pbreheny/4120/s20/notes.html. Veja as notas
de aula desse professor sobre o TCL (uns 12 slides apenas). Por favor, leia o material para entender
algumas das questoes. Sao exercicios bésicos, que exigem simples manipulacao da distribuigao
normal. O fato fundamental que precisa ser usado vérias vezes é o seguinte: se X ~ N(u,0%/n)
entdo -4 ~ N (0,1). Portanto, para qualquer valor a, temos

o/vn

X—p_a-np
o/\/n = a/yn

]P’(X>a):IF’< >%P<N(O,l)>a_'z>: 1 - pnorm(b)

o/Vn
onde b = y/n(a — p)/o.

(a) Voceé quer selecionar uma amostra para estimar a porcentagem 6 de pessoas que vai votar num
candidato X . Imagine que a resposta é uma v.a. X de Bernoulli com valores 1 e 0 (vai e nao
val votar, respectivamente) e a probabilidade de sucesso é 0. As respostas de n individuos serao
X1, Xo, ..., X, e vocé vai estimar 6 usando 0 = (X1 4+ ...+ X,)/n, a proporgao amostral. Se
vocé asumir que as respostas sao variaveis aleatérias i.i.d., determine o tamanho n da amostra
necessario para que o erro de estimagao |é — 0| seja menor que 0.02 com probabilidade 0.99.
Para isto, assuma que vocé sabe que seu candidato estd estacionado entre 15% e 35% dos
eleitores (baseado em outras pesquisas mais antigas). Esta é uma faixa de variacao enorme,
muito pouco precisa, mas que vocé estd bem seguro de que ela contém a verdadeira proporgao
de eleitores que votam no candidato em questao.
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Solugao: Queremos encontrar n de forma que a probabilidade de ocorrer o evento \é —60] < 0.02
seja 0.99. Isto é, queremos n de forma que ]P)(]é — 6] < 0.02) < 0.99. Veja que 6 = (Xi+...+

Xp)/n e portanto podemos usar o TCL. Temos X; ~ Bernoulli(f) (binaria) independentes,
com E(X;) =60 e V(X;) =6(1 —0). Assim, pelo TCL,

P(16 — 6] < 0.02) = P(X —6| < 0.02)
= P(-0.02 < X — 6 < 0.02)
o ( 0.02 /a X0 0.02 )
\/17— \/m \/17—
0.02 0.02 )

P (-ﬁe('l_e) < N(0,1) < \/ﬁm

Q

Sabemos que, no caso de uma v.a. N(0,1), o valor a tal que P(—a < N(0,1) < a) = 0.99 é
igual a = 2.58 (pois, em R, o comando gqnorm(0.01/2) retorna —2.575829). Assim, devemos
ter 0.02y/n/+/0(1 —0) = 2.58. O valor de 6 é desconhecido mas sabemos que ele estd no
intervalo (0.15,0.35). Como #(1 — ) é crescente com 6 nesta regido (cheque isto fazendo o
grafico desta fungao parabdlica no intervalo (0,1)), tomamos o pior caso, em que 6 = 0.35,
para calcular n. Queremos 0.02y/n/4/0.35(1 — 0.35) = 2.58, 0 que implica em n = 3785.827.
Basta tomar entao uma amostra de tamanho 3786 para garantir o resultado.

No problema acima, usando uma amostra de tamanho n = 500, determine um intervalo da
forma I = (0 — ¢,0 4 ¢) tal que a probabilidade P(6 — ¢ < 6 < 0 + ¢) seja aproximadamente
igual ou maior que 0.95. Este tipo de intervalo é chamado de intervalo de confianca.
Solucao: Um ponto fundamental é perceber que
é—c§9§é+c<:>—c§é—9§c<:>|é—9|§c

Assim, com = (X1 + ... 4 X500)/500, queremos encontrar ¢ tal que

<c¢)

QD)

0.95 =

6—6 c
9) = 500\/0(1—0) = 500«9(1—0))

< N(0,1) < 5ooc>
NaE) 91— 0)

Q

/’\/\

Mas, no caso de uma N(0,1), temos P(—1.96 < N(0,1) < 1.96) = 0.95 (verifique digi-
tando gqnorm(0.05/2)). Assim, devemos fazer ¢v/500/4/6(1 —6) = 1.96. Como 6 é desco-
nhecido (mas dentro do intervalo (0.15, 0.35)), pegamos o pior caso (6 = 0.35) para obter

c¢v500/4/0.35 x 0.65 = 1.96 o que implica em ¢ = 0.0418.

An article in the New England Journal of Medicine reported that among adults living in the
United States, the average level of albumin in cerebrospinal fluid is 29.5 mg/dl, with a standard
deviation of 9.25 mg/dl. We are going to select a sample of size 20 from this population.

e How does the variability of our sample mean compare with the variability of albumin
levels in the population?

e What is the probability that our sample mean will be greater than 33 mg/dl?

e What is the probability that our sample mean will lie between 29 and 31 mg/dl?

e What two values will contain the middle 50



(d)

(2)

The unemployment rate 6 is the proportion of people actively looking for jobs and not finding
them. Assume that it is known for sure that this rate is some number between 0.03 and 0.08
(or between 3% and 8%). Find the sample size need to estimate this rate 6 in such a way that
the estimation error is below 0.005 with probability 0.95. That is, we want an estimate 0 such
that [ — 0] < 0.005 with probability 0.95.

According to an article in the American Journal of Public Health, the distribution of birth
weights in a certain population is approximately normal with mean 3500 grams and standard
deviation 430 grams.

e What is the probability that a newborn’s weight will be less than 3200 grams?

e Suppose we take a sample of 9 newborns. What is the probability that their average
weight will be less than 3200 grams?

e In the aforementioned sample of 9 newborns, how many newborns would you expect to
weigh under 3200 grams?

e What is the probability that our sample of 9 newborns will contain exactly 3 newborns
who weigh less than 3200 grams?

e Suppose we take 5 samples of 9 newborns. What is the probability that at least one of
the sample averages will be less than 3200 grams?

e How large must our sample be in order to ensure a 95% probability that the sample mean
will be within 50 grams of the population mean?

In a 2006 study published in The New England Journal of Medicine, 78 pairs of patients with
Parkinson’s disease were randomly assigned to receive treatment (which consisted of deep-
brain stimulation of a region of the brain affected by the disease) or control (which consisted
of taking a prescription drug). The pairs were composed by individuals similar with respect
to several risk factors such as sex, age, occupation, etc. This ensured that, within each pair,
we could considered the individuals more or less coming from the same population except by
the possible effect of the treatment.

The researchers found that in 50 of 78 pairs, the patients who received deep-brain stimulation
had improved more than their partner in the control group. We are interested in conducting
a hypothesis test of these findings.

For each pair, define the random variable

x {1 if treatment improves more
i =

0  if control improves more

The key rationale is: IF INDEED THE TREATMENT HAS NO EFFECT AT ALL, the
probability that the treatment individual is 1/2. Let us call this hypothesis or model the null
hypothesis, represented by Hy.

e Conduct a z-test of the null hypothesis that deep-brain stimulation has no effect on the
disease by calculating the probability that you can observe something as large as 50 in 78
successes when indeed the “coin” has probability 1/2. That is, use the TCL to calculate
approximately

P(X;+...X, >50| Hy is true )

e Construct a 95% confidence level for the proportion of patients who would do better on
deep-brain stimulation than control (see the slides).

An irregularly shaped object of unknown area A is located in the unit square 0 < z < 1 and
0 <y < 1. Consider a random point distributed uniformly over the square. Let Z = 1 if



the point lies inside the object and Z = 0 otherwise. Show that E[Z] = A. How could A be
estimated from a sequence of n independent points uniformly distributed on the square?
Hint 1: Imagine this is actually a coin tossing experiment with unknown probability of getting
Head, that is, the coin land on H if the point is inside the object and on T otherwise. How
will you estimate the probability of getting H?

Hint 2: Solution in http://bit.1ly/1T206Rf

(h) Suppose that a basketball player can score on a particular shot with probability p = 0.3. Use
the central limit theorem to find the approximate distribution of S, the number of successes
out of 25 independent shots. Find the approximate probabilities that S is less than or equal
to 5,7,9, and 11 and compare these to the exact probabilities.

Hint 1 : Let X7, Xo, ..., Xo5 be the indicator random variables of the 25 shots, that is, X; = 1
if the player scores on the i-th shot and X; = 0, otherwise.

Hint 2: Solution in http://bit.1ly/1T206Rf

(i) The amount of mineral water consumed by a person per day on the job is normally distributed
with mean 19 ounces and standard deviation 5 ounces. A company supplies its employees with
2000 ounces of mineral water daily. The company has 100 employees.

e Find the probability that the mineral water supplied by the company will not satisfy the
water demanded by its employees.

e Find the probability that in the next 4 days the company will not satisfy the water
demanded by its employees on at least 1 of these 4 days. Assume that the amount of
mineral water consumed by the employees of the company is independent from day to
day.

e Find the probability that during the next year (365 days) the company will not satisfy
the water demanded by its employees on more than 15 days.

(j) Supply responses true or false with an explanation to each of the following:

e The probability that the average of 20 values will be within 0.4 standard deviations of the
population mean exceeds the probability that the average of 40 values will be within 0.4
standard deviations of the population mean.

e P(X > 4) is larger than P(X > 4) if X ~ N(8,0) and X is the sample mean of n > 1
instances of X.

e If X is the average of n values sampled from a normal distribution with mean p and if ¢
is any positive number, then P(u — ¢ < X < p + ¢) decreases as n gets large.

Os préximso exercicios sao todos copiados diretamente do livro Introduction to Probability, de
Charles M. Grinstead e J. Laurie Snell.

(a) A researcher wants her sample mean to be twice as accurate; how much does she have to
increase her sample size by?

(b) An article in the New England Journal of Medicine reported that among adults living in the
United States, the average level of albumin in cerebrospinal fluid is 29.5 mg/dl, with a standard
deviation of 9.25 mg/dl. We are going to select a sample of size 20 from this population.

e How does the variability of our sample mean compare with the variability of albumin
levels in the population?

e What is the probability that our sample mean will be greater than 33 mg/dl?



()

e What is the probability that our sample mean will lie between 29 and 31 mg/dl?

e What two values will contain the middle 50

The unemployment rate 6 is the proportion of people actively looking for jobs and not finding
them. Assume that it is known for sure that this rate is some number between 0.03 and 0.08
(or between 3% and 8%). Find the sample size need to estimate this rate 6 in such a way that
the estimation error is below 0.005 with probability 0.95. That is, we want an estimate 0 such
that |§ — 6] < 0.005 with probability 0.95.

According to an article in the American Journal of Public Health, the distribution of birth
weights in a certain population is approximately normal with mean 3500 grams and standard
deviation 430 grams.

e What is the probability that a newborn’s weight will be less than 3200 grams?

e Suppose we take a sample of 9 newborns. What is the probability that their average
weight will be less than 3200 grams?

e In the aforementioned sample of 9 newborns, how many newborns would you expect to
weigh under 3200 grams?

e What is the probability that our sample of 9 newborns will contain exactly 3 newborns
who weigh less than 3200 grams?

e Suppose we take 5 samples of 9 newborns. What is the probability that at least one of
the sample averages will be less than 3200 grams?

e How large must our sample be in order to ensure a 95% probability that the sample mean
will be within 50 grams of the population mean?

In a 2006 study published in The New England Journal of Medicine, 78 pairs of patients with
Parkinson’s disease were randomly assigned to receive treatment (which consisted of deep-
brain stimulation of a region of the brain affected by the disease) or control (which consisted
of taking a prescription drug). The pairs were composed by individuals similar with respect
to several risk factors such as sex, age, occupation, etc. This ensured that, within each pair,
we could considered the individuals more or less coming from the same population except by
the possible effect of the treatment.

The researchers found that in 50 of 78 pairs, the patients who received deep-brain stimulation
had improved more than their partner in the control group. We are interested in conducting
a hypothesis test of these findings.

For each pair, define the random variable

x 1  if treatment improves more
,l‘ p—
0 if control improves more

The key rationale is: IF INDEED THE TREATMENT HAS NO EFFECT AT ALL, the
probability that the treatment individual is 1/2. Let us call this hypothesis or model the null
hypothesis, represented by Hy.

e Conduct a z-test of the null hypothesis that deep-brain stimulation has no effect on the
disease by calculating the probability that you can observe something as large as 50 in 78
successes when indeed the “coin” has probability 1/2. That is, use the TCL to calculate
approximately

P(X1+...X,>50| Hp is true )



e Construct a 95% confidence level for the proportion of patients who would do better on
deep-brain stimulation than control (see the slides).

(f) An irregularly shaped object of unknown area A is located in the unit square 0 < z < 1 and
0 <y < 1. Consider a random point distributed uniformly over the square. Let Z = 1 if
the point lies inside the object and Z = 0 otherwise. Show that E[Z] = A. How could A be
estimated from a sequence of n independent points uniformly distributed on the square?
Hint 1: Imagine this is actually a coin tossing experiment with unknown probability of getting
Head, that is, the coin land on H if the point is inside the object and on T otherwise. How
will you estimate the probability of getting H?

Hint 2: Solution in http://bit.1ly/1T206Rf

(g) Suppose that a basketball player can score on a particular shot with probability p = 0.3. Use
the central limit theorem to find the approximate distribution of S, the number of successes
out of 25 independent shots. Find the approximate probabilities that S is less than or equal
to 5,7,9, and 11 and compare these to the exact probabilities.

Hint 1 : Let X1, Xo,..., Xo5 be the indicator random variables of the 25 shots, that is, X; = 1
if the player scores on the i-th shot and X; = 0, otherwise.
Hint 2: Solution in http://bit.1ly/1T206Rf

(h) The amount of mineral water consumed by a person per day on the job is normally distributed
with mean 19 ounces and standard deviation 5 ounces. A company supplies its employees with
2000 ounces of mineral water daily. The company has 100 employees.

e Find the probability that the mineral water supplied by the company will not satisfy the
water demanded by its employees.

e Find the probability that in the next 4 days the company will not satisfy the water
demanded by its employees on at least 1 of these 4 days. Assume that the amount of
mineral water consumed by the employees of the company is independent from day to
day.

e Find the probability that during the next year (365 days) the company will not satisfy
the water demanded by its employees on more than 15 days.

(i) Supply responses true or false with an explanation to each of the following:

e The probability that the average of 20 values will be within 0.4 standard deviations of the
population mean exceeds the probability that the average of 40 values will be within 0.4
standard deviations of the population mean.

e P(X > 4) is larger than P(X > 4) if X ~ N(8,0) and X is the sample mean of n > 1
instances of X.

e If X is the average of n values sampled from a normal distribution with mean p and if ¢
is any positive number, then P(u — ¢ < X < p + c¢) decreases as n gets large.

(j) A fair coin is tossed 100 times. The expected number of heads is 50, and the standard deviation
for the number of heads is (100 - 1/2 - 1/2)'/2 = 5. What does Chebyshev’s Inequality tell
you about the probability that the number of heads that turn up deviates from the expected
number 50 by three or more standard deviations (i.e., by at least 15)?




(k)

Write a program that uses the function binomial(n, p, z) to compute the exact probability that
you estimated in Exercise ?77. Compare the two results.

Write a program to toss a coin 10,000 times. Let S, be the number of heads in the first n
tosses. Have your program print out, after every 1000 tosses, S, — n/2. On the basis of this
simulation, is it correct to say that you can expect heads about half of the time when you toss
a coin a large number of times?

A 1-dollar bet on craps has an expected winning of —.0141. What does the Law of Large
Numbers say about your winnings if you make a large number of 1-dollar bets at the craps
table? Does it assure you that your losses will be small? Does it assure you that if n is very
large you will lose?

Let X be a random variable with E(X) = 0 and V(X) = 1. What integer value k will assure
us that P(|X| > k) <.017

Let S, be the number of successes in n Bernoulli trials with probability p for success on each
trial. Show, using Chebyshev’s Inequality, that for any ¢ > 0

JEeR

ne?

Find the maximum possible value for p(1 —p) if 0 < p < 1. Using this result and Exercise 77,
g

A fair coin is tossed a large number of times. Does the Law of Large Numbers assure us that,

show that the estimate
Sh, 1

ol > < -
n p'_e>_4n€2

is valid for any p.

if n is large enough, with probability > .99 the number of heads that turn up will not deviate
from n/2 by more than 1007

In Exercise 77.77, you showed that, for the hat check problem, the number S, of people who
get their own hats back has E(S,) = V(S,) = 1. Using Chebyshev’s Inequality, show that
P(S, > 11) < .01 for any n > 11.

Let X by any random variable which takes on values 0, 1, 2, ..., n and has E(X) = V(X) = 1.
Show that, for any positive integer k,
1

P(X2k+1)§k2.

We have two coins: one is a fair coin and the other is a coin that produces heads with
probability 3/4. One of the two coins is picked at random, and this coin is tossed n times. Let
Sy be the number of heads that turns up in these n tosses. Does the Law of Large Numbers
allow us to predict the proportion of heads that will turn up in the long run? After we have
observed a large number of tosses, can we tell which coin was chosen? How many tosses suffice
to make us 95 percent sure?




(u) (Chebyshev') Assume that Xi, Xs,..., X, are independent random variables with possibly
different distributions and let S, be their sum. Let my = E(X}), 02 = V(Xy), and M,, =
mi + mo + -+ + m,. Assume that cr,% < R for all k. Prove that, for any ¢ > 0,

<6)—>1

Sp M,

n

as n — oo.

(v) A fair coin is tossed repeatedly. Before each toss, you are allowed to decide whether to bet on
the outcome. Can you describe a betting system with infinitely many bets which will enable
you, in the long run, to win more than half of your bets? (Note that we are disallowing a
betting system that says to bet until you are ahead, then quit.) Write a computer program
that implements this betting system. As stated above, your program must decide whether to
bet on a particular outcome before that outcome is determined. For example, you might select
only outcomes that come after there have been three tails in a row. See if you can get more
than 50% heads by your “system.”

(w) Prove the following analogue of Chebyshev’s Inequality:

P(X ~ B(X)| > ) < <B(IX ~ B(X)))

(x) We have proved a theorem often called the “Weak Law of Large Numbers.” Most people’s
intuition and our computer simulations suggest that, if we toss a coin a sequence of times, the
proportion of heads will really approach 1/2; that is, if S, is the number of heads in n times,
then we will have

A S 1
n 2

as n — oo. Of course, we cannot be sure of this since we are not able to toss the coin an

infinite number of times, and, if we could, the coin could come up heads every time. However,

the “Strong Law of Large Numbers,” proved in more advanced courses, states that

Sno 1
P(n—>2>_1.

Describe a sample space {2 that would make it possible for us to talk about the event

Sh 1

Could we assign the equiprobable measure to this space?

(y) In this exercise, we shall construct an example of a sequence of random variables that satisfies
the weak law of large numbers, but not the strong law. The distribution of X; will have to
depend on i, because otherwise both laws would be satisfied. (This problem was communicated
to us by David Maslen.)

Suppose we have an infinite sequence of mutually independent events Aj, Ao, .... Let a; =
P(A;), and let r be a positive integer.

'P. L. Chebyshev, “On Mean Values,” J. Math. Pure. Appl., vol. 12 (1867), pp. 177-184.



i. Find an expression of the probability that none of the A; with i > r occur.
ii. Use the fact that z — 1 < e~* to show that

P(No A; with i > r oceurs) < e~ 2i=r %
iii. (The first Borel-Cantelli lemma) Prove that if > 7, a; diverges, then
P(infinitely many A; occur) = 1.
Now, let X; be a sequence of mutually independent random variables such that for each
positive integer ¢ > 2,
1 1 1
= P(X;=—1 PX;,=0)=1
2ilogi’ (X ) (Xi=0)

When ¢ = 1 we let X; = 0 with probability 1. As usual we let S, = X; +---+ X,,. Note
that the mean of each X; is 0.

iv. Find the variance of S,,.

P(X; =)

:2ilogi’  ilogi

v. Show that the sequence (X;) satisfies the Weak Law of Large Numbers, i.e. prove that
S,
n

We now show that {X;} does not satisfy the Strong Law of Large Numbers. Suppose that
Sp/n — 0. Then because

for any € > 0

as n tends to infinity.

Xn Sn n—1 Snfl

n n n n—1"~

we know that X, /n — 0. From the definition of limits, we conclude that the inequality
|X;| > 3i can only be true for finitely many i.

vi. Let A; be the event |X;| > 1i. Find P(A;). Show that ) 2%, P(4;) diverges (use the
Integral Test).

vii. Prove that A; occurs for infinitely many 3.

P(S"—>O> —0,
n

and hence that the Strong Law of Large Numbers fails for the sequence {X;}.

viii. Prove that

(z) Let us toss a biased coin that comes up heads with probability p and assume the validity of

the Strong Law of Large Numbers as described in Exercise 7?7. Then, with probability 1,
S
2
n

as n — oo. If f(x) is a continuous function on the unit interval, then we also have

f (?) — f(p) -

B(1(%)) - 0w =100

Show that, if all this is correct, as in fact it is, we would have proven that any continuous

Finally, we could hope that

function on the unit interval is a limit of polynomial functions. This is a sketch of a probabilistic
proof of an important theorem in mathematics called the Weierstrass approximation theorem.




() Let X be a continuous random variable with mean p = 10 and variance o? = 100/3. Using
Chebyshev’s Inequality, find an upper bound for the following probabilities.
i. P(|X —10| > 2).
ii. P(|X — 10| > 5).
iii. P(|X —10] > 9).
iv. P(|X — 10| > 20).

() Let X be a continuous random variable with values unformly distributed over the interval
[0, 20].
i. Find the mean and variance of X.
ii. Calculate P(|X —10| > 2), P(|X—10| > 5), P(]X—10| > 9), and P(|X —10| > 20) exactly.
How do your answers compare with those of Exercise 77?7 How good is Chebyshev’s
Inequality in this case?

() Let X be the random variable of Exercise ?77.

i. Calculate the function f(z) = P(|X — 10| > x).

ii. Now graph the function f(x), and on the same axes, graph the Chebyshev function g(x) =
100/(322). Show that f(z) < g(z) for all x > 0, but that g(z) is not a very good
approximation for f(x).

() Let X be a continuous random variable with values exponentially distributed over [0, c0) with
parameter A = (.1.
i. Find the mean and variance of X.
ii. Using Chebyshev’s Inequality, find an upper bound for the following probabilities: P(|X —
10| > 2), P(|X — 10| > 5), P(]X — 10| > 9), and P(|X — 10| > 20).

iii. Calculate these probabilities exactly, and compare with the bounds in (b).

() Let X be a continuous random variable with values normally distributed over (—oo, +00) with
mean pg = 0 and variance o =1.
i. Using Chebyshev’s Inequality, find upper bounds for the following probabilities: P(|X| >
1), P(|X|>2),and P(|X| > 3).
ii. The area under the normal curve between —1 and 1 is .6827, between —2 and 2 is .9545,
and between —3 and 3 it is .9973 (see the table in Appendix A). Compare your bounds
in (a) with these exact values. How good is Chebyshev’s Inequality in this case?

() If X is normally distributed, with mean p and variance o2, find an upper bound for the
following probabilities, using Chebyshev’s Inequality.
i. P(|X —p| > o).
ii. P(|X — p| > 20).
iii. P(|X — u| > 30).
iv. P(|X — u| > 40).
Now find the exact value using the program NormalArea or the normal table in Appendix A,
and compare.




0

0

0

If X is a random variable with mean p # 0 and variance o2, define the relative deviation D of
X from its mean by

X —
D= ‘ “‘ .
,u
i. Show that P(D > a) < 02/(u?a?).
ii. If X is the random variable of Exercise 7?7, find an upper bound for P(D > .2), P(D > .5),

P(D >.9), and P(D > 2).

Let X be a continuous random variable and define the standardized version X™* of X by:

pu .

i. Show that P(|X*| > a) < 1/a?.
ii. If X is the random variable of Exercise 7?7, find bounds for P(|X*| > 2), P(|X*| > 5),
and P(|X*| >9).

i. Suppose a number X is chosen at random from [0, 20] with uniform probability. Find a
lower bound for the probability that X lies between 8 and 12, using Chebyshev’s Inequality.
ii. Now suppose 20 real numbers are chosen independently from [0, 20] with uniform proba-
bility. Find a lower bound for the probability that their average lies between 8 and 12.
iii. Now suppose 100 real numbers are chosen independently from [0, 20]. Find a lower bound
for the probability that their average lies between 8 and 12.

A student’s score on a particular calculus final is a random variable with values of [0, 100],
mean 70, and variance 25.
i. Find a lower bound for the probability that the student’s score will fall between 65 and 75.

ii. If 100 students take the final, find a lower bound for the probability that the class average
will fall between 65 and 75.

The Pilsdorff beer company runs a fleet of trucks along the 100 mile road from Hangtown to
Dry Gulch, and maintains a garage halfway in between. Each of the trucks is apt to break
down at a point X miles from Hangtown, where X is a random variable uniformly distributed
over [0, 100].

i. Find a lower bound for the probability P(|X — 50| < 10).

ii. Suppose that in one bad week, 20 trucks break down. Find a lower bound for the proba-
bility P(]A20 — 50| < 10), where Ay is the average of the distances from Hangtown at the
time of breakdown.

A share of common stock in the Pilsdorff beer company has a price Y;, on the nth business
day of the year. Finn observes that the price change X,, = Y,,11 — Y,, appears to be a random
variable with mean p = 0 and variance o = 1/4. If Y7 = 30, find a lower bound for the
following probabilities, under the assumption that the X,,’s are mutually independent.

i. P(25 <Y;<35).

ii. P(25 <Yy <35).

iii. P(25 < Yio1 < 35).



() Suppose one hundred numbers X7, Xs, ..., Xjo0 are chosen independently at random from
[0,20]. Let S = X1 + X3 + -+ + Xj00 be the sum, A = 5/100 the average, and S* =
(8 —1000)/(10/+/3) the standardized sum. Find lower bounds for the probabilities

i. P(]S —1000| < 100).
ii. P(|JA—10l<1).
iii. P(|S*| <+/3).

() Let X be a continuous random variable normally distributed on (—o0, +00) with mean 0 and
variance 1. Using the normal table provided in Appendix A, or the program NormalArea,
find values for the function f(z) = P(|X| > x) as z increases from 0 to 4.0 in steps of .25.
Note that for x > 0 the table gives NA(0,z) = P(0 < X < z) and thus P(|X| > z) =
2(.5 — NA(0,z). Plot by hand the graph of f(z) using these values, and the graph of the
Chebyshev function g(z) = 1/2%, and compare (see Exercise ?7?).

() Repeat Exercise ??, but this time with mean 10 and variance 3. Note that the table in
Appendix A presents values for a standard normal variable. Find the standardized version X*
for X, find values for f*(x) = P(|X*| > z) as in Exercise 7?7, and then rescale these values
for f(z) = P(]X — 10| > z). Graph and compare this function with the Chebyshev function

g(z) =3/

() Let Z = X/Y where X and Y have normal densities with mean 0 and standard deviation 1.
Then it can be shown that Z has a Cauchy density.

i. Write a program to illustrate this result by plotting a bar graph of 1000 samples obtained
by forming the ratio of two standard normal outcomes. Compare your bar graph with
the graph of the Cauchy density. Depending upon which computer language you use, you
may or may not need to tell the computer how to simulate a normal random variable. A
method for doing this was described in Section 77.

ii. We have seen that the Law of Large Numbers does not apply to the Cauchy density (see
Example ?7). Simulate a large number of experiments with Cauchy density and compute
the average of your results. Do these averages seem to be approaching a limit? If so can
you explain why this might be?

() Show that, if X > 0, then P(X > a) < E(X)/a.

() (Lamperti?) Let X be a non-negative random variable. What is the best upper bound you
can give for P(X > a) if you know
i. B(X) = 20.
ii. B(X) =20 and V(X) = 25.
ili. E(X) =20, V(X) =25, and X is symmetric about its mean.
() If the cdfs of X and Y are identical, two random variables are identically distributed. This

does not imply X =Y which is nonsense. To denote the equality of distribution, we will use
notation X~Y.

2Private communication.



() If S, = X1+ X9+ -+ X,,, where X; are identically distributed random variables coming from
independent events with EX; = p and VX; = 02, X1, Xo,---, X, are usually called i.i.d.
random variables. Let

Spn—ES, S,—nu
Iy = = )
VS, Vno

Then for large n,
P(Z, <z) =~ ®(x),

where ® is the cdf for a standard normal distribution. Note
P(a < Z, <b) = ®(b) — P(a).

() Problem. Let X be the number of heads in 40 tossed coins. Find the probability X = 20.
Solution. Note X = X7 + X9 + -+ Xy with X; ~ Bernoulli(0.5). Note EX =40-0.5,VX =

2 _ X-20
40-0.5%. Let S = 10

0.5 0.5 0.5
P(X =20) = P(19.5 < X < 20.5) = ®(——)—B(———) = 2@(\%)—1 =2...0.5636—1 = 0.1272.

The exact result is P(X = 20) = (38)0.540 = 0.1254.

() Problem. A fair coin is thrown 1000 times. Find the approximate probability that the total
number of heads among 1000 tosses will lie between 400 and 600 using the Central Limit
Theorem.

Solution. Let X; ~ Bernoulli(1). With notation X = X1#X4Xn " pryop < S0P X; <

_ N _ —0.1 X-05 0.1 _ 2\ 1 _
600) = P(—0.1 < X — 0.5 < 0.1) = P(mwE < 205 < 1/20@) = 20(-%) — 1 =0.47.

() Problem. The expected service time for a customer coming through a checkout counter in

a retail store is 2 minutes while its variance is 1. (a) Approximate the probability that 100
customers can be served in less than 3 hours of total service time. (b) Find the number of
customers that can be served in less than 3 hours with probability 0.9.

Solution. (a) Let X; be the service time for the i-th customers. S = X; 4+ -+ + Xjo0.
ES = 200,VS = 100. Let Z = 529 Then

180 — 2
P(S < 180) = @(w) —1—®(2) =0.0228
. (b) For S, = X1+ -+ X, ES =2n,VS =n. Let Z = 5”7\/}12” Then we need P(Z <

%) = 0.9. From the table ®(1.28) = 0.9. So we need to solve 180 — 2n = 1.28,/n.

() A first simple assumption is that the daily change of a company’s stock on the stock market
is a random variable with mean 0 and variance 2. That is, if S, represents the price of the
stock on day n with Sy given, then

Sp =51+ X,,n>1

where X1, Xo,... are independent, identically distributed continuous random variables with
mean 0 and variance 2. (Note that this is an additive assumption about the change in a stock
price. In the binomial tree models, we assumed that a stock’s price changes by a multiplicative
factor up or down. We will have more to say about these two distinct models later.) Suppose
that a stock’s price today is 100. If o> = 1, what can you say about the probability that after
10 days, the stock’s price will be between 95 and 105 on the tenth day?

() Let X3, Xs,...,X10 be independent Poisson random variables with mean 1. First use the
Markov Inequality to get a bound on P[X; + --- 4+ X309 > 15]. Next use the Central Limit
theorem to get a bound on P[X; + - -+ 4+ X309 > 15].



() Find the moment generating function ¢x(t) = Elexp(¢X)] of the random variable X which
takes values 1 with probability 1/2 and —1 with probability 1/2. Show directly (that is,
without using Taylor polynomial approximations) that ¢x (t/v/n)" — exp(t?/2). (Hint: Use
L’Hopital’s Theorem to evaluate the limit, after taking logarithms of both sides.)



Capitulo 12

Regressao Linear

Vamos trabalhar com o modelo de regressao linear supondo p — 1 atributos e n observagoes. A
matriz de desenho X tem dimensao n X p e a sua primeira coluna é composta pelo vetor n-dim de
1’s representado por 1 = (1,...,1)’. Vamos representar a matriz de desenho X ora por meio de
suas colunas, ora por meio de suas linhas.

Y = X(G+e¢
<l,x(1),...,x(p71)) B+e
X
Xy
= | B+te
X/

n

A j-ésima coluna x\9) de dimensdo n x 1 representa o conjunto de todos os valores do atributo j

medidos na amostra. A i-ésima linha x}, de dimensao p x 1 representa a observagio ou instancia da

amostra. Note que x; é um vetor coluna. A i-ésima linha da matriz de desenho X é escrita como
/

X;-

Seja H = X (X’ X)f1 X’ a matriz de projegao ortogonal no espago C(X) das combinagdes lineares
das colunas de X. O vetor resposta Y pode ser decomposto em

Y=HY+(I-HY=Y +r

onde Y é o vetor de valores preditos (ou ajustados) pelo modelo para a varidvel resposta e r é o
vetor de residuos.

(a) O arquivo aptos.txt possui dados de apartamentos vendidos no bairro Sion em BH em 2011
obtidos com um coletor em paginas web de uma imobilidria. A primeira coluna é um identi-
ficador do anuncio. Use o script R abaixo para fazer uma regressao linear simples de preco
versus area. As seguir, faca uma regressao multipla de preco versus todas as covaridveis.
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Use as expressoes matriciais derivadas em sala de aula.

Solugao:

setwd("u:/regression") # set the working directory

# Lendo os dados como um dataframe

aptos = read.table("aptosBH.txt", header = T)
attach(aptos) # attach o dataframe

aptos[1:5,] # visualizando as 5 las linhas
par(mfrow=c(2,2)) # tela grafica dividia em 2 x 2
plot(area, preco) # scatter plot de (area_i, preco_i)
plot(quartos, preco)

plot(suites, preco)

plot(vagas, preco)

# Para fazer uma regressao em R, use o comando lm (linear model)

Mas vamos antes obter a regressao fazendo as operacoes matriciais

* ®

que vimos em sala

Ajustando um modelo de regressao linear SIMPLES apenas com area
= as.matrix(cbind(1l, aptos[,2])) # matriz de desenho n x 2
.simples = (solve(t(x) %x*% x)) %*% (t(x) %*J preco)

.simples

T T X #®

Ajustando um modelo de regressao linear MULTIPLA com 4 covariaveis
= as.matrix(cbind(1l, aptos[,2:5])) # matriz de desenho n x 2

.all = (solve(t(x) %*% x)) %*% (t(x) %*% preco)

.all

T T N #®

Veja a mudanca do valor do coeficiente de area nas duas regressoes: o efeito de area em
preco depende de quais outras covaridveis estao no modelo. A razao e’ que as covariaveis sao
correlacionadas entre si: aptos grandes tendem a ter mais quartos, por exemplo. Parte do
efeito de area medido no coeficiente da a regressao simples estd capturando também o efeito
do numeros de quartos. Quando quartos entra na regressao, o efeito puro de area diminui.

Regressao no R ¢é feita usando-se o comando 1lm que implementa uma série de algoritmos
numéricos eficientes para lidar com matrizes, incluindo a decomposicao QR, a principal técnica
para obter o vetor estimado de coeficientes. A sintaxe basica é a seguinte: 1lm(y ~ x1 + x2 +
x3, data=aptos) onde y é a varidvel que queremos modelar (a varidvel resposta ou varidvel
dependente) e x1, x2 etc. sdo as covaridaveis do modelo. O argumento data fornece o nome
do data.frame ou matriz que contém TODOS os dados (y e x).

setwd("u:/ESTATICS") # set the working directory
# Lendo os dados como um dataframe
aptos = read.table("aptosBH.txt", header = T)

lm(preco ~ areatquartos+suites+vagas, data=aptos)$coef

1m(preco ~ area, data=aptos)$coef

A saida de 1m é uma lista (um objeto tipo 1ist) que pertence a classe 1m. A lista possui muitas
informacdes para a andlise dos dados e sobre as quais vamos aprender ao longo da disciplina.
Podemos extrair informagao da lista de diversas formas. Por exemplo:



aptos = read.table("aptosBH.txt", header = T)

reg.all = 1lm(preco ~ area+tquartos+suites+vagas, data=aptos) # guardo a lista
class(reg.all) # classe do objeto reg.all

names(reg.all) # nomes dos elementos da lista. Eles sao vetores, matrizes, strings,
reg.all$coef # extraindo o elemento da lista de nome coefficients

summary (reg.all) # saida padronizada de regressao quando o objeto e’ da classe 1m
reg.all$fitted # vetor dos precos preditos pelo modelo de regressao linear
reg.all$res # vetor dos residuos = Y - Yhat = preco obervado - preco predito

Vamos comecar simulando um modelo de regressao linear com UM atributo apenas e estimando
o vetor de coeficientes 8 = (8o, $1)’. A seguir, vamos verificar que o comportamento estatistico
do estimador B esté de acordo com o comportamento estocastico deduzido teoricamente. Como
este primeiro exercicio envolve apenas um atributo, sera simples visualizar os varios resultados.

Vamos fixar um modelo de regressao em que CONHECEMOS o vetor de coeficientes

B = (B, 1) = (1,1.5)".

Vamos usar n = 25 observagbes com um unico atributo, x1. A matriz X é de dimensao
n x p=25x2. A linha i da matriz X é igual a x;, = (1,2;1). O modelo ser4:

}/i:x;ﬁ-FeSi=ﬁ0+ﬁ1$i1+€i=1+1.5xi1+€i

Os erros ¢; serdo i.i.d. N(0,0?% = 25).

Rode o script abaixo no R:

set.seed(0) # fixando a semente do gerador aleatorio
x1l = 1:24 # coluna com lo atributo

x1 # visualizando x1

beta = c(4, 1.5) # vetor beta

X = cbind(1, x1) # matriz de desenho X

mu = X %*J beta # vetor com E(Y)= Xxbeta

sigma = 5

epsilon = rnorm(24, O, sigma) # vetor epsilon de "erros"

y = mu + epsilon # resposta y = Xxbeta + erros N(0,1)
plot(x1l,y) # scatterplot dos dados

abline(4,1.5, col="blue") # reta "verdadeira" beta_0 + beta_1l * x

plot(x1l,y, xlim=c(0, max(x1)), ylim=c(0, max(y))) # redesenhando para ver o intercept
abline(4,1.5, col="blue") # reta "verdadeira" beta_0 + beta_1l * x

cor(y, x1) # correlacao entre y e x1

siml = lm(y ~ x1 ) siml e’ objeto da classe 1lm com resultados d
is.list(siml) siml e’ uma lista

names (siml) nomes dos objetos que compoem a lista siml

H H H H

summary ( siml ) funcao summary em siml: info sobre ajuste
plot(x1l,y, xlim=c(0, max(x1)), ylim=c(0, max(y))) # redesenhando para ver o intercept
abline(4,1.5, col="blue") # reta "verdadeira" beta_0 + beta_1l * x
abline(siml$coef, col="red") # reta ajustada beta_OHAT + beta_1HAT * x usan



O dultimo grafico mostra uma dlferenga FUNDAMENTAL entre ﬁ (5.7981,1.3737) e B =
(4,1.5): eles nao sao iguais. B é um vetor que estd usando os 24 dados para ESTIMAR o valor
verdadeiro de 3. Na pratica, ndo saberemos o valor de 3’ e é por isto que estamos usando os
dados da amostra para inferir sobre seu valor. Olhando a saida de summary, veja que

B = (5.7981,1.3737) # (4,1.5) = 8.
O erro de estimagao NESTA AMOSTRA PARTICULAR é igual a

B — B = (5.7981,1.3737) — (4,1.5) = (1.7981 — 0.1263)

Vamos gerar uma segunda amostra de 24 valores y com os mesmos x. Apenas os “erros”
epsilon; vao variar. Vamos estimar 8 novamente com esta segunda amostra.

set.seed (1)

epsilon2 = rnorm(24, 0, sigma) # NOVO vetor epsilon de "erros"

y2 = mu + epsilon2 # NOVA resposta y = X*beta + NOVOS erros N(O,1)
sim2 = 1Im(y2 ~ x1 ) # sim2 e’ o ajuste dos NOVOS dados.

summary (sim2)

Note que a reta estimada com esta segunda amostra é 4.7559 + 1.4995z, diferente da reta
original e também diferente da reta estimada com a primeira amostra. Vamos visualizar estas
diferentes retas e amostras.

plot(x1,y2) # scatterplot dos NOVOS dados
abline(4, 1.5, col="blue")
abline(sim2$coef, col="red") # NOVA reta ajustada

**

reta "verdadeira" beta_0 + beta_1l * x

# plotando os dois conjuntos de pontos
par (mfrow=c(1,2))

plot(x1l,y2, main="Dados novos") # scatterplot dos NOVOS dados

abline(4, 1.5, col="blue") # reta "verdadeira" beta_0 + beta_1l * x
abline(sim2$coef, col="red") # NOVA reta ajustada
plot(x1l,y,main="Dados antigos") # scatterplot dos dados ANTIGOS
abline(4, 1.5, col="blue") # reta "verdadeira" E’ A MESMA
abline(simi$coef, col="red") # reta ajustada com os dados ANTIGOS

# os dois conjuntos de dados num unico plot
par (mfrow=c(1,1))

plot(x1,y2, col="black")
points(x1l, y, col="red")
abline(4, 1.5, col="blue")
abline(sim2$coef, col="black")
abline(simi$coef, col="red")

scatterplot dos NOVOS dados

dados antigos

reta "verdadeira" beta_0 + beta_l * x
NOVA reta ajustada

reta ajustada com os dados ANTIGOS

H OH OH O H O#®

Agora temos TRES retas disintas: a reta verdadeira que queremos estimar betag + fix =
A (1 A (1
4+ 1.5z, a reta estimada com a primeira amostra de 24 dados 50( ) + 51( )a: = b5.798 + 1.374x

A (2 A (2
e a reta estimada com a segunda amostra de 24 dados 50( ) + ,6’1( ):z = 4.756 4+ 1.500x. O erro
de estima ¢ao com esta segunda amostra foi igual a

B — B = (4.7559,1.4995) — (4,1.5) = (0.7559, —0.0005)



diferente do erro de estimagao com a primeira amostra, que foi igual a (1.7981 — 0.1263).
Como o vetor estimado 8 = (X'X)"!X'Y é uma funcdo dos dados aleatérios Y, ele préprio
é um vetor aleatério. Para cada amostra, gerada sob o mesmo modelo probabilistico, temos
diferentes valores para 3. O erro de estimacio B/ -3 = B,— (4,1.5) também é uma quantidade
aleatdria. Algumas vezes, este vetor serd pequeno, algumas vezes serd grande. Queremos saber
o que seria um erro grande na estimagao do vetor 3 e com que frequéncia ele vai ocorrer. Em
suma, queremos conhecer a distribuicdo de probabilidade do VETOR erro de estimacao

B -8 =(B—4,6 —15)

Veja que a unica parte aleatério nesta expressao é o estimador B de miimos quandrados ja
que B é um vetor fixo. Para estudar o comportamento probabilistico do estimador B (ou do
erro de estimagao), podemos usar simulagao Monte Carlo. Vamos gerar centenas de vetores
Y, sempre nas mesmas condicoes, e verificar como o estimador B e o erro de estimacao

N ~ A~
B =B =(Bo—P1)—(4,15)
se comportam estatisticamente.
Queremos calcular o R? em cada simulacdo. Uma maneira simples de extrair seu valor a
partir do objeto retornado pelo comando 1m é acessi-lo a partir do objeto summary. Di-
gite str(summary(sim1)) para ver o que pode ser extraido. No caso do R? basta usar

summary (siml) $r.squared. Qutra estatistica que vamos precisar é uma estimativa de o,
explicada mais abaixo e obtida com summary(sim1)$sigma. Com isto, vamos as simulacoes:

set.seed (1)

nsim = 1000 # numero de simulacoes

betasim = matrix(0, ncol=nsim, nrow=2) # matriz para guardar as nsim estimativas de b
R2
S2

for(j in 1l:nsim){

rep(0, nsim)

rep(0, nsim)

y = mu + rnorm(24, 0, sigma) # gera novo vetor y
simj = 1lm(y ~ x1)

betasim[, jl = simj$coef # estima beta e salva
R2[j] = summary(simj)$r.squared

S[j] = summary(simj)$sigma
}

# visualizando os resultados

par (mfrow=c(2,2)) # particiona a janela grafica em 2 x 2
hist(betasim[1,], prob=T, main="betal") # histograma dos 1000 interceptos estimados b
abline(v=beta[1], 1lwd=2, col="blue") # verdadeiro beta_0

hist(betasim[2,], prob=T, main="betal") # histograma dos 1000 interceptos estimados b
abline(v=betal[2], 1wd=2, col="blue") # verdadeiro beta_1

plot(t(betasim), xlab="betal", ylab="betal") # correlacao entre beta_O_hat e beta_1_h
abline(v=betal[l], h=betal[2]) # valores verdadeiros beta_0 e beta_1

hist(R2, main="R2")

Alguns comentarios muito importantes: observe que o valor verdadeiro dos parametros nunca
mudou ao longo das simulacoes. Sempre tivemos By = 4 e 51 = 1.5. Os 24 valores do



atributo 1 também ndo mudaram. Apenas Y variou e isto ocorreu por causa dos erros €; que
ndo possuem nenhuma conexao com X;j ou com o [y e S1. A andlise que vocé vai fazer na
pratica é uma dessas 1000 simulag 6es. Todas elas foram geradas da mesma forma e poderiam
legitimamente ser qualquer uma delas, a Unica instancia especifica de dados que vocé tera em
maos na pratica de andlise de dados. Vocé entao observar nos graficos o que poderia acontecer
com sua analise. Até onde vocé pode errar? E com que frequéncia erros grandes podem

ocorrer?

Veja o histograma dos 1000 valores estimados da inclinagao, Bgl), ce ilooo)' O valor verad-

deiro usado para gerar os dados foi 81 = 1.5. Os valores estimados estao centrados aproxi-
madamente em torno do valor verdadeiro 81 = 1.5. Além disso, eles variaram entre 1.0 e
2.0 causando entao um erro maximo de aproximadamente 0.5. Os valores acima de 1.8 ou
abaixo 1.2 (e portanto, com um erro de estimagao maior que 0.3) aconteceram com baixa
frequéncia. De fato, a proporcao de vezes em que isto ocorreu nas 1000 simulagoes foi igual a
sum( abs(betasim[2,] - betal[2]) > 0.3 )/nsim, que resultou em 0.034, ou apenas 3.4%.
Assim, podemos concluir que ao estimar 87 = 1.5 com o estimador de minimos quadrados
neste problema podemos ter uma boa confianga de que erraremos o seu valor verdadeiro por
méximo 0.3 (isto vai ocorrer aproximadamente 98.6% das vezes). Além disso, os valores es-
timados estarao oscilando em torno do valor verdadeiro, ora um pouco mais, ora um pouco
menos que Ji.

Chegamos a uma conclusao semelhante olhando para o histograma de Bo, que parece estar
centrado em torno do valor verdadeiro 8y = 4 e com um erro que, na maioria das vezes,
nao ultrapassa 4 (tivemos sum( abs(betasim[1,] - beta[1]) > 4 )/nsim igual a 0.052 ou

5.2%).

Outro aspecto claro nos histogramas é que as distribuigoes de probabilidade de BO e Bl se
parecem com distribui¢ées normais. De fato, vamos repetir os dltimos graficos ajustando uma
densidade normal a cada um dos histogramas usando a média aritmética e o desvio-padrao
amostra das 1000 simulagoes de cada um dos estimadores. Temos mean(betasim[1,]) igual
a 3.97 e sd(betasim([1,]) igual a 2.08, enquanto para beta; temos mean(betasim[2,]) igual
a 1.50 e sd(betasim[2,]) igual a 0.15. Usando estes valores com o comando curve:

# visualizando os resultados

par (mfrow=c(2,2)) # particiona a janela grafica em 2 x 2
hist(betasim[1,], prob=T, main="betalO") # histograma dos 1000 interceptos estimados bet:
abline(v=betal[1], 1lwd=2, col="blue") # verdadeiro beta_0

# ajustando uma densidade normal aos dados de beta_O_hat

curve (dnorm(x, mean=mean(betasim[1,]), sd=sd(betasim[1,])), add=TRUE)

hist(betasim[2,], prob=T, main="betal") # histograma dos 1000 interceptos estimados betz:
abline(v=betal[2], 1lwd=2, col="blue") # verdadeiro beta_1

# ajustando uma densidade normal aos dados de beta_1_hat

curve (dnorm(x, mean=mean(betasim[2,]), sd=sd(betasim[2,])), add=TRUE)

plot(t(betasim), xlab="betal", ylab="betal") # correlacao entre beta_0O_hat e beta_1_hat
abline(v=betal[l], h=betal[2]) # valores verdadeiros beta_0 e beta_1

hist(R2, main="R2")

Nao somente a distribuicao marginal de cada componente de ﬁ = (Bg, 31) parece seguir uma
distribuiagdo gaussiana mas, observando que o plot dos 1000 pares de pontos (f3p,51) tem
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a forma de uma elipse, parece que a distribuicao conjunta dos componentes do vetor segue
uma distribuigdo gaussiana bivariada. A partir deste plot vemos que a correlagido entre BO
e Bl ¢é negativa. Quando a inclinacdo estimada Bl fica muito acima de sua média (que é
aproximadamente 1.5), o intercepto estimado BO tende a ficar abaixo de sua média (que é

aproximadamente 4).

Mais uma observacio referente ao tltimo grafico: a estatistica R? também é uma varidvel
aleatérial Ao longo das 1000 simulacdoes, R? teve um valor médio igual a 0.8234 e 50% de
seus valores estao entre 0.79 e 0.86. Apenas 2.3% dos 1000 valores calculados foram menores
que 0.7. Uma das amostras chegou a gerar um R? igual a 0.60, o minimo nas 1000 simulacdes.

O drama do analista de dados: O estudo de simulacao que fizemos mostra claramente
as propriedades estatisticas do estimador de minimos quadrados [5’ Obtivemos o comporta-
mento estatistico do erro de estimagao descobrindo o valor esperado de cada componente de
B, incluindo um valor maximo que, com alta probabilidade, este erro pode atingir. Acontece
que, na pratica da analise de dados, este estudo é impossivel de ser realizado. Para estudar
o comportamento estatistico de B, tivemos de gerar os dados Y uma grande quantidade de
vezes. Para esta geracdo, precisamos conhecer o verdadeiro valor do parametro 3. Entretanto,
0 objetivo da estimag@o na préatica é inferir um valor aproximado para (3, supostamente des-
conhecido. Se conhecermos o valor verdadeiro de 3, nao hé necessidade de estimé-lo, muito
menos de conhecer as propriedades estatisticas do estimador B . Parece que estamos num beco
sem saida: para conhecer as propriedades estatisticas de ,3 por simulagao precisamos conhecer
o verdadeiro valor de 3. Mas, na pratica, nao saberemos este valor ja que o objetivo de calcular
B ¢é exatamente obter um valor aproximado para o vetor (3.

Todo este suspense é para fornecer um resultado surpreendente. Para conhecer como o esti-
mador B vai variar considerando as diferentes amostras que poderiam ser geradas pela modelo
nao vamos precisar simular o modelo milhares de vezes. Usando apenas a tnica amostra de
dados que temos em maos e o cdlculo de probabilidades somos capazes de obter todo o com-
portamento estatitico de B! Com uma tnica amostra de dados conseguimos descobrir todos

os resultados obtidos nas simulagoes acima.

De fato, ja obtivemos todo o comportamento estatitico de B nas notas de aula. Nos ja apren-
demos que, como 3 é uma matriz de constantes (A = (X’X)~!X) multiplicando o vetor
gaussiano multivariado Y, pudemos deduzir que 3 é normal multivaiado:

B~ Ny (B,0*(X'X)™)
Portanto, olhando para o componente 1 deste vetor, temos

Bo ~ N(Bo, *(X'X)11")



enquanto que, para o segundo componente,
B~ N(B1,0%(X'X)5,)
A matriz (X'X)~! é facilmente obtida em R:

> solve(t(X) %x*% X)
x1
0.17753623 -0.0108695652
x1 -0.01086957 0.0008695652

Assim, sem nenhuma simulacido nés podemos conhecer de forma quase completa todo o com-
portamento estatistico de 3:
Bo ~ N(By,020.1775)

enquanto que, para o segundo componente,
By ~ N(B1,%0.0009)

Fica faltando apenas conhecer o2, a variancia do erros €; no modelo de regressao linear Y; =
x;3 + ¢;. E claro que sabemos que ¢ = 5 pois nées mesmos geramos os dados. Mas também é
claro que, numa analise de dados reais, temos apenas os dados Y e a matriz X. Naoconhecemos

o modelo que gerou os dados e portanto nio conhecemos o2.

Acontece que, embora ndo possamos conhecer o2

com exatidao, podemos estimé-lo com
razoavel precisao. Para isto usamos os residuos r; = y; — 7;. Pode-se mostrar que a variavel

aleatédria
n

n
SSE =r'r = Zr? = Z:(yZ — ;)?
i=1 i=1
possui uma distibuicao qui-quadrado com n — p = n — 2 graus de liberdade multiplicada por
o?. Portanto E(SSE) = o%(n — p) e, como consequéncia, S = E(SSE/(n —p)) = o2. Isto é,
a soma do quadrado dos residuos dividida por n —2 (quase a sua média, portanto) tem o valor

esperado igual a 2. Algumas vezes, um pouco mais que o2, algumas vezes, um pouco menos.

Vamos ver como foi a estimativa S? do parametro o2

em cada uma das 1000 simulagoes. Com
o comando S[j] = summary(simj)$sigma, nés guardamos os valores de v .S2? e portano de

uma estimativa de . Vamos eleva-lo ao quadrado e transforma-lo para verificar duas coisas:

e O ajuste da distribui¢ao qui-quadrado com df = n —2 = 22 graus de liberdade aos valores
simulados de SSE/0? = SSE/25. Este é um resultado tedrico que estamos verificano
empiricamente.

e Como S = V82 =,/SSE/(24 — 2) comporta-se como estimador de 0% ao longo das 1000
simulacoes.

par (mfrow=c(1,2))

S2 = 572 # obtendo estimativa de sigma”2 em cada simulacao

SSE = (24-2)*S2 # obtendo a soma dos residuos ao quadrado em cada simulacao
hist (SSE/sigma”2, prob=T)

curve(dchisq(x, df=24-2), add=T) # ajuste de qui-quadrado

hist(S, prob=T)

sum(8 > 7 | S < 3)/1000

A maioria dos valores estimados de o estdo entre 3 e 7. Ja que o0 = 5, o ultimo comando
acima produz 0.008, ou 0.8% das vezes, para a proporcao das simulagdes em que S teve um



erro de estimag ao S — ¢ maior que 2. Na pratica, apenas um desses valores serd usado,
aquele associado com o conjunto particular de dados que estd em sua maos. Por exemplo, se
tiverms em maos apenas o primeiro conjunto de dados (dentre os 1000 simulados), teremos
a estimativa S[1] = 4.937436, um valor bem préximo de 0. N6s fomos felizes neste primeiro
conjunto de dados mas que valores mais altos ou mais baixo poderiam ter sido obtidos como
estimativa de S, embora estas estimativas dificilmente ultrapassem 7 ou sejam menores que 3.

O ponto relevante é que, com esta aproximacao de o baseada em UMA UNICA amostra
de dados, podemos agora conhecer o comportamento estatistico do estimador B COMO SE
FIZESSSEMOS centenas de simulacoes. De fato, baseado na teoria que ja deduzimos, como
sabemos que

B~ Ny (8,03 (X'X)")

podemos concluir que

B ~ N2 (/87 SQ(X/X)_I) )

e que portanto, como S = 4.937436 na primeira amostra (supondo que é a unica amostra de
dados que temos), concluimos que

Bo &~ N(Bo, (4.937)% 0.1775)
enquanto que, para o segundo componente,

By ~ N(By, (4.937)% 0.0009)

O erro de estimagao: Com isto, podemos ter uma boa idéia do erro maximo que podemos
estar cometendo ao estimar 3 pelo método de minimos quadrados. De fato, como 95% da 4rea
de uma gaussiana fica entre dois desvios-padrao de sua esperanca, temos para [3;:

P(|51 — B1] < 24/(4.937)2 0.0009) ~ 0.95

Isto é,
P(|61 — B1] < 0.29622) ~ 0.95

Assim, com alta probabilidade, a diferenca entre a estimativa Bl (uma varidvel aleatéria cal-
culada a partir dos dados) e 1 (um valor fixo mas desconhecido) nao deve ultrapassar 0.30.
Manipulacao simples do operador valor absoluto permite escrever o evento | B — p1| < 0.30 de
outra forma equivalente:

181 — B1] < 0.30 = —0.30 < 1 — B1 < 0.30 = B — 0.30 < B < fB1 +0.30
Retornando ao célculo de probabilidade, temos entao

P (31 —0.30< By < B+ 0.30) ~0.95

Ou seja, com probabilidade 95% o intervalo (aleatério) (81 — 0.15, 81 + 0.30) vai cobrir o ver-
dadeiro valor do parametro aproximadamente 95% das vezes que o procedimento de estimacao
de minimos quadrados for adotado.

Licao a levar para casa: O ponto mais importante de todo este exercicio é que: nao apenas
obtemos uma estimativa do vetor 8 mas conseguimos também ter uma boa aproximacao para
os outros possiveis valores que poderfamos ter se a amostra fosse um pouco diferente (mas

gerada sob o mesmo modelo). Com isto, temos uma boa idéia do tamanho méximo do erro

que podemos estar cometendo ao estimar (;: dificilmente vamos ultrapassar 254/ (X’ X)Z_Z1



Outra maneira de expressar este resultado é apresentar ochamdo intervalo de confianca de
95%:

(Bi = 251/ (X'X);", B + 25/ (X'X);;)
Este intervalor aleatério cobre o verdadeiro (e desconhecido) valor de 8; 95% das vezes, apro-
ximadamente.

Repita o exercicio anterior simulando um modelo de regressao linear com DOIS atributos.
Este exercicio tem o objetivo de forca-lo a refletir sobre o significado da expressao “f é um
vetor aleatério”. Seu entedimento é crucial na teoria da aprendizagem estatistica.

Vamos simular um modelo de regressao linear com dois atributos usando o R e estimar o vetor
de coeficientes 8 em cada caso. A seguir, vamos verificar que o comportamento estatistico do
estimador 3 esta de acordo com o comportamento estocastico deduzido teoricamente.

Vamos fixar um modelo de regressao em que CONHECEMOS o vetor de coeficientes
B = (Bo, A1, B2)' = (1,1.5,0.7)".
Vamos usar n = 25 observagoes com dois atributos. O modelo sera:
Y; = x84 ¢ = Bo+ fixi1 + Powio + € = 1 + L5z + 0.7250 + &

Os erros ¢; serdo i.i.d. N(0,0% = 25).

Rode o script abaixo no R:

set.seed(0) # fixando a semente do gerador aleatorio
x1 = 1:24 # coluna com lo atributo

x1 # visualizando x1

x2 = round(25*runif(24),1) # coluna com 20 atributo

x2 # visualizando x2

beta = c(1, 1.5, 0.7) # vetor beta

mu = cbind(1, x1, x2) %*% beta # vetor com E(Y)= X*b

sigma = 5

y = mu + rnorm(24, O, sigma) # resposta y = Xxb + erros N(0,1)
pairs(cbind(y, x1, x2)) # scatterplots bivariado

Nos gréficos de dispersao que resultaram do comando pairs vocé deve ter notado como, visu-
almente, o atributo x2 parece ter pouco efeito para explicar a variagao de y quando comparado
com a associagao forte e dbvia entre y e x1. No entanto, vocé sabe que x2 tem algum efeito
sobre y pois seu coeficiente nao é exatamente igual a zero. Na verdade, podemos comparar os
dois coeficientes pois os dois atributos possuem aproximadamente a mesma escala (variando
entre 0 e 24). O efeito de x1 em y é medido pelo seu coeficiente (igual a 1.5) e o de x2 pelo
seu coeficiente (igual a 0.7). Assim, o efeito de x1 parece ser 1.5/0.7 ~ 2.0, ou duas vezes
maior, que o de x2. No entanto, o grafico de y X xo d4 a impressao visual de que x2 tem muito
menos efeito em y. Na verdade, o que afeta a nossa avaliacao do efeito de x2 neste grafico é o
efeito simultdneo de x1. Voltaremos a isto mais abaixo. Ainda nestes graficos, note como os
preditores x1 e x2 sao muito pouco correlacionados.

x = cbind(x1, x2) # matriz de desenho (sem a constante 1)

siml = 1Im(y ~ x ) # siml e’ objeto da classe 1lm com results do ajus
is.list(sim1) # siml e’ uma lista

names (siml) # nomes dos objetos que compoem a lista siml

summary( siml ) # funcao summary em siml: retorna info sobre mini



Veremos agora apenas alguns dos itens listados na saida de summary. Veja que
B = (0.46,1.64,0.58) # (1,1.5,0.7) = 8’

considerando as estimativas com duas casas decimais. O erro de estimagado NESTA AMOSTRA
PARTICULAR ¢ igual a

B — B = (0.46,1.64,0.58) — (1,1.5,0.7) = (—0.54,0.14,0.12)
O vator ALEATORIO ﬁ/ possui distribuigao gaussiana p-variada (3-variada aqui) com
B~ Ny(B,0”(X'X) !

O que isto significa”O resto do exercicio procura te dar uma idéia da resposta.

O vetor Y = XB com os valores ajustados é obtido manipulando matrizes e vetores: ou
diretamente a partir do objeto siml:

betahat = siml$coef # extraindo o vetor beta-hat.

yhat = siml1$fitted # Fitted values. Alternativa: yhatO = cbind(1, x) %*% be
plot(yhat, y) # R2 e’ o (coeficiente de correlacao linear)”2 deste gra
cor(yhat, y)~2 # compare com o valor de Multiple R-squared em summary(s
r =y - yhat # Vetor de residuos. Alternativa: siml$res

S2 = sum(r*r)/(length(y) - 3) # estimativa nao-viciada de sigma”2

sqrt (82) # 0 mesmo que ’’Residual standard error...’’ em summary(
# veja que o verdadeiro valor e’ sigma=5

vcov(siml) # extrai a estimativa da matriz de covariancia de
# beta-hat = S2 * (X’X)~{-1}

sdhat = sqrt(diag(vcov(siml))) # sqrt dos elementos da diagonal: Estimativa dos DPs
# dos beta-hats.

# Mesmos valores que a coluna Std. Error em summary(s

Vamos agora simular este processo 1000 vezes, sempre gerando um novo vetor resposta y,
ajustando o modelo (com a matriz de desenho X fixa) e calculando as estimativas. Tere-
mos sempre um vetor B diferente do verdadeiro valor de 3. Vamos avaliar empiricamente o
comportamento deste estimador e comparar com o que a teoria diz.

nsim = 1000 # numero de simulacoes
betasim = matrix(0, ncol=nsim, nrow=3) # matriz para guardar as nsim estimativas de b
betasim[,1] = betahat # primeira coluna = estimativa com la amostra

for(j in 2:nsim){

y = mu + rnorm(24, 0, sigma) # gera y

betasim[, j] = Im(y ~ x)$coef # estima e salva betahat na simulacao j

}
sdbeta = sigma * sqrt(diag(solve(t(cbind(1,x)) %*% cbind(1,x))))

par (mfrow=c(2,2)) # particiona a janela grafica em 2 x 2
hist(betasim[1,], prob=T) # histograma dos 1000 interceptos



abline(v=betasim[1,1], 1lwd=2, col="blue") # verdadeiro beta_0
aux = seq(min(betasim[1,]), max(betasim[1,]), 1len=100) # beta_0_hat e’ gaussiano?
lines(aux, dnorm(aux, beta[l], sdbetal[1]))

hist(betasim[2,], prob=T); abline(v=betal[2], 1lwd=2, col="red")
abline(v=betasim[2,1], 1lwd=2, col="blue")

aux = seq(min(betasim[2,]), max(betasim[2,]), len=100)
lines(aux, dnorm(aux, betal[2], sdbetal2]))

hist(betasim[3,], prob=T); abline(v=betal3], lwd=2, col="red")
abline(v=betasim[3,1], 1lwd=2, col="blue")

aux = seq(min(betasim[3,]), max(betasim[3,]), len=100)
lines(aux, dnorm(aux, betal[3], sdbetal3]))

plot(betasim[2,], betasim[3,])

(e) The vector HY is the orthogonal projection of Y into the linear subspace of the linear combi-
nations of the p columns of X. Show that indeed HY can be written as a linear combination
of columns of X.

Solution: A linear combination of the p columns of X is a vector written as Xb where b is
any p-dimensional vector. Using the definition of H, we have

HY = X (X'X) ' X'Y = X3

where 8 = (X'X) ' XY is a p-dimensional vector.

(f) Numa analise de dados com o modelo de regressao linear comum (isto ¢, com a primeira coluna
da matriz X sendo a colunas de 1’s), checar numericamente que o vetor de residuosr =Y — Y
é ortogonal ao vetor projetado Y. Faga isto com os dados de apartamentos em BH.
Solution: Obtemos um valor aproximadamente zero, mas nao exato, devido a erros de arre-
dondamento numérico:

aptos = read.table("aptosBH.txt", header = T)

reg.all = 1lm(preco ~ areatquartos+suites+vagas, data=aptos)
sum(reg.all$fitted * reg.all$res) # produto interno de residuos x preditos
# resultado eh -0.003036737

(g) Responda V ou F as questoes abaixo:

e O vetor de residuos r =Y — Y é ortogonal ao vetor Y.
e The orthogonal projection Y is orthogonal to the data Y.

e The inner product between r and Y is zero. That is,

A~

r,Y)=_1r Y =0
— =
(1xn) (nx1)

e Y pertence ao espaco das combinagoes lineares das colunas de X.

e O vetor de residuos r = Y — Y pertence ao espago das combinagoes lineares das colunas
de X.



Solugao: F (r é ortogonal a Y), F (Y is orthogonal to Y — Y = r), T, T (pois Y = XB), F
(r pertence ao espago ortgonal ao espago das combinagoes lineares das colunas de X; o vetor
r é ortogonal a cada coluna da matriz X).

Em um modelo de regressao linear, a varidvel resposta é o rendimento de uma reacao quimica
em duas situagoes diferentes, 0 e 1. Sao feitas ng e n; repeticoes independentes da reacao em
cada um dos dois casos gerando os ng+mn1 valores da resposta Y;j ondei =1,...,n;ej =0, 1.
Suponha Y = (Y10, Y20, - - -, Y00, Y11, - - -, Yn, 1) € que X é a matriz de desenho com a primeira
colunas de 1’s e a segunda coluna com uma varidvel indicadora com valores 0 (se estado é 0)
e 1 (se estado é 1). Isto é,

Y10 10
Y20 10
Yno0 10 Bo
Y = = +e=XpB+e€
Y11 11 ( B1
Y21
yn11 1 1

Mostre que o estimador de minimos quadrados é dado por

n o BO o / —1I~N /N YO
B_[A ]_(XX) XY=¢ g

1

onde Y; é a média aritmética das n; observagoes no estado j.
OBS: .
b 1 d —b
A= =
[c d] ad—bc[—c a]

Considere um modelo de regressao linear onde a matriz de desenho X possui uma tnica coluna

formada pelo atributo j de forma que X é uma matriz n x 1. Digamos que o atributo j seja o
nimero total de linhas de c6digo de um software e a resposta seja o tempo até a obtencao de
uma primeira versao estavel do software. Obtemos dados relacionados a n distintos software.
Nosso modelo de regressao linear SEM INTERCEPTO ¢é dado por:

Y = X(j)ﬁj‘FE

1 T1j €1
Y2 T2j €2
= 5]‘ +
Un L Tnj En
$1jﬁj +é1
:szﬁj + &2
| ZnjBj +en

Note que o vetor-coeficiente neste caso ¢ simplesmente o escalar 3;, um vetor de dimensao 1.



Ao contrario do que fazemos quase sempre por default, no modelo acima, nds nao estamos
usando a coluna de vetor n-dim de 1’s representado por 1 = (1,...,1)". Isto significa que o
modelo assume que a resposta Y esta relacionada ao atributo através de uma relacao linear
que passa pela origem da forma:
y~axp

Este modelo simplificado nao é apropriado na maioria das situagoes praticas pois quase sempre
podemos esperar um intercepto nao-nulo. A utilidade deste modelo simplificado vai ficar clara
no exercicio 9j.

e Seja (x,y) = >, x;y; o produto interno de dois vetores x e y. Mostre que o estimador de
minimos quadrados de /3; neste modelo com um tnico atributo é dados por

<)y
x()x(G)
> i1 Tigli
doic l‘%j
(xY),y)
0, x0))
(x9.y)

B =

e Suponha que o tUnico atributo no modelo seja a coluna de 1’s representada por 1 =
(1,...,1). Mostre que o (unico) coeficiente neste caso é dado pela média aritmética das
observacoes

Yy 1 _
o= _nzi:y,-_y

e Considerando o item anterior, conclua que o modelo no caso em que o Unico atributo é a

coluna de 1’s é da forma:
Y=1p/+e¢

o que significa que Y1,Y5,...,Y,, sdo i.id. N(fg,0c?).
O modelo estimado por minimos quadrados produz a seguinte decomposi¢ao do vetor Y:

Y=Y14+(Y-Y1)

Neste modelo, Y =V 1eovetor de residuos ér =Y — Y 1.

(j) Em estudos experimentais, como nos testes AB feitos pelo Google, as colunas da matriz X
podem ser escolhidos de antemao pelo usuario. Um desenho experimental muito usado é
o chamado full factorial design. Vou considerar um desses desenhos (se estiver interessado,
estou tomando um desenho com dois fatores, dois niveis em cada um deles e apenas com duas
replicagoes). Para este desenho, temos o seguinte modelo de regressao linear para uma resposta

experimental.

] [1 -1 -1 1] [ &1 ]

Y2 1 1 -1 -1 €9

Y3 1 -1 1 -1 Bo €3

Y — Ya _ 1 1 1 1 51 + g4

Ys 1 -1 -1 B2 €5

Y6 1 -1 -1 B3 £6

Y7 1 -1 1 -1 €7
| Ys | i 1 1 1 1 i | €8 |




Nao se preocupe com significado exato dos atributos neste momento. Mas, para nao ficar
muito abstrato, vocé pode imaginar que, neste problema, a resposta Y é a a producgao por
minuto de um processo quimico numa industria. Os dois primeiros atributos nao constantes
representam os efeitos individuais de dois fatores influentes na producao. O ultimo atributo
representa a interaccao ou efeito sinergético entre estes dois fatores.

Ignorando a seméntica do modelo e concentrando apenas na sua sintaxe, verifique o seguinte:

e As colunas da matriz de desenho sdo todas ortogonais entre si. Isto ¢, xU)V/x®*) =
> wijrip = 0 se j # k.

e Conclua que a matriz X’X é diagonal.

e Conclua que a matriz (X’X) ™" também ¢ diagonal.

e Conclua que o estimador de minimos quadrados de 3 é dado por

bo (L.y)/ 1] S ui/8
G| || D DR || Dy
b, (x, y)/||x|? (x),y)/8
fs (x), y)/||x | (x),y)/8

e Conclua que o estimador ﬁj do atributo j ¢é igual aquele que seria obtido caso tivéssemos
rodado uma regressao usando APENAS o atributo j.

e Verifique que esta conclusao é geral: caso as colunas de X sejam ortogonais entre si, o
estimador ; do atributo j nao ¢ afetado pela presencga ou auséncia dos demais atributos
na regressao.

e Verifique também que a matriz de covariancia
V(B) =o® (X'X)7!

do estimador B é uma matriz diagonal. Conclua que as estimativas de diferentes atributos
sdo v.a.’s independentes pois Corr(ﬁj,ﬁk) =sej#k.

e Apenas para seu conhecimento, é possivel mostrar que a eficiéncia maxima na estimacao
dos coeficientes é alcancada quando as colunas em X sao ortogonais entre si. Mais
especificamente, é possivel mostrar que dada qualquer matriz de desenho X, tal que
|xO||? = c? > 0, entao

2
5 o
V(ﬁj) > 5
c
J
e o minimo ¢ atingido quando x@W'x®*) = 0 para todo par j # k (isto é, quando as

colunas sao ortogonais entre is, o erro esperado de estimagao é minimizado). Para mais
informacoes, ver Rao (1973, pag. 236).

(k) Suponha que a matriz de desenho possui apenas a coluna 1 e seja H; a matriz de proje¢ao no
espago C(1) dos multiplos do vetor 1. Mostre que esta matriz é dada por




(1)

Verifique que, qualquer que seja o vetor resposta Y, ele pode ser decomposto como
Y=H,Y+(I-H)Y =91+ (Y —71)

e que os dois vetores do lado direito da equacao sao ortogonais.

Conclua que Y — 1 pertence ao espaco ortogonal C(1)* e que o comprimento (ao quadrado)
de Y pode ser decomposto da seguinte maneira

Y|P = Zyz—ny +Z )2 =171 + |IY — g1|?

. -1 , . . .
Seja H = X (X'X)" " X’ onde X é a matriz de desenho com a primeira coluna sendo o vetor
de 1’s. Seja H; a matriz do exercicio anterior. Mostre que as trés matrizes H;, H — Hy, e
I — H sdo matrizes de projegoes ortogonais. Isto é, elas sao simétricas e idempotentes.

Outra decomposicao mais relevante é a seguinte:
I=H;+(H-H;)+(I-H).

Use esta decomposicao matricial para decompor o vetor Y em trés outros vetores ortogonais entre si.

DICA: No produto matricial AB = C, a coluna j de C é o resultado de multiplicar a matriz
A pela coluna j de B

Solucao:
Y=H+H-H)+I-H)Y=Y1+H-H)Y+(I-HY

Basta fazer o produto interno desses vetores do lado direito para ver que sao ortogonais entre
si. Por exemplo,
(H—-H,) Y, (I-H)Y) =0

usando que as matizes sao idempotentes e simétricas.

Como consequéncia, mostre que

n n
IYIP=> w7 =ng®+ > (65— 9>+ > (i —9)°
=1 =1 3

e também que

O fndice de correlacdo multipla R? é uma medida global do grau de proximidade do vetor
ajustado ou predito pelo modelo Y ao vetor resposta Y e ele é definido como

R2_ 1 2= g
>ilyi —9)?
Quanto maior o R?, melhor o ajuste.

Mostre que sempre temos R? € [0, 1] e que o R? também pode ser escrito como

o >0 —5i)?
= iy — y)?




(r)

Mostre que a média aritmética dos valores no vetor ajustado Y é igual a média dos valores
observados sempre que 1 estiver na matriz X. Isto é, mostre que > ", 9;/n = y. DICA:
represente a soma como o produto interno de dois vetores.

Considere o indice empirico de correlagao linear de Pearson entre os vetores Y e Y dado por

D Y () ()
(S — )2 S, — )2

Vocé vai mostrar que R? = r? trabalhando primeiro o numerador de 7:

r

(Y g1, Y Y1) = (Y-§1,.Y —§1)  pois X0, §i/n =7
= (Y-Y+Y—-41,Y—j1)

Conclua que o numerador de 7 é igual a ||Y — #1]|? e que r? = R?. Assim, o indice R? mede
o quadrado da correlagao entre os vetores Y e Y.

Responda V ou F para as seguintes afirmativas:
e RR? mede a proporcio da variabilidade (ou variacdo) total da resposta que é explicada pelo
modelo.
e R? mede a proporcao da variacio da resposta que o modelo nao consegue explicar.

e R? éigual a zero se a matriz de desenho tiver apenas a coluna 1.

Seja X uma matriz de nimeros reais de dimensao n x (p + 1), seja § = (Bo, B1,...,0p) um
vetor (p+1) X 1 e y um vetor n x 1.

e Sejam vy, ..., v vetores do R™. Verifique que o conjunto das combinagoes lineares desses
vetores forma um sub-espaco vetorial do R".

e Verifique que X3 = By Xo + 1 X1+ ...+ B,X, onde Xo, X1, ..., X, sdo os vetores colunas
de X. Assim, o conjunto 2(X) das combinagoes lineares das colunas de X é igual a
M(X) ={XpB | B e R}

e Seja W um subespago do espago vetorial V. Definimos o espacgo ortogonal de W como

sendo

Wr={ueV| <u,w>=0 YweW}

Mostre que W+ é um subespaco vetorial de V.
Solugao: 6) e W+ pois < ﬁ,w >= (0 para todo w € W. E tambem < ajuj +asus, w >=
Ose <up,w>=0e <ug,w>=0

e Seja H = X(X'X)"1X’ de dimensdo n x n. Verifique que H é idempotente (H? = H) e
simétrica (H' = H).

e Seja y € R™. A matriz P de dimensdao n x n é dita de projecao ortogonal num certo
subespaco vetorial se y — Py L Py para todo y € R™. Mostre que H = X (X'X)"1X' é
uma matriz de projecao ortogonal usando que H é idempotente e simétrica.

e Como H = X(X'X)"1X’ ¢ uma matriz de projecio ortogonal, resta saber em que sub-
espaco vetorial W a matriz H projeta os vetores y € R™. Mostre que H projeta ortogo-
nalmente em M(X) (isto é, mostre que W = M(X).)

Solugao: Para todo y € R™, temos Hy = X(X'X) !X’y = Xbonde b = (X'X)~! X'y.
Assim, Hy € 9M(X) para todo y e portanto W C 9M(X). Por outro lado, tome um



(v)

elemento Xb qualquer de 9MM(X). Por definigao, Hy € W para todo y. Em particular,
tomando y = Xb, temos entdo HXb € W. Mas HXb = X(X'X) ' X'Xb = Xb. Isto é,
Xb e W e portanto M(X) C W. Concluimos entdao que W = 9M(X).

e Seja H = X (X'X)~'X’ a matriz de projecio ortogonal no espaco (X ) das combinacdes
lineares das colunas de X. Mostre que ao escolher 3 tal que X3 = Hy estamos minimi-
zando a distancia ||y — X3||2. DICA: Escreva some e subtraia Hy em ||y — X3||? e use
que ||[v]]?2 =< v,v >
Solugao: ||y — X8> =<y — X3,y — X3 >. Somando e subtraindo Hy obtemos

ly — X8| <y-Hy+Hy—XB,y— Hy+ Hy— Xj >

= <y—Hy,y—Hy>+<Hy— XpB,Hy— Xg>-2<y—Hy,Hy— X3 >

ly — Hy|> + ||[Hy — XB|* + 0.

O dltimo termo acima é zero pois Hy — X5 € M(X) j4 que Hy € M(X) e X5 € M(X)
e o conjunto M(X) é um sub-espago vetorial (e portanto contém a diferenga dos vetores).
Além disso, y — Hy € M(X)+. Portanto, o produto interno < y — Hy, Hy — X3 > é nulo.
Assim, ||y — XB||*> = |ly — Hy||*> + ||[Hy — XB||?. O primeiro termo do lado direito nao
depende de 8 e o segundo é nao-negativo. Ele serd minimizado se for igual a zero, o que
ocorre se tomamos X3 = Hy.

Regressao linear e distribui¢ao condicional: Vamos considerar um modelo (na verdade, mais
uma caricatura) de como a renda do trabalho Y de um individuo qualquer esta associada com
o nimero de anos de estudo X desse mesmo individuo. Vamos supor que, para um individuo
com X = z anos de estudo teremos a renda Y como uma varidvel aleatéria com distribuicao
normal com esperanca E(Y|X = x) = g(x) = 300 + 100 * z e varidncia o2 = 50%.

Responda V ou F as afirmacgoes abaixo:

e Se X = 10 para um individuo (isto é, se ele possui 10 anos de estudo), entao a sua renda
é uma variavel aleatéria com distribuigao N (1300, 502).
E(Y) = 300 + 100 * .
E(Y|X = z) = 300 + 100 * z.
V(Y) = 502.
V(Y |X = z) = 502

A distribuigao de Y é normal (ou gaussiana).

Dado o valor de z, a distribui¢do de Y é normal (ou gaussiana).

Numa lista anterior, vocé usou os dados do arquivo aptos.txt com precos de apartamento no
bairro Sion em Belo Horizonte para criar um modelo de regressao. Usando algebra matricial
no R, obtenha uma estimativa da matriz de covariancia do estimador de minimos quadrados

B dada por
v(B) =0 (x'x)

onde




(x)

Considere um vetor X = (X, X3) com distribui¢do normal bivariada com vetor esperado
p = (p1, p2) e matriz de covariancia

> 011 P/ 011022
pvollogs 022

Usando o resultado dos slides, mostre que a distribuicao condicional de (X3|X; = x1) é
N (pte, 02) onde

0922 1 — M1
He = (2 P T 1) = K2 022
c=H A/ 011( p) = p PV o11

07 = om(l — p°)
A partir desses resultados, verifique se as afirmacoes abaixo sdo V ou F:

e Saber que o valor X; = x7 estd dois desvios-padrao acima de seu valor esperado (isto
é, (x1 — p1)/y/011 = 2) implica que devemos esperar que Xo também fique dois desvios-
padrao acima de seu valor esperado.

e Dado que X; = x1, a variabilidade de X5 em torno de seu valor esperado é maior se
r1 < p1 do que se x1 > .

e Conhecer o valor de X; (e assim eliminar parte da incerteza existente) sempre diminui a

incerteza da parte aleatéria permanece desconhecida (isto é, compare a variabilidade de
X9 condicionada e nao-condicionada no valor de X1).

e (. é uma funcao linear de z;.

Considere um modelo de regressao linear onde a matriz de desenho X possui uma tnica coluna
formada pelo atributo j de forma que X é uma matriz n x 1. Digamos que o atributo j seja o
nimero total de linhas de c6digo de um software e a resposta seja o tempo até a obtencao de
uma primeira versao estadvel do software. Obtemos dados relacionados a n distintos software.
Nosso modelo de regressao linear SEM INTERCEPTO ¢é dado por:

Y = X(j)ﬁj + e

Y1 T1j €1
Y2 T2j €2
= /Bj +
Un L Tnj En
l’ljﬁj +é1
L2505 + €2
L xnjﬁj +én

Note que o vetor-coeficiente neste caso é simplesmente o escalar §;, um vetor de dimensao 1.
Ao contrario do que fazemos quase sempre por default, no modelo acima, nds nao estamos
usando a coluna de vetor n-dim de 1’s representado por 1 = (1,...,1)". Isto significa que o
modelo assume que a resposta Y esta relacionada ao atributo através de uma relacao linear
que passa pela origem da forma:
y~axp

E claro que a maioria das situacOes praticas terd um intercepto nao-nulo. A utilidade deste
modelo vai ficar clara no exercicio 9j.



e Seja (x,y) = >, x;y; o produto interno de dois vetores x e y. Mostre que o estimador de
minimos quadrados de 3; neste modelo com um tinico atributo é dados por

<@y
x()x ()
Z?:l TijYi
doica xzzj
<X(j)7y>
(x), x()
<x(j), y)
()2

Bj

e Suponha que o tunico atributo no modelo seja a coluna de 1’s representada por 1 =
(1,...,1)". Mostre que o (tinico) coeficiente neste caso é dado pela média aritmética das

1Y 1 —
Bo = 11 :nzi:yizy

e Considerando o item anterior, conclua que o modelo no caso em que o unico atributo é a

observacoes

coluna de 1’s é da forma:
Y=1p3+¢

o que significa que Y7, Ys,...,Y, sdo ii.d. N(Bo,a?).
O modelo estimado por minimos quadrados produz a seguinte decomposicao do vetor Y:

Y=V 1+(Y-V1)

Neste modelo, Y =YV 1eovetor de residuos ér =Y — Y 1.

(z) Suponha que o modelo de regressao correto envolve dois conjuntos de atributos. O primeiro
deles ¢é de fato medido empiricamente e estd armazenado na matriz X de dimensao n x p onde
a primeira coluna é o vetor 1 de 1’s. O segundo conjunto de atributos também é importante
para explicar a variacao de Y mas esses atributos nao sao medidos porque sao desconhecidos
ou porque sua medicao é impossivel ou invidvel em termos praticos. Vamos supor que existam
k atributos nesse segundo conjunto. Caso eles fossem medidos, estariam numa matriz Z de
dimensao n x k (sem a coluna 1). Assim, o modelo correto é dado por

Y=XB+Zy+e. (12.1)

onde v é um vetor k x 1 dos coeficientes associados com as colunas-atributos em Z.

O analista de dados possui apenas a matriz X para fazer a regressao e ele obtem a estimativa
de minimos quadrados para o coeficiente 3 da maneira usual:

B=(XX)'X'Y

e Substitua a expressao (12.1) de Y na férmula de B e mostre que E (B) é viciado para
estimar 3 sendo que o vicio de estimacgao é dado por

E (ﬁ) — 8= (X'X)"" X'z

e Para entender melhor este vicio, imagine que Z contenha um tnico atributo. Dessa forma,
Z ¢é uma matriz n x 1, um vetor-coluna. Imagine que vamos explicar a variagao deste



0

atributo Z usando os p atributos da matriz X. Isto é, vamos imaginar um modelo de
regressao linear da seguinte forma:

Z=Xo+¢e"

onde a¢ é um vetor p X 1 de coeficientes. Verifique que o estimador de minimos quadrados
de a é dado por
a=(X'X)"'X'z

Interprete agora o vicio associado com o estimador B
Solucgao: O estimador de regressao de 3 no modelo reduzido é viciado por uma quantidade
correspondente a v (coef do modelo full) vezes o coef da regressao de Z em X.

e Generalize para Z com varios atributos usando o fato de que um produto matricial AB é
igual a uma matriz cuja j-ésima coluna é a aplicaca da matriz A a j-ésima coluna de B.

Considere agora o problema inverso, em que colocamos no modelo de regressao mais atributos
do que o necessario. O modelo correto é dado por

Y=XB+e¢.
mas, sem saber disso, assumimos um modelo da seguinte forma
Y=XB8+Zvy+e".

onde v é um vetor k x 1 de coeficientes associados com as colunas-atributos em Z que nao
necessarias pois a distribuicao de Y nao depende desses atributos. Vamos estimar os coefici-
entes dos atributos com uma matriz de desenho da forma W = [X|Z]. Note que o verdadeiro
valor do parametro v é o vetor 0 = (0,...0)".

Usando apenas um simples argumento em palavras, mostre que o estimador usual de minimos
quadrados estima 3 sem vicio.

O arquivo exames.txt mostra os escores F' em um exame final e os escores em dois exames
preliminares P, e P de 22 estudantes. Use o comando pairs e cor para visualizar e estimar
a correlagao entre os dados.

dados = read.table("exames.txt", header=T)
head(dados)

attach(dados)

pairs(dados)

cor (dados)

Veja que F' é bastante correlacionada com as notas prévias, sendo um pouco mais correlacio-
nada com a nota mais recente P,. Rode um modelo de regressao linear para explicar F' usando
apenas P; como varidvel preditora e depois usando ambas, P; e P>. Veja que o coeficiente
linear de P; é bem diferente nos dois casos.

summary (lm(F ~ P1))
summary (lm(F ~ P1 + P2))

A relagao entre os coeficientes de regressao simples (com um tnico atributo) e os coeficientes de
regressao multipla podem ser vistos quando comparamos as seguintes equagoes de regressao:

F Bo + BiPL + pBoPs
F = 36 + BiP 1

F o= g + ByP

P = & +  GoPs
o)

Al Al



Usando os dados do arquivo mostre que, empiricamente, temos:
Al A A Al
61 = ﬂl + ﬂ?oq

Isto é, o coeficiente da regressao linear simples de ' em P € o coeficiente de regressao miltipla
de P; mais coeficiente da regressao multipla de P5 vezes o coeficiente da regressao do atributo
P, regredido em P;. Compare com o resultado tedrico que voce encontrou no exercicio 4
da Lista 08. E possivel fazer uma prova matematica e geral deste fato mas ela exige muita
manipulagao matricial.

Muitas vezes, o modelo de regressao linear ajusta-se perfeitamente a dados nao-lineares apés
fazermos uma transformacao nos dados. Este é o caso dos dados no arquivo mortalidade.txt
com informagdes obtidas junto a uma seguradora brasileira referentes ao publico consumidor
de planos de seguro de vida num certo ano. Neste arquivo consideramos apenas a populagao
masculina com 21 anos ou mais. Ele possui trés colunas. A primeira apresenta z, a idade em
anos. A segunda apresenta o numero n, de participantes do fundo que possuiam a idade z
no dia 01 de Janeiro. A terceita coluna apresenta o nimero d, desses individuos da segunda

coluna que nao chegaram vivos ao dia 01 de janeiro do ano seguinte.

e Leia os dados no R e crie um vetor mx = dx/nx com a razao entre a terceira e a segunda
colunas. Dado que um individuo da populacdo chega a fazer x anos de idade, o valor
mg = dy/ny estima a probabilidade dele falecer antes de completar  + 1 anos.

e Queremos um modelo para o aumento de m, com x. Faga um grafico de dispersao de m,
versus x. Existem dois problemas aqui. O primeiro é que o aumento de m,, é claro mas nao
a forma exata pela qual este aumento ocorre. O segundo é que as ultimas idades tem um
nimero muito pequeno de individuos e assim m, nao é uma estimativa razodvel. Vamos
eliminar os dados de idades superiores a 77 anos. Isto ajuda com o segundo problema.

e Para lidar com o primeiro problema, faca um grafico de dispersao da variavel log(my)
versus . Vocé deve observar uma nitida relagao linear entre os dois. Isto é, temos

log(myg) = fo + iz

o que implica, tomando exponencial dos dois lados, em
x
my ~ 01T = py (661) = bob7

e Interprete o parametro b; = ¢’ em termos do aumento da mortalidade com o aumento
da idade. Para isto, calcule aproximadamente m,1/m, e conclua que a cada ano adici-
onal de vida a chance de falecer antes de completar o préximo aniversario aumenta em
aproximadamente 1.

e Ajuste um modelo de regressao linear simples tomando log(m,) como resposta e  como
atributo (além da coluna 1.

e Conclua que a cada ano adicional de vida a chance de falecer antes de completar o proximo
aniversario aumenta em aproximadamente 5%. O mais relevante: este aumento nao de-
pende de z: seja um jovem ou um idoso, um ano a mais de vida faz seu risco de morte

anual aumentar em 5% do era antes.
Solucao:

# Read the data

dados = read.table("mortalidade.txt", header=T); attach(dados)

mx = dados$mortes/dados$pop ; plot(x, mx)

# eliminando as ultimas faixas etarias, ficando apenas com idades < 78 anos



par (mfrow=c(1,2))

plot(x[x < 78], mx[x < 78]) ; plot(x[x < 78], mx[x < 78], type="1")
plot(x[x < 78], log(mx[x < 781)); plot(x[x < 78], log(mx[x < 78]), type="1")
res = 1Im( log(mx[x < 78]) ~ x[x < 78]); summary(res)

O arquivo TurtleEggs.txt contém dados de Ashton et al. (2007). Eles mediram o com-
primento da carapaga (em mm), de 18 Tartarugas Gopher fémeas (Gopherus Polifemo) do
Okeeheelee County Park, Florida. Tomaram também um raio-X para contar o nimero de ovos
em cada uma delas. Faga um grafico de eggs versus length para verificar que um modelo linear
nao é apropriado. Uma regressao com um modelo polinomial de segundo grau parece razoavel:

E(Yi|z) = Bo + frx + Ban®

onde Y é o nimero de ovos e x é o comprimento da carapaca.

Ajuste uma regressao de segundo grau. Superponha a pardbola de melhor ajuste aos dados
no grafico de dispersao de eggs versus length. De acordo com http://udel.edu/~mcdonald/
statcurvreg.html, “a primeira parte do grafico nao E surpreendente, E f4cil imaginar por que
as tartarugas maiores teriam mais ovos. o declinio no nimero de ovos acima 310 milimetros

comprimento da carapaca E o interessante Este resultado sugere que a producao de ovos
diminui nestes tartarugas a medida em que envelhecem e ficam grandes”.

Solucao:

dados = read.table("TurtleEggs.txt", header=T)
attach(dados); plot(length, eggs)

x = length; x2 = length™2

res = lm(eggs ~ x + x2) ; summary(res)

xx = seq(280, 340, by=1)

yy = -8.999e+02 + 5.857*xx -9.425e-03*xx"2
lines(xx, yy)

Movimentos planetarios em torno das suas estrelas podem causar variagoes na velocidade
radial da estrela. Os dados do arquivo starvelocity.txt foram obtidos por Geoff Marcy,
no Observatoério Lick, e referem-se a estrela Pegasus 51, uma estrela similar ao nosso sol e
localizada na constelagao de Pégaso a 50 anos-luz da Terra.

e Faca um grifico da velocidade (Y') versus o tempo ¢, medido em dias. A velocidade da
estrela 51 Pegasi varia de maneira ciclica com um periodo de aproximadamente 4.231 dias
e com uma amplitude de 56 metros por segundo. Isto sugere que a estrela esta cercada por
um corpo celeste com uma massa aproximadamente igual a metade daquela de Jupiter.

e Use regressao linear para estimar o modelo

Y = a+bcos2mwt+ ¢) +¢
= = a+ bcos(2mwt) sin(¢) + bsin(2rwt)cos(p) + €
Bo + P1 cos(2mwt) + B sin(2mwt)
= Bo+ Brzn + oo

Se a frequéncia w tiver de ser estimada teremos um problema de minimos quadrados nao-
lineares. Para evitar este problema nesta altura do curso, assuma que a frequéncia w é
conhecida igual a w = 1/4.231 (isto é, o periodo orbital é de 41/w = 4.231 dias). Com w
fixado, podemos obter as colunas X; e Xs para cada instante ¢ e ajustar um modelo de
regressao usual.



e Trace a curva encontrada no grafico com os pontos.
Solugao:
dias = c(2.65, 2.80, 2.96, 3.80, 3.90, 4.60, 4.80, 4.90, 5.65, 5.92)
vel = c(-45.5, -48.8, -54.0, -13.5, -7.0, 42.0, 50.5, 54.0, 36.0, 14.5)
plot(dias, vel); % w = 1/4.231; x1 = sin(2*pi*w*dias); x2 = cos(2*pi*w*dias)
res = 1lm(vel 7 x1 + x2); % summary(res); dd = seq(2.60, 6, by=0.01)
vv = 1.3471 + 49.8894*sin(2*pi*wxdd) + 17.9099%cos(2*pi*w*dd); lines(dd,vv)

() O efeito de centrar os atributos. O objetivo deste exercicio é mostrar que, ao centrar os atribu-
tos, temos coeficientes relacionados de forma simples aos coeficientes obtidos com coeficientes
~ . ok A A A . .
nao-centrados. Seja 3 = (55, 87, 85) o vetor que minimiza

Z (yi — (Bs + Bi (win — T1) + B3 (win — 72)))?

Isto é, a matriz de desenho tem suas colunas com média zero (exceto a primeira coluna). Seja
B = (Bo, 1, P2) o coeficiente que minimiza a distancia entre Y e as combinagoes lineares das
colunas ndao-centradas:

Z (yi — (Bo + Brwi1 + 52331'2))2

%

Mostre que as solugoes dos dois problemas estao relacionadas da seguinte forma:
Bo = By — BiT1— Ba72
pi = B
B2 = B3

() Prove que m = E(Y) minimiza E(Y — m)Z.

Solugao: some e subtraia E(Y) dentro do parénteses, expanda o quadrado e tome esperanca

de cada termo. A seguir, derive com relacdo a m.

() INCOMPLETO AINDA: Estudar a matriz X'X~!: Se X tiver colunas linearmente indepen-
dentes entdao X'X é inversivel e definida positiva. Ajudar na interpretacao do elemento (i, 7)

de X’X~! como correlacio parcial.

() Obtenha o arquivomiete03.asc no site http://www.stat.uni-muenchen.de/service/datenarchiv/
miete/miete03_e.html. Ele contem os dados de aluguel de 2053 apartamentos em Munique
em 2002 com vérios atributos/preditores potenciais, todos descritos na pégina. Use este dados
no restante desta lista.
Existem duas possiveis varidveis resposta: nm, o aluguel liquido em euros, e nmgm, este aluguel
dividido pela area do apartamento. Vamos usar a primeira delas como resposta y. Elimine a
segunda varidvel do restante da anélise (ndo a coloque entre os preditores!!).

i. Separa o conjunto de 2053 exemplos em dois conjuntos, um com 600 exemplos escolhidos
ao acaso para avaliar a qualidade do ajuste de vdrios modelos (amostra de validacao) e
outro com os 2053 — 600 = 1453 restantes para ser a amostra de treinamento. Use o
comando sample para selecionar os dados.



ii. Usando a amostra de treinamento e as 11 varidveis preditoras, ajuste um modelo de
regressao linear.

iii. Obtenha o R? deste modelo completo.

iv. Obtenha o valor da estatistica F' (e seu p-valor) para a hipdtese nula de que todos os
coeficientes sao zero.

v. Verifique que todos os preditores é significativo num teste de Hy : 3; = 0 versus Hy : 8 #
0 observando o valor da estatistica ¢ e o seu p-valor.

vi. Obtenha o intervalo de confianca de 95% de cada um dos coeficientes.

vii. As tdltimas 7 varidveis sao qualitativas com duas categorias apenas. Considerando cada
uma delas individualmente, qual o efeito esperado em preco que cada uma delas produz?
Qual tem o maior efeito? Note que esta varidvel de efeito maximo nao é aquela com o
menor p-valor (ou o maior valor absoluto t* da estatistica t? Isto é, grande significancia
estatistica nao implica maior efeito na resposta.

viii. Considere um modelo alternativo sem os preditores bez e zh0. Sejam M; o modelo
completo e M, o modelo reduzido. Avalie qual dos dois é melhor calculando o SPSFE de
cada modelo onde

n

1 = 1 . — B 2
spsEu = S xp = 3 (150

=1 i=1

Isto pode ser obtido com os seguintes comandos em R:
# ajustando o modelo completo de regressao linear
modg = lm(nm ~ ., dados)

# obtendo vetor com os valores de HI[i,i]
hii = influence(modg)$hat

# calculando o leave-one-out cross-validation measure (loocv)
loocv = sum( ( modg$res/(1-hii) )~2 )/length(hii)

() Se quisermos ajustar uma funcdo y = f(x) usando um conjunto de dados (z1,y1), (z2,%2), - - -, (Tn,Yn),
e o critério de minimos quadrados, devemos minimizar a funcao:

(A) iy (wi — flxi)
(B) i1 [wi — [l |
(C) Ty (yi — fl@i))?
(D) 5y (i —9)” onde g = Y1y vi/n.

() Particulas sao emitidas num certo meio, todas com a mesma velocidade constante 5. Deseja-se
estimar esta velocidade a partir de dados estatisticos. Sao feitos n experimentos e neles sao
mensurados o tempo t; e a distancia d; que a particula percorreu até encontrar um obstaculo.
Assim, temos (t1,d1),. .., (tn, dy). Como existem pequenos erros de mensuracao, usmaos todos
os dados e o critério de minimos quadrados para obter uma boa estimativa de 5. Explique
como isto é feito e obtenha a férmula para a estimativa /3’ .

() (de Boyd e Vandenberghe) Temos N pacientes que podem ter qualquer nimero (incluindo

zero) dentre K possiveis sintomas. Isto fica expresso numa matriz binaria S de dimensao
N x K tal que o elemento ij dessa matriz é

g 1, se o paciente ¢ tem o sintoma j
ij = (.
J 0, caso contrario

Explique em palavras cada uma das seguintes expressoes matriciais. Inclua as dimensoes e
descreva as entradas.



e S 1, onde 1 éo vetor coluna de dimensao apropriada e composto apenas de 1’s: 1 =
(1,1,...,1)%

o St1

o St S

o S St

e ||s; —s;||* onde s}, ¢ a vetor-linha k da matriz S.

() (do curso EE103/CME103: Introduction to Matrix Methods lecionado por Stephen Boyd na
Stanford University, em http://stanford.edu/class/ee103/) Uma rede de computadores
possui K links entre pares de maquinas. Cada link possui um tempo médio de transmissao
de um pacote de tamanho padrao. O tempo médio (ou tempo esperado) do link k é escrito
como S para k =1,2,..., K. O tempo real em cada transmissao particular é um pouco mais
ou um pouco menos que esse tempo médio Sx. Deseja-se estimar os valores dos (i e para isto
coleta-se um grande nimero N de tempos t1,%o,...,ty de transmissao de pacotes de tamanho
padrdao. Cada tempo estd associado com um determinado caminho entre os nds da rede de
forma que o tempo t; é o tempo total gasto para percorrer uma determinada sequéncia de de
um ou mais links da rede. Este caminho é conhecido para cada um dos tempos {; mas nao
setem o tempo gasto em cada link separadamente.

e Explique como vocé poderia usar a técnica de minimos quadrados para estimar os valores
Bi. Especifique o vetor Y e a matriz X do modelo de regressao linear a ser usado.

e Que restrigcoes vocé precisa impor em K e N para que a estimacao seja possivel?
e Que caracteristica adicional vocé precisa impor para que todos os (i sejam estimados?

Se um dos links nunca aparecer nos caminhos da amostra de N tempos, ele pode ser
estimado?

() (Do curso EE133A - Applied Numerical Computing, lecionado por Lieven Vandenberghe na
UCLA, http://www.seas.ucla.edu/~vandenbe/ee133a.html) Neste problema, vamos usar
minimos quadrados para ajustar um circulo a um conjunto de pontos (u;,v;) do plano que
estao localizados aproxidamente em torno de uma orbita circular, como na Figura 12.1.

Figura 12.1: Conjunto de n pontos (u;, v;) localizados aproxidamente em torno de uma érbita circular.

Vamos denotar por (u.,v.) as coordenadas do centro do circulo e por R o seu raio, todos
desconhecidos. Desejamos obter estimativas para uc, v, ¢ R. Um ponto (u,v) estd no ciculo
se (u—1ue)?+ (v —12v.)? — R? = 0. Quando um ponto encontra-se préximo do circulo podemos



esperar a diferenca (em valores absolutos) | (u — uc)? + (v — ve)? — R? |~ 0. Se fizermos
esta diferenca pequena para o conjunto de todos os n pontos teremos um tUnico circulo pas-
sando aproximdamente pelos pontos. Por isto, vamos procurar pelos valores de u.,v. € R que
minimizam N
2
Q(ue, v, R) = Z ((u; — ue)® + (v; — ve)* — R?)
i=1

onde os n pontos U;,v;) sdo dados e uc, v, € R sdo desconhecidos.

e Abra os quadrados (u; — u.)? e (v; — v.)? e defina By = —(u2 + v — R2).

e Mostre que este problema pode ser resolvido usando regressao linear. Identifique o vetor

Y, a matriz X e o vetor 3 = (Bo, f1, f2).

e O arquivo DadosCirculo.txt contém as coordenadas dos 50 pontos da Figura 12.1. Use
estes pontos para escrever um pequeno script em Scilab e estimar u.,v. € R.

() A fatoragao QR para resolver as equagbes normais. Vamo comparar a acurdcia dos dois
métodos para resolver um problema de minimos quadrados

min|[Y - X Bl?

Use
1 1 —107F
X =110k 0| eY=|1+10%
0 10°* 1—10"*

para k =6,7 e 8.
e Escreva as equagoes normais e obtenha a solucao B analiticamente (isto é, no papel, sem
usar o Scilab).

e Resolva o problema de minimos quadrados no Scilab para k = 6,7 e 8 usando o método
nativo do programa: b = X y. Este método é baseado na fatoracao QR.

e Resolva agora usando a expressao matricial b = (X? * X) (X* y). Compare os resul-
tados com os que vocé encontrou no item anterior. DICA: Digite format ("e", 20); para
0 Scilab exibir mais casas decimais.

Algumas solugoes

(a) Pacientes e sintomas na matriz S:

e S 1: vetor-coluna de dimensao N com i-ésima entrada é igual ao nimero de sintomas do
paciente i. Aqui, o vetor coluna 1 é de dimensao K.

e S 1: vetor-coluna de dimensao K com k-ésima entrada é igual ao ntiimero de pacientes
com o sintoma k. Aqui, o vetor coluna 1 é de dimensao NN. paciente .

e St S: Matriz quadrada K x K cuja entrada (r,u) é o nimero de pacientes que tém os
sintomas r e u quando r # u. Na diagonal, o elemento (r,7) da matriz é o nimero de
pacientes com o sintoma 7. Esta matriz é simétrica.

e S S Matriz simétrica e quadrada N x N cuja entrada (r,u) é o nimero de sintomas que
os pacientes r e u tém em comum, quando r # u. Na diagonal, o elemento (r,r) da matriz
é o nimero de sintomas do paciente r.

e ||s; —s;||*: nidmero de sintomas que um dos dois pacientes (i ou j) tem, mas o outro nao.

(b) Y; = uf + 02-2 e a matriz X tem sua linha ¢ da forma (1,2u;,2v;) com B = (5o, B1,02) =
(R? — u? — v% u,,v.). Script scilab:



plot(u, v, "o");
a=gca(); // get the handle of the current axes
a.isoview="on"; // set the two axes with equal scale

y =u."2+v."2; // vetor y

X = [ones(50,1), 2*u, 2*v]; // matriz X

b = (X’*X) \ (X’*y); // coeficientes de minimos quadrados
b

uc = b(2);

ve = b(3);

R = sqrt(b(1)+ uc™2 + vc~2);

clfO;
t = linspace(0, 2*%pi, 1000);
plot(u, v, "o", R * cos(t) + uc, R * sin(t) + vc, "-");

a=gca(); // get the handle of the current axes

a.isoview="on";

(c) Usando a expressao da solu¢ao de minimos quadrados, temos:

A~

-1

B = X'X) (X'Y)
-1
1 1 —107%
1 10°% 0 1 107% 0
- [1 0 10k] 107* 0 [1 0 10’f] L+107*
0 107* 1—10"*

-4

Verifique agora as diferentes op¢ oes disponiveis no Scilab. VOcé verd que apenas o calculo
numérico feito usando a decomposicao QR fornece a resposta correta:

k = -8;
[1 1; 10"k 0; 0 107k];
[-10°k; 1 + 10°k; 1 - 107k];

bl =X\ y;
b2 = inv(X’*X)*X’*y;
b3 = (X? * X) \ (X’ * y);

format ("e", 20);
b1l
b2
b3

(d) Um problema com seno . Por figura.
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Capitulo 13

Regressao Logistica

(a) Nomodelo de regressao logistica, a probabilidade de sucesso na execucao de tarefas por criancas

de idade x é dada por
1

) = (B =)

e Verifique que p(u) = 0.5.

e Verifique que log(p(z)/(1 —p(x))) = B(x — ). Uma vantagem desta escala de log da odds
é nao ter limites (como 0 e 1). De fato, trace um grafico de log(p/(1 — p)) versus p. Veja
que log(p/(1 — p)) pode ser positivo, negativo, zero...

e Verifique que a derivada de p(x) com relagdo a z avaliada no ponto = = u é igual a §/4.
Assim, o valor de 3 diz qual é a taxa de variagao de p(x) no “ponto central” da logistica.

e Responda entao quais das seguintes opcoes é uma interpretacao correta para o parametro
7%

— 1 é a idade média em que as criangas executam a tarefa.

— Aproximadamente 50% das criangcas com idade p executam a tarefa.

— p é a idade em que uma crianca tem 50% de chance de executar a tarefa.

— Dado que uma crianca que executa a tarefa, com 50% de chance ela tem idade pu.
— Aproximadamente 50% das criangas com idade x < u executam a tarefa.

e Suponha que, além da idade, exista também efeito de sexo. Para a iésima crianca, seja s;
uma variavel bindria indicando se ela é do sexo masculino (s; = 0) ou do sexo feminino
(s; = 1). O modelo simples é expandido para

_ 1

~ 1+exp(—fo — frzi — Pasi))

Verifique que este modelo implica que a odds de ter sucesso no caso feminino é igual a

bi = g(xh Si)

odds de ter sucesso no caso masculino multiplicada por 2. Isto é, verifique que

p(w, 1) — p(x, 0) eﬁg
1—p(z,1) 1-p(x,0)
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Assim, o efeito de passar de masculino para feminino é multiplicar a razao de chances
Suponha, por exemplo, que 82 = 1.2. A odds feminina igual a

masculina por €2,
e?? = 3.32 vezes a odds masculina (digamos, 2 para 98).



Capitulo 14

Regularizacao

Aqui vao os exercicios
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Capitulo 15

Maxima Verossimilhanca

(a)

(b)

\ﬁ 114 \
\ o/@/ / “

Suponha que X7, Xo,...,X, sejam v.a.’s i.i.d. com distribuicao Poisson com parametro 6.
Obtenha o MLE de 6. Supondo que n = 4 e que as observagoes tenham sido 3,0, 1, 1 diga qual
o valor do MLE.

No Brasil, o Ministério da Previdéncia Social assegura um beneficio de auxilio-doenga ao
trabalhador que paga pelos dias em que ele foi impedido de trabalhar por doenga ou acidente.
Como parte dos pagamentos é efetuado pelas empresas, um sindicato patronal de empresas de
6nibus urbano de certa cidade contratou uma consultoria atuarial para analisar o niimero de
faltas ao trabalho por doenca. Dados de 20 empresas de 6nibus urbano foram coletados.

O numero de dias faltosos na empresa ¢ é denotado por Y; e depende do tamanho da em-
presa: tudo o mais igual, esperamos ver mais dias faltosos numa empresa enorme, com muitos
funcionarios do que numa empresa pequena, com poucos funciondrios. Vamos mensurar o
tamanho da empresa pelo niimero de homem-hora trabalhado no periodo de observacao. Este
nimero de homem-hora é representado por h; e ¢ medido em unidades de 10 mil horas. Assim,
h; = 3.5 representa 35 mil homens-horas. Quanto maior h;, maior tende a ser o nimero de
dias parados pois a exposicao ao risco é maior na empresa com h; maior.

Para cada empresa defina o parametro \; que representa o niimero médio ou esperado de dias
faltosos na empresa ¢ por cada 10 mil homens-hora. Veja que 12 homens trablhando 40 horas
por semana ao longo de 21 = 30 — 9 dias por més d4 um total de 12 x 40 x 21 = 10080. Assim,
grosseiramente, 10 mil homens/horas representam 12 homens trabalhando em tempo integral

num mes.
O modelo estatistico para os dados é que Y7i,..., Yy s@o independentes. Entretanto, essas
varidveis aleatdrias nao sao identicamente distribuidas pois os valores de hi, ..., hog sao dife-
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rentes. Assim, supde-se que
Y; ~ Poisson()\;) ou Poisson(h;0)

para i =1,...,20. Os dados sdo do seguinte tipo:

Empresa | h; | y;

1 945 | 5
2 15.7] 1
3 629 | 5

O interesse é em fazer inferéncia sobre o valor desconhecido 6, a taxa (por 10 mil homam-hora)
de dias ausentes por doenca nas empresas. Em particular, para uma nova empresa que vai
fazer seguro-doenca para cobrir faltas de empregados, é preciso saber qual a expectativa de
faltas durante um més se ela tem um certo nimero h de homens-hora de trabalho.

Calcule:
e 0 EMV de 6.
e O EMYV é nao-viciado?

Calcule o numero de informagao de Fisher 1(9).

e E verdade que a informagao I,,(f) com n observagoes é igual a n vezes a informagao com
uma tunica informagao? Como a informagao aumenta com n?

Suponha que os dados sejam esses abaixo:

h <- ¢(118.3, 13.4, 68.3, 141.6, 113.1, 63.6, 135.5, 107.5, 35.2,

28.1, 34.7, 42.5, 139.7, 140.4, 79.2, 148.2, 28, 72.4, 50.9, 89.1)
y <- c(8, 0, 6, 18, 7, 6, 13, 4, 7, 4, 0, 3, 26, 10, 4, 15, 7, 10,
9, 14)

Usando um diagrama de dispersao, verifique se existe associacao entre h e y. Estime 6
usando o MLE.

(¢) Vinte empresas de transporte urbano de passageiros via énibus foram analisadas do ponto de
vista dos acidentes de transito ocorridos ao longo do periodo de observagao. Vamos assumir
que as contagens do ntmero de acidentes em cada empresa siga uma distribuicao de Poisson
com valor esperado 6;h; onde h; é o nimero total de quilometros que o conjunto de 6nibus
da empresa i trabalhou no periodo. O valor h; é medido em unidades de 1000 quilémetros de
forma que, se h; = 3.2, isto significa que os 6nibus da empresa i rodaram 3200 quilémetros no
periodo de observacao.

O parametro 6; é a taxa de acidentes (por 1000 quilémetros rodados) e ele pode variar entre
as empresas. Deseja-se verificar se esta variagao pode ser devida a algumas caracteristicas que
distinguem as empresas. Em particular, o interesse estava focado em duas caracteristicas. As
empresas podem ser classificadas em quatro grupos distintos e esperamos que o valor de 6;
seja diferente nesses quatro grupos. As empresas sao classificadas em 4 grupos de acordo com
as seguintes categorias:

e Algumas empresas promovem cursos de treinamento regulares para aprimorar as habili-
dade de dirigir de forma segura e responsivel. Seja Z; = 0 se a empresa promove estes
cursos e Z1 = 1, caso contrario.

e /5 = 0 se a empresa cobra de cada motorista responsavel por um acidente parte das
perdas causadas (o valor cobrado é limitado a um méximo) e Zy = 1, caso contrario



No caso de Zs, se 0o motorista envolvido num acidente nao é considerado culpado do mesmo, a
cobranca néo é feita. A cobranca também ¢ limitada a um maéaximo de 1 saldrio mensais. Em
cada més, até um mdximo de 10% do salédrio é descontado da folha de pagamentos.

Espera-se que empresas com Z; = 1 e Zy = 1 tenham 6#; maiores que aquelas com Z; = 0 e
Zs = 0. Empresas com Z1 = 0e Zy = 1ou Z; =1 e Zy = 0 seriam casos intermediarios.
Pode-se pensar que a varidvel Z; representa uma poliitica de prevencao de acidentes enquanto
a varidvel Zy representa uma politica de punicao por conducgao imprudente.

E claro que, mesmo dentro de um dos grupos (Z; = 1 e Zy = 1, por exemplo) as empresas
nao sao idénticas e portanto seus 6#;’s podem diferir. Entretanto, vamos supor que a maior
parte das diferencas entre seus 6;’s é devida as politicas de prevencao e de punicao. Ainda
sobraria um residuo de causas nao controladas tornando os 6;’s dentro de cada um dos 4 grupos
ligeiramente diferentes. No entanto, nés vamos ignorar estas diferencas residuais e supor que
empresas numa mesma categoria tenham 6;’s idénticos.

Queremos agora estimar o impacto dessas politicas de prevencao/punicao na redugao do
nimero de faltas. Existe algum impacto? Qual politica é mais eficaz? Como estudar isto?
Uma possibilidade é fazer uma andlise separada para cada um dos 4 grupos possiveis. Outra
alternativa muito melhor é fazer um unico modelo em que todos os quatro grupos estejam
presentes e com parametros medindo o impacto dos programas de prevencao/punicao. Para
isto, vamos assumir que

Y; ~ Poisson(h;0;)

para ¢ =1,...,20 que elas sejam v.a.’s independentes.

Existem quatro valores possiveis para 6;, dependendo da categoria a qual a empresa ¢ pertence.
Vamos supor que, ao passar de Z; = 0 para Z; = 1 o valor de 6; seja aumentado por um fator
multiplicativo. O mesmo ao passar de Zs = 0 para Zy = 1. Isto é, supomos que

650, if Zﬁ:()and ZZQZO

Bo P 7. — Yy —
0; = ePo PrZin PaZiz _ PotPrZintP2Ziz eoe, if Zy =1and Zip =0

650652, if Zil =0 and ZiQ =1

ePoeb2ePr if Zp=1and Z;5s =1

onde Z;1 e Z;5 sao os valores das varidveis independentes para a empresa i. Assim, se a empresa
estiver no grupo Z; = 0,72, = 0, ela terd 6; = e™. Se ela nao tiver cursos de treinamento
(Zi1 = 1) e tiver a politica de punigao (Z;2 = 0), ela terd uma taxa de acidentes por 10
mil quilémetros igual a e®otf1 = efoefr Assim, ela tem a sua taxa 6; como sendo a taxa
e?o do grupo de referéncia formado por Z; = 0,Z, = 0 multiplicada por e®1. Se 1 > 0,
teremos €”1 > 1 e a taxa do grupo Z; = 1, Z5 = 0 serd maior que a do grupo de referéncia
Z1 =0,Zo=0. Se B; <0, teremos 0 < e’ < 1, reduzindo a taxa do grupo de refereéncia.
Assim, o parametro (1 representa o efeito da politica de preveng ao. Do mesmo modo, o
parametro (35 representa o efeito da politica de punig ao.

Os dados de h; e y; sao sao os seguintes:
h <- ¢(118.3, 13.4, 68.3, 141.6, 113.1, 63.6, 135.5, 107.5, 35.2,
28.1, 34.7, 42.5, 139.7, 140.4, 79.2, 148.2, 28, 72.4, 50.9, 89.1)

y <- c(8, 0, 6, 18, 7, 6, 13, 4, 7, 4, 0, 3, 26, 10, 4, 15, 7, 10,
9, 14)

Os dados de Z; e Z2 sao os seguintes:



Z1 <- ¢(0, 0, 0, 0, 0, 0, 0, 0, 0,0, 1, 1, 1, 1,1, 1,1, 1, 1, 1),
72 <- ¢(0, 0, 0, 0, 0, 1, 1,1, 1, 1, 0, 0, O, O, O, 1, 1, 1, 1, 1),

e Descreva o modelo estatistico.

e Interprete os parametros do modelo. Para isto, verifique qual o efeito em E(Y;) de uma
empresa mudar de uma categoria para outra categoria. Compare o valor de 6; e de log(0;)
para uma empresa que tenha Z; = 0 e Zy = 0 e outra empresa com Z; = 1 e Zy = 0.
E com uma empresa com Z; =1 e Zs = 1. Faga comparagoes entre todos os 6 tipos de
pares de empresas possiveis.

e Obtenha o EMV e a MATRIZ 3 x 3 de informacao de Fisher para os parametros do modelo.

e Obtenha o EMV e a MATRIZ 3x3 de informacéo de Fisher para os parametros e, /1, e%2.

(d) Considere um modelo estatistico para dados de sobrevivéncia que supoe que X1, Xo, ..., X,
sao i.i.d. com distribuigdo exponencial parametrizada por A\. Suponha que, com n = 10, os
dados observados sejam os seguintes: 1.21, 0.15, 2.02, 0.37, 2.55, 2.20, 1.06, 0.10, 0.35, e 0.15.
Use o conjunto de comandos R dados abaixo para desenhar a fungdo de verossmilhanca para
o parametro A. Procure entender o que cada comando esta fazendo.

dados <- ¢(1.21,0.15,2.02,0.37,2.55,2.20,1.06,0.10,0.35,0.15)
lambda <- seq(0,3,length=300)

veross <- (lambda”10) * exp(-lambda * sum(dados))
plot(lambda,veross,type="1")

Os comandos abaixo sobrepoem uma segunda curva de verossimilhanca baseada numa possivel
segunda amostra independente da primeira e gerada pelo mesmo mecanismo.

dados2 <- ¢(0.08,2.72,0.04 0.27 0.99 0.25 0.39 1.84 1.60 3.51
veross2 <- (lambda~10) * exp(-lambda * sum(dados2))
lines(lambda,veross2,lty=2)

Construa agora uma funcao que recebe os dados da amostra como entrada e que retorna o
grafico da veromilhanga para A € (a,b).

veross.exp <-function(x, a, b)

{

# funcao para desenhar a funcao de verossimilhanca

# para dados exponencais

# INPUT: x = dados de entrada

ene <- length(x)

lambda <- seq(a,b,length=300)

veross <- (lambda"ene) * exp(-lambda * sum(x))
plot(lambda, veross, type= "1",ylab= "verossimilhanca")
title("Funcao de verossimilhanca para dados exponenciais")

return()

}

Gere um conjunto de dados de uma exponencial com um parametro A num intervalo (a,b) a
sua escolha. Chame a funcao acima com os dados que vocé gerou e verifique se o maximo
da funcao de verossimilhanca fica proximo do valor A que vocé escolheu. Repita o exercicio
escolhendo diferentes tamanhos n de amostra.




(e) A distribui¢ao exponencial serd usada como modelo para o tempo de sobrevida de pacientes

diagnosticados com certo tipo de cancer. Sabe-se que a distribuicao de probabilidade do tempo
de sobrevida depende do estagio em que o cancer foi diagnosticado e do sexo do individuo.
Considere duas varidveis independentes x1 e z9 medidas em cada individuo. Para o i-ésimo
individuo, x;1 = 1, se ele ¢ homem, e x;; = 0, se mulher. A medida x;0 é um valor continuo
entre 1 a 10 e mede o estagio do cancer no momento do diagnéstico, um estégio mais avancado
correspondendo a valores maiores.
Um modelo estatistico para este problema supoe que Yi,...,Y, sejam varidveis aleatorias
independentes mas nao identicamente distribuidas. O valor esperado E(Y;) = 1/\; depende
dos valores de x;; e de x;9. Isto é, cada individuo tem uma distribuicao prépria para o seu
tempo de vida adicional, uma exponencial com valor esperado 1/); que depende de seu sexo
e do estagio do seu cancer no momento do diagndstico. Os dados na tabela 15.1 constituem
uma amostra de 12 individuos com os respectivos valores de y;, T;1, € x;2.

1 1 2 3 4 ) 6 7 8 9 10 11 12
yi | 3.19 | 16.87 | 24.65 | 2.04 | 5.73 | 1.03 | 6.02 | 42.41 | 36.08 | 7.34 | 24.88 | 5.90
i1 0 0 0 0 0 1 1 1 1 1 1 1
Ti2 11 67 92 32 85 36 20 69 58 47 100 72

Tabela 15.1: Tabela com tempos de vida (em meses) de 12 individuos apds diagnéstico com céancer.

Um modelo que é muito usado é o modelo linear generalizado que adota a seguinte relagao
entre o parametro \ e as caracteristicas x1 e xo:

i = exp(Bo + Sizi1 + Paxio)

onde 8 = (fy, 51, B2) é o parametro desconhecido. Dessa forma, a distribui¢ao de probabilidade
do tempo sobrevida Y; de um dado individuo dependem apenas de seu sexo e do estagio da

doenca e
1 _ _ .
E(Y;) = )\7@ — o~ (BotPrzir+Pawia)
Podemos também escrever
E(Yz) = e Po bz —hrzi

— e Po (6*51>I“ <€*62>xi2

= b b b3 onde b; = e
{ bob?,  se i é mulher

bob1b32, se i é homem

i. Suponha que 8 = (Bo, f1,52) = (—2.0,—0.4,—0.005). Suponha que os valores de xg
variam entre 10 e 100 para os diversos individuos de uma populacao de interesse. Num
unico grafico, trace duas curvas que mostrem a relacao entre E(Y') versus xy para homens
e para mulheres.

ii. V ou F: Considere dois individuos no mesmo estigio s da doenga mas de sexos diferentes.
Para obter o tempo esperado de sobrevida do homem basta somar b; = exp(—/31) ao tempo
esperado de sobrevida da mulher.

iii. V ou F: Suponha que B; > 0. Por exemplo, suponha que 81 = 0.2. Entéao o fato de ser
homem reduz o tempo esperado de sobrevida pelo fator exp(—0.2) ~ 0.82 (isto é, reduz
em aproxidamente 18%) em relagdo ao tempo esperado de uma mulher com o mesmo valor
de xIo.



iv. V ou F: Sejam Y] e Y5 os tempos esperados de sobrevida de um homem e uma mulher,
respectivamente, ambos com x5 = 50. Entdao E(Y;) = ¢®'E(Y3). Entretanto, se Xo nao
for igual a 50 essa relagao entre F(Y7) e E(Y2) nao é vélida.

v. Sejam Y; e Y} os tempos de sobrevida de dois homens com z;o = 50 e zj2 = 50 +z. O
efeito de passar do estagio xo = 50 para o estigio x2 = 50 + x pode ser explicado como:
multiplique o tempo esperado de vida de Y; por b = exp(—/faz).

vi. O efeito em E(Y) de aumentar em x unidades o estdgio zo da doenca entre os homens é
diferente do efeito desse mesmo aumento entre as mulheres.

vii. Obtenha a densidade conjunta das observacoes. Este modelo pertence a familia exponen-
cial de distribuigoes?
viii. Qual a estatistica suficiente para estimar 67

ix. Para obter o estimador de méxima verossimilhanga (EMV) de 8, encontre a equacao de

verossimilhanca mostrando que

L/ dpo —n+ 32 ¥iNi(0) 0
DI(0) = | 0l/0B1 | = | —n@1+ Y yiwali(0) | = | 0
0l —nTo + Zl YixiaAi(0) 0

onde Z; = Y . x5/n.

x. Mostre que a matriz com as derivadas parciais de segunda ordem é dada por

9%1)0B2  9%1/9B1By  0°1/9BaB
DX(8) = | 9%1)8BuB1  021/OBE  9%1)8Bap
%1/0BoBy D*1)OB1B2  D*1)OB3

Y uiNi(0)  Divizadi(0) D0 yiwiohi(0)
0)  Yiyizhhi(0) Y virnwihi(0)

= — | XivimaA(
Sivizioxi(0) D virazapXi(0) Y yirhAi(0)
xi. Se f1 = B2 = 0 caimos no caso usual de varidveis i.i.d. exponenciais com parametro

comum A = exp(fp). A estimativa de maxima verossimilhanga de A é 1/7 e portanto
Bo pode ser estimado como — log(y). Use 00 = (7,0,0) como valor inicial para @ num
procedimento de Newton-Raphson para obter a estimativa de maxima verossimilhanca de
6. Minhas contas produziram 9EMV = (—0.614, —0.629, —0.026).

xii. Interprete numericamente o efeito de sexo e do estagio no tempo esperado de sobrevida
E(Y).

xiii. Os dados foram gerados por mim usando 8 = (—2.0,—0.4, —0.005). Avalie a diferenca

entre sua estimativa e o valor verdadeiro do parametro.
xiv. Obtenha a matriz 3 x 3 de informacao de Fisher 1(0) = —E(D?1(0)):

x1 T
1(0)=—-E[D’0)] =n| 71 21 =Tim

Tro2 T1X2 l’%

onde :173 = ZZ Jrfj/n € T1T2 = Zz 331’1%’2/”-

xv. Obtenha intervalos de confianca de 95% para (31 e [.

(f) Algoritmo EM: Leia o exemplo de misturas gaussianas (MoG ou Misture of Gaussians, em ma-
chine learning) no final da pagina da Wikipedia: http://en.wikipedia.org/wiki/Expectation-maximiz



()

algorithm. Usando os dados do Old Faithful dataset (pegue os dados, por exemplo, em
http://tinyurl.com/cndlsp3), estime os parametros de uma mistura de duas gaussianas
bivariadas usando o algoritmo EM.

Suponha que Xi,...,X,, forme uma amostra aleatéria de v.a.’s i.i.d. com uma das seguintes
densidades (caso continuo) ou fungao de probabilidade (caso discreto). Encontre o EMV de 6
e verifique se ele é funcao da estatistica suficiente para estimar § em cada caso.

o f(x;0) =6%?/2x! paraz =0,1,2,...ecom @ € (0,00) (funcio de probabilidade Poisson).

~— ~— ~— ~— ~~—

o f(z;0) = 0% para x > 0 com 6 € (0,00) (densidade exponencial).

o f(2:0) = 0c?2=FD) para 2 > ¢ com 6 € (0,00) (densidade Pareto).

o f(x;0) = VOz=V0=1 para 0 < z < 1 com 6 € (0, o0) (densidade beta(v/8,1)).
(z; 6

= (z/0)? exp (—2?/(26%)) para z > 0 com 6 € (0,00) (densidade Rayleigh).

o f(;0) = Oca“texp(—0z°) para x > 0 com 0 € (0,00) e ¢ > 0 sendo uma constante
conhecida (densidade Weibull com ¢ fixo).

o f(2;0) = (1 — ) ! para z = 1,2,... e com # € (0,00) (fungdo de probabilidade
geométrica).

e f(z;0) = 6?xe7% para x > 0 com 6 € (0,00) (densidade Gama(2,6)).

Sejam X; e Xy duas v.a.’s independentes com esperanca comum 6 € R e com Var(X;) = o2 e

Var(X3) = 02/4. Isto é, X1 e X5 tendem a oscilar em torno de # mas X possui um desvio-
padrao duas vezes menor que X1. Podemos usar estes dois pedacos de informacao para estimar
0. Podemos, por exeplo, formar uma combinacao linear de X; e X5 propondo o estimador

0 = c1X1 + 3 X9 onde C' — 1 e ¢y sdo constantes conhecidas. Por exemplo, podemos pensar
N A 2X X A

em usar 6 = (X, + X2)/2 ou entdo usar 0 = ?1 + ?2 ou até mesmo 0 = 4X;, — 2X5.

Mostre que 0 = c1X1 + c3X5 é nao-viciado para estimar 6 (qualquer que seja o valor de 6 € R)

se, e somente se, ¢; + co = 1. Dentre os estimadores da forma 0 = ¢1 X1 + c2Xo e que sao

nao-viciados para estimar 6, encontre aquele que minimiza o MSE, dado por E(é —6)2.

Generalize o problema anterior para n v.a.’s: Sejam Xi,...,X, v.a.’s independentes com
esperanca comum 6 e com a variancia de X; igual a ¢0?/a;, sendo os a; > 0 conhecidos e
com o2 > 0 desconhecido. Considere a classe de todos os estimadores lineares de 6. Isto é,
considere a classe de todos os estimadores que podem ser escritos como = > ciX; onde ¢
sao contantes.

Mostre que na classe dos estimadores lineares, 5, ¢é nao-viciado para estimar 6 se, e somente
se Zl ¢; = 1. Dentre todos os estimadores lineares Zl a;X; de 6 que sao nao-viciados (isto é,
satisfazendo ), o = 1), encontre aquele que minimiza o MSE.

Suponha que X1, Xo, ..., X, sejam v.a.’s i.i.d. com distribui¢ao Poisson com parametro comum
0. E possivel mostrar matematicamente que

X+ +X
P LS S i)




sao ambos estimadores nao viciados para estimar §. Considere adicionalmente um terceiro
estimador nao-viciado para 6:

03 = (61 + 62) /2

Faca um pequeno estudo de simulacao para identificar qual dos trés possui um erro de es-
timagao MSE menor. Para isto, fixe o valor de § = 3. Gere um grande niimero de amostras
(digamos, 10 mil), cada uma delas de tamanho n = 10. Para cada amostra calcule os valores
dos trés estimadores de . Estime o MSE IE(é; — 0)? de cada estimador usando a média das
diferencas ao quadrado entre os 10 mil valores de 9/; e 0. Qual dos estimadores produz um erro
MSE menor? Isto significa que o melhor estimador teve SEMPRE o seu valor mais préximo
do verdadeiro valor do parametro 87 Estime a probabilidade de que, baseados numa mesma
amostra, HAQ esteja mais préximo de 6 que 0A1

A conclusdo muda se vocé tomar n = 20 e 8 = 107

(k) Responda V ou F para as afirmacoes abaixo.

e Como o parametro 6 nao pode ser predito antes do experimento, ele é uma variavel
aleatéria.

e Num problema de estimacio de uma populacio com distribuicdo normal N (u, o) encontrou-
se T = 11.3 numa amostra de tamanho n = 10. A distribuigdo de probabilidade desse
valor 11.3 é também uma normal com média y e variancia o2/10.

e Suponha que X esteja sendo usado como estimador da média populacional p. Como
a variancia de X decresce com o tamanho da amostra, entdo toda estimativa obtida a
partir de uma amostra de tamanho 15 possui erro de estimagao menor que qualquer outra
estimativa obtida a partir de uma amostra de tamanho 10.

e Um estimador nao viciado é sempre melhor que um estimador viciado.

e Considere uma estimativa da média populacional y baseada na média aritmética de uma
amostra de tamanho 10 e outra estimativa com uma amostra de tamanho 15. Nunca deve-
mos preferir a estimativa baseada na amostra de 15 pois a estimativa baseada na amostra
de tamanho 10 tem alguma chance de estar mais perto do verdadeiro valor desconhecido
de p.

(1) Sejam X1,..., X, i.i.d.’s com distribui¢ao exponencial com pardmetro . O interesse é estimar
E(X;) = 1/A. Suponha que apenas as varidveis X;’s que ficarem maiores ou iguais a z = 10
sejam observadas. Todas as observacoes menores que x = 10 sao perdidas. Assim, a amostra
final é possui um niimero 0 < k < n de observagoes.

O estimador baseado na média amostral da amostra de k varidveis é viciado. Ele subestima
ou superestima sistematicamente E(X;)? Nao precisa calcular o vicio.

A distribuigao de X; DADO QUE X< 10 tem a densidade dada por

0 se x < 10
S)\) = ’
f(@;A) { A exp(—A(z —10)), se x> 10

Se X1,..., X} é uma amostra desta distribuigao TRUNCADA (em que s6 observamos os X;’s
maiores que 10), encontre o MLE de .

RESP: O MLE ¢ k/ Y, (z; — 10).




(m) Suponha que serd coletada uma amostra de observacoes independentes Y com distribuigao
normal. Elas ndo sdo identicamente distribuidas. A média de Y varia de acordo com o valor
de uma covaridvel z de forma que Y = a + Sz + €. onde € possui distribuicao normal com
média 0 e variancia o2. Os valores possiveis de z s@o trés: baixo (z = —1), médio (z = 0) e
alto (z = 1). Os valores de z sdo fixios e conhecidos. Eles ndo sao varidveis aleatérias.

Sao feitas trés observacoes em cada nivel de x. Podemos representar os dados na tabela e no
grafico dos valores observados de Y versus x que Figura 16.1.

Figura 15.1: Gréfico dos valores observados y;; versus x;.

l’j =1 .%'j =0 a:j =1
Yi You Y31
Yio Yoo Y30
Y13 Yos3 Y33
Vamos representar as observagoes como Y;; = o+ fxj + ¢;; onde x; = —1,0 ou 1, e 0s €;; sao

ii.d. com distribuigao N(0,0?).
e & correto dizer que (Yij|z;) ~ N(a + Bzj,0%) e que as varidveis Y;; sdo independentes?
DICA: nao existe pegadinha aqui.
e Calcule E(Yjj|z;) e Var(Yjj|z;) nos trés casos: z; = —1, z; = 0 e x; = 1. A variancia
depende do valor de x;? E o valor esperado?

e Deseja-se um estimador para E(Y|z; = 0) = o quando z = 0. Um primeiro estimador

bem simples é proposto:
Y51 + Yoo + Yo3

3
Ele simplesmente toma a média das trés observacoes quando x = 0. Mostre que este

estimador é nao viciado para « e encontre sua variancia. Qual o risco quadratico desse
estimador? OBS: Risco quadratico de um estimador é o seu MSE.
e Um segundo estimador é proposto:
Y11+ Yio + Yis + Yor + Yoo + Yoz + Y31 + Y30 + Y3
9
Ele toma a média aritmética simples de todas as 9 observacoes disponiveis. Mostre que

este estimador também é nao viciado para « e encontre sua variancia.
e Qual dos dois estimadores é preferivel?
e O interesse agora é em estimar 3, o quanto Y aumenta em média quando passamos de
um nivel de x para o nivel seguinte. Um primeiro estimador é o valor médio de Y quando
x = 0 menos o valor médio de Y quando x = —1. Isto é,
Yo14+ VYo + Vo3 Y+ Y12+ Vi3
3 3
) S . .
Mostre que 17 é uma combinacao linear Zij a;;Y;; dos Y's e identifique os valores de a;;.

T =Yy—Y_ 1=




e Mostre que E(T}) é nao-viciado para 3 e ache sua variancia.
e De maneira analoga, defina

T'=Y1-Y

e ache sua média e variancia.

e Um terceiro estimador, melhor que os dois anteriores, leva em conta apenas as observacoes
nos dois extremos, quando x = —1 e z = 1.

Ty=_Y1—-Yq

N

Mostre que T35 também é uma combinacao linear dos Y'’s, que é nao-viciado e que possui
risco quadrético (ou MSE) menor que 7T e Tb.

(n) Numa seguradora, foi feita uma anélise de 12000 apdlices de seguros de automéveis emitidas
para proprietarios individuais. Como parte da andlise, em cada apdlice foram considerados
a idade x (em anos) do motorista (variando de 18 a 60 anos) e o resultado Y em termos de
sucesso (Y = 1) do motorista em conduzir o vefAculo por um ano sem sinistros de nenhum
tipo. Caso contrério, registra-se que houve um fracasso (Y = 0).

O interesse é entender como a idade estd associada com a probabilidade de sucesso. Decide-se

usar um modelo logiAstico para modelar estes dados onde p(z) = P(Y = 1|z) = m
e Esboce num grafico qual é a relagao esperada pelo modelo entre a idade x e a probabilidade

p(x) de sucesso.
e Escreva a log-verossimilhanca para este problema.
e Obtenha o vetor gradiente necessario para obter o MLE.
e Suponha que o interesse do pesquisador é estimar a idade x na qual a probabilidade dos

segurados terem sucesso é maior ou igual a 0.90. Escreva essa idade como fungéo dos
parametros do modelo acima.

Solugao: Espera-se uma curva em forma de S com p(z) decrescendo com x pois o risco de
acidente diminui com a idade, fruto de maior experiéncia no volante e menor impulsividade.
Além disso, podemos esperar nas duas idades extremas probabilidades ndo saturadas, longe de
seus valores extremos 0 e 1. Assim, antecipamos que p(18) esteja substancialmente abaixo de
1 e que p(50) esteja substancialmente acima de zero.Um esbogo possivel da fungao p(x) estd
na Figura 77.

A log-verossmilhanga do vetor de parametros (wp,wy) é:

l(wy,w1) = log (H 12000p(z;)¥ (1 —p(mi))l_%) (15.1)

=1

= Z 12000 (y; log(p(x:)) + (1 — yi) log(1 — p(a:))) (15.2)

=1
= > log(p(xi) + Y log(1 - p(x)) (15.3)
0

2:y; =1 VY=
= ) 12000 (y; log(p(:)) + (1 — yi) log(1 — p(x:))) (15.4)
=1
12000 12000

= wo Y yitwi Yy migi— Y log(l 4 et (15.5)
i=1 =1 7



O vetor gradiente é o vetor das derivadas parciais com respeito aos parametros (wg,wi).
Contas rotineiras levam ao resultado desejado:

12000
o0 > (i — p(x))

Ve (wo,wy) = | %0 ] = | =
dwy 21 zi(ys — p(x4))

Seja x* a idade tal que p(z*) = 0.90. Entao

1 * L1
1 o-(worme) — 0.90 — —(wg + wiz*) = log(0.1/0.9) — z* = E(zOg(g) — wp)

Tendo estimativas de wg e wq, encontramos uma estimativa da idade limite x*

Uma operadora de planos de satide sabe que o custo médio das internagoes varia muito de
acordo com a idade do cliente. Aqueles com mais de 70 anos de idade acarretam a maior parte
dos custos embora eles tenham uma participacao pequena no portfolio de clientes.

A operadora decidiu investigar um pouco mais a incidéncia de internacoes entre seus clientes
idosos. Para isto, escolheu uma amostra de clientes com idade acima de 70 anos e obteve o
numero de internagoes que cada um teve nos ultimos dois anos. Decidiu-se adotar um modelo
de Poisson para as contagens do nimero de internagoes.

Nem todos os selecionados foram clientes por todo o periodo de dois anos. Aqueles que estao
na operadora ha pouco tempo devem apresentar, em média, menos internacoes do que aqueles
que estao na operadora durante os tultimos dois anos. Por isto, a média da Poisson deveria
refletir o tempo de permanéncia no plano de cada cliente. Dessa forma chegou-se ao seguinte
modelo estatistico.

Sejam Yi,...,Y, a amostra de clientes. Suponha que essas sejam varidveis aleatérias inde-
pendentes e que Y; ~ Poisson(At;) onde ¢; é o tempo de permanéncia do i-ésimo cliente na
empresa (em meses) e A > 0 é desconhecido e representa o nimero esperao de internagoes por
més. O interesse é estimar A\ a partir dos dados que podem ser representados como na tabela

abaixo:
vt | Y
1 24 | 4
2 |12 ] 1
31310
4 |24 ] 1

e Pensou-se inicialmente em estimar A\ simplesmente tomando o niimero médio de internagoes
e dividir pelo tempo de observagao de 24 meses. Isto é, Ty = Y /24. Mostre que este es-
timador ¢é viciado para estimar A\ a menos que ) ,t; = 24n. Por exemplo , se todos os
clientes tiverem t; = 24 esta condicao seria valida.

e Tentando corrigir o vicio do estimador 77, pensou-se entao em adotar

Y Yi+...4Y,
TQ ="
t th+...+1t,
Mostre que T» é nao-viciado para estimar A e encontre seu risco quadratico de estimagao.
e Mais tarde, outro analista resolveu considerar o estimador
1 /Y, Y,
T3 =— <1+...+n>
n t1 tn

Mostre que T3 é nao-viciado para estimar A e encontre seu risco quadratico de estimagao.



e E possivel dizer que T5 é sempre melhor ou igual a T3 considerando-se os riscos quadraticos
dos dois. Prove isto usando a desigualdade entre a média aritmética e a média harmoénica

que diz que

1+ -+ Ty n
=~ 1 1
n T + + Tn
para quaisquer numeros reais positivos x1, ..., T,.

Solucao: Considerando o estimador T3 inicialmente:

BT = B(3) = B0+t ) = o BV +.. + E()

1 A A
= (M M) = () = o
24n( 1 ) 24n(1+ +n) 24

que é igual a \ se, e s6 se, t = 24.

Considerando o estimador T5:

Y 1 A
E(Ty) = E(E) :%E(Y1+...+Yn):%(t1+...+tn):)\.

Portanto, T5 é nao-viciado para estimar A. O seu risco quadratico de estimagao é:

Y Y
MSE(T3,)) = E[(Ty = \?| = V(Ty) + bias’(Ty, ) = V(T3) + 0=V <t> _ )
t
- A ywmr avy =2 L v+ 4V
1 1 Al

O terceiro estimador, T3, tem valor esperado:

1 Y] Y, 1 E(Y; E(Y, 1 At At
E(T3) = ~E{—=+...4+-2)==E EM) L EOWN _lpida A
n t tn n 11 tn n t1 tn
A [t th
= —|—=—4+...+— )=
n <t1 et tn> ’
e portanto, também nao-viciado para estimar A. O seu risco quadratico de estimagao é:
1 Y] Y,
MSE(T3,\) = E [(T3 - A)ﬂ = V(T3) = — [V <1> T ¥ <”>]
n t1 tn
1 [V(1n) V(Ya)] 1 [At Aty
= nQ[ 7 +... 2| = t§+”'+t%
A1l 1 A
= —|—+...+—|=-H
le |:t1 + + tn:| n

onde H é a média harmoénica dos tempos assegurados dos clientes:

1 /1 1
H=-(—+...=
7”L<t1+ tn>

A comparacao entre os riscos de T5 e T3 depende da desigualdade entre a média aritmétmica
e a média harmonica dos tempos ;. Usando a desigualdade mencionada no enunciado, temos
Al A
- < — H=MSE(T3,)\).
n

MSE(Ty, \) =

n

Em resumo, queremos estimar A, o niimero esperado de internacdes mensais usando as con-
tagens de episddios de internacoes de clientes expostos a diferentes tempos ¢; sob o seguro.



O parametro A\ é a taxa mensal de internagoes por individuo. Temos dois estimadores nao-
viciados. O primeiro deles, T5, soma as internacoes de todos os clientes e divide pelo tempo
total exposto ao risco de todos eles, obtendo uma estimativa intuitivamente simples. O outro,
T3, usa a taxa mensal individual ao calcular Y, /t, e em seguida tira sua média aritmética
simples, também uma estimativa intuitivamente simples. A conclusao é que é preferivel usar
Ts.

Suponha que X1, ..., X, sejam n varidveis aleatérias com distribuicao de Rayleigh com parametro

0 > 0 com densidade dada por

0, sex <0
flt = { /0% exp (—2%/(20%)), sex >0

Encontre o estimador de maxima verossimilhanca de 6.

A distribuicao logaritmica serve para modelar contagens em ecologia. Essa distribuicao tem
funcao de probabilidade dada por

_p*
P X =x0) = ————
( %39) x log(1l —0)
para z = 1,2,... onde # é um parametro desconhecido no intervalo (0,1). Mostre que, se

X1, Xo, X3, X4 é uma amostra aleatoria da distribuicao acima, a estimativa de maxima veros-
similhanca 6 satisfaz a equagao

0 =X(1—0)log(l—0)

onde X é a média aritmética dos dados. Se x1 = 1, 29 = 2, £3 = 3 e T4 = 2, e se vocé tiver
o valor inicial 0(9) = 0.6, encontre o valor /1) do processo iterativo de Newton-Raphson (faca
as contas).

OBS: Como 6 € (0,1), temos —log(1 — @) > 0, mas nao faz sentido tomar log(—#).

Solugao: Como 6 € (0,1), temos —log(1 — #) > 0. A log-verossimilhanga de 6 baseada em n
dados x1,x9,...,x, é igual a

- G gL i
10 = o (U i~ log(1 - 0)) s ((— log(1— 0))" sz)
= (Z x) log () — Zlog(:ri) — nlog (—log(1 — 0))

A derivada da log-verossimilhanca ¢é a fungao escore:

roon O Y n
O =55 =% +(1—9)10g(1—9)

A Figura 15.2 mostra a funcdo log-verossimilhanga ¢(6) no lado esquerdo e a derivada (ou
funcao escore no lado direito.

A derivada parcial de segunda ordem é:

s 9 [Sa n(l+log(l— 6)
CO=50 = T st o)
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Figura 15.2: Log-verossimilhanga £(6) no lado esquerdo e a derivada (ou fungao escore no lado direito,

considerando a distribuicao logaritmica.

A equagao de iterecao de Newton é

pt+1) — g(t) _ 7 (0M)
B P
g//(@(t)) —9t) 4 a(®) +(1_9(t>)10g(1_9<t))
>z n(1+log(1—0(1)))

(6()2 ((170(t))10g(179<t)))2

Considerando a pequena amostra de n = 4 observagbes com » x; = 8 e comegando com o
valor inicial 80 = 0.6, encontramos

0
o 0(0)_5'(9( )) 06 24198

= =06— ———— =0.6979
07(0(0) —24.7148
¢(6M) 0.4012

92 — ) _ = 0. — = —0.
(M) 06979 = 15 3977 = 0-730

Num estudo de seguro agricola, acredita-se que a producao de trigo X; da érea ¢ é normalmente
distribuida com média 0z;, onde z; é a quantidade CONHECIDA de fertilizante utilizado na
area. Assumindo que as producoes em diferentes dreas sao independentes, e que a variancia é
conhecida e igual a 1 (ou seja, que X; ~ N(0z,1), parai=1,...,n:

e Encontre o EMV de 6

e Mostre que o EMV ¢ nao viciado para 6. Lembre-se que os valores de z; sdo constantes.

Uma fungao de interesse quando trabalha-se com ressseguros de perdas X com uma certa
distribuigao é a fun¢ao média do excesso definida como e(a) = E(X —a|X > a). Isto é, e(a) é
o valor médio do excesso de X acima da constante a. Para cada valor a existe um valor de e(a).
Com base numa amostra X, ....X, de v.a.’s i.i.id., sugerem-se dois possiveis estimadores para
e(a):

_ 2 Xil(Xi > a)
N n

—a

é(a)

o) = Sho il (Xi > )
XL IXi>a)

Um deles é muito ruim e foi proposto por alguém que nao entendeu a definigao de e(a). Diga

qual é e explique por qué.



(t) Dados de perda geralmente tem caudas pesadas. Suponha que xy é um valor de franquia
conhecido (isto é, sdo observadas apenas as perdas que tém valores monetdrios acima de z).
Uma possibilidade sempre pensada é usar a distribuicao de Pareto com funcao distribuigao
acumulada dada por:

0, se x < xg
o= P= { Ji gy tidy = 1 — (z0/2)", se x> o

onde o > 0.
e Mostre que a densidade de probabilidade de X é igual a f(z) = az§/z*T1.
e Se Xq,...,X, é uma amostra de v.a.’s i.i.d., obtenha o EMV de a dado por

n 1

> log(xi/xo) - log (/@1@2 .. Tn/x0)

o=

(u) A distribuigdo de Gumbel é uma escolha popular para modelar dados de catéstrofes natu-
rais tais como enchentes. Temos dados da maior precipitacao pluvial didria durante um ano
para o periodo de 1956 a 2001. Suponha que os valores aleatérios X1, ..., X4 das maiores
precipitagoes didrias anuais sigam uma distribuicao de Gumbel com parametros i e o e com

1 — @
f(z;p,0) = —exp (— z ,u) exp <—eTM)
o o
e Mostre que o EMV de i e de o sao as solugdes do sistema de equacoes simultaneas nao-
i = —&log l}:f“m
n =
T;e —xi/6
= Y- 2
Z e x,/a

e Estimativas para iniciar o procedimento numérico e obter o EMV sao as estimativas de

densidade dada por

lineares

%

momentos e que sao dadas por

Z—0.45s
s/1.283

=
Il

Q>
|

onde s é o desvio-padrao amostral. Explique como vocé faria para obter as estimativas
de maxima verossimilhnca usando estas estimativas iniciais. Monte a equacao recursiva
necessaria para o procedimento numeérico.

(v) Suponha que X1, ..., X, forme uma amostra aleatéria de v.a.’s i.i.d. com distribuicao Poisson
com esperanca ¢ desconhecida.

e Encontre a fungao escore gg

e Considerando a fungao escore como uma variavel aleatdria, calcule o seu valor esperado
ol
E(@).
e Calcule também a sua variancia.
e Calcule a informac@o de Fisher I() de duas formas distintas: I(f) = IE(%)2 e como

1(8) = —E(Z1).



(w) Repita o exercicio acima supondo que X7, ..., X, sejam iid com distribuigao exp(\).

(x) Repita o exercicio acima supondo que Xi,..., X, sejam iid com distribuicdo Pareto, com

densidade f(z;60) = 0?2~ para 2 > ¢ com 6 € (0,00). Esta distribuicao é muito usada

para modelar dados de reseguro, quando as perdas podem chegar a valores muito grandes.

(v) Suponha que Xji,..., X5 forme uma amostra aleatéria de 23 v.a.’s i.i.d. com distribui¢ao

Poisson com esperanca § = 1.2. No R, o comando rpois(5, 1.2) gerou a amostra x =

(1,2,1,2,1). Suponha que vocé nao conhecesse este valor verdadeiro de 6.

Faga um gréafico da fungao de log-verossmilhanca log f(x,0) = log f((1,2,1,2,1),0) versus
#. Use um intervalo para # grande o suficiente para cobrir o verdadeiro valor do parametro.
Faca também um gréfico da funcao escore % log f(x,0) = % log f((1,2,1,2,1),0) versus
6.

O EMV neste caso é a média aritmética. Portanto, o valor do EMV observado nesta
amostra particular é igual a § = 7/5. Verifique graficamente que # = 7/5 é ponto de
maximo da fungao de log-verossimilhanga.

Verifique graficamente que o verdadeiro valor do parametro § = 1.2 ndo maximiza a
funcao de log-verossimilhanca.

Verifique graficamente que 6 = 7/5 é o zero da funcao escore.

Verifique também que a func¢ao escore nao se anula no ponto ¢ = 1.2.




Capitulo 16

Teoria da Estimacao Pontual

(a)

Trés experimentos binomiais independentes sao executados de maneira sucessiva. Em cada
um deles, mede-se o numero de respostas positivas que um sujeito fornece em certo nimero de
tentativas. Seja X; ~ Bin(n;, 6;) o nimero de sucessos no experimento i. Um estimulo é for-
necido no experimento do meio de forma que a probabilidade de sucesso muda no experimento
do meio e retorna para o nivel inicial no terceiro experimento. Isto é, assume-se que 6, = «,
0o = a+ 3, e que U3 = a. Sabemos que uma v.a. ¥ ~ Bin(n,#) tem funcdo de probabilidade
P(Y = k) =n!/(k!(n — k)O*(1 — )" *. Qual é o vetor de parametros neste problema?
Suponha agora que o estimulo é aumentado no terceiro experimento e que 03 = a + 2a, além
de termos 61 = a e f; = o + B. Qual é o vetor de parametros neste problema?

Solugao: Denote por pii,m2 e 73 as probabilidades nos tres experimentos binomiais suces-
sivos. Embora existam trés probabilidades envolvidas, elas dependem apenas de dois termos
desconhecidos, a e 3. No primeiro caso, temos (71, T2, 73) = (@, @ + 3, ) e no segundo caso,
temos (71, w2, m3) = (a, a + B, a4+ 23). Nos dois casos, 0 = (a, 3), um vetor de dimensao 2. A
ideia intuitiva é que precisamos apenas de dois termos para descrever as trés probabilidades.

Imagine uma fabricagdo de pecgas cujo didmetro é uma varidvel aleatdria com distribuigao
normal com parametro . Duas amostras de variaveis aleatérias i.i.d., ambas de tamanho 5,
foram retiradas da populagao e os valores observados sao os seguintes:
Amostra 1 | 5.8 | 9.8 | 12.2 | 14.4 | 14.5 | média = 11.3
Amostra 2 | 9.7 | 10.7 | 12.6 | 10.7 | 4.6 | média = 9.7

e Qual é a melhor estimativa de u, a primeira média ou a segunda? Isto é, qual delas possui

menor erro de estimacao?
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e A estimativa (11.3 + 9.7)/2 possui erro de estimagdo menor que a primeira ou segunda
média calculada na tabela?

e E quanto ao estimador T = (X1 + X5)/2, a média aritmética das amostras 1 e 27 Ele
é melhor que o estimador X;? Qual o critério que vocé usou para decidir sobre essa
pergunta?

e Considerando a primeira amostra acima, calcule a mediana amostral. Ela possui erro de
estimagao menor que a média amostral 11.37 Qual das duas estimativas vocé usuaria?
Por qué?

Solugao:

e Sem saber o verdadeiro valor de y néo é possivel saber qual das duas estimativas é a melhor.
Elas s@o apenas duas instancias (ou estimativas) independentes do mesmo estimador (a
mesma v.a.).

e Como antes, é impossivel responder a isto pois nao conhecemos p. Embora o comporta-
mento estatistico da estimativa combinada seja de apresentar uma distancia menor a g
que uma das amostras individuais (com 5 dados), ndo é garantido que isto aconteca em
toda instaancia de dados.

e Ao falarmos de estimadires podemos preferir 7' em relacio a X;. Seja o2 a variancia

da gaussiana associada com os dados individuais. Entdo MSE(T, u) = 0?/10 enquanto

MSE (X1, ) = 02/5. Assim, MSE(T,u) é bem menor que MSE(X1,u). Note que

MSE(X1,p1) = MSE(Xz,u) e portanto nao temos como distinguir o comportamento

estatistico de X1 e X». Na prética, vamos preferir usar a média das duas estimativas

(11.3 + 9.7)/2 pois ele é a mesma coisa que tomar a média aritmética de todas as 10

observacoes. O estimator baseado na amostra de tamanho 10 é melhor que o estimador

baseado apenas em 5 observagoes. Entretanto, embora em geral o estimador baseado em

10 observacoes tenha uma MSE menor que aquele baseado em 5 observacoes, isto nao

quer dizer que em toda em qualquer duas instancias de dados (ou duas amostras 1 e 2),

a estimativa combinada seja garantidamente mais préxima de p que a estimativa baseada

apenas em 5 observagoes.

e Considerando a primeira amostra, a sua mediana é 12.2. N&o é possivel saber se esta
mediana amostral estd mais proxima de g que a média aritmética igual a 11.3. Entre-
tanto, se o estimador (v.a.) mediana tiver um MSE maior que o estimador X; (ele tem),
vamos preferir usar a média aritmética na expecativa de que nesta amostra particular o
comportamento usual prevaleca e assim tenhamos um erro menor usando a média ao invés

da mediana.

Sejam X e X duas v.a.’s independentes com esperanca comum 6 € R e com Var(X;) = 0% e

Var(Xs) = 0%/4. Isto é, X1 e X5 tendem a oscilar em torno de § mas X possui um desvio-
padrao duas vezes menor que X1. Podemos usar estes dois pedagos de informagao para estimar
0. Podemos, por exeplo, formar uma combinacao linear de X; e Xo propondo o estimador

0 = c1X1 + 9 X5 onde ¢1 e ¢y sdo constantes conhecidas. Por exemplo, podemos pensar em

N ~ 2X X N
usar 6 = (X1 + X5)/2 ou entao usar 6 = Tl + ?2 ou até mesmo 0 = 4X; — 2X5.

Mostre que 0 = ¢1 X1 + X2 é nao-viciado para estimar 6 (qualquer que seja o valor de 6 € R)
se, e somente se, ¢; + co = 1. Dentre os estimadores da forma 0 = ¢1 X7 + c2X2 e que sédo
nio-viciados para estimar @, encontre aquele que minimiza o MSE, dado por E(6 — 6)2.

Generalize o problema anterior para n v.a.’s: Sejam Xi,..., X, v.a.’s independentes com
esperanca comum 6 e com a variancia de X; igual a o0%/a;, sendo os a; > 0 conhecidos e



com o2 > 0 desconhecido. Considere a classe de todos os estimadores lineares de 0. Isto é,
considere a classe de todos os estimadores que podem ser escritos como § = ). ¢; X; onde ¢;
sao contantes.

Mostre que na classe dos estimadores lineares, 6, é nao-viciado para estimar 6 se, e somente
se y . c¢; = 1. Dentre todos os estimadores lineares ) . o; X; de 6 que sao nao-viciados (isto é,
satisfazendo ), oy = 1), encontre aquele que minimiza o MSE.

(e) Suponha que X7, Xo, ..., X, sejam v.a.’s i.i.d. com distribuigao Poisson com parametro comum

0. E possivel mostrar matematicamente que

P (R
S S )

~ 1 _
2
0y = E (X; — X)
n—14
i+1
sao ambos estimadores nao viciados para estimar §. Considere adicionalmente um terceiro

estimador nao-viciado para 6:
03 = (91 +02)/2

Faca um pequeno estudo de simulagao para identificar qual dos trés possui um erro de es-
timagao MSE menor. Para isto, fixe o valor de § = 3. Gere um grande niimero de amostras
(digamos, 10 mil), cada uma delas de tamanho n = 10. Para cada amostra calcule os valores
dos trés estimadores de . Estime o MSE E(QA] — 6)? de cada estimador usando a média das
diferencas ao quadrado entre os 10 mil valores de GA] e 0. Qual dos estimadores produz um erro
MSE menor? Isto significa que o melhor estimador teve SEMPRE o seu valor mais préximo
do verdadeiro valor do parametro 87 Estime a probabilidade de que, baseados numa mesma
amostra, 9/\2 esteja mais proximo de 6 que 9A1

A conclusdao muda se vocé tomar n = 20 e 8 = 107

(f) Responda V ou F para as afirmagi; jes abaixo.

e Como o parametro 6 nl'&%o pode ser predito antes do experimento, ele é uma varidvel
aleatoria.

e Num problema de estimacio de uma populacio com distribuicio normal N (u, o) encontrou-
se T = 11.3 numa amostra de tamanho n = 10. A distribui¢do de probabilidade desse
valor 11.3 é também uma normal com média p e varidncia o2 /10.

e Suponha que X esteja sendo usado como estimador da média populacional x. Como a
variancia de X decresce com o tamanho da amostra, ent'l'g)%o toda estimativa obtida a
partir de uma amostra de tamanho 15 possui erro de estimacao menor que qualquer outra
estimativa obtida a partir de uma amostra de tamanho 10.

e Um estimador n'ij)%o viciado é sempre melhor que um estimador viciado.

e Considere uma estimativa da média populacional y baseada na média aritmética de uma
amostra de tamanho 10 e outra estimativa com uma amostra de tamanho 15. Nunca deve-
mos preferir a estimativa baseada na amostra de 15 pois a estimativa baseada na amostra
de tamanho 10 tem alguma chance de estar mais perto do verdadeiro valor desconhecido
de p.




(2)

Sejam X1, ..., X, i.i.d.’s com distribuigao exponencial com parametro A. O interesse é estimar
E(X;) = 1/X. Suponha que apenas as varidaveis X;’s que ficarem maiores ou iguais a x = 10
sejam observadas. Todas as observacoes menores que x = 10 sao perdidas. Assim, a amostra
final é possui um numero 0 < k£ < n de observacoes.

O estimador baseado na média amostral da amostra de k varidveis é viciado. Ele subestima
ou superestima sistematicamente E(X;)? Nao precisa calcular o vicio.

A distribuigdo de X; DADO QUE X.10 tem a densidade dada por

0 se x < 10
) = )
f(@:2) { A exp(—A(z — 10)), sexz > 10

Se X1,..., X} é uma amostra desta distribuigao TRUNCADA (em que s6 observamos os X;’s
maiores que 10), encontre o MLE de .

RESP: O MLE ¢ k/ 3, (z; — 10).

Suponha que serd coletada uma amostra de observag'ig)%es independentes Y com distribuicao
normal. Elas ni’g%o si’g%o identicamente distribu'ig)%das. A média de Y varia de acordo com
o valor de uma covariavel z de forma que Y = a + Bx + €. onde € possui distribuicao normal
com média 0 e variancia 2. Os valores poss'l};%veis de x s'fg;%o trés: baixo (z = —1), médio
(x = 0) e alto (z = 1). Os valores de z si;3o fixios e conhecidos. Eles nij 1o sij3o varidveis
aleatérias.

ST{)%O feitas treés observag'i(;%es em cada n'iz;%vel de . Podemos representar os dados na tabela
e no grafico dos valores observados de Y versus z que Figura 16.1.

Figura 16.1: Gréfico dos valores observados y;; versus x;.

.iL'j =1 .%'j =0 a:j =1
Yn Yo1 Y31
Y12 Yoo Y32
Y13 Yo3 Y33
Vamos representar as observa(;'l'j)%es como Y;; = o+ fBx; + € onde x; = —1,0 ou 1, e os ¢

sij o i.i.d. com distribui¢do N(0,0?).
e i;1 correto dizer que (Y;;|x;) ~ N(a+ Bx;,07%) e que as varidveis Yj; si; 2o independentes?
DICA: n'ig)%o existe pegadinha aqui.
e Calcule E(Yjj|z;) e Var(Yjj|z;) nos trés casos: z; = —1, z; = 0 e ; = 1. A variancia
depende do valor de x;? E o valor esperado?
e Deseja-se um estimador para E(Y|z; = 0) = o quando z = 0. Um primeiro estimador

bem simples é proposto:
Yo1 + Yoo + Yo3

3




Ele simplesmente toma a média das trés observag'i&%es quando z = 0. Mostre que este
estimador é n'l'(;%o viciado para « e encontre sua variancia. Qual o risco quadratico desse
estimador? OBS: Risco quadratico de um estimador é o seu MSE.

e Um segundo estimador é proposto:

Yi1 + Y12 + Yi3 + Yor + Yoo + Yoz + Y31 4 Y39 + Y33
9

Ele toma a média aritmética simples de todas as 9 observag'ig)%es dispon’iz)éveis. Mostre
que este estimador também é Iﬁ(’)%O viciado para « e encontre sua variancia.

e Qual dos dois estimadores é prefer'i;}%vel?

e O interesse agora é em estimar 3, o quanto Y aumenta em média quando passamos de
um n'ij)%vel de x para o n'i(;%vel seguinte. Um primeiro estimador é o valor médio de Y
quando z = 0 menos o valor médio de Y quando z = —1. Isto é,

Yor+ Yo +Ye3 Yii+Yip+Yig
3 3

T =Yy—Y_1=

Mostre que T} é uma combinagao linear ), ; aijYij dos Y’s e identifique os valores de aj;.
e Mostre que E(T}) é n'ij)%o—viciado para 3 e ache sua variancia.
e De maneira analoga, defina
Tn=Y1-Y
e ache sua média e variancia.

e Um terceiro estimador, melhor que os dois anteriores, leva em conta apenas as observag'l';)%es
nos dois extremos, quando x = —1 e z = 1.

Ts=-Y1-Y,

N | —

Mostre que T3 também é uma combinagao linear dos Y’s, que é nié%o—viciado e que possui
risco quadrético (ou MSE) menor que 7 e Tb.

(i) Uma operadora de planos de satde sabe que o custo médio das internacoes varia muito de
acordo com a idade do cliente. Aqueles com mais de 70 anos de idade acarretam a maior parte
dos custos embora eles tenham uma participagao pequena no portfolio de clientes.

A operadora decidiu investigar um pouco mais a incidéncia de internagoes entre seus clientes
idosos. Para isto, escolheu uma amostra de clientes com idade acima de 70 anos e obteve o
nimero de internagoes que cada um teve nos ultimos dois anos. Decidiu-se adotar um modelo
de Poisson para as contagens do niimero de internagoes.

Nem todos os selecionados foram clientes por todo o periodo de dois anos. Aqueles que estao
na operadora ha pouco tempo devem apresentar, em média, menos internacoes do que aqueles
que estao na operadora durante os iltimos dois anos. Por isto, a média da Poisson deveria
refletir o tempo de permanéncia no plano de cada cliente. Dessa forma chegou-se ao seguinte
modelo estatistico.

Sejam Y1,...,Y, a amostra de clientes. Suponha que essas sejam varidveis aleatérias inde-
pendentes e que Y; ~ Poisson(At;) onde t; é o tempo de permanéncia do i-ésimo cliente na
empresa (em meses) e A > 0 é desconhecido e representa o nimero esperao de internagoes por
més. O interesse é estimar A\ a partir dos dados que podem ser representados como na tabela
abaixo:



1 tz Yi
1 |24 4
2 112 ] 1
3 3 0
4 124 1

Pensou-se inicialmente em estimar A simplesmente tomando o niimero médio de internagoes
e dividir pelo tempo de observagao de 24 meses. Isto é, Ty = Y /24. Mostre que este es-
timador ¢ viciado para estimar A\ a menos que ) . t; = 24n. Por exemplo , se todos os
clientes tiverem t; = 24 esta condigao seria vialida.

Tentando corrigir o vicio do estimador 77, pensou-se entao em adotar

Y Yi+...4Y,
TQZT _—
t th+...+1t,

Mostre que T» é nao-viciado para estimar A e encontre seu risco quadratico de estimagao.
Mais tarde, outro analista resolveu considerar o estimador

1 /Y Y,
T3—<1—|—...+)
n t1 tn

Mostre que T3 é nao-viciado para estimar A e encontre seu risco quadratico de estimagcao.
E possivel dizer que T» é sempre melhor ou igual a T3 considerando-se os riscos quadraticos
dos dois. Prove isto usando a desigualdade entre a média aritmética e a média harmoénica

que diz que
T+t n

n Loy

AV

para quaisquer numeros reais positivos x1, ..., ZTy.




Capitulo 17

Modelos Lineares Generalizados

Aqui vao os exercicios

191






Capitulo 18

Regressao Nao-Paramétrica

Aqui vao os exercicios
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Capitulo 19

Selecao de Modelos
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19.1 Entropia
19.2 Distancia de Kullback-Leibler
19.3 Critério de Akaike

19.4 MDL: Minimum Description Length

Aqui vao os exercicios
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