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Prefácio
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14 Regularização 167
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19.3 Critério de Akaike . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

19.4 MDL: Minimum Description Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195



Caṕıtulo 1

Revisão de Matemática

Estes exerćıcios visam a uma revisão de fatos básicos de matemática e probabilidade que serão ne-

cessários durante a disciplina.

1. Teoria de Conjuntos: O objetivo é apenas verificar se você está informado sobre a diferença con-

ceitual entre conjuntos enumeráveis e não-enumeráveis. Não é necessário saber provar que um

conjunto é não-enumerável. Diga quais dos conjuntos abaixo é um conjunto enumerável e qual é

não-enumerável:

• {0, 1, 2}

• naturais: N = {0, 1, 2, . . .}

• inteiros: Z = {. . . ,−2,−1, 0, 1, 2, . . .}

• reticulado inteiro no plano: {(x, y); x ∈ Z, y ∈ Z}

• racionais: Q = {p/q; q > 0, p ∈ Z, q ∈ N}

• reais: R

• irracionais: R−Q.
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2. Propriedades básicas de expoentes. Identifique abaixo quais igualdades estão corretas:

• xaya = (xy)a

• a
x+y = a

x + a
y

• (xa)b = xab

• (x/y)a = xa/yb

• (x+ y)a = xa + ya

• xayb = (xy)a+b

• (−x)2 = −x2

•
√
x2 + y2 = |x|+ |y|

• x+y
a = x

a + y
a

3. Complete as sentenças abaixo:

• Os pontos (x, y) ∈ R2 que satisfazem a equação x2 + y2 = 1 formam ?? no plano real.

• Os pontos que satisfazem a equação x2 + y2 = 4 formam ??.

• Os pontos que satisfazem a equação (x− 2)2 + (y + 1)2 = 1 formam ??.

• Os pontos que satisfazem a equação
(
x−2

2

)2
+
(
y+1

1

)2
= 1 formam ??.

4. Propriedades básicas das funções exp e log.

• Esboce o gráfico das funções f(x) = log(3x+1) e f(x) = exp(3x). Identifique o maior domı́nio

na reta em que as funções podem ser definidas.

• Obtenha as derivadas f ′(x) das duas funções acima.

• Verifique quais das seguintes igualdades são válidas:

– log(xy) = log(x) + log(y).

– log(x+ y) = log(x)× log(y).

– exp(x+ y) = exp(x) + exp(y).

– exp(x+ y) = exp(x)× exp(y).

– log(x/y) = log(x)− log(y).

– exp(xy) = (exp(x))y.

– exp(xy) = exp(x) + exp(y).

5. Esboce o gráfico da função f(x) = exp
(
−3(x− 1)2

)
e obtenha a sua derivada f ′(x). Esta função

está associada com a distribuição de probabilidade normal ou gaussiana. Faça a mesma coisa com

a função g(x) = log(f(x)).

6. A função loǵıstica f(z) = 1/(1 + exp(−z)) é fundamental na análise de dados.

• Esboce o gráfico da função loǵıstica considerando o intervalo z ∈ (−3, 3).

• Apenas olhando o gráfico de f(z), sem fazer nenhum cálculo, diga: (a) qual o ponto z em que

a derivada atinge o valor máximo; (b) a medida que z →∞, o valor da derivada f ′(z) vai para

que valor? (c) e quando z → −∞?

• Apenas olhando o gráfico de f(z), sem fazer nenhum cálculo, diga dos gráficos apresentados

na Figura 1.1 representa a função derivada f ′(z).

• Obtenha a expressão matemática de f ′(z) e mostre que ela pode ser expressa como f ′(z) =

f(z)(1− f(z)).



Figura 1.1: Qual desses gráficos representa a a função derivada f ′(z) da função loǵıstica f(z) = 1/(1 +

exp(−z))?

7. Expansão de Taylor até segunda ordem. Esta é uma das fórmulas mais úteis em matemática. Ela

permite aproximar uma função f(x) muito complicada por uma função bem mais simples, um

polinômio de segundo grau. Polinômios de segundo graus são facilmente deriváveis, possuem ráızes

e ponto de máximo ou mı́nimo conhecidos e, muito importante, são muito fáceis de se integrar.

Assim, ao invés de trabalhar coma função complicada f(x), trabalhamos com a sua aproximação

polinomial.

Precisamos escolher um ponto de referência x0 e a aproximação de Taylor vale para os pontos x no

entorno desse ponto de referência x0. Este entorno varia de problema para problema. A expansão

de Taylor da função f no ponto x próximo de x0 é o polinômio P (x) dado por

f(x) ≈ P (x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2

Essencialmente, todas as funções que aparecem na prática da análise de dados podem ser aproxi-

madas pela expansão de Taylor.

• Obtenha a expressão aproximada para f(x) = exp(x) para x ≈ x0 = 0.

• Faça um gráfico com as duas funções, f(x) e sua aproximação de Taylor de 2a. ordem, para

x ∈ (−1, 2).

• Repita com x0 = 1: obtenha a expressão aproximada para f(x) = exp(x) para x ≈ x0 = 1.

Observe que os coeficientes do polinômio P (x) mudam com o ponto de referência x0.

• Faça um gráfico com as duas funções, f(x) e sua aproximação de Taylor de 2a. ordem, para

x ∈ (−1, 2).

Você deve obter gráficos iguais ao da Figura 1.2.

8. Na expansão de Taylor, boas aproximações numa região mais extensa em torno do ponto de re-

ferência x0 podem ser obtidas usando um polinômio de grau mais elevado (o que implica calcular

derivadas de ordens mais elevadas):

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
1

2!
f ′′(x0)(x− x0)2 +

1

3!
f ′′′(x0)(x− x0)3 +

1

4!
f (4)(x0)(x− x0)4 + . . .



Figura 1.2: Aproximação de Taylor até a segunda ordem de f(x) = ex em torno de x0 = 0 e em torno de

x0 = 1.

Figura 1.3: Aproximação de Taylor até a segunda e a quarta ordem de f(x) = ex/ cos(x) em torno de

x0 = 0 no intervalo (−1, 1).

Por exemplo, em torno de x0 = 0 e usando a expansão até a 4a. ordem , temos

ex

cos(x)
≈ 1 + x+ x2 +

2x3

3
+
x4

2

Faça um gráfico de f(x) = ex/ cos(x) com a aproximação até a segunda ordem (basta usar os

primeiros 3 termos acima) e até a quarta ordem para x ∈ (−1, 1). Você deve obter um gráfico igual

ao da Figura 1.3.

9. Considere a seguinte matriz 5× 3 contendo dados de 5 apartamentos colocados a venda em BH:

X = [X1 | X2 | X3] =


1 153 2

1 107 1

1 238 3

1 179 2

1 250 4


Cada linha possui dados de um apartamento distinto. A primeira coluna contem apenas o valor

constante 1 e é representada pelo vetor coluna X1 ∈ R5. A segunda coluna mostra a área (em



metros quadrados) de cada apto é representada pelo vetor coluna X2 ∈ R5.. A terceira coluna, X3,

mostra o número de quartos do apto. Seja β = (β0, β1, β3)t um vetor-coluna 3× 1.

• Verifique que é válida a seguinte igualdade: Xβ = β0X0 + β1X1 + β3X3 onde X0,X1,X3 são

os vetores-coluna da matriz X.

• Sejam v1, . . . , vk vetores em R5 tais como, por exemplo, as 3 colunas da matriz X. Verifique

que o conjunto das combinações lineares desses vetores forma um sub-espaço vetorial do R5

(basta checar a definição de sub-espaço vetorial).

• V ou F? O conjunto M(X) das combinações lineares das colunas de X é igual a M(X) =

{Xβ | β ∈ R3} e é um sub-espaço vetorial do R5. Se V, qual a dimensão do sub-espaço

vetorial M(X)?

10. Uma manipulação algébrica que é muito comum em estat́ıstica envolve uma decomposição de soma

de quadrados. Seja x̄ = (x1, . . . , xn)/n a média aritmética de x1, . . . , xn. Verifique que:

•
∑

i(xi − x̄)2 =
∑

i x
2
i − nx̄2.

• Seja a ∈ R uma constante qualquer. Some e subtraia x̄ dentro da expressão ao quadrado em∑
i(xi − a)2, expanda a expressão ao quadrado e conclua que

∑
i(xi − a)2 =

∑
i(xi − x̄)2 +

n(x̄− a)2.

• A partir do item anterior, conclua que o valor de a ∈ R que minimiza
∑

i(xi − a)2 é o valor

a = x̄.

11. Nosso curso precisa usar vários resultados de álgebra de matrizes. Seja x = (x1, . . . , xn) um vetor-

coluna n× 1 e A uma matriz n× n. A′ indica a matriz transposta de A. As seguintes identidades

matriciais são fundamentais em nosso curso. Verifique que elas estão corretas, checando que o lado

direito é igual ao lado esquerdo.

• x′ A x =
∑

i,j xixjAij

• O comprimento (ao quadrado) do vetor x é
∑

i x
2
i e pode ser obtido fazendo a seguinte conta

matricial: x′ x =
∑

i x
2
i . Assim, x′ x é um escalar, um número real.

• A operação reversa do item anterior, x x′, não é um escalar mas sim uma matriz simétrica

n× n com elemento (i, j) dado por xixj .

12. O vetor gradiente é a extensão do conceito de derivada para funções de Rn para R. Para ser mais

concreto, você pode imaginar a altura f(x) = f(x1, x2) de uma superf́ıcie f para cada posição

x = (x1, x2) do plano R2. Seja

f : Rn −→ R
x −→ f(x)

o vetor gradiente num ponto arbitrário (x0, y0) do plano é definido como:

∇ : R2 −→ R2

(x0, y0) −→ ∇f(x0, y0) =

[
∂f
∂x
∂f
∂y

]
(x0,y0)

As derivadas parciais são avaliadas no ponto (x, y). O vetor gradiente aponta na direção de cresci-

mento máximo da função f em torno do ponto (x, y).

Vetores serão sempre representados como vetores-coluna neste livro. O vetor gradiente é um vetor-

coluna.
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Figura 1.4: Gráfico da função z = f(x, y) = x2/4 + y2/2.

Considere z = f(x, y) = x2/4+y2/2. A superf́ıcie definida por esta função é um parabolóide eĺıptico

(ver Figura 1.4). Esta é uma superf́ıcie em forma de tigela. O fundo da tigela está na origem (0, 0).

A figura abaixo mostra as curvas de ńıvel, definidas por f(x, y) = c dessa superf́ıcie. As curvas de

ńıvel são as elipses x2/4 + y2/2 = c.

• Mostre que o vetor gradiente num ponto (x, y) é dado por ∇f(x, y) = [x/2, y].

• Esboce alguns desses vetores gradientes em diferentes pontos do gráfico das curvas de ńıvel da

Figura 1.4.

• Suponha que x é um ponto de máximo ou de mı́nimo da função f(x). Sabe-se que ∇f(x) =

0 = (0, 0)T nestes pontos de máximo ou de mı́nimo. Explique intuitivamente por quê isto deve

ocorrer usando que o vetor gradiente aponta na direção de crescimento máximo da função.

13. A derivada mede o quanto f(x) varia quando x sofre uma pequena perturbação. Os matemáticos

perceberam que a quantidade desta variação em f(x) dependia da direção da perturbação com

relação a x. Imagine que passamos de um ponto x para outro ponto x +hu onde u = (u1, u2) é um

vetor de comprimento 1 e h > 0 é um valor real positivo. A variação no valor da função f é dada

por f(x + hu)− f(x). Esta variação depende de três coisas:

(a) ela depende do ponto x em que estamos. Em certos pontos x, a variação pode ser grande. Em

outros pontos, ela pode ser pequena.

(b) Ela depende de h, do quanto nos afastamos do ponto x em que estamos. Se h for muito

pequeno, praticamente não sáımos de perto de x e a variação tipicamente vai ser pequena

(supondo que a função é cont́ınua). Aumentando h, nós nos afastamos de x e a função f pode

mudar drasticamente.

(c) Diferente do caso uni-dimensional, a variação depende também da direção em que nos afasta-

mos de x.

Por exemplo, se f(x1, x2) = x2
1+x2

2, a função f é chamada de parabolóide e seu gráfico pode ser visto

na Figura 1.4. Observe que a função f é igual à distância ao quadrado entre o ponto x = (x1, x2) e a

origem 0 = (0, 0). Portanto, se nos movimentarmos ao longo dos ćırculos concêntricos centrados na

origem, o valor de f(x1, x2) não varia e sua derivada deveria ser zero. Isto é, suponha que estamos



Figura 1.5: Esquerda: Gráfico da função f(x1, x2) = x2
1 + x2

2. Direita: Curvas de ńıvel de temperatura

no dia 26 de abril de 2016, 6 horas (horário de Braśılia.

num ponto x = (x1, x2) qualquer, a uma distância r =
√
x2

1 + x2
2 da origem (0, 0). Suponha que

nos movimentamos ligeiramente, mas ainda mantendo a mesma distância r da origem. Isto é, nos

movimentamos andando um pouco ao longo do ćırculo de raio r em torno da origem. Neste caso,

a função f não muda de valor e portanto sua variação nesta direção é igual a zero. Um ligeiro

movimento ao longo da direção tangente ao ćırculo concêntrico deveria implicar numa derivada

igual a zero.

Por outro lado, se nos movimentarmos em outras direções, a variação de f pode ser positiva ou

negativa. Por exemplo, se sairmos do ponto x = (x1, x2) nos afastando na direção do vetor x =

(x1, x2) (ao longo da linha que conecta o ponto à origem), a função vai aumentar de valor. Veja o

gráfico. Se nos aproximarmos do centro ao longo dessa linha que conecta x = (x1, x2) e a origem,

a função f diminui o seu valor.

Quando h é pequeno, a variação f(x + hu) − f(x) no valor da função f é obtida calculando a

derivada direcional ao longo da direção do vetor u = (u1, u2) de comprimento um. Esta derivada

diceional é o produto interno do vetor gradiente ∇f(x) pelo vetor u. Isto é

f(x + hu) ≈ f(x) + h ∇f(x) • u (1.1)

Considerando a f(x1, x2) = x2
1 + x2

2, o parabolóide mostrado na Figura 1.4, responda:

• Qual o vetor gradiente ∇f(x)? Esboce este vetor para alguns pontos do plano. Como este

vetor gradiente varia?

• Obtenha o valor aproximado de f(x + hu) usando (1.1) nas seguintes situações:

– x = (1, 1), h = 0.1 e u = (1/
√

2, 1/
√

2).

– Como acima, exceto que u = −(1/
√

2, 1/
√

2).

– Como acima, exceto que u = (1/
√

2,−1/
√

2).

• Por quê os resultados foram tão diferentes nos três casos acima? Desenhe as curvas de ńıvel

da função, o vetor gradiente no ponto x = (1, 1) e os três vetores u considerados.

• Identifique o ponto em que a função varia pouco em qualquer direção u. Isto é intuitivo? Olhe

a Figura 1.4.

• Obtenha o valor aproximado de f(x + hu) usando (1.1) quando x = (0, 0), h = 0.1 e u =

(u1, u2).



Figura 1.6: Gráficos de funções f(x, y) e suas curvas de ńıvel.

14. Considere o mapa de curvas de ńıvel de temperatura na Figura 1.5. Se você estiver em Braśılia,

em que direção você deve mover-se para dimininuir ao máximo a temperatura? Se T = T (x, y) é a

função temperatura como função da localização no mapa, qual é o gradiente ∇T (xB, yB) na posição

(xB, yB) correspondente a Braśılia. O que acontece com a temperatura se fizermos um pequeno

deslocamento (xB + s, yB + t) movendo-nos perpendicularmente ao gradiente ∇T . Isto é, (s, t) é

um pequeno vetor perpendicular ao vetor ∇T (xB, yB).

15. A Figura 1.6 mostra duas funções f(x, y) com suas curvas de ńıvel. Identifique os pontos no plano

onde o vetor gradiente ∇f(x, y) é o vetor zero. De forma aproximada, identifique também alguns

pontos em que este vetor terá comprimento máximo.

16. Expansão de Taylor multivariada de primeira ordem. Seja

f : Rn −→ R
x −→ f(x)

uma função que mapeia vetores x ∈ Rn em escalares f(x). Fixe um ponto de referência x0 =

(x10, . . . , xn0). Podemos obter uma aproximação para o valor de x se x é um ponto no entorno de

x0. Esta aproximação é uma forma polinomial envolvendo as coordenadas de x. A aproximação de

primeira ordem é dada por:

f(x) ≈ f(x0) + (∇f(x0))′ • (x− x0) (1.2)

= f(x0) +

[
∂f

∂x1
, . . . ,

∂f

∂xn

]
(x0) •


x1 − x10

x2 − x20

...

xn − xn0

 (1.3)

onde x′ é o vetor x transposto (um vetor-linha, 1 × n). Observe que o vetor gradiente ∇f(x0) é

avaliado no ponto de referência x0 = (x10, . . . , xn0).

• Considere a função f(x, y) = x2 + exp(xy) e obtenha a aproximação de Taylor de primeira

ordem usando x0 = (1, 1). Repita usando x0 = (−1, 1).

• Verifique que nos dois casos acima a aproximação de Taylor de primeira ordem é um plano

que passa pelo ponto (x 0, f(x0) (isto é, o plano encosta na superf́ıcie f(x) no ponto x0) e que

possui inclinações ao longos dos eixos dadas pelas derivadas parciais (availadas em x0). Este

é o plano tangente à superf́ıcie passando pelo ponto (x 0, f(x0).

• Considere agora uma função f(x) = f(x1, x2, . . . , xn) =
√
x1x2 . . . xn + cos(x1 + . . . + xn) e

obtenha a aproximação de Taylor de primeira ordem usando x0 = (1, 1, . . . , 1).



17. Segunda ordem na expansão de Taylor multivariada. Seja

f : Rn −→ R
x −→ f(x)

uma função que mapeia vetores x ∈ Rn em escalares f(x). Fixe um ponto de referência x0 =

(x10, . . . , xn0). Defina a matriz hessiana n× n num ponto x0 como sendo

Hf(x0) =


∂2f
∂x21

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x22

. . . ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂x2n

. . . ∂2f
∂x2n

 (1.4)

onde cada uma das derivadas parciais de segunda ordem ∂2f/∂xi∂xj é avaliada no ponto x0.

Queremos uma aproximação para o valor de f(x) onde x está em torno do ponto de referência x0.

Seja d = (d1, d2, . . . , dn) = x− x0 = (x1 − x01, x2 − x02, . . . , xn − x0n). A aproximação de segunda

ordem para x é

f(x) ≈ f(x0) + (∇f(x0))′ • (x− x0) +
1

2
(x− x0)′ •Hf(x0) • (x− x0) (1.5)

= f(x0) +
n∑
i=1

∂f

∂x1
(x0) di +

1

2

∑
ij

∂2f

∂xi∂xj
(x0) didj (1.6)

Considere a função f(x, y) definida para (x, y) ∈ R2 de forma que f(x, y) = x exp(−(x2 + y2)/2).

• Obtenha a matriz hessiana em dois casos: primeiro, usando x0 = (1, 1) e depois, usando

x0 = (0, 0).

• Obtenha a aproximação de segunda ordem de Taylor para f(x, y) com (x, y) em torno do ponto

(1, 1).

• Obtenha a aproximação usando x0 = (0, 0).

18. O conceito de derivada pode ser estendido para funções f de Rn em Rm. Neste caso, a derivada é

uma matriz m× n. Seja

f : Rn −→ Rm

x −→ f(x) = (f1(x), . . . , fm(x))

onde cada componente fj(x) é uma função de Rn para R. A derivada Df(x) no ponto de re-

ferênciax0 é dado por ∂fi/∂xj avaliado em x0.

• Suponha que f : R2 −→ R3 é dada por

f(x) = f(x, y) = (f1(x, y), f2(x, y)) = (x2 cos(y), sin(xy), exp(x+ y))

Obtenha a derivada desta função no ponto x0 = (1, 2).

• Seja f(x) = (x, 2x2, 3x3) onde x ∈ R. Obtenha a derivada de f em x = −1.

• A matriz Df(x) pode ser vista como composta dos m vetores gradientes ∇fi associados com

as funções escalares fi(x). Explique esta afirmativa. Isto é, qual a relação entre a matriz

Df(x) e os m vetores gradientes ∇fi?



• Seja f(x) = Ax onde A é uma matriz m×n e x é um vetor-coluna n×1. Obtenha a derivada

Df(x). Ela depende do ponto x?

• Seja f(x) = x′Ax onde A é uma matriz quadrada n × n, x é um vetor-coluna n × 1 e x′

significa a transposição de x. Obtenha a derivada Df(x). Ela depende do ponto x? O que é

esta derivada se A for uma matriz simétrica? (RESP: Df(x) = x′(A + A′); sim, depende de

x; no caso simétrico temos Df(x) = 2x′A).

19. Toda reta não-vertical no plano pode ser representada por uma equação do seguinte tipo: y =

β0 + β1x onde β0 e β1 são números reais e chamados de coeficientes da reta.

• Esboce no plano as seguintes retas: y = 2 + x; y = −2− 2x; y = 2x; e y = 4 + 0x (= 4).

• Qual a interpretação geométrica dos coeficientes β0 e β1?

• Por quê uma reta vertical não pode ser representada pela expressão y = β0 + β1x? Se você

quiser representar algebricamente uma reta vertical, como poderia fazê-lo?

• Reparametrização: Considere a seguinte representação y = β0 + β1(x − 1). Ela continua a

representar uma reta? Qual a interpretação dos coeficientes β0 e β1 nesta representação?

• Suponha que uma reta no plano seja escrita como y = β0 + β1x. Queremos que esta mesma

reta seja representada pela expressão = a0 + a1(x − 1). Qual a relação entre os coeficientes

(a0, a1) e (β0, β1)?

20. Um ponto em R3 é representado como (x1, x2, y). Considere a expressão y = β0 + β1x1 + β2x2

onde β0, β1 e β2 são constantes. Por exemplo, escolhendo β0 = 2, β1 = 0.1 e β2 = −1.7, temos

y = 2 + 0.1x1 − 1.7x2. O conjunto dos pontos (x1, x2, y) que satisfazem esta expressão formam um

objeto geométrico no espaço. Que objeto é este? O que representam os coeficientes β0, β1 e β2 em

termos deste objeto geométrico?



Caṕıtulo 2

Probabilidade Básica

2.1 Espaços de Probabilidade

1. O experimento aleatório consiste em lançar um mesmo dado independentemente duas vezes em

sequência e observar o resultados nas faces faces. Escreva uma representação para o espaço amostral

Ω. Identifique os seguintes eventos como subconjuntos de Ω: (a) O primeiro dado possui face maior

que 4; (b) O primeiro dado possui face maior que 3 e o segundo dado possui face maior 4; (c) O

segundo dado possui face maior que 4; (d) A soma das duas faces é igual ou maior que 10; (e) pelo

menos uma das faces é par; (f) as duas faces somadas resultam em número maior ou igual a 13.

Solução: (e): obtenha por complementaridade: todos os elementos de Ω exceto aqueles em que

ambas as faces sejam números ı́mpares. (f) ∅.

2. O experimento aleatório consiste em selecionar um ponto completamente ao acaso do quadrado

unitário Ω = [0, 1]2 do plano euclidiano. A probabilidade de o ponto aleatório venha de uma região

que ocupe metade do quadrado é 1/2. A probabilidade de que venha de uma região que ocupa

1/4 da área de Ω é 1/4. De maneira geral, como Ω possui área total igual a 1, a probabilidade

P(A) de um certo evento A é simplesmente a área determinada pelo evento A. Sejam A = {(x, y) :

x < 1/2 e y < 1/2}, B = {(x, y) : x < 1/4 e y < 1/4}, C = {(x, y) : x < 1/4 OU y < 1/4} e

D = {(1/2, 1/2)} (D é o conjunto formado apenas pelo ponto central). Obtenha: P(A), P(B),

P(Bc), P(C), P(A ∪ C), P(A ∪Bc), P(D), P(A ∩D).

Solução:

• P(A) = (1/2)2 = 1/4; P(B) = (1/4)2 = 1/16;
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• P(Bc) = 1− P(B) = 1− 1/16 = 15/16

• P(C) = 1/4 + 1/4× 3/4 = 7/16

• P(A ∪ C) = P(A) + P(C)− P(A ∩ C) = 1/4 + 7/16− (1/41/2 + 1/41/4) = 8/16

• P(A ∪Bc) = P(Ω) = 1

• P(D) = 0

• P(A ∩D) = P(∅) = 0.

3. Considere o exemplo do micro-mercado com apenas 3 produtos posśıveis: A, B, e C. Obtenha o

evento representando as seguintes situações: (a) levar o produto A, mas não o produto C; (b) levar

o produto A e talvez também o produto C; (c) levar o produto A e também o produto C; (d) não

levar nenhum produto; (e) levar o produto A e não levar nenhum produto; (f) um cliente levar o

produto A em duas compras sucessivas; (g) levar o produto Z; (h) um cliente levar o produto A e

o próximo cliente também levar o produto A.

Solução: (a) E = {A,AB}; (b) E = {A,AB,AC,ABC}; (c) E = {AC,ABC}; (d) E = {0};
(e) E = ∅ (veja que (d) e (e) são diferentes); (f) esta situação não possui representação em Ω.

Os estados do mundo considerados não levam em conta o id do cliente nem o segume no tempo.

Isto implica que não podemos representar essa situação como um evento (subconjunto desse Ω e

portanto não teremos associar uma probabilidade para ele. (g) como no caso anterior, o produto

Z não entrou no conjunto Ω e portanto não temos eventos e nem podemos calcular probabilidades

associadas com Z; (h) a representação Ω não envolve nenhum aspecto temporal, esse evento não

tem representação em Ω.

4. Uma função de probabilidade P satisfaz aos três axiomas de Kolmogorov. Prove as seguintes

propriedades derivadas destes três axiomas:

(P1) P(AC) = 1− P(A)

(P2) 0 ≤ P(A) ≤ 1 para todo evento A ∈ A.

(P3) se A1 ⊂ A2 =⇒ P(A1) ≤ P(A2)

(P4) P (
⋃∞
n=1Ai) ≤

∑∞
n=1 P(Ai)

(P5) P(A ∪B) = P(A) + P(B)− P(A ∩B). Esta propriedade é o caso geral de P(A ∪B)

5. Para medir a reação a certo v́ıdeo postado na web, os comentários sucessivos de usuários são

classificados como positivos (P) ou negativos (N). Isto é feito até que dois comentários positivos

sucessivos ocorram ou quatro comentários sejam postados, aquilo que ocorrer primeiro. Descreva

um espaço amostral Ω para este experimento aleatório.

Solução:

Ω = {PP, NPP, NNPP, PNPP, NNNN, PNNN,
NPNN, NNPN, NNNP, PNPN, NPNP, PNNP}



6. Um experimento A/B numa página da Web tenta inferir se uma mudança de layout na página leva

a um maior número de clicks num certo anúncio. Um número r de clientes acessando a página é

acompanhado. No primeiro experimento, cada cliente é acompanhado por até 2 minutos ao fim dos

quais passa-se a acomapnhar o próximo cliente. Assim, os r clientes são sequencialmente com o

sistema monitorando apenas um deles de cada vez. O experimento é encerrado quando o primeiro

dos r clientes clica no anúncio (sem verificar o que os demais clientes farão) ou quando chegarmos

ao cliente r sem que nenhum deles tenha clicado no anúncio. Descreva um espaço amostral Ω

para este experimento aleatório. Num segundo experimento, todos r clientes são acompanhados

registrando-se para cada um deles se o anúncio foi clicado ou não. Descreva um espaço amostral Ω

para este segundo experimento aleatório.

Solução: Representando por C um clique e por N um não-clique, temos:

Ω = {C, NC, NNC, NNNC, . . . , N . . .N︸ ︷︷ ︸
r−1 termos

C, N . . .NN︸ ︷︷ ︸
r termos

}.

No segundo experimento, temos

Ω = {(a1, a2, . . . , ar) : ai = N ou C para i = 1, . . . r}

7. Num experimento de HCI, cada usuário deve ordenar suas preferências com relação a quatro objetos

rotulados como a, b, c e d. Descreva um espaço amostral Ω para este experimento aleatório consi-

derando um único usuário. Considere os eventos A e B definidos da seguinte forma: A representa

os resultados em que a está entre as duas primeiras posições na ordenação. O evento B significa

que b foi colocado numa posição par. Mostre o que são os elementos ω ∈ Ω que representam A, B,

A ∩B e A ∪B.

Solução: Ω é o conjunto de todas as 4! permutações da 4-upla abcd. A é o subconjunto da

2× 3! 4-uplas em que a está na primeira ou segunda posição. B é o subconjunto da 2× 3! 4-uplas

em que b está na segunda ou na quarta posição. A ∩ B = {cadb, dacb, abcd, abdc, acdb, adcb} e

A ∪B = {axxx, xaxx, xbxx, xxxb} onde x representa um dos outros śımbolos.

8. Um lote contém itens com pesos iguais a 5, 10, 15, . . . , 50 quilos. Suponha que pelo menos dois itens

de cada peso são encontrados no lote. Dois itens são escolhidos do lote. Denote por X denota o

peso do primeiro item escolhido e Y o peso do segundo item. Portanto o par de números (X,Y )

representa um único resultado do experimento. Usando o plano euclidiano, descreva um espaço de

amostragem e os seguintes eventos: (a) A = {(x, y) : x = y} (b) B = {(x, y) : x < y} (c) o segundo

item é duas vezes mais pesado que o primeiro item. (d) o primeiro item pesa 10 quilos a menos do

que o segundo item. (e) O peso médio dos dois itens é superior a 40 quilos.

Solução: (a) A = {(5, 5), (10, 10), . . . , (50, 50)}
(b) B = {(5, 10), (5, 15), . . . , (5, 50), (10, 15), . . . , (10, 50), . . . , (45, 50)}
(c) C = {(5, 10), (10, 20), (15, 30), (20, 40), (25, 50)}
(d) D = {(5, 15), (10, 20), (15, 25), (20, 30), (25, 35), (30, 40), (35, 35), (40, 50)}
(e) E = {(50, 50), (50, 45), (45, 50), (50, 40), (40, 50), (45, 45), (45, 40)}



Figura 2.1: Espaço amostral Ω e eventos (a) - (e) para problema 9.

9. Uma variável binária inicia-se com o valor F . Ela recebe o valor T (true) em algum momento

aleatório X no intervalo de tempo entre 0 e 1. Em algum momento Y posterior e antes do tempo

t = 1, ela volta a ficar com o valor F (false). O resultado do experimento é o par (X,Y ). Descreva

um espaço amostral Ω para este experimento aleatório. Descreva e marque no plano os seguintes

eventos: (a) A variável recebe T antes do tempo 0.5. (b) A variável possui o valor T = TRUE por

um peŕıodo de tempo menor ou igual a 0.1 (c) A variável tem valor T no tempo z onde z é algum

instante fixo no intervalor [0, 1]. (d) A variável torna-se T em um tempo z1 e volta a ser F antes

de z2 (com 0 < z1 < z2 < 1). (e) A variável possui o valor T por um tempo pelo menos duas vezes

mais longo que com o valor F .

Solução: A Figura 2.1 mostra em vermelho o espaço amostral Ω e os eventos das letras (a) a (e).

O código R para as figuras está abaixo:

plotaux = function()

plot(c(0,1), c(0,1), type="n", xlab="X", ylab="Y");

polygon(c(0,0,1),c(0,1,1))

par(mfrow=c(2,3), pty="s")

plotaux(); polygon(c(0,0,1), c(0,1,1), col="red")

plotaux(); polygon(c(0,0.5,0.5,0), c(0,0.5,1,1), col="red")

plotaux(); polygon(c(0,0,0.9,1),c(0,0.1,1,1),col="red")

plotaux(); polygon(c(0,0,1), c(0,1,1))

segments(0.7, 0.7, 0.7, 1, col="red", lwd=2)

plotaux(); polygon(c(0,0.4,0.4,0),c(0.7,0.7,1,1),col="red")



plotaux(); polygon(c(0, 1/3, 0),c(2/3,1,1),col="red")

Eu usei z = 0.7 em (c) e z1 = 0.4 e z2 = 0.7 em (d). Para a letra (e), queremos que o tempo total

com valor F (que é x+ (1− y)) seja pelo menos duas vezes maior que o tempo com o valor T (que

é y − x). Assim, queremos y − x > 2(x+ 1− y), o que implica em y > 2/3 + x.

10. Numa rede social, um indiv́ıduo possui 10 links sendo 4 deles homens e 6 mulheres. Um proce-

dimento de amostragem está coletando dados da rede e extrai um dos links completamente ao

acaso verificando que é mulher. Se um segundo link, diferente do primeiro, é extráıdo, qual a

probabilidade de que seja mulher?

Solução: Após extrair um link mulher, restam 9 links, sendo 5 deles de mulheres. Portanto a

probabilidade é 5/9.

11. Em cada linha da tabela abaixo temos algumas atribuições de probabilidade para um espaço amos-

tral Ω composto por cinco elementos. Diga quais delas são atribuições válidas.

ω1 ω2 ω3 ω4 ω5

A1 0.3 0.2 −0.1 0.4 0.2

A2 0.1 0.2 0.1 0.4 0.2

A3 1.0 1.2 1.0 1.2 1.0

A4 0.0 0.0 0.0 1.0 0.0

A5 0.2 0.2 0.2 0.2 0.2

A6 0.1 0.2 0.3 0.4 0.2

A7 0.0 0.0 0.5 0.0 0.5

A8 0 0 0 0 0.9999

Solução: As linhas A1, A3, A6, A8 não são atribuições válidas.

12. Uma tarefa é repetida até que o primeiro sucesso seja registrado. O espaço amostral é formado por

Ω = {1, 2, 3, . . .}, o conjunto dos inteiros não-nulos e positivos representando o número de tentativas

até que o primeiro sucesso ocorra. Sugere-se que a chance do primeiro sucesso ocorrer na k-ésima

tentativa seja dada por P(k) de acordo com os posśıveis modelos abaixo. Diga quais são modelos

probabiĺısticos válidos.

(a) P(k) = (0.1)(0.9)k−1 para k ∈ Ω

(b) P(k) = (0.1)(0.9)k para k ∈ Ω

(c) P(k) = (0.9)k−1 para k ∈ Ω

(d) P(1) = 0.73 e P(k) = (0.03)(0.9)k−1 para k ≥ 2

Solução: (a) e (d) são as corretas.

13. Um servidor só pode ter três tipos diferentes de causas de falhas, A, B e C. As causas de falhas

não co-ocorrem, apenas um tipo delas ocorre se existe uma falha. Suponha que A ocorra duas vezes

mais frequentemente que B, senda esta quatro mais frequente que C. Quando ocorre uma flaha,

qual é a probabilidade de que ela seja devida a cada um dos três tipos?



Solução: Como as falhas não ocorrem, se houver uma falha deve ser causada por uma, e apenas

uma delas. Assim, supondo que ocorre uma falha, temos

1 = P(A ∪B ∪ C) = P(A) + P(B) + P(C)

Sabems que P(A) = 2P(B) e que P(B) = 4P(C). Portanto,

1 = 2(4P(C)) + 4P(C) + P(C) = 13P(C) .

Em conclusão, P(C) = 1/13, P(B) = 4/13 e P(A) = 8/13.

14. Suponha que A, B e C sejam eventos tais que P(A) = 1/4, P(B) = 1/4 e P(C) = 1/2. Além disso,

P(A ∩B) = 1/8 e P(A ∩ C) = 1/8. Marque V ou F:

(a) P(A ∪B ∪ C) = 1

(b) P(B ∩ C) = 1/8

(c) P(A ∪B) = 3/8

(d) P(A ∪B ∪ C) < 1

(e) P(C) > P(A ∪B)

(f) P(A ∩B ∩ C) ≤ 1/8

Solução: FFVVVV

Na letra (e), 1/2 = P(C) > 1/4 + 1/4− 1/8 = P(A) + P(B)− P(A ∩ B) = P(A ∪ B). Na letra (f),

P(A ∩B ∩ C) ≤ P(A ∩B) = 1/8.

15. Prove que, para dois eventos A1 e A2 quaisquer, temos que P(A1 ∪A2) ≤ P(A1) +P(A2). A seguir,

talvez usando indução, prove que para quaisquer n eventos A1, A2, . . . , An, temos que

P(A1 ∪A2 ∪ . . . ∪An) ≤ P(A1) + P(A2) + . . .+ P(An) .

Solução: Temos A1 ∪ A2 = A1 ∪ (A2 ∩ Ac1) com A1 e A2 ∩ Ac1 sendo disjuntos (verifique isto).

Assim,

P(A1 ∪A2) = P(A1 ∪ (A2 ∩Ac1)) = P(A1) + P(A2 ∩Ac1) ≤ P(A1) + P(A2).

Por indução, suponha que o resultado valha para n eventos. Então

P(A1 ∪A2 ∪ . . . ∪An︸ ︷︷ ︸
B

∪An+1) ≤ P(B) + (An+1) ≤ P(A1) + P(A2) + . . .+ P(An)︸ ︷︷ ︸
hip. indução

+(An+1)

16. The events A and B in a probability space have probabilities P(A) = 0.55 and P(B) = 0.62.

(a) Why these events can not be mutually exclusive?

(b) What is the probability that the events occur together if they are independent?

(c) What is the probability that at least one of the two events will occur if they are independent?

(d) Suppose that P(B|A) = 0.5 and therefore, that A and B are not independent. What is the

probability that at least one of the two events will occur?



Solução: (a) If they were mutually exclusive, we should have P(A ∪B) = P(A) + P(B) = 0.55 +

0.62 > 1.0. No event can have probability larger than 1.0. (b) It will be the product of their

probabilities: 0.55×0.62. (c) P(A∪B) = P(A)+P(B)−P(A∩B) = 0.55+0.62−0.55×0.62. (d) Again,

we want P(A ∪B) = P(A) + P(B)− P(A ∩B). We are given that 0.5 = P(B|A) = P(A ∩B)/P(A)

and therefore P(A ∩B) = 0.5× 0.62 = 0.31. Hence, P(A ∪B) = 0.55 + 0.62− 0.31.

17. Temos n objetos distintos e o interesse é na ordenação aleatória que um algoritmo produz desses

n objetos. Descreva um espaço amostral Ω para este segundo experimento aleatório. Em seguida,

suponha que uma teoria sugere que o algoritmo produza ordenações completamente ao acaso, todas

com a mesma chance de ocorrer. Se isto for verdade, qual a atribuição de probabilidades que deve

ser feita a cada resultado posśıvel?

Solução: Sejam 1, 2, . . . , n os ı́ndices dos objetos. Em matemática, existem duas maneiras comuns

para representar permutaçãoes, ambas fazendo uso de uma letra grega, tal como σ para representar

cada permutação. A primeira delas é escrever os elementos a serem permutados numa linha, e a

nova ordem na linha debaixo. Por exemplo, se n = 5, uma permutação seria

σ =

(
1 2 3 4 5

2 5 4 1 3

)

A linha debaixo mostra os valores da linha de cima permutados: 25413. Outra notação t́ıpica é usar

uma função bijetiva do conjunto X = {1, 2, . . . , n} no próprio conjunto X. Assim, todo elemento

i ∈ X possui uma imagem σ(i). Sendo a função bijetiva, todo elemento j de X é a imagem de um

único elemento i de X (isto é, para todo j ∈ X existe um único i ∈ X tal que σ(i) = j).

O espaço amostral é composto pelo conjunto de todas as permutações dos n śımbolos em X e isto é

representado por SX . Este conjunto é um grupo, uma estrutura matemática com ricas propriedades

mas que não vai ns interessar aqui.

A atribuição de probabilidade é a mais simples de todas no caso de espaços amostrais finitos:

P(w) = 1/#Ω. Isto é, a probabilidade é constante e igual ao inverso da cardinalidade de Ω.

18. Considere a situação do problema 17 onde os elementos do espaço amostral são constitúıdos pelas

permutações de n objetos distintos. Nem sempre vamos querer atribuir uma probabilidade igual

para todas as permutações posśıveis. Filipe Arcanjo inspirou o artigo Almeida et al. (2019),

intitulado “Random Playlists Smoothly Commuting Between Styles”, onde este problema apareceu.

Filipe tinha uma playlist favorita com um número n muito grande de canções. Ele ouvia esta playlist

todos os dias ao ir e vir entre o trabalho e sua casa. Ele queria uma ordem diferente todos os dias

para não ficar entediado ao ouvir a playlist. Além disso, ele queria que as transições entre músicas

sucessivas fosse suave, sem passar de um estilo musical para outro muito diferente numa única

transição. Este problema pode ser pensado então como o de selecionar ao acaso uma permutação

das canções mas dando maior probabilidade deseleção àquelas fazem uma transição suave. Seja xi
um vetor com caracteŕısticas numéricas que captam aspectos harmônicos, melódicos e de ritmo de

cada canção. Defina uma função de distância entre os pares de canções com base nestes vetores,

d(i, j) = ‖xi − xj‖ ,

tal como a distância euclidiana entre eles. Como isto pode ser usado para determinar uma atribuição

de probabilidade para selecionar e ouvir uma ordenção das canções com a desejada caracteŕıstica

de transição suave entre os pares sucessivos de músicas?



Solução: Seja σ uma permutação dos n śımbolos. O elemento σ ∈ SX onde SX é o conjunto de

todas as permutações dos n śımbolos em X.Então uma possibilidade é

P(σ) =
1

K
exp

(
−β

n∑
i=2

d(σ(i− 1), σ(i))

)
> 0 ,

onde β > 0 é uma constante positiva e K é um fator de normalização, a soma sobre todas as

permutações do fator exponencial do lado direito acima.

19. Temos um conjunto de n śımbolos distintos e queremos escolher k deles aleatoriamente em sequência

de forma que, em qualquer momento, os elementos dispońıveis possuem a mesma probabilidade de

serem selecionados. Por exemplo, considere um conjunto de 4 músicas (a, b, c, d) dos quais queremos

escolher duas delas em sequência. Isto implica que a sequência bd deve ser considerada diferente

da sequência db. Ouvir o mesmo sub-conjunto de canções em diferentes ordens causam impressões

diferentes. Especifique o espaço amostral desse experimento e atribua probabilidades considerando

que todas as sequências de tamanho k dentre n objetos distintos possuem a mesma probabilidade

de serem selecionados.

Solução: Seja S = {1, 2, . . . , n}. O espaço amostral Ω é

Ω = {ω = (i1, . . . , ik); ij ∈ {1, 2, . . . , n} e todos distintos}

Para atribuir probabilidades, precisamos contar o número de maneiras de escolher k objetos dentre

n deles. Pense em preencher cada uma das k posições em sequẽncia. Para a primeira posição temos

n objetos para escolher. Fixado um objeto qualquer nesta primeira posição,podemos escolher o

segundo dentre os n − 1 restantes. Assim, o número de sequẽncias ordenadas de tamanho 2 com

n objetos é n(n − 1) = n!/(n − 2)!. Teremos n − 2 elementos para preencher as duas primeiras.

Assim, temos n(n − 1)(n − 2) sequências ordenadas de 3 posições dentre n objetos. De maneira

geral, teremos

n(n− 1) . . . (n− (k − 1)) =
n!

(n− k)!
.

Assim, P(ω) = 1/#Ω = (n− k)!/n!.

20. Depois do exerćıcio 19 você pode fazer este. Você está selecionando um sub-conjunto de k elementos

a partir de uma conjunto maior com n elementos distintos mas sua ordenação é irrelevante. Só

interessa o sub-conjunto de k elementos selecionados e não uma ordem associada a eles. Não importa

se a seleção tenha sido feita sequencialmente ou se foi tomada como um lote de k elementos tirads

ao mesmo tempo de dentre os n dispońıveis. Obtenha espaço amostral Ω e uma atribuição de

probabilidade tal que P(ω) é um valor constante.

Solução: Se estivéssemos selecionando uma amostra ordenada de k elementos dentre n estaŕıamos

na situação do exerćıcio 19 e neste caso existem n!/(n− k)! resultados posśıveis. Mas a ordem não-

importa e contamos várias vezes o mesmo sub-conjunto mudando sua ordem. Portanto, neste

problema onde a ordem nãoimporta o número anterior n!/(n− k)! deve ser reduzido. Acontece que

cada conjunto não-ordenado de k elementos distintos pode ser ordenado de k! maneiras diferentes.

Isto é,

# seq ordenadas = # seq não-ordenadas × k!

n!

(n− k)!
= # seq não-ordenadas × k!



Esta contagem aparece tantas vezes em matemática que acabarecebendo um śımbolo e nome espe-

cial, o coeficiente binomial: (
n

k

)
=

n!

k! (n− k)!

Portanto, se w é um dos subconjuntos de tamanho k dentre n elementos temos

P(ω) =
(n− k)! k!

n!
=

1(
n

k

)

21. Suponha que os três d́ıgitos l, 2 e 3 sejam escritos em ordem aleatóriade forma que toda permutação

tem a mesma chance de ser escolhida. (a) Qual é a probabilidade de que pelo menos um dos d́ıgitos

ocupe seu lugar natural? Isto é, qual a probabilidade de que 1 ocupe a primeira posição ou que

2 ocupe a segunda ou que 3 ocupe a terceira posição? Pode ser mais fácil obter a probabilidade

do evento cmplementar e mais tarde subtrair de 1 esta probabilidade encontrada.(b) Repita esta

análise com os d́ıgitos 1, 2, 3 e 4. (c) Procure derivar uma fórmula recursiva para obter o resultado

para os d́ıgitos 1, 2, 3, . . . , n em função dos resultados para n− 1, n2, . . ..

Solução: (a) Temos Ω = SX onde X = {1, 2, 3} (conjunto das permutações de elementos de X)

e P(ω) = 1/3! = 1/6. Seja A3 o evento em que nenhum dos três d́ıgitos ocupa seu lugar natural.

Isto significa que A3 = {(2, 3, 1), (3, 1, 2)} e portanto P(A) = 2/6 = 1/3 e a probabilidade desejada

é 1− P(A) = 2/3. Vamos chamar de D3 = #A3 = 2, a cardinalidade de A3.

(b) Temos Ω = SX onde X = {1, 2, 3, 4} e P(ω) = 1/4! = 1/24. Vamos agora obter A4, o conjunto

das permutações que atendem o critério de não possuirem d́ıgitos em suas posições naturais. A

simples enumeração de todas as 16 permutações posśıveis permite selecionar aquelas nove que são

as válidas: A4 = {4312, 2413, 2341, 4123, 3421, 3142, 2143, 3412, 4321}. Seis delas podem ser obtidas

a partir de A3. Cada uma das duas permutações em A3 gera 3 novas configurações em A4. Considere

inicialmente a permutação 2 3 1 ∈ A3. Precisamos introduzir uma posição adicional a ser ocupada

pelo d́ıgito 4. Coloque inicialmente esta posição no final da sequência: 2 3 1 4. Esta sequência não

é válida pois 4 ocupa sua posição natural. Entretanto, se trocarmos as posições desse d́ıgito 4 com

qualquer um dos outros d́ıgitos na sequência teremos uma permutação válida. De fato, trocando os

d́ıgitos da 1a. posição com a 4a. temos 4 3 1 2. Trocando a 2a e a 4a, temos 2 4 1 3 e trocando a

3a. e a 4a. temos 2 3 4 1. Em seguida, usando o outro elemento de A3 e completando a 4a. posição

com o d́ıgito 4, 3 1 2 4, basta trocar o d́ıgito 4 com cada um das três posições anteriores obtendo:

4 1 2 3 ao trocar a 1a. e a 4a., 3 4 2 1 ao trocar a 2a. e a 4a., 3 1 4 2 ao trocar a 3a. e a 4a.

Para completar A4 faltam as permutações 4321, 3412, 2143. Elas são obtidas da seguite forma.

Deixe 1 na sua posição natural e os demais d́ıgitos fora das posições naturais: 1 3 2 ?. Coloque 1

na 4a. posição e introduza 4 na 1a. obtendo: 4 3 2 1. Começando com 3 2 1 ? troque o 2 com 4

criando 3 4 1 2. Finalmente, começando com 2 1 3 ? troque o 3 com 4 criando 2 1 4 3.

A probabilidade de que pelo menos um dos d́ıgitos ocupe seu lugar natural é então 1− 9/24 = 5/8.

(c) Para generalizar, seja Dn−1 o número de elementos em An−1. Acrescente uma posição no final

para o d́ıgito n e troque cada um dos n − 1 d́ıgitos nos elementos de A3 com n. Isto resulta em

(n− 1)Dn−1 elements válidos para An. Os elementos válidos restantes são obtidos usando os Dn−2

elementos e trocando o d́ıgito n com cada um dos n − 1 em suas posições naturais smando então

(n− 1)C2 elementos válidos em An. Portanto, terminamos com Dn = (n− 1)(Dn−1 +Dn−2).



Este problema é chamado de derangement (desarranjo). Uma análise mais aprofundada mostra

que a probabilidade de não haver coincidência com n d́ıgitos converge muito rapidamente para

1/e ≈ 0.37 à medida que n aumenta. O śımbolo e designa o número de Euler, e ≈ 2.71828. Com

n = 5 já temos a probabilidade igual a 0.37 quando arrendondamos para duas casas decimais.

Assim, curiosamente, a chance de desarranjo não depende de n. Seja n grande ou pequeno (maior

que 5), a probabilidade é praticamente constante e igual a 1/e. Talvez intuitivamente esperássemos

que, com n bem grande, alguma coincidência fosse acontecer. Isto não é verdade. Este problema

aparece sob várias versões diferentes. Por exemplo, n indiv́ıduos entregam seus chapéus (o problema

é antigo) na entrada e, na sáıda, os chapéus são devolvidos de forma completamente aleatória. Qual

a probabilidade de que ninguém tenha recebido seu próprio chapéu?

22. Sejam Ω = [0, 1] e f(ω) uma densidade de probabilidade. Marque V ou F nas afirmações abaixo:

• P ([a, b]) = b− a se [a, b] ⊂ [0, 1].

• Como a integral de f(ω) sobre [0, 1] é igual a 1 temos f(ω) ≤ 1 para todo ω ∈ [0, 1].

• Podemos ter f(ω) > 1 para todo ω ∈ [0, 1].

• f(x) pode ser descont́ınua.

• f(x) não pode ter dois ou mais pontos de máximo.

• f(x) = 2x é uma densidade válida.

• f(x) = 12(x− 0.5)2 é uma densidade válida.

• Não podemos ter f(x) → ∞ quando x → 1 porquê a densidade deve integrar 1 no intervalo

[0, 1].

Solução: V F F V F V V F

23. Considere uma sequência infinita de lançamentos sucessivos de uma moeda. Apresente uma repre-

sentação Ω para os resultados posśıveis desse experimento aletório conceitual. Nessa representação,

diga quais são os subconjuntos associados com os seguinte eventos: (a) o número de lançamentos

necessários até o aparecimento da primeira cara é maior que 2; (b) os cinco primeiros lançamentos

são cara; (c) o número total de caras é finito; (d) a última cara da sequência aparece antes do

lançamento 500;

Solução: Ω = {(a1, a2, . . .) : ai ∈ {0, 1}} = {0, 1}∞. Nesta representação, ai é o resultado do

i-ésimo lançamento e o valor ai = 0 significa que saiu coroa, e o valor 1 significa cara. (a) E =

{ω ∈ Ω : a1 + a2 = 0}; (b) E = {ω ∈ Ω : a1 + a2 + . . .+ a5 = 5}; (c) E = {ω ∈ Ω :
∑

i ai <∞}; (d)

E = {ω ∈ Ω : ai = 0 ∀ i ≥ 500}.

24. Uma moeda honesta é lançada repetidamente até observarmos a primeira coroa. Apresente uma

representação Ω para os resultados posśıveis desse experimento aletório conceitual e diga qual a

probabilidade de cada elemento ω ∈ Ω. A seguir, obtenha as probabilidades da ocorrência dos

seguintes eventos: (a) a primeira coroa aparece num lançamento par. (b) a primeira coroa aparece

num lançamento ı́mpar. (c) a primeira coroa aparece depois do terceiro lançamento.



Solução: Ω = {1, 01, 001, 0001, 00001, . . .}. Nesta representação, 0 siginifca cara e 1 representa

coroa. Para ω ∈ Ω temos P(ω) = 1/2n onde n é o comprimento do string ω. (a)
∑∞

k=1 1/22k =

1/4+1/42 +1/46 + . . . = 1/4 1
1−1/4 = 1/3. (b) Como o primeiro lançamento de coroa tem de ser par

ou ı́mpar e não pode ser os dois ao mesmo tempo, esse evento é o complementar do evento em (a), o

qual tem probabilidade 1/3. Assim, este evento possui probabilidade 1−1/3 = 2/3. (c) Novamente,

usando a ideia de evento complementar, a probabilidade de que a primeira coroa não apareça

depois do terceiro lançamento é a probabilidade de que ela apareça no primeiro, segundo ou terceiro

lançamentos e essas realizações são disjuntas. Assim, a probabilidade é 1−(1/4+1/42+1/43) = 0.67.

25. Esta questão foi feita no Quora, https: // bit. ly/ 2FsRLHs . É posśıvel gerar um triângulo

aleatório, uniformemente escolhido de todas as posśıveis formas triangulares? Isto é, como gerar

triângulos de forma que nenhum deles tenha mais chance de ser selecionado que nenhum outro.

Solução: Esta solução é a resposta dada por Alon Amit https://www.quora.com/profile/

Alon-Amit no Quora (ver link acima). Yes.

The most reasonable interpretation of “possible triangle shapes” is “triangles up to similarity”.

Similar triangles have the same “shape”, while non-similar ones don’t.

(If you wish to also include the size of the triangle then the answer becomes No. It also doesn’t seem

reasonable to interpret the question in this way.) Similarly classes of triangles are determined by

the angles, and the angles are numbers between 0 and π. To choose a random triangle uniformly,

we need to uniformly pick three angles α, β, γ with α+β+ γ = π. This can be done in many ways,

but here’s a very simple and concrete one.

In order to ensure we aren’t skewing and double-counting, we’ll force the angles to be ordered

α ≥ β ≥ γ. This isn’t strictly necessary, but it’s easier to visualize the space of options.

We don’t need to pick γ: it’s simply π − α− β. So we just need to pick α and β, ensuring that:

0 < β ≤ α < π

β ≤ π − α ,

to ensure that γ ≥ 0

π − α ≤ 2β ,

to ensure that γ ≤ β.

26. Therefore, the space of allowed pairs (α, β) looks like the (first triangle in the left hand side of

Figure 2.2). Any point inside the red region corresponds to a legal pair (α, β), where α is the

x-coordinate and β is the y-coordinate. The third angle, γ, is of course π − α− β.

Don’t worry about the fact that some inequalities are closed and some open. We’re sampling from

a continuum, and the edges have probability (measure) 0. Specifically, some of the points marked

in this diagram don’t correspond to actual triangle (which ones do?)

How do you sample inside such a polygon? There are many methods, but perhaps the easiest one

is to randomly pick a point inside the square containing our region and reject it if it falls outside

the polygon.

In this view, it’s easy to answer questions like: what is the probability that a random triangle

is acute? Given our approach to defining the sample space, the answer is 1/4, as you can easily

discover (ver o lado direito da Figura 2.2).



Figura 2.2: Um espaço amostral para selecionar triângulos aleatórios com ditribuiçã uniforme. A partir

desse espaço, podemos responder a questões tais como: what is the probability that a random triangle is

acute? É a proporção da área hachurada em relação ao triângulo Ω.

There are many other methods to choose “random triangles”, and they usually lead to different

probability measures on the space of triangles. Our approach focuses on uniform sampling from

the space of all possible combinations of angles.

27. Seja [0, 1]2 o quadrado de área unitária no plano. Queremos selecionar aleatoriamente sub-quadrados

da forma [0, X]2 dentro de [0, 1]2. É claro que o problem se resume a selecionar o lado X aleatori-

amente. Entretanto, queremos selecionar de forma que a área do quadrado tenha uma distribuição

uniforme sobre o conjunto de áreas posśıveis. Isto é, seja Q = X2 a área do quadrado selecionado

de alguma forma. Temos Q ∈ [0, 1]. Queremos que P(Q ∈ (a, b)) = b − a para 0 ≤ a < b ≤ 1.

Por exemplo, queremos selecionar quadrados de forma que P(Q < 1/2) = P(Q > 1/2) e que

P(Q < 1/4) = P(Q > 3/4) = P(Q ∈ (1/4, 1/2).

Alguém sugere uma maneira simples: selecione o lado X ∈ [0, 1] com distribuição uniforme. Por

exemplo, usando R, use runif(1). Mostre que isto não gera quadrados com distribuição uniforme

(os quadrados gerados tenderão a ser pequenos). (DICA: Mostre que P(Q < 1/2) 6= P(Q > 1/2)).

DESAFIO EXTRA: Procure descobrir com que densidade você deveria selecionar X de forma que

os quadrados tenham área escolhida uniformemente em [0, 1].

Solução: Temos

P(Q < 1/2) = P(X2 < 1/2) = P(X < 1/
√

2) = 1/
√

2 = 0.71

enquanto que

P(Q > 1/2) = P(X2 > 1/2) = P(X > 1/
√

2) = 1− 1/
√

2 = 0.29

Parece então que devemos selecionar os X pequenos (digamos, menores que 1/2) com menos chance

do que os X grandes. Como fazer isto? Seja a ∈ [0, 1] um valor qualquer de área para o quadrado

selecionado. Queremos que P(X2 < a) = a para todo a. Isto é, queremos P(X <
√
a) = a. Se

selecionamos o lado X com a densidade f(x), queremos então que

a = P(X <
√
a) =

∫ a

0
f(x)dx

Vamos dar um chute buscando uma densidade de forma polinomial: f(x) = cxk. Quais deveriam ser

os valores de c e k, se é que eles existem? Substituindo esta expressão hipótetica para a densidade,

devemos ter:

a =

∫ a

0
f(x)dx =

∫ a

0
cxkdx = c

(
√
a)k+1

k + 1



Como isto deve valer para todo a, temos de ter os expoentes de a iguais: 1 = (k + 1)/2, o que

implica que k = 1. Assim, o problema se reduz a ter a = ca/(1 + 1) para todo a, o que implica

que c = 2. De fato, f(x) = 2x é uma desnidade válida. Além disso, se você calcular mathbbP (Q <

a) = P(X <
√
a), vocẽ vai encontrar esta probabilidade igual a a, como desejado.

2.2 Probabilidade Condicional e Independência

1. Se A ⊂ B temos P(B|A) = 1 ≥ P(B). Assim, a ocorrência de A aumenta a probabilidade de B

para seu valor máximo posśıvel, que é 1. Temos certeza que B ocorreu pois A é parte de B. E o

contrário? Mostre que, se B ⊂ A, podemos concluir que P(B|A) ≥ P(B). Isto é, se B é parte de A,

saber que A ocorreu tende a aumentar a chance de B ocorrer. Intuitivamente, se B for uma grande

parte de A devemos ter P(B|A) ≈ 1.

2. No momento do diagnóstico de um câncer de estômago para um paciente qualquer, definimos o

evento B como sendo o evento em que o paciente tem pelo menos mais 1 ano de vida. Suponha

que P(B) = 0.70. Seja A o evento em que um paciente de câncer de estômago tenha uma autópsia

confirmando que o tumor é benigno. Imaginamos que P(B|A) seja maior que 0.70. Explique como as

probabilidades P(B) e P(B|A) poderiam ser estimadas com base numa grande amostra de pacientes

de câncer de estômago. Que frequências relativas você usaria para estimá-las?

3. Um ponto aleatório (x, y) é escolhido completamente ao acaso no disco de raio unitário centrado

na origem. Temos Ω = {(x, y) ∈ R2 : x2 + y2 ≤ 1} e a probabilidade de um evento E ⊂ Ω é dada

por P(E) = ( área de E)/( área do ćırculo ) = |E|/π. Seja A o evento “distância entre o ponto

escolhido e a origem é menor que 1/2” e B o evento “a coordenada x do ponto escolhido é maior

que y”. Mostre que os eventos A e B são independentes. Veja que não é óbvio que isto seja verdade,

precisamos verificar matematicamente que a definição de independência é válida neste exemplo.

4. Marque V ou F nas afirmações abaixo:

• Se A ∩B = ∅ então A e B são eventos independentes.

• Se A ⊂ B então A e B são eventos independentes.

• Se P(B|A) = P(B) dizemos que B é independente de A. A ordem dos eventos não importa

pois isto implica que P(A|B) = P(A) e portanto que B também é independente de A.

• P(B|A) > P(B) se, e somente se, P(A ∩B) > P(B)× P(A).

5. Mostre que, se P(A) = 0, então A é independente de qualquer outro evento B. Isto faz sentido

intuitivamente?

6. Um evento A é independente de si mesmo se, e somente se, P(A) = 0 ou P(A) = 1. Prove isto em

uma linha.

7. Se A e B são independentes então A e Bc também são independentes (e também Ac e B, e ainda

Ac e Bc). Prove isto usando que A = (A ∩ Bc) ∪ (A ∩ B). Aproveite e responda: A e Ac são

independentes?

8. Se A,B,C são eventos mutuamente independentes, mostre que C é independente de A ∩ B, de

A ∩Bc, de Ac ∩Bc. Isto é, mostre que, por exemplo, P(A ∩Bc ∩ C) = P(A)P(Bc)P(C), etc.

9. Usando o resultado acima, mostre que, se A,B,C são eventos mutuamente independentes, C é

independente de A ∪B. Dica: escreva A ∪B como uma interseção de conjuntos.



10. Sabemos que P(B|A) pode ter uma valor muito diferente de P(A|B). Entretanto, existe uma

amrração entre estes valores. Mostre que, se B é um evento 5 vezes mais provável que outro evento

A, então P(B|A) também é 5 vezes maior que P(A|B). De maneira geral, mostre que

P(B|A)

P(A|B)
=

P(B)

P(A)

11. Responda V ou F no contexto de testes de diagnóstico do v́ırus HIV:

• Sensitividade é a probabilidade de que um indiv́ıduo tenha TESTE+ e HIV+.

• Sensitividade é a probabilidade de que um indiv́ıduo com HIV+ tenha resultado TESTE+.

• Sensitividade é a probabilidade de que um indiv́ıduo com resultado TESTE+ seja HIV+.

• Falso positivo ocorre se o teste indica positivo quando o paciente é HIV+

12. Considere dois eventos A e B. Dizemos que B aumenta as chances de A, denotado B ↗ A, se

P(A|B) > P(A), isto é, se saber que B ocorreu aumenta a probabilidade de ocorrer A. Da mesma

forma, dizemos que B diminui as chances de A, denotada B ↘ A, se P(A|B) < P (A). As afirmações

a seguir são verdadeiras ou falsas? Justificar suas respostas.

• Se B ↗ A, então A ↗ B (isto é, a propriedade de um evento aumentar a probabilidade de

outro é simétrica)

• Se B ↗ A e A↗ C, então B ↗ C (isto é, a propriedade de um evento aumentar a probabili-

dade de outro é transitiva)

• Se B ↗ A, então B ↘ Ac (isto é, se B aumenta a chance de A, ele diminui a chance de não-A)

• A↘ A (a propriedade reflexiva vale)

13. Um sistema é chamado “k out of n” se funcionar de forma confiável quando pelo menos k de seus

n componentes estão trabalhando; Em outras palavras, o sistema usa redundância para garan-

tir robustez à falha. Como exemplo, considere uma matriz redundante de discos de baixo custo

(RAID) na qual se usa n discos para armazenar uma coleção de dados. Enquanto pelo menos

k estiverem funcionando, os dados podem ser lidos corretamente. Suponha que os discos falhem

independentemente e que a probabilidade de um falha de disco individual em um peŕıodo de um

ano é p.

• (a) Suponha que temos uma matriz de discos n = 3 que pode sobreviver a uma falha (k = 2). O

que é o número esperado de falhas de disco em um ano? Em função de p, qual é a probabilidade

que toda a matriz continuará a funcionar sem perda de dados após um ano?

• (b) Suponha que temos um array de discos n = 5 que pode sobreviver a duas falhas (k = 3). O

que é número esperado de falhas de disco em um ano? Em função de p, qual é a probabilidade

que toda a matriz continuará a funcionar sem perda de dados após um ano?

• (c) Suponha p = 0.1. Qual é mais confiável (tem maior probabilidade de não perder nenhum

dado em um ano), o RAID da parte (a) ou parte (b)?

• (d) Suponha p = 0.6. Qual é mais confiável, o RAID da parte (a) ou parte (b)?

14. A Figura 2.3 mostra exemplos de falso positivo e falso negativo. Explique estes erros em termos de

probabilidades condicionais P(A|B) explicando o que são os eventos A e B em cada um dos dois

erros.

15. Leia o delicioso artigo Chances are sobre a regra de Bayes do matemático Steven Strogatz no

New York Times: http://opinionator.blogs.nytimes.com/2010/04/25/chances-are/. Ste-

ven é bastante conhecido por seu artigo Collective dynamics of small-world networks na revista



Figura 2.3: Falso positivo e falso negativo

Nature em 1998. Como uma medida do impacto deste artigo, ele foi o mais citado sobre redes

entre 1998 e 2008 considerando todas as disciplinas cient́ıficas, bem como o sexto mais citado -

sobre qualquer tema - em f́ısica. Usando a regra de Bayes, verifique que a resposta de 9% para

P(cancer| mamografia +) é correta.

16. Sejam A, B e C três eventos com probabilidade positiva (isto e’, P(A) > 0, P(B) > 0 e P(C) > 0).

Mostre que

P(A ∩B ∩ C) = P(A|B ∩ C)P(B|C)P(C)

Dica: Faca B ∩ C = D e aplique a definição de probabilidade condicional em P(A ∩D). A seguir,

aplique de novo esta definicao em P(D) = P(B ∩ C)

17. Mostre que P(A ∩B) = P(A)P(B) implica que P(A|B) = P(A).

18. Definimos A ⊥ B|C se P(A|B∩C) = P(A|C). Mostre que A ⊥ B|C se, e somente se, P(A∩B|C) =

P(A|C) P(B|C).

19. Problema de Monty Hall. Leia a descrição deste problema em http://en.wikipedia.org/wiki/

Monty_Hall_problem. Faca um pequeno exerćıcio de simulação em que voce repete o jogo um

grande número de vezes (100 mil, digamos) e testa as duas posśıveis estratégias em cada jogo. Um

jogador SEMPRE troca as portas. O outro nunca troca. Verique qual estratégia é mais eficiente

(quem vence mais frequentemente)

20. Da Wikipedia: http://en.wikipedia.org/wiki/Three_Prisoners_problem. Three prisoners, A,

B and C, are in separate cells and sentenced to death. The governor has selected one of them at

random to be pardoned. The warden knows which one is pardoned, but is not allowed to tell.

Prisoner A begs the warden to let him know the identity of one of the others who is going to be

executed. ”If B is to be pardoned, give me C’s name. If C is to be pardoned, give me B’s name.

And if I’m to be pardoned, flip a coin to decide whether to name B or C.”

The warden tells A that B is to be executed. Prisoner A is pleased because he believes that his

probability of surviving has gone up from 1/3 to 1/2, as it is now between him and C. Prisoner A

secretly tells C the news, who is also pleased, because he reasons that A still has a chance of 1/3

to be the pardoned one, but his chance has gone up to 2/3. What is the correct answer?

Faca um estudo de simulação similar ao do problema anterior para achar a resposta de maneira

emṕıirica.

21. Da wikipedia: http://en.wikipedia.org/wiki/Boy_or_Girl_paradox. Martin Gardner published

one of the earliest variants of the Boy or Girl paradox in Scientific American. He phrased the pa-

radox as follows:



• Mr. Jones has two children. The older child is a girl. What is the probability that both

children are girls?

• Mr. Smith has two children. At least one of them is a boy. What is the probability that both

children are boys?

22. Do Buzz de Terence Tao, https://profiles.google.com/114134834346472219368/buzz/G5DnA8EL7D3.

Another interesting place where one can contrast classical deduction with Bayesian deduction is

with regard to taking converses. In classical logic, if one knows that A implies B, one cannot then

deduce that B implies A. However, in Bayesian probability, if one knows that the presence of A

elevates the probability that B is true, then an observation of B will conversely elevate the prior

probability that A is true, thanks to Bayes’ formula: if P(B|A) > P(B), then P(A|B) > P(A).

Prove este resultado.

23. Usando probabilidade para fazer perguntas delicadas num questionario. Exemplos de perguntas

delicadas para as quais queremos saber a probabilidade de uma resposta SIM:

• Você já fumou baseado alguma vez?

• Você já roubou algum objeto numa loja?

• Você é a favor do aborto? Etc.

O ENTREVISTADO rola um dado bem balanceado e NÃO MOSTRA O RESULTADO AO EN-

TREVISTADOR. Se sair 1, 2 ou 3, o entrevistado responde SIM ou NÃO à pergunta delicada. Se

sair 4, 5 ou 6, ele responde SIM ou NÃO à seguinte pergunta alternativa: o último digito de sua

conta bancária (ou de sua identidade) é par?

Quando o entrevistador ouve a resposta (digamos, SIM), ele não sabe a qual das duas perguntas o

entrevistado está respondendo, se à delicada ou àquela sobre o digito.

Suponha que a proporção de entrevistados respondendo SIM ao entrevistador foi 0.32. A amostra

e’ bastante grande de modo que supomos P(SIM) ≈ 0.32.

Use a lei de probabilidade total para expandir P(SIM) em função dos dois resultados posśıveis do

dado e sugira uma estimativa para a probabilidade P(SIM‖dado = 1, 2, 3).

24. Suppose that the probability of mothers being hypertensive (high blood pressure) is 0.1 and fathers

is 0.2. Find the probability of a child’s parents both being hypertensive, assuming both events are

independent. Note: we would expect these two events to be independent if the primary determinants

of hypertensivity were genetic, however if the primary determinants were environmental then we

might expect the two events not to be independent.

25. Num teste de diagnóstico, a sensibilidade é a probabilidade de que o teste seja positivo dado que o

indiv́ıduo realmente seja doente: P(T + |D+). Um sinônimo muito usado para esta probabilidade

no contexto de recuperação de informação é recall. As afirmativas abaixo foram ouvidas pelo autor

em diferentes ocasiões. Explique cada uma das sentenças.

• “Aumentar muito o recall é praticamente não deixar passar um caso positivo”.

• Uma alta sensibilidade significa uma alta taxa de “verdadeiros positivos”.

• Em recuperação de informação, recall é a proporção de documentos recuperados que são

relevantes. Coloque este problema no arcabouço de sensibilidade (isto é, faça a equivalência

com “teste positivo”, “doente”, etc.)



2.3 Classificação e probabilidade condicional

O pacote rpart do R implementa o algoritmo de árvores de classificação. O objetivo dos próximos

exerćıcios é manusear algumas funções básicas do pacote. Uma excelente (e mais completa) introdução

é a vignette descrevendo o uso do pacote em https://cran.r-project.org/web/packages/rpart/.

Caso você prefira fazer este problema usando Python, pegue o dataset stagec descrito abaixo no site

http://www-eio.upc.edu/~pau/cms/rdata/datasets.html.

1. Comece instalando o pacote rpart e a seguir carregand-o na sessão de trabalho. Peça informação

sobre o dataset stagec:

library(rpart) # carregue o pacote rpart

help(stagec) # info sobre dataset stagec do pacote rpart

Este é um conjunto de dados de 146 pacientes com câncer de próstata em estágio C. Este câncer é

potencialmente curável e um dos procedimentos é a remoção cirúrgica da área afetada. Infelizmente,

para alguns dos pacientes a doença retorna. O principal interesse ao coletar esses dados é descobrir

quais os fatores associados com a recidiva (ou retorno) do câncer.

A principal variável é o status da progressão do câncer, pgstat, uma variável binária indicando se

o câncer retornou ou não ao final do peŕıodo de acompanhamento pós-cirúrgico. A vaŕıavel pgtime

é o tempo que levou para o câncer retornar (nos casos em que pgstat = 1) ou o tempo do último

follow-up ou acompanhamento (nos casos em que pgstat = 0). Esta variável pgtime não será

usada neste exerćıcio.

As demais variáveis no dataset estão potencialmente associadas com o retorno do câncer.

• age: idade, em anos

• eet: se o paciente recebeu terapia endócrina precocemente (=2) ou não (=1).

• g2: porcentagem de células na fase G2 medida por citometria de fluxo (técnica usada para

medir caracterÃsticas f́ısicas e qúımicas de células). A fase G2 é das fases da divisão celular

por mitose e a divisão celular desregulada é a causa central de cânceres.

• grade: grau de desenvolvimento do tumor no momento da cirurgia medido pelo sistema Far-

row.

• gleason: outra medida do grau de desenvolvimento do tumor no momento da cirurgia, pelo

sistema Gleason.

• ploidy: o status plóide do sistema via citometria de fluxo com valores iguais a: diplóide

(células normais) e dois tipos de células com cromossomos irregulares e precursoras de células

canceŕıgenas: tetraplóide e aneuplóide.

Queremos descobrir quais desses fatores afetam a probabilidade de pgstat = 1. Queremos mais

que isto. Queremos descobrir também como eles afetam esta probabilidade. Não um de cada vez,

separadamente, mas todos eles ao mesmo tempo, agindo talvez de forma interativa e em sinergia.

Vamos denotar pgstat por Y . Queremos saber que fatores (ou variáveis) X1, X2, . . . fazem com

que P(Y = 1) 6= P(Y = 1|X1, X2, . . .) e como esta probabilidade é alterada. Para isto, você vai usar

rpart com o código abaixo. O primeiro comando substitui a variável binária e numérica pgstat

por outra com o mesmo nome mas estruturada como um fator. Os seus valores posśıvei são os

rótulos Prog (progressão ou retorno do câncer) e No (sem retorno ao fim do estudo). Em seguida,

fixamos a semente para a geração de números aleatórios. Com indx temos os ı́ndices da amostra

de treinamento (a ser usada para criação da árvore) e de teste (para avaliar a qualidade do modelo

gerado). Finalmente, chamamos a função rpart e plotamos o resultado bem como printamos a

árvore com os detalhes da segmentação recursiva realizada.



Figura 2.4: ll.

stagec$pgstat <- factor(stagec$pgstat, levels = 0:1, labels = c("No", "Prog"))

set.seed(35) # semente aleatoria

ntreino = as.integer(0.8 * nrow(stagec))

indx = sample(1:nrow(stagec), ntreino)

stagec_treino = stagec[indx,] # amostra de treinamento

stagec_teste = stagec[-indx,] # amostra de teste, para avaliar arvore

arv_fit <- rpart(pgstat ~ age + eet + g2 + grade + gleason + ploidy,

data = stagec_treino, method = ’class’) # ajute com rpart

# resultados

printcp(arv_fit) # exibir os resultados

summary(arv_fit) # resumo detalhado das segmentacoes

# plot da arvore

plot(arv_fit)

text(arv_fit, cex=0.7) # textos nos ramos

# um plot mais informativo

plot(arv_fit, uniform=TRUE, main="Cancer de Prostata")

text(arv_fit, use.n=TRUE, all=TRUE, cex=.7)

O resultado gráfico deve ser exatamente a árvore de classificação no lado esquerdo da Figura 2.4.

Com base nesta figura e nos resultados da árvore, responda:

• Quais variáveis foram usadas e quais não foram usadas na árvore obtida pela segmentação

recursiva do rpart?

• Forneça estimativas de probabilidades condicionais para as folhas da árvore. Isto é, forneça

uma estimativa numérica para P(Y = 1|X1, X2, . . .) em cada folha (nó terminal) da árvore

especificando o conjunto de atributos X’s e seus valores em cada nó final.

• V ou F: Como a eet não apareceu na árvore, isto sugere (pois não é uma prova definitiva)

que:

(a) P(Y = 1) = P(Y = 1| eet = yes) = P(Y = 1| eet = no);

(b) Os eventos eet = yes e eet = no são independentes do evento Y = 1.

• Para avaliar a qualidade do modelo gerado, use os dados selecionados em stagec teste (20%

do total) e que não foram usados na construção da árvore. Eles imitam os novos casos que

chegarão no futuro ao usar a árvore. Verifique os erros cometidos com os comandos abaixo:



# Classe predita para cada exemplo do conjunto de teste

fitted.results <- predict(arv_fit, newdata=stagec_teste, type=’class’)

head(fitted.results)

# Tabela de confusao - erros e acertos

table(fitted.results, stagec_teste$pgstat)

Calcule valores aproximados para as seguintes probabilidades: (a) probabilidade de predizer

a classificação correta, chamada de acurácia do método. (resp: 2/3) (b) dado que um caso foi

predito como Prog, a probabilidade de que ele realmente seja Prog, chamada de precisão do

método. (resp: 3/5) (c) dado que um caso realmente é Prog, obter a probabilidade de que ele

seja predito pela árvore como Prog, chamada de revocação (ou recall) do método. (resp: 1/2)

• Com uma amostra de dados pequena como neste exemplo, as árvores são instáveis. Amos-

tras ligeiramente diferentes podem levar a árvores muito distintas. Isto é consequência da

caracteŕıstica gulosa (greedy) do algoritmo e do alto impacto das primeiras segmentações no

restante da árvore. Para verificar isto, refaça a árvore com outra amostra de 80% dos dados

resetando set.seed(12) e repetindo os comandos seguintes. Você deve obter a árvore do lado

direito da Figura 2.4. Compare com a árvore do lado esquerdo. Uma excelente solução para

este problema de instabailidade é usar as florestas aleatórias, uma coleção de árvores baseada

em muitas sub-amostras dos dados originais.

• Para entender melhor por que as árvores são instáveis, use table(stagec$grade, stagec$gleason)

para fazer uma tabela cruzando os valores das variáveis grade e gleason do dataframe original.

Estas duas variáveis são formas diferentes de medir o estágio do mesmo câncer no momento da

cirurgia. Podemos esperar que eles produzam resultados similares de alguma forma. Verifique

que de fato, a “diagonal” da tabela gerada contém a maior parte dos dados da matriz original.

Isto significa que uma das variáveis é capaz de predizer muito bem a outra. Isto também pode

significar que se uma dessas variáveis é escolhida é bem posśıvel que a outra não traga muita

informação adicional e seja descartada pela árvore. Pequenas mudanças nos dados podem

fazer a escolha pender para uma dessas variáveis em detrimento da outra.





Caṕıtulo 3

Variáveis Aleatórias

Esta lista de exerćıcios visa ao aprendizado de algumas das caracteŕısticas das principais distribuições

de probabilidade. Você vai se familiarizar com seus principais aspectos visuais e quantitativos, vai apren-

der a simular estas distribuições no R e a verificar se um conjunto de dados segue uma determinada

distribuição usando o teste qui-quadrado e de Kolmogorov.

Vamos aprender um poucos sobre as seguintes distribuições:

• Discretas: binomial, Poisson, geométrica, Pareto-Zipf

• Cont́ınuas: uniforme, gaussiana (ou normal), log-normal, gama, beta, Pareto.

O R possui um conjunto de funções para trabalhar com as principais distribuições de probabilidade.

Todas operam com uma sintaxe similar. O primeiro caracter do nome da função identifica o que você

quer fazer com ela: gerar números aleatórios, calcular uma probabilidade, uma probabilidade acumulada

ou um quantil. Os caracteres seguinte identificam a distribuição.

Por exemplo, se quisermos trabalhar com a distribuição binomial com n = 10 repetiçẽoes e probabi-

lidade de sucesso θ = 0.15 podemos usar:

• rbinom(13, 20, 0.15): gera um conjunto de 13 inteiros aleatórios, cada um deles seguindo uma

binomial Bin(n = 20, theta = 0.15).

• dbinom(13, 20, 0.15): se X ∼ Bin(20, 015), este comando calcula a função de probabilidade

P(X = 13) = p(13) para as v.a’s discretas. Podemos passar vetores como argumento. Por exemplo,

dbinom(c(10, 11, 12), 20, 0.15) retorna o vetor (P(X = 10),P(X = 11),P(X = 12)).

• pbinom(13, 20, 0.15): Calcula a função de probabilidade acumulada F no ponto 13. Isto é,

calcula F(13) = P(X ≤ 13) onde X ∼ Bin(20, 015).
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• pbinom(0.20, 20, 0.15): Calcula o quantil x associado com a de probabilidade acumulada 0.20.

Isto é, calcula o valor de x tal que F(x) = P(X ≤ x) = 0.20. Como X é uma v.a. discreta que acu-

mula probabilidades aos saltos, a probabilidade acumulada até x pode ser apenas aproximadamente

igual a 0.20.

As funções correspondentes para uma gaussiana são rnorm, dnorm, pnorm, qnorm. Se quisermos

trabalhar com uma gaussiana N(µ, σ2), com valor esperado µ = 10 e sigma = 2:

• rnorm(100, 10, 2): gera um conjunto de 100 valores aleatórios independentes de uma v.a. X ∼
N(10, 22).

• dnorm(11.25, 10, 2): retorna o valor da densidade f(x) de N(10, 2) no ponto x = 11.25. Isto é,

retorna f(11.25). O comando dnorm(c(11.25, 13.15), 10, 2) retona um vetor com os valores

(f(11.25), f(13.15)).

• pnorm(11.25, 10, 2): Calcula a função de probabilidade acumulada no ponto 11.25. Isto é,

calcula F(11.25) = P(X ≤ 11.25) onde X ∼ N(10, 22).

• pnorm(0.20, 10, 2): Calcula o quantil x tal que F(x) = P(X ≤ x) = 0.20. Como X é uma v.a.

cont́ınua que acumula probabilidades continuamente, a probabilidade acumulada até x é exatamente

igual a 0.20.

Para uma Poisson, são as seguintes: rpois, dpois, ppois e qpois. Para a exponencial, temos rexp,

dexp, pexp e qexp. Para conhecer todas as distribuições dispońıveis no R, digite ?distributions ou,

equivalentemente, help(distributions).

3.1 Variáveis aleatórias discretas

1. Seja X ∼ Bin(10, 0.4). Para obter e plotar (veja Figura 3.2) os valores da função de probabilidade

P(X = k) e da função de probabilidade acumulada F(x) uso os seguintes comandos:

Figura 3.1: Função de probabilidade P(X = k) (esquerda) e da função de probabilidade acumulada F(x)

(direita) de uma v.a.binomial Bin(n = 10, θ = 0.40).

x <- 0:10

px <- dbinom(x, 10, 0.40)

par(mfrow=c(1,2)) # janela grafica com uma linha de 2 plots

plot(x, px, type = "h") # para usar linhas verticais at\’{e} os pontos (x,px)

Fx <- pbinom(x, 10, 0.35)

plot(x, Fx, type = "s") # o argumento "s"

• Sua vez agora. Obtenha o gráfico das probabilidades P(X = k) e da função de probabilidade

acumulada F(x) para uma v.a. X ∼ Bin(n = 20, θ = 0.15). Em seguida, responda às questões

abaixo.



• Qual o valor k em que P(X = k) é máxima? Quanto é esta probabilidade máxima?

• VISUALMENTE, obtenha uma faixa de valores (a, b) na qual a probabilidade de X ∈ (a, b)

seja próxima de 1. Procure grosseiramente obter a faixa mais estreita posśıvel.

• O valor (teórico) de E(X) no caso de uma binomial é nθ. Como é o comportamento da função

P(X = k) no entorno deste valor E(X)? Ela tem valores P(X = k) relativamente altos?

• Confirme esta impressão calculando P(a ≤ X ≤ b) usando a função dnorm ou pnorm do R. Por

exemplo, se eu quiser P(5 ≤ X ≤ 8), uso sum(dnorm(5:8, 20, 0.15) ou então pbinom(8,

20, 0.15) - pbinom(5-0.01, 20, 0.15). Porque eu subtraio 0.01 de 5 na chamada da

segunda função?

• Use qbinom para obter o inteiro k tal que F(k) = P(X ≤ k) ≈ 0.95.

• Verifique o valor da probabilidade acumulada exata F(k) obtida com o inteiro acima usando

pbinom.

• Gere 1000 valores aleatórios independentes de X ∼ Bin(n = 20, θ = 0.15). Estes valores

cairam, em sua maioria, na faixa que você escolheu mais acima? Qual a porcentagem de

valores que caiu na faixa que você escolheu?

• Compare os valores das probabilidades P(X = k) para k = 0, . . . 6 e as frequências relativas

destes inteiros nos 100 valores simulados.São parecidos?

2. Este problema é similar ao anterior, usando agora a distribuição de Poisson.

• Obtenha o gráfico das probabilidades P(X = k) e da função de probabilidade acumulada F(x)

para uma v.a. X ∼ Poisson(λ) usando dois valores: λ = 0.73 e λ = 10.

• O valor k em que P(X = k) é máximo é próximo de E(X) = λ?

• Obtenha um intervalo de valores (a, b), o mais curto posśıvel gosseiramente, para o qual P(X ∈
(a, b)) ≈ 1.

• Usando ppois do R, calcule P(a ≤ X ≤ b).

• Gere 200 valores aleatórios independentes de X ∼ Poisson(λ) com os dois valores acima para

λ.

• Compare os valores das probabilidades P(X = k) para k = 0, . . . 6 e as frequências relativas

destes inteiros nos 100 valores simulados.São parecidos?

3. Este problema é similar ao anterior, usando agora a distribuição discreta de Pareto, também cha-

mada de distribuição de Zipf. Ver http://en.wikipedia.org/wiki/Zipf’slaw. A distribuição de

Pareto (discreta ou cont́ınua) não está dispońıvel em R a não ser em alguns pacotes especializados.

Entretanto, não é necessário usar estes pacotes já que ela é facilmente simulada ou calculada. Ve-

remos técnicas de simulação Monte Carlo em breve, então apenas aceite por enquanto o algoritmo

abaixo.

A distribuição discreta de Pareto possui suporte igual a {1, 2, . . . , N} onde N pode ser infinito.

Além de N , ela possui um outro parâmetro, α > 0. A função massa de probabilidade é dada por

P(X = k) =
C

k1+α



onde C é uma constante escolhida para que as probabilidades somem 1. Observe que C é dada por

1

C
=

N∑
k=1

1

k1+α

Se N for um número finito, não existe uma expressão anaĺıtica para esta soma e ela deve ser

calculada somando-se os valores. Se N for infinito, a expressão acima é chamada de função ζ de

Riemann:

ζ(1 + α) =
∞∑
k=1

1

k1+α
=

1

Γ(1 + α)

∫ ∞
0

xα

ex − 1
dx (3.1)

(ver http://en.wikipedia.org/wiki/Riemann_zeta_function).

Para alguns valores espećıficos de α, a função zeta ζ(1 + α) tem valores conhecidos exatamente.

Por exemplo, para α = 1 é posśıvel mostrar que

ζ(2) =
∞∑
k=1

1

k2
= 1 +

1

22
+

1

32
+ . . . =

π2

6
≈ 1.645

Exceto nestes casos particulares, no caso deN =∞, a constante C = 1/ζ(1+α) deve ser aproximada

numericamente somando-se um número grande de termos da série ou calculando numericamente

a integral em (3.1). Por exemplo, para α = 1/2, temos ζ(1 + 1/2) ≈ 2.612, e para α = 2, temos

ζ(1 + 2) ≈ 1.202.

Tendo um valor para a constante C, podemos plotar os valores de P(X = k) e também da função

de probabilidade acumulada F(k) já que

F(k) = P(X ≤ k) =
k∑
i=1

P(X = i) = C
k∑
i=1

1

i1+α
.

• Usando os valores α = 1/2, 1, 2, obtenha em R o gráfico das probabilidades P(X = k) e da

função de probabilidade acumulada F(x) para uma v.a. X ∼ Zipf(α) com N = ∞. Em R,

não chame a constante de integração de c pois este é o nome da função de concatenação de

vetores e, como um defeito do R, ele não avisa que você está sobrepondo uma função-base

crucial. Faça a escala horizontal variar nos inteiros de 1 a 20. Obtenha F(x) usando o comando

cumsum que retorna o vetor de somas acumuladas de um vetor.

• Pelo gráfico, as probabilidades parecem cair rápido, talvez exponencialmente. Mas isto não é

verdade. O comportamento dessa queda quando k aumenta é a principal razão propriedade

que faz com que a distribuição power-law de Pareto (ou Zipf) seja tão importante na prática

da análise de dados. Para entender como as probabilidades diminuem em direçâo a zero a

medida que k cresce, obtenha a raz ao entre valores sucessivos de P(X = k). Isto é, mostre

que
P(X = k + 1)

P(X = k)
=

(
k

k + 1

)1+α

Perceba agora que, quando k cresce, k/(k + 1) é sempre menor que 1 mas cada vez mais

próximo de 1 e portanto

P(X = k + 1) ≈ P(X = k)

se k for bem grande. As duas probabilidades serão pequenas mas quase idênticas. Isto é, a

medida que k cresce, as probabilidades decaem muito lentamente, quase nadaquando kfor bem

grande.

• Quando α > 0 crescer, o que você esperar acontecer ao gerar inteiros Zipf com estes α grandes

em relação à geração com α apenas ligeiramente maior que 1.



• Faa̧a um gráfico dos pontos (log(k), log(P(X = k). O resultado é o que você esperava? Usando

abline(log(C), -(1+alpha)), sobreponha uma reta com intercepto log(C) e inclinaç ao

−(1 + α).

• Chega de análise teórica, vamos simular por MOnte Carlo alguns valores Zipf agora. A função

R abaixo faz isto para você:

rzipf = function(nsim = 1, alpha = 1, Cte = 1/1.645)

{

res = numeric(nsim)

for(i in 1:nsim){

x = -1

k = 1

F = p = Cte

U = runif(1)

while( x == -1){

if(U < F) x = k

else{

p = p * (k/(k+1))^(1+alpha)

F = F + p

k = k+1

}

}

res[i] = x

}

res

}

Por default, a função assume α = 1 e fornece também a constante C. Para gerar nsim = 400

valores com estes argumentos default, basta digitar rzipf(400). Para gerar 400 valores de

uma Zipf com α = 1/2 e com a constante C = 1/2.612 determinada por este valor de α, basta

digitar rzipf(400, 1/2, 1/2.62).

Agora, a tarefa: gere 400 valores de Zipf com α = 1/2, 1, 2 (as constantes estão no texto acima).

Verifique que apesar da maioria dos valores ficar num intervalo limitado, valores extremamente

grandes (relativamente aos demais) são gerados com facilidade. Repita a geração algumas vezes

para observar este efeito. Reporte na lista apenas uma dessas repetições.

4. Verifique se existe algo errado em cada uma das seguintes atribuições de argumentos aos parâmetros

de algumas distribuições de probabilidade:

• Bernoulli(θ = 1.5)

• Bin(12.5, 0.5)

• Bin(25, 0.5, 0.5)

• Poisson(λ = −2)

• Bin(25, 0.03)

• Poisson(λ = 2.5)



Solução: (a): argumento deve ser um número em [0, 1]; (b): primeiro argumento deve ser um

inteiro positivo; (c): requer apenas dois argumentos. (d) λ não pode ser negativo. (e): válido. (f):

válido. Apesar da Poisson colocar massa de probabilidade apenas sobre os inteiros não-negativos,

o seu parâmetro λ pode ter um valor que é um inteiro.

3.2 Variáveis aleatórias cont́ınuas

1. Este problema trata da distribuição gaussiana ou normal, a mais importante distribuição na análise

de dados. Ela é uma v.a. cont́ınua com suporte na reta real R = (−∞,∞) e com densidade de

probabilidade dependendo de dois parâmetros, µ e σ:

f(x) =
1√
2πσ

exp

(
−1

2

(
x− µ
σ

)2
)

Neste exerćıcio você vai se familiarizar com a distribuição gaussiana.

• Divida a tela gráfica 2× 2 e desenhe o gráfico das densidades de probabilidade de uma N(0, 1)

na posição (1, 1) da janela, uma N(2, 1) na posição (1, 2), uma N(0, 4) na posição (2, 1) e uma

N(2, 4) na posição (2, 2).

• Qual o ponto x em que f(x) assume o valor máximo? Este ponto depende deσ? E a altura

f(x) no ponto de máximo, ela depende de σ?

• No caso da gaussiana, o parâmetro σ controla a variação em torno de µ. Para uma N(10, 5)

verifique que aárea debaixo da densidade entre 10− 2×
√

5 e 10 + 2×
√

5 é aproximadamente

igual a 0.95. Use a função pnorm para isto. Este é um resultado geral: no caso de uma

gaussiana, a chance de observar um valor distante mais de 2σ de do valor esperado e central

µ éaproximadamente 0.05.

• Gere 200 valores aleatórios independentes de X ∼ N(µ, σ) com µ e σ escolhidos por você.

Faça um histograma forçando a área toal ser igual a 1 (argumento prob=T) e sobreponha a

curva da densidade gaussiana que você usou. Eles se parecem?

2. Verifique o que está errado em cada uma das seguintes atribuições de argumentso aos parâmetros

de algumas distribuições de probabilidade:

• N(0, 1, 2.5) –¿ deveria ter apenas 2 parametros

• Beta(-2, -2)

• Beta(1,1)= U(0,1)

• N(1, 0) —¿ 2o parametr e’ a variancia, que deve ser ¿ 0

• Gama(a, a - b) onde a=3 e b = 6 —¿ segundo parametro e’ a-b=-3 e deveria ser ¿ 0

3. Um campeonato de futebol tem n times e cada um deles joga duas partidas conta cada um dos

outros n−1 times, uma vez em casa e uma vez fora de casa. Como usual, um time pode ganahar 0,

1 ou 2 pontos ao final de uma partida. Suponha que os resultados dos jogos são todos independentes

uns dos outros e que os times possuam a mesma habilidade de forma que a probabilidade de vencer



qualquer partida é sempre 1/2 para qualquer time. Nesta situação idealizada, qual a distrbuição do

número de pontos X que um time terá ao final do campeonato? Qual é a E(X) e a V(X)? Colocar

gráfico real e verificar se está próximo do real.

4. Em um cassino, os jogadores usam n dados bem balanceados de 6 lados. Se um 6 aparecer em

qualquer um dos dados, o jogador não recebe nada. Se nenhum 6 aparecer, o jogador recebe a soma

(em dólares) dos valores nas faces dos dados. O jogador é livre para escolher n, o número de dados.

a) Derive uma fórmula para o retorno esperado do jogador (o total de dólares ganhos). Traçar este

pagamento para valores de n de 1 a 20. Qual é o menor n que maximiza o retorno esperado? b)

Suponha que o jogador opte por lançar n = 10 dados. Qual é o número esperado de valores de

dados distintos que aparecem? Ou: qual é o número esperado de faces que aparecem pelo menos

uma vez?

5. Seja X ∼ exp(1/3). Isto é, X ∼ exp(λ) com λ = 1/3. Isto implica que a densidade f(x) é igual a

f(x) =

{
0, se x < 0

(1/3) exp(−x/3), se x ≥ 0

Calcule E(X), F(x) e P(X > 3).

6. X é uma v.a. com distribuição Pareto cont́ınua com parâmetros m e α. Isto é,

fX(x) =

{
0 se x ≤ m
c/xα+1 se x > m

onde a constante de integração c é dada por c = αmα.

Calcule F(x) = P(X ≤ x). Calcule também E(X) para α > 1 (a integral E(X) não existe se

0 < α ≤ 1).

Para simular 1000 valores de uma Pareto e visualizar os resultados com R, basta digitar:

m=1; alpha=1

x = m*(1-runif(1000))^(-1/alpha)

par(mfrow=c(1,2))

hist(x); plot(x)

Repita estes comandos algumas vezes. Veja como valores muito extremos de X são gerados com

facilidade.

7. O arquivo vadiscreta.txt possui uma tabela de dados com n = 200 itens e k = 6 atributos, todos

discretos. Podemos assumir que os itens são replicações independentes de um mecanismo aleatório.

Queremos encontrar um modelo probabiĺıstico para cada coluna-atributo da tabela.

Para cada uma das colunas, vamos assumir que os n = 200 itens são realizações independentes de

uma mesma v.a. discreta. As 3 primeiras colunas possuem 5 valores posśıveis. Isto é, o suporte das

v.a.s é o conjunto {1, 2, 3, 4, 5}. Embora os valores posśıveis sejam os mesmos nos três atributos,

as probabilidades associadas são diferentes.



k 0 1 2 3 4 5 6 7 8

OBS 215 1485 5331 10649 14959 11929 6678 2092 342

ESP 165.22 1401.69 5202.65 11034.65 14627.60 12409.87 6580.24 1993.78 264.30

DIF 49.78 83.31 128.35 -385.65 331.40 -480.87 97.76 98.22 77.70

Tabela 3.1: Número k de filhos do sexo masculino em 53680 famı́lias de tamanho 8. OBS são os números

observados na Alemanha no século XIX e ESP são os números esperados sob o modelo binomial. A linha

DIF é a diferença entre as linhas OBS e ESP.

Para o primeiro atributo, acredita-se que os cinco valores sejam igualmente prováveis.

Para o segundo atributo, deseja-se verificar se as probabilidades são similares a outras cinco pro-

babilidades deduzidas de uma teoria. Esta teoria afirma que a chance de observar k decai expo-

nencialmente com k. Isto é, na segunda coluna queremos verificar se temos P(X = k) = cθk onde

θ ∈ (0, 1) é uma constante e c é outra constante necessária para que as probabilidades somem 1.

Mostre que este modelo implica em ter as razões entre probabilidades sucessivas constantes e iguais

a θ:

rk =
P(X = k + 1)

P(X = k)
= θ

para k = 1, 2, 3, 4.

Para o terceiro atributo, existe uma outra população similar que foi exaustivamente estudada e

para a qual encontrou-se o seguinte:

k 1 2 3 4 5

P(X = k) 0.44 0.11 0.12 0.32 0.01

Estime as probabilidades P(X = k) para k = 1, . . . , 5 em cada coluna usando as frequências

relativas de cada categoria. A seguir, verifique informalmente (usando gráficos ou comparações

simples de tabelas de números) se os modelos para cada um dos atributos é compat́ıvel com os

dados observados.

Não quero que você saia pesquisando para encontrar maneiras ótimas de resolver o problema.

Também não estou esperando nem pedindo que você use o teste qui-quadrado ou Kolmogorov.

8. Em seu livro clássico Statistical Methods for Research Workers, Ronald A. Fisher, o maior gênio

estat́ıstico que já existiu, analisa alguns dados referentes ao número de filhos do sexo masculino

entre famı́lias com um número total de filhos igual a 8. Os dados foram coletados por A. Geissler

em uma região da Alemanha no peŕıodo de 1876 a 1885. O livro de Fisher tem uma página na

wikipedia, http://en.wikipedia.org/wiki/Statistical_Methods_for_Research_Workers.

É bem conhecido que os nascimentos do sexo masculino são ligeiramente mais numerosos do que

os nascimentos do sexo feminino. Suponhamos que a probabilidade de uma criança ser do sexo

masulino seja θ > 0.5. Suponha que os 8 nascimentos sucessivos numa famı́lia de tamanho 8 sejam

independentes. Assuma também que θ é o mesmo para todas as famı́lias e para os 8 nascimentos

ao longo de uma sequência familiar. Então o número X de meninos numa famı́lia de tamanho 8

seguiria uma distribuição binomial: X ∼ Bin(8, θ).

A linha OBS na Tabela 3.1 mostra o número de famı́lias com k filhos do sexo masculino na população

de 53680 famı́lias com exatamente 8 filhos. A linha ESP mostra o número esperado de famı́lias

com k meninos dentre os 8 filhos se o modelo binomial se aplicar.

Impressionava que algumas centenas de famı́lias tivessem todos os seus 8 filhos homens ou todos

mulheres. Estas centenas de famı́lias não representavam um excesso em relação ao que se espera



sob o modelo binomila? Se as famı́lias diferissem não só pelo acaso associado com a distribuição

binomial, mas também por uma tendência por parte de alguns pais para produzir homens ou

mulheres, os dados não seriam bem ajustados por uma binomial. Imagine, para tomar um exemplo

muito extremo, que cada famı́lia escolhese um valor θ para sua probabilidade de gerar meninos.

Após escolher “seu” θ, ou a sua “moeda”, cada famı́lia a jogasse para cima 8 vezes de acordo com

o modelo binomial. Suponha que as famı́lias retirassem os seus θ’s de uma urna onde houvessem

apenas dois tipos de valores e em iguais proporções: θ = 0.01 e θ = 0.99. Neste caso, veŕıamos nos

dados um acúmulo de famı́lias nas categorias extremas (com 0 ou 1 ou então com 8 ou 7 filhos),

sem muitas famı́lias com número intermediário de filhos homens.

É claro que não vemos nada tão extremo nos dados acima. Fisher escreve: The observed series

differs from expectation markedly in two respects: one is the excess of unequally divided families;

the other is the irregularity of the central values, showing an apparent bias in favour of even values.

No biological reason is suggested for the latter discrepancy, which therefore detracts from the value

of the data. The excess of the extreme types of family may be treated in more detail by comparing

the observed with the expected ...

• Para verificar sua compreensão do problema, obtenha os números esperados que estão na

Tabela 3.1.

• Calcule a estat́ıstica qui-quadrado neste problema (vocẽ deve obter um valor de X2 = 91.87).

• Qual a distribuiçãode referência desta estat́ıstica?

• Qual o p-valor associado com esta estat́ıstica? (DICA: use pchisq para obter o p-valor igual a

0.0 (numa aproximação até 15 casas decimais))

9. No livro clássico Statistical Methods for Research Workers de Ronald A. Fisher, ele apresenta alguns

dados de contagens de leveduras de cerveja (fungos) obtidas através da observação humana num

microscópio (hemocitômetro). Um área de 1 miĺımetro quadrado foi dividido em 400 quadrados

de área igual e foi contado o número de fungos em cada um deles. A tabela 3.2 mostra quantos

quadradinhos tiveram k fungos. Ela também mostra os números esperados segundo um odelo de

Poisson.

Obtenha a coluna de números esperados segundo o modelo Poisson. Em seguida, use o teste qui-

quadrado para testar se os dados são compat́ıveis com esta hipótese.

10. Este exerćıcio usa o teste de Kolmogorov. Gere 100 valores i.i.d. de uma N(0, 1) e teste se eles de

fato vem de uma N(0, 1) usando o teste de Kolmogorov. EmR, você pode usar o comando ks.test

para isto:

x = rnorm(100)

ks.test(x, "pnorm", 0, 1)

Repita estes comandos 1000 vezes. Colete os valores da estat́ıstica D e do p-valor nestas 1000

simulações. Faça um histograma padronizado dos 100 valores de D. Qual é o intervalo dentro

do qual você pode esperar os valores de D quando o modelo proposto coincide com o processo

geradorde dados?

Faa̧ um histograma dos p-valores obtidos. Ele deve ter uma distribuição aproximadamente uniforme

no intervalo (0, 1). Qual a proporção dosp-valores simulados que ficaram menores que 0.05?



k Obs Esp

0 0 3.71

1 20 17.37

2 43 40.65

3 53 63.41

4 86 74.19

5 70 69.44

6 54 54.16

7 37 36.21

8 18 21.18

9 10 11.02

10 5 5.16

11 2 2.19

12 2 0.86

13 0 0.31

14 0 0.10

15 0 0.03

16 0 0.03

Total 400 400

Tabela 3.2: Contagens de leveduras de cerveja em 400 quadrados e valores esperados segundo modelo

Poisson.

11. Um exerćıcio simples e importante. Você deve coletar algum conjunto de dados, QUALQUER UM,

com pelo menos 100 instâncias e pelo menos dois atributos. Pelo menos um dos atributos deve ser

numérico. Os dados podem ser, por exemplo, os tamanhos de seus arquivos pessoais, dados de uma

rede de computadores, dados extráıdos de textos ou imagens. O fundamental é que você mesmo

colete ou obtenha os dados. Não devem ser entregues dados de bases conhecidas e dispońıveis na

web em repositórios de dados.

Em seguida, você deve tentar ajustar uma distribuição, qualquer uma, a um dos atributos em seus

dados usando o teste qui-quadrado ou o teste de Kolmogorov.

?? Vou ficar surpreso se vocẽ conseguir ajustar alguma coisa. Portanto, não hánenhuma expectativa

da minha parte de que você consiga, nesta altura do curso, fazer um ajuste de alguma distribuição.

??

12. Buscar exemplo em redes com binomial - coursera - ???

13. Prove que m = E(Y ) minimiza E(Y −m)2. Dica: soma e subtraia E(Y ), expanda o quadrado e

tome esperança de cada termo. A seguir, derive com relação a m.

3.3 Ajuste de distribuição

1. O R possui uma função, ks.test(), que implementa o teste de Kolmogorov. Suponha que x é

um vetor com n valores numéricos distintos. Então ks.test(x,"pnorm",m,dp) testa se x pode

vir da distribuição N(m, dp), uma normal (ou gaussiana) com média µ =m e desvio-padrão σ =dp.



Outras distribuições são posśıveis substituindo o string "pnorm": as pré-definidas em R (veja com

?distributions) ou qualquer outra para a qual você crie uma função que calcula a função distri-

buição acumulada teórica.

> ks.test(x, "pnorm")

One-sample Kolmogorov-Smirnov test

data: x

D = 0.0805, p-value = 0.876

alternative hypothesis: two-sided

A sáıda de ks.test() fornece o valor de Dn = maxx |F̂n(x) − F (x)| e o p-valor (a esta altura

talvez já tenhamos aprendido o conceito de p-valor). Dissemos em sala que se
√
nDn estiver

aproximadamente entre 0.4 e 1.4, podemos aceitar o modelo (não há evidência nos dados para

rejeitar o modelo). Se
√
nDn > 1.36, rejeitamos o modelo.

Gere alguns dados com n = 50 de uma normal qualquer e use a função ks.test() para verificar

se o teste rejeita o modelo. Faça o teste de dois modos: use o modelo correto que você usou para

gerar seus dados e depois use um modelo diferente deste alterando, por exemplo, o valor de µ ou σ.

2. Implemente em R uma função para calcular o resultado de um teste de Kolmogorov. A função

estará restrita a testar apenas o modelo normal com com média µ =m e desvio-padrão σ =dp que

devem ser fornecidas pelo usuário ou obtidas dos próprios dados (default) usando a média aritmética

(comando mean()) e o desvio-padrão amostral (raiz da sáıda do comando var()). Não se preocupe

em lidar com os casos extremos (usuário fornecer vetor nulo, fornecer vetor com valores repetidos,

etc).

Observação importante: pode-se provar que Dn = maxx |F̂n(x) − F (x)| assume seu valor em um

dos pontos de salto de F̂n(x), ou imediatamente antes de xi ou em xi, onde xi é um dos valores do

vetor.

3. Obtenha duas amostras de dados estat́ısticos, uma com valores de v.a.’s discretas e outra com

dados cont́ınuos, ligados de alguma forma a problemas de seu interesse. Postule um modelo de

dados i.i.d. para cada lista com uma distribuição de probabilidade que você acredita que possa se

ajustar aos dados. Calcule a qualidade do ajuste da sua distribuição usando o teste qui-quadrado

de Pearson. Exponha as dificuldades ou dúvidas práticas ou teóricas não-cobertas no curso que

você talvez encontre neste exerćıcio.

4. Distribuição de Zipf. Considere um longo texto (ou vários textos juntos). Algumas palavras apare-

cem pouco, são raras. Outras aprecem com muita frequência. Por exemplo, no portugês brasileiro

(ver http://www.linguateca.pt/), temos a seguinte tabela de frequência (ocorrência aproximada

da palavra em cada bloco de texto de um milhão de palavras):



palavra posto (rank) frequência (por 1M)

de 1 79607

a 2 48238

ser 27 4033

amor 802 174

chuva 2087 70

probabilidade 8901 12

interativo 14343 6

algoritmo 21531 3

Imagine o seguinte experimento: escolha uma palavra ao acaso do texto. Note que escolhemos

do texto, onde algumas palavras aparecem repetidas várias vezes, e não de uma lista de palavras

distintas (como num ı́ndice, onde cada palavra aparece apenas uma vez. Seja Y a v.a. indicando o

posto (ou rank) da palvra escolhida. Por exemplo, se a palavra escolhida é amor o valor de Y é 802.

Se a palavra escolhida é de, o valor de Y é 2. É óbvio que os valores de Y estão concentrados em

valores baixos: com maior probabilidade devem ser escolhidas aa palvras que aparecem com mais

frequência no texto. Qual a distribuição de Y ? Depende da ĺıngua? Depende do assunto tratado

na coleção de textos? Estudiosos dizem que um modelo de distribuiçõ de probabilidade ajusta-se a

uma ampla classe de problemas: a distribuição de Zipf.

Os valores posśıveis de Y são iguais a 1, 2, 3, . . . , N . Ás vezes, o número N não é conhecido ou é

simplesmente ignorado pois jogamos fora a informação sobre as palavras muito pouco frequentes

(com posto muito alto). A distribuição de Zipf diz que

P(Y = k) =
c

kθ
(3.2)

onde θ é uma constante que varia de problema para problema e c é a constante de normalização.

Isto é, como 1 =
∑

k P(Y = k), teremos

c =
1∑

k 1/kθ

O fato fundamental na distribuição de Zipf é que as probabilidades decaem de forma polinomial

com k. O parâmetro θ costuma ser um valor próximo de 1.

Se tomarmos logaritmo dos dois lados de (3.2), temos

log(P(Y = k)) = log(c)− θ log(k) = a− θ log(k) .

Assim, no caso de uma distribuição de Zipf, um plot de log(P(Y = k)) versus log(k) deveria exibir

uma linha reta cuja inclinação seria o negativo do parâmetro θ (tipicamente, aproximadamente,

-1).

Na tabela acima, temos a frequência nk em 1 milhão de algumas palavras do português, bem como

seu rank. Probabilidades são aproximadamente a frequência relativa de modo que P(Y = k) ≈ nk106

e portanto

log(c)− θ log(k) = log(P(Y = k)) ≈ log(nk/106)

o que implica em

log(nk) ≈ (log(c)− 6 log(10))− θ log(k)

Assim, para checar se uma distribuiçõ de Zipf ajusta-se aos dados, podemos fazer um scatter-plot

dos pontos (log(k), log(nk)) e verificar se eles caem aproximadamente ao longo de uma linha reta.

Ajustando uma reta (por mı́nimos quadrados ou regressão linear, por exemplo) podemos encontrar

uma estimativa para θ.



• Da Wikipedia: Zipf’s law states that given some corpus of natural language utterances, the

frequency of any word is inversely proportional to its rank in the frequency table. Thus the

most frequent word will occur approximately twice as often as the second most frequent word,

three times as often as the third most frequent word, etc. For example, in the Brown Corpus

of American English text, the word ”the”is the most frequently occurring word, and by itself

accounts for nearly 7% of all word occurrences (69,971 out of slightly over 1 million). True

to Zipf ’s Law, the second-place word ”of”accounts for slightly over 3.5% of words (36,411

occurrences), followed by ”and”(28,852). Only 135 vocabulary items are needed to account for

half the Brown Corpus. Explique como a equação (3.2) implicaria que the frequency of any

word is inversely proportional to its rank. A resposta é simples e direta, não tem nada sutil

ou complicado aqui.

• Use os dados da tabela acima para fazer o scatter-plot dos pontos (log(k), log(nk)). Em R,

basta fazer summary(lm(y ∼ x)) onde y e x são os vetores com log(nk) e log(k), respectiva-

mente. Qual o valor da inclinação? RESP: -0.999.

• Um excelente material sobre Zipf e Pareto: http://arxiv.org/abs/cond-mat/0412004

5. A distribuição de Poisson é muito usada para modelar dados de contagens. Por exemplo, ela pode

ser usada para modelar o número de mortes por certa doença numa região durante um ano, o

número de falhas num software descobertas num certo peŕıodo de desenvolvimento, o número de

requisições de um certo recurso numa rede, etc.

Se Y tem distribuição de Poisson então ela possui um número infinito de valores posśıveis: 0, 1, 2, . . .

com probabilidades associadas dadas por P(Y = k) = λk exp(−λ)/k! onde λ > 0 é um parâmetro

controlando a forma da distribuição.

• Se o conjunto de valores posśıveis é infinito, como é posśıvel explicar que a soma
∑

k P(Y = k)

das probabilidades não seja infinita?

• Mostre que
∑

k P(Y = k) = 1 (consulte qq livro de probab ou a web)

• Mostre que E(Y ) =
∑

k kP(Y = k) = λ (isto mostra qual o significado do parâmetro λ).

Pode-se mostrar (não precisa fazer isto) que a variância V(Y ) = λ. Isto é, no caso Poisson,

E(Y ) = λ = V(Y ).

• Supondo que λ = 0.3, use a função dpois do R para calcular P(Y = 2).

• Supondo que λ = 0.3, use a função ppois do R para calcular P(Y ≥ 3).

• Supondo que λ = 0.3, use a função rpois do R para simular 3 mil valores de Y ∼ Poisson(0.3).

Com a amostra gerada, use a proporção de vezes em que Y ≥ 3 para estimar P(Y ≥ 3) =

0.0036. Verifique também que a média aritmética dos 300 valores gerados é aproximadamente

igual a λ.

• Repita os itens 4 a 6 usando λ = 3.

6. A distribuição Gama é muito flex́ıvel, adotando formas muito distintas dependendo de seus parâmetros

α e β (veja na wikipedia). Existe mais de uma forma de parametrizar a distribuição gama. A

mais comum (e usada como default pelo R) é aquela em que a densidade de probabilidade de

Y ∼ Gamma(α, β) é dada por f(x) = 0 se x ≤ 0 e, se x > 0, por

f(x) = cxα−1 exp(−βx) .

onde c é uma constante para que a área total debaixo da curva seja 1.



• Usando rgamma do R, gere 350 valores de uma gama com α = 9 e β = 3. Faça um histograma

padronizado destes números gerados e, usando lines e dgamma, sobreponha a curva densidade.

Ficam parecidos?

• Teoricamente, temos E(Y ) = α/β = 9/3 = 3. Calcule a média aritmética dos 350 números

gerados e compare com E(Y ). Eles ser aproximadamente iguais.

• Usando pgamma, faça um gráfico da distribuição acumulada teórica de uma gama com α = 9

e β = 3. Sobreponha o gráfico da distribuição acumulada emṕırica: eles se parecem? O script

abaixo foi usado para algo similar num dos slides do curso:

set.seed(1)

dados <- rnorm(30, 10, 2) # gera 30 valores de uma N(10,2)

Fn <- ecdf(dados) # calcula a funcao dist acum empirica

plot(Fn, verticals= T, do.p=F, main="", xlab="x", col="blue", xlim=c(3, 16))

x <- seq(3, 16, by=0.1)

y <- pnorm(x, 10, 2) # calcula a acumulada teorica de uma N(10,2)

lines(x,y, col="red")

7. Gere n = 100 valores aleatórios em (0, 1) e guarde num vetor x. Repita isto e guarde o resultado em

y. Faça um gráfico de dispersão (scatterplot) de x versus y (o objetivo é apenas fazer um scatterplot

qualquer). Como você poderia gerar y se você quisessem que seus valores dependessem de alguma

forma do valor correspondente x?

8. Seja Y uma v.a. com valor esperado E(Y ) = µ e variância V(Y ) = σ2. Prove a desigualdade de

Tchebyshev: P(|Y − µ| ≥ kσ) ≤ 1/k2. OBS: Qualquer livro de probabilidade (ou a web) possui a

demonstração.

9. Aplique a desigualdade de Tchebyshev com k = 1, 2, 4, 6, 10. O que acontece com a cota (bound)

dado pela desigualdade? Como é o seu decaimento?

10. Seja X ∼ exp(1/3). Isto é, X ∼ exp(λ) com λ = 1/3. Calcule E(X), V(X), F(x) e P(X > 3).

RESP: E(X) = 3; V(X) = 32; F(x) = 0 se x ≤ 0 e F(x) = 1− exp(−x/3), para x > 0; P(X > 3) =

exp(−3/3) = 0.37. Veja que, embora o valor esperado E(X) seja igual a 3, temos P(X > 3) < 1/2.

No caso geral, E(X) = 1/λ; V(X) = 1/λ2; F(x) = 0 se x ≤ 0 e F(x) = 1 − exp(−λx), para x > 0;

P(X > 3) = exp(−3λ).

11. Use o método da transformada inversa com a função F(x) calculada no exerćıcio anterior para gerar

1000 valores aleatórios de X ∼ exp(1/3). Faça um histograma (normalizado com área 1) dos 1000

valores gerados e sobreponha o gráfico da função densidade de probabilidade (dada por f(x) = 0

se x ≤ 0 e f(x) = (1/3) exp(−x/3), se x > 0). Calcule a média aritmética e compare com o valor

teórico E(X) = 3.

Gere uma uma segunda amostra de tamanho 1000 e recalcule a média aritmética. Verifique que

o valor teórico E(X) = 3 permanece o mesmo mas que a média aritmética varia de amostra para

amostra.



RESP: Como F(x) = 1 − exp(−x/3) então X = −3 log(1 − U) ∼ exp(1/3) se U ∼ U(0, 1). Script

em R (] significa comentário):

x <- -3*log(1-runif(1000)) # runif(n) gera n v.a.’s U(0,1)

mean(x)

hist(x, prob=T) # normaliza com o argumento prob=

# sobrepondo o grafico da densidade:

grid <- seq(0, 20, length=100) # vetor com pontos no eixo x

y <- dexp(grid, rate=1/3) # densidade exp(1/3) nos pontos de grid

lines(grid, y, type = "l") # adiciona linhas ao grafico anterior

# Podemos tambem calcular diretamente o valor da funcao densidade

hist(x, prob=T) #normaliza com o argumento prob=

y <- 1/3 * exp(-grid/3)

lines(grid, y, type = "l") # adiciona ao grafico anterior

# R tem varias funcoes para gerar v.a.’s de distribuicoes conhecidas

x <- rexp(1000, rate=1/3) # gera 1000 v.a.’s exp(1/3)

x <- rnorm(1000, m=10, sigma=2) # gera 1000 v.a.’s N(10, 2^2)

x <- rgamma(1000, alpha=3, beta =2) # 1000 Gamma(3,2)

12. X é uma v.a. com distribuição Pareto com parâmetros m e α = 2. Isto é,

fX(x) =

{
0 se x ≤ m
c/xα+1 se x > m

onde a constante de integração c é dada por c = αmα. Calcule F(x) = P(X ≤ x).

Calcule também E(X) para α > 1 (a integral E(X) não existe se 0 < α ≤ 1).

RESP: F(x) = 0 se x ≤ m e F(x) = 1− (m/x)α. Temos

E(X) =

∫ ∞
m

x c/xα+1 dx =

∫ ∞
m

c/xα dx = c/((1− α)xα−1) = αm/(α− 1)

13. Usando o método da transformada inversa, gere 1000 valores de uma Pareto com α = 4 e m = 1.

Gere outros 1000 valores de uma Pareto com α = 2, 1, e 0.5. Qual o efeito de diminuir α em direção

a zero? Compare E(X) com os valores gerados nos casos em que α > 1.

RESP: Como F(x) = 1 − (m/x)α para x > m, temos a v.a. X = F−1(U) = m/(1 − U)1/α com

dstribuição Pareto com parâmetros m e α. Se m = 1 e α = 2, temos X = 1/sqrt1− U . Tomando

α = 1, temos X = 1/(1 − U) e, se α = 1/2, temos X = 1/(1 − U)2. Usando um script R (Note a

ESCALA dos 4 gráficos abaixo e compare E(X) com os valores gerados nos casos em que α > 1):

x4 <- 1/(1-runif(1000))^(0.25) # gera 1000 v.a.’s Pareto m=1 e alpha=4

x2 <- 1/sqrt(1-runif(1000)) # gera 1000 v.a.’s Pareto m=1 e alpha=2

x1 <- 1/(1-runif(1000)) # Pareto m=1 e alpha=1

x05 <- 1/(1-runif(1000))^2 # Pareto m=1 e alpha=1/2

par(mfrow=c(2,2)) # divide a janela grafica numa matriz 2x2

plot(x4) # grafico da **sequencia** de valores gerados

plot(x2); plot(x1); plot(x05)



14. Verifique como valores extremos são facilmente gerados pela Pareto. Tomando m = 1 e α = 0.5,

calcule P(X ≤ 10). A seguir, calcule P(X > 10k) para k = 2, 3, 4, 5.

RESP: Com m = 1 e α = 0.5, F(x) = P(X ≤ x) = 1 − 1/sqrtx para x > 0. Assim, P(X ≤
10) = 0.68. Isto é, 68% dos valores gerados numa simulação serão no máximo iguais a 10. Temos

P(X ≤ 100) = 1/
√

100 = 0.1. Portanto, 10% dos valores gerados numa simulação devem maiores

que 100. Muito maiores? P(X ≤ 1000) = 0.03 ou 3% dos valores gerados são maiores que 1000.

Temos P(X ≤ 10000) = 0.01 e P(X ≤ 100000) = 0.003 e finalmente P(X ≤ 1000000) = 0.001.

Assim, 1 em cada 1000 valores gerados serão maiores que 1 milhão mesmo que a maioria (68%)

sejam menores que 10.

15. Durante a Segunda Grande Guerra, foram mapeados os locais atingidos por bombas ao sul de

Londres. A área foi dividida em n = 576 quadradinhos, cada um com 0.25km2. O número total de

bombas que atingiu a região foi 537. Seja Xi o número de bombas no quadradinho i. Vimos em

sala que um bom modelo para as contagens X1, . . . , X576 supõem que elas sejam instâncias de uma

variável aleatória Poisson(λ).

Neste exerćıcio vamos verificar que o teste qui-quadrado permite eliminar escolhas incorretas para

a distribuição de X. Vamos supor que a contagem de bombas ACRESCIDA DE UMA UNIDADE

siga a distribuição logaŕıtmica com parâmatro θ ∈ (0, 1), que é definida da seguinte forma:

• Valores posśıveis: {1, 2, 3, . . .}

• P(Y = k) = −1
log(1−θ)

θk

k para k = 1, 2, . . .,

• com E(Y ) = −1
log(1−θ)

θ
1−θ .

OBS: Como θ ∈ (0, 1), temos log(1 − θ) < 0. Esta é a razão para o sinal de menos na expressão

da função de probabilidade acima. Você deve ter notado que somamos 1 a X pois o número de

bombas pode ser zero e a distribuição logaŕıtimica começa de 1. Isto é, supomos que Y = X + 1

siga a distribuição logaŕıtimica.

• Estime E(Y ) usando a média aritmética X̄ + 1 e obtenha assim uma estimativa de θ. RESP:

ŷ = 1 + 0.9323 e θ̂ = 0.696.

• A seguir, preencha os valores esperados do némero de quadrados com k bombas na tabela

abaixo. Por exemplo, o número esperado com 0 bombas é dado por

576× P(X = 0) = 576× P(Y = 1) =
−1

log(1− θ̂)
θ̂1

1
= 576× 0.585 = 336.96

k 0 1 2 3 4 5 e acima

Obs 229 211 93 35 7 1

Esp 336.96 ?? ?? ?? ?? ??

Para a última categoria, use P(X ≥ 5) = 1−
∑4

j=1 P(X = j).

• Embora seja óbvio que a distribuição logaŕıtimica não se ajusta a estes dados, calcule a es-

tat́ıstica qui-quadrado a partir das diferenças entre os valores observados e esperados nesta

tabela.

• Obtenha o p-valor com o comando 1-pchisq(qq, df) onde qq é o valor da estat́ıstica qui-

quadrado e df é o número de graus de liberdade.



16. Use os dados das contagens mensais de cirurgias cardiovasculares infantis em hospitais discutido

em sala de aula para verificar se, para cada hospital, podemos assumir que as suas contagens

Y1, Y2, . . . , Yn sejam i.i.d. e sigam uma distribuição de Poisson com parâmetro λ. Os dados estao

no arquivo cirurgia.txt. Use o script cirurgia.R para iniciar sua análise. Eu deixei todos os comandos

necessários para fazer a análise com o Hospital 1. Considere os seguintes exerćıcios:

• Faça um teste qui-quadrado para o SÉTIMO hospital da tabela (linha 7). Usando a função

pchisq, calcule o p-valor associado com a hipótese ou modelo assumido (isto é, i.i.d. Poisson(λ))).

• EXERCICIO OPCIONAL, BONUS (PONTO EXTRA SE ENTREGAR): Generalize o código

anterior fazendo uma função em R para executar estes cálculos para cada um dos hospitais da

tabela. Você vai precisar considerar a criação das classes de valores que vai variar de hospital

para hospital.

• O teste qui-quadrado é interessante porquê é um teste geneérico, pode ser usado para com

qualquer modelo para a distribuição de uma variável aleatória. Entretanto, supondo que a

distribuição é uma Poisson, podemos explorar alguns aspectos espećıficos desta distribuição

para avaliar se o modelo ajusta-se aos dados observados. Uma dessas formas, puramente

visual, é a seguinte:

– Mostre que, se Y ∼ Poisson(λ), então rk = P(Y = k)/P(Y = k + 1) = (k + 1)/λ.

– Tomando logaritmo natural dos dois lados da igualdade acima, temos log(rk) = − log(λ)+

log(k+ 1). Assim, um gráfico de log(rk) versus log(k+ 1) deveria mostrar uma linha reta

com coeficiente angular 1 e intercepto que vai variar com o valor de λ.

– Estime rk pela razão fk = nk/nk+1 onde nk é o número de elementos da amostra que são

iguais a k. Faça o gráfico de log(fk) versus log(k + 1) e verifique se aparece aproximada-

mente uma reta de inclinação 1. Faça isto APENAS PARA O HOSPITAL 7 para entregar

(se quiser fazer mais, fique àa vontade!)

• Uma outra forma simples de verificar se o modelo de Poisson ajusta-se aos dados que estão

num vetor y é o teste de dispersão:

– Numa v.a. Poisson, o valor esperado E(Y ) = λ é igual à variância da v.a. V(Y ).

– Estime E(Y ) pela média aritmética m das observações no vetor y (usando mean(y) no R).

– Estime V(Y ) pela variância v da amostra (usando var(y) no R).

– Calcule a razão v/m, que deveria ser próxima de 1 se o modelo Poisson é correto.

– Como avaliar se v/m está próximo de 1? Se n é o comprimento do vetor de contagens y,

pode-se mostrar que (n− 1)v/m segue aproximadamente uma distribuição qui-quadrado

(ela aqui de novo) com n− 1 graus de liberdade.

– Usando os dados do HOSPITAL 7, calcule o p-valor deste teste.

17. Os primeiros 608 d́ıgitos da expansão decimal do número π tem as seguintes frequências:

k 0 1 2 3 4 5 6 7 8 9

Obs 60 62 67 68 64 56 62 44 58 67

Esp ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

Estes dados são compat́ıveis com a suposição de que cada d́ıgito é escolhido de forma completamente

aleatória? Isto é, de acordo com uma distribuição uniforme discreta sobre os posśıveis d́ıgitos?



18. Vamos usar a desigualdade de Tchebychev,

P
(
|X − µ

σ
| ≤ δ

)
≤ 1

δ2

para gerar um intervalo de predição para X. Suponha que X possua uma distribuição de probabili-

dade arbitrária com E(X) = µ = 120 e V ar(X) = σ2 = 102. Usando a desiguadade de Tchebychev,

mostre que o intervalo (120± 45) = (75, 165) deverá conter pelo menos 95% dos dados gerados de

X, qualquer que seja a distribuição de X.

Suponha agora que sabemos algo mais sobre a distribuição de X. Este conhecimento adicional

reduz substancialmente a incerteza acerca dos valores gerados da distribuição. Agora, usando o

comando qnorm do R, mostre que o intervalo que conterá 95% dos valores de uma amostra de X é

120± 1.96 ∗ 10 = (100.4, 139.6).

19. Gere uma amostra de tamanho n = 100 de uma normal com µ = 10 e σ = 1. Faça o qqplot da

amostra usando o comando qqnorm(x). Repita isto 10 vezes. O gráfico ficou na forma de uma

linha reta todas as vezes?

Refaça este exerćıcio gerando os seus dados de uma distribuição Cauchy com parâmetro de locação

µ = 10 e escala σ = 1: rcauchy(100, 10, 1). Para comparar a distribuição N(10, 1) e a

Cauchy(10, 1), use os seguintes comandos:

x <- seq(4, 16, by=0.01)

yc <- dcauchy(x, location = 10, scale = 1)

yn <- dnorm(x, mean = 10, sd = 1)

plot(x, yn, type="l")

lines(x, yc, lty=2)

legend("topright", c("normal", "Cauchy"), lty=1:2)

qqnorm(rcauchy(100, 10, 1))

20. No site http://www.athenasc.com/prob-supp.html você encontra exerćıcios SUPLEMENTARES

de Bertsekas and Tsitsiklis. Considerando o arquivo relacionado ao caṕıtulo 3, faça os seguintes

exerćıcios: 2, 8, 9, 21(b).

21. Obtenha os dados de fragmentos de vidro coletados pela poĺıcia forense do livro All of Statis-

tics no site: http://www.stat.cmu.edu/~larry/all-of-statistics/index.html Estime a den-

sidade da primeira variável (refractive index) usando um histograma e um estimador de densidade

baseado em kernel. Experimente com diferentes bins para o histograma e bandwidths para o kernel.

Veja como fazer isto em R no endereço: http://www.statmethods.net/graphs/density.html.

O comando básico para a estimativa de kernel é da forma: density(x, kernel = "gauss") onde

o kernel gaussiano é o escolhido. Outras opções incluem: "epanechnikov", "rectangular",

"triangular", "biweight", "cosine", "optcosine". A escolha default do bandwidth é cal-

culada com a seguinte fórmula (conhecida como a regra de bolo de Silverman):

h = 0.9 min

{
σ̂,

R

1.34

}
n−1/5



onde R = q0.75− q0.25 é a diferença entre o 10 e o 30 quartis e que pode ser calculado usando-se, por

exemplo, o comando IQR(x). Verifique qual o valor deste bandwidth h de Silverman e, a seguir,

calcule a estimativa de kernel usando o dobro e a metade deste valor (isto é, usando 2h e h/2).

Compare os resultados obtidos visualmente. Qual parece representar melhor a densidade f(x) dos

dados?

22. Graças ao Bráulio Veloso (obrigado!), este exerćıcio pede que você use o modelo Bag of Words para

classificar alguns textos. O vocabulário foi constrúıdo com 12 livros de Ficção, Humor e Religião,

com três livros em cada categoria. As stop-wordsforam eliminadas (as palavras muito comuns mas

que não discriminam os textos tais como preposições e artigos).

Existem 4 aquivos. Um deles, FreqTreinoNoStopWords.csv, possui a frequência das bases de

treino (foram usados 4 livros por categoria). Ele possui 4 campos. O primeiro campo á um string

com a palavra. O dicionário está ordenado. As strings que são constitúıdas somente de números

ficaram nas primeiras linhas do arquivo. As demais palavras estão mais abaixo no csv. Os outros 3

campos são as frequências das palavras em cada tipo de livro na seguinte ordem: livros de Ficção,

Humor e Religião.

Os outros 3 arquivos são para teste, com um livro por categoria. A resposta correta das categorias

das bases de treino é:

• livroTeste0: humor

• livroTeste1: religião

• livroTeste2: Ficção

Ignorando a resposta correta, você deve tentar classificar cada arquivo teste em uma das categorias

posśıveis usando as ideias discutidas em sala e presentes nos slides.

23. O comportamento de uma v.a. nas caudas de sua densidade f(x) é muito importante. Esta frase

quer dizer que a forma com que a densidade f(x) decai a medida em que |x| cresce (vaia para

infinito) influencia muio o tipo de dado que será observado numa amostra. Para apreciar este fato,

você vai comparar o comportamento nas caudas de duas distribuições de probabilidade: a gaussiana

padrão, que tem densidade f1(x) ∝ exp(−x2/2), e a distribuição t-Student com 2 graus de liberdade

(df), com densidade f2(x) ∝ 1/(1 + x2/2)3/2.

• Faum gráfico com a sobreposiÃ§Ã£o das duas densidades usando os comandos dnorm e dt (com

o argumento df=2) no intervalo (−5, 5). Compare o comportamento das duas densidades para

x longe de zero. Veja que, visualmente, nÃ£o parece ter tanta diferença entre as duas.

• Gere uma amostra com n = 500 pontos de cada uma das duas distribuições e compare a

dispersão dos pontos amostrais. Veja que elas sao drasticamente diferentes

Solução: Código R e resultado na Figura ??.

x = seq(-5, 5, by=0.01)

f1 = dnorm(x)

f2 = dt(x, df=2)

set.seed(123)

s1 = rnorm(500)

s2 = rt(500, df=2)

par(mfrow=c(1,2))



Figura 3.2: Comparando caudas das distribuições gaussiana padrão e t-Student com df = 2 graus de

liberdade.

plot(x, f1, type="l")

lines(x, f2, col="blue")

plot(s2, pch="*", col="blue")

points(s1)

Solução: Por aqui depois de resolver verbatim em solution.



Caṕıtulo 4

Transformação de uma v.a.

1. Seja U ∼ U(0, 1). Mostre que W = a+ (b− a)U ∼ U(a, b).

Solução: Claramente, se U ∈ [0, 1] então W ∈ [a, b]. Para w ∈ [a, b], temos (w−a)/(b−a) ∈ [0, 1].

Segue-se que

P(W ≤ w) = P(a+ (b− a)U ≤ w) = P
(
U ≤ w − a

b− a

)
=
w − a
b− a

e a densidade de W é igual a f(w) = F′(w) = 1/(b− a) para w ∈ [a, b]. Assim, W possui denisdade

constante em [a, b] e portante possui distrbuição uniforme neste intervalo.

2. Seja U ∼ U(0, 1). Mostre que W = 1− U ∼ U(0, 1).

Solução: W ∈ [0, 1] pois U ∈ [0, 1]. Além disso,

P(W ≤ w) = P(1− U ≤ w) = P(U ≥ 1− w) = 1− (1− w) = w .

Para w ∈ [0, 1], a densidade de W é igual a f(w) = F′(w) = 1 e portanto W ∼ U(0, 1).

3. Se U ∼ U(0, 1), encontre a distribuição de probabilidade de X = − log(1− U)/3.

51



Figura 4.1: Gráfico do histograma de 50 mil valores de X = cos(θ) onde θ ∼ U(0, 2π). A linha cont́ınua

representa a densidade de probabilidade da v.a. X e dada por f(x) = 1/(π
√

1− x2) para x ∈ (−1, 1).

Solução: Se U ∈ [0, 1] teremos X ∈ [0,∞). Para x ∈ [0,∞, temos

F(x) = P(X ≤ x) = P(− log(1− U)

3
≤ x) = P(U ≤ 1− e−3x) = 1− e−3x

Portanto, a densidade de X no eixo positivo é igual a

f(x) = F′(x) = 3e−3x

que é a densidade de uma v.a. com distribuição exponencial com parâmetro λ = 3.

4. Se θ ∼ U(0, 2π), encontre a distribuição de probabilidade de X = cos(θ).

Solução: Fazendo o desenho de um ćırculo, encontramos o seguinte: se x ∈ [0, 1),

P(X ≤ x) = P(cos(θ) ≤ x) = P(arccos(x) ≤ θ ≤ 2π−arccos(x)) =
2π − 2 arccos(x)

2π
= 1− arccos(x)

π

Se x ∈ (−1, 0), temos

P(X ≤ x) = P(π − arccos(−x) ≤ θ ≤ π + arccos(−x)) =
arccos(−x)

π

Assim,

F(x) = P(X ≤ x) =

{
arccos(−x)/π se − 1 < x < 0

1− arccos(x)/π se 0 ≤ x < 1

e a densidade de X é a derivada dessa função acumulada. Lembrando da derivada do arco cosseno,

temos

f(x) =
1

π
√

1− x2
para − 1 < x < 1 .

Observe que esta densidade vaia para mais infinito quando x se aproxima dos extremos do intervalo.

A Figura 4.1 mostra um histograma de 50 mil valores de X = cos(θ) onde θ ∼ U(0, 2π). A

linha cont́ınua representa a densidade de probabilidade f(x). Veja que, apesar do ângulo θ ser

uniformemente distribúıdo em (0, 2π), o cosseno do ângulo não é uniformemente distribúıdo em

(−1, 1). A densidade é concentrada em valores de cossenos próximos dos extremos -1 e 1.



theta = runif(50000, 0, 2*pi)

x = cos(theta)

hist(x, prob=T, breaks=50, main="")

xx = seq(-1,1,by=0.01)

yy = 1/(pi*sqrt(1-xx^2))

lines(xx, yy, lwd=4, col="blue")

5. Os primeiros 608 d́ıgitos da expansão decimal do número π têm as seguintes frequências:

k 0 1 2 3 4 5 6 7 8 9

Obs 60 62 67 68 64 56 62 44 58 67

Esp ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

Estes dados são compat́ıveis com a suposição de que cada d́ıgito é escolhido de forma completamente

aleatória? Isto é, os d́ıgitos podem ser considerados como valores escolhidos de acordo com uma

distribuição uniforme discreta sobre o elementos do conjunto {0, 1, 2, . . . , 9}? Obtenha Obtenha o

valor esperado de cada d́ıgito e compare com os valores observados usando o teste qui-quadrado.

6. O R possui uma função, ks.test(), que implementa o teste de Kolmogorov. Suponha que x é

um vetor com n valores numéricos distintos. Então ks.test(x,"pnorm",m,dp) testa se x pode

vir da distribuição N(m, dp), uma normal (ou gaussiana) com média µ = m e desvio-padrão σ =

dp. Outras distribuições são posśıveis substituindo o string "pnorm": as pré-definidas em R (veja

com ?distributions) ou qualquer outra para a qual você crie uma função que calcula a função

distribuição acumulada teórica.

> ks.test(x, "pnorm")

One-sample Kolmogorov-Smirnov test

data: x

D = 0.0805, p-value = 0.876

alternative hypothesis: two-sided

A sáıda de ks.test() fornece o valor de Dn = maxx |F̂n(x) − F (x)| e o seu p-valor. Dissemos

em sala que se
√
nDn > 1.36, rejeitamos o modelo. Caso contrário, não há muita evidência nos

dados para rejeitar o modelo (não quer dizer que o modelo seja correto, apenas não conseguimos

rejeitá-lo).

Gere alguns dados com n = 50 de uma normal qualquer e use a função ks.test() para verificar

se o teste rejeita o modelo. Faça o teste de dois modos: use o modelo correto que você usou para

gerar seus dados e depois use um modelo diferente deste alterando, por exemplo, o valor de µ ou σ.

7. Implemente em R uma função para calcular o resultado de um teste de Kolmogorov. A função

estará restrita a testar apenas o modelo normal com com média µ =m e desvio-padrão σ =dp que

devem ser fornecidas pelo usuário ou obtidas dos próprios dados (default) usando a média aritmética

(comando mean()) e o desvio-padrão amostral (raiz da sáıda do comando var()). Não se preocupe

em lidar com os casos extremos (usuário fornecer vetor nulo, fornecer vetor com valores repetidos,

etc).



Figura 4.2: Gráfico da função h(x) usada para criar a v.a. Y = h(X) onde X ∼ Unif(0, 1).

Observação importante: pode-se provar que para encontrar Dn = maxx |F̂n(x)−F (x)| basta varrer

os pontos de salto de F̂n(x), olhando o valor de F̂n(x) imediatamente antes de xi ou no próprio

ponto xi, onde xi é um dos valores do vetor de dados observados.

8. Seja Y = h(X) onde X ∼ Unif(0, 1). A função h(x) é mostrada no gráfico da Figura 4.2. A partir

dessa figura, é posśıvel obter aproximadamente os valores da f.d.a. FY (y) sem fazer nenhum cálculo

expĺıcito, apenas no olhômetro. Dentre as opções abaixo, decida qual o valor que melhor aproxima

FY (y).

• FY (0.9) é aproximadamente igual a: (a) zero, (b) 0.01 (c) 0.5 (d) 0.8 (e) 0.95 (f) um.

• FY (1.1) é aproximadamente igual a: (a) zero, (b) 0.01 (c) 0.5 (d) 0.8 (e) 0.95 (f) um.

• FY (1.8) é aproximadamente igual a: (a) zero, (b) 0.01 (c) 0.5 (d) 0.8 (e) 0.95 (f) um.

• FY (2.1) é aproximadamente igual a: (a) zero, (b) 0.01 (c) 0.5 (d) 0.8 (e) 0.95 (f) um.

9. Transformação de v.a.’s: Seja X o lado de um quadrado aleatório. A v.a. X é selecionada de uma

distribuição Unif(0, 1). A área do quadrado formado com lado X é a v.a. Y = X2.

• Calcule o comprimento esperado do lado do quadrado E(X).

• Obtenha também a área esperada E(Y ). É verdade que E(Y ) = (E(X))2? Ou seja, a área

esperada E(Y ) é igual à (E(X))2, a área de um quadrado cujo lado tem comprimento igual ao

comprimento esperado?

• Qual a distribuição de Y ? Isto é, obtenha FY (y) para y ∈ R. item Derive FY (y) para obter a

densidade fY (y) e faça seu gráfico. Qual a região onde mais massa de probabilidade é alocada?

O que é mais provável, um quadrado com área menor que 0.1 ou maior que 0.9?

10. Refaça o exerćıcio anterior considerando o volume aleatório V = X3 do cubo aleatório formado

com o lado X ∼ Unif(0, 1).



11. Refaça o exerćıcio anterior considerando o volume aleatório V = (4/3)πX3 da esfera aleatória

formada com o raio X ∼ Unif(0, 1).

12. Supondo X cont́ınua com densidade f(x) e A um subconjunto da reta real. Complete os passos da

dedução abaixo preenchendo os locais indicados por ??.

P(X ∈ A) =

∫
??
f(x)dx =

∫
??
IA(x)f(x)dx = E(I??(??))

Solução: O correto é

P(X ∈ A) =

∫
A
f(x)dx =

∫
R
IA(x)f(x)dx = E(IA(X))

Preste atenção à notação: às vezes, usamos X; às vezes, x. Isto é proposital e possui um significado

diferente em cada caso: X é uma v.a. (portanto, tem duas listas de números associadas com as

quais pode-se calcular probabilidads ou esperanças), enquanto x é apenas um ponto da reta.

13. Seja Y = h(X) = 1 + X10 onde X ∼ U(0, 1), uma uniforme no intervalo real (0, 1). Isto é,

a probabilidade de que X caia num intervalo (a, b) contido em (0, 1) é o comprimento b − a do

intervalo. A Figura 4.2 mostra o gráfico desta transformação.

• Os valores posśıveis de Y formam o intervalo (??, ??). Complete os locais marcados com “??”.

• Analisando a Figura 4.2 verifique aonde o intervalo (0, 0.8) no eixo x é levado pela trans-

formação no eixo y = h(x). Faça o mesmo com o intervalo de mesmo comprimento (0.8, 1).

Conclua: P(Y ∈ (1.2, 2.0)) é maior ou menor que P(Y ∈ (0, 1.1))?

• Sejam os eventos B = [Y < ??] e A = [X < 1/ 10
√

2], onde 1/ 10
√

2 ≈ 0.933. Os eventos A e B

devem ser são iguais. Qual o valor de “??”?

• Considerando a distribuição de Y , calcule FY (y) = P(Y ≤ y) para qualquer y ∈ R mapeando

o evento [Y ≤ 1/2] e um evento equivalente [X ∈ S] e calculando P(X ∈ S).

• Derive FY (y) para obter a densidade f(y) de Y . Esboce a densidade e com base no gráfico,

sem fazer contas, responda: o que é maior, P(Y < 1/2) ou P(Y > 1/2)?

14. Considere a f.d.a. F(x) = P(X ≤ x). Quais afirmações abaixo são corretas?

• F(x) é uma função aleatória.

• Se X é uma v.a. discreta então F(x) possui saltos em todos os pontos onde X tem massa de

probabilidade maior que zero.

• F(x) mede a probabilidade de X ser menor que média.

• F(x) é uma função determińıstica.

• F(x) só pode ser calculada depois que uma amostra é obtida.

• F(x) é a mesma função, qualquer que seja a amostra aleatória de X.



15. Exerćıcio para verificar aprendizagem de notação: Seja X1, X2, . . . , Xn uma amostra de uma v.a.

Considere a f.d.a. emṕırica

F̂(x) =
1

n
no. elementos leqx

Explique por tque isto é equivalente a escrever

F̂(x) =

∑n
i=1 I[Xi≤x]

n
=

∑n
i=1 I(−∞,x](Xi)

n

16. Considere a f.d.a. emṕırica F̂(x) =
∑

i I[Xi ≤ x]/n baseada numa amostra aleatória de X. Quais

afirmações abaixo são corretas?

• F̂(x) é uma função aleatória.

• Se X é uma v.a. discreta então F̂(x) possui saltos em todos os pontos onde X tem massa de

probabilidade maior que zero.

• F̂(x) mede a probabilidade de X ser menor que média.

• F̂(x) é uma função determińıstica.

• F̂(x) só pode ser calculada depois que uma amostra é obtida.

• F̂(x) é a mesma, qualquer que seja a amostra aleatória de X.

• F(x) é a mesma função, qualquer que seja a amostra aleatória de X.

17. Em finanças, o valor presente (hoje) de um capital c a ser pago daqui a T anos é dado por

V = c exp(−δT ) onde δ é a taxa de juros anual. Um valor t́ıpico é δ = 0.04, o que corres-

ponde a 4% anuais de juros. Imagine que c é o capital a ser pago por uma apólice de seguros a

um beneficiário quando um indiv́ıduo falecer. Se T é o tempo de vida futuro (e aleatório) deste

indiv́ıduo, V = c exp(−δT ) representa o valor atual (presente, no instante da assinatura do con-

trato da apólice) deste capital futuro e incerto. Para precificar o seguro e estabelecer o prêmio a ser

cobrado do segurado, a seguradora precisa calcular o valor esperado E(V ). Supondo que T possui

uma distribuição exponencial com parâmetro λ = 1/40 (ou média igual a 40), obtenha E(V ). OBS:

a densidade de uma exponencial com parâmetro λ é dada por

f(t) =

{
0, se t < 0

λe−λt, se t ≥ 0



Caṕıtulo 5

Simulação Monte Carlo

1. Discutimos alguns métodos para geração de v.a.’s em sala tais como aceitação/rejeição e transfor-

mada inversa. Eles podem ser usados para gerar números aleatórios com quase qualquer distri-

buição. No entanto, para as distribuições mais importantes, existem técnicas espećıficas que são

melhores do que estas técnicas mais gerais.

A distribuição normal (ou gaussiana) é uma das mais importantes em probabilidade por causa do

Teorema Central do Limite. O método mais conhecido e mais usado para gerar gaussianas é o de

Box-Mueller: gere duas v.a.’s X1 e X2 i.i.d. com distribuição uniforme em [0, 1]. Pode-se provar

que

Y1 = sin(2πX1)
√
−2 lnX2

e

Y2 = cos(2πX1)
√
−2 lnX2

são gaussianas independentes com µ = 0 e σ = 1.

Aqui está um código em R para gerar nsim gaussianas independentes N(0, 1) (com média 0 e

variância 1) com este método de Box-Mueller:

minharnorm = function(n) sqrt(rexp(n, 0.5)) * cos(runif(n, 0, 2 * pi))

57



Figura 5.1: Top: A probability density function f(x). Bottom: your turn: sketch the cumulative

distribution function F(x) associated with the density f(x). No need to

Estamos usando que, se X2 ∼ U(0, 1), então −2 log(X2) ∼ exp(1/2).

Gere 10 mil valores N(0, 1) com esta função e crie um histograma padronizado (com área 1, ar-

gumento prob=T). Compare o histograma dos dados simulados com a densidade gaussiana exata

sobrepondo a densidade ao histograma (Crie uma grade e calcule dnorm; a seguir use lines). São

parecidos?

2. Here’s a fun exercise that will intuitively teach you how the inverse transform method works. Figure

5.1 shows on top a probability density function f(x). Imagine what would be a histogram of values

sampled from this density function. Let’s check if the inverse transform method is able to generate

random numbers following this distribution. Sketch freehand on the bottom graph the cumulative

distribution function F(x) associated with that density. There is no need to go overboard with the

drawing but try to match the horizontal scales in the top and bottom graphs.

Next, mentally sample some values in the (0, 1) interval in the vertical axis of the bottom graph.

Try to sample following the uniform distribution U(0, 1). Use the curve you sketched to obtain the

inverse image in the horizontal axis of the points you sampled on the vertical (0, 1) interval. Do the

inverted sampled points seem to come from the density f(x)? For example, are they around where

the density is centered (at x = 10)? Are they within the interval where the density is concentrated

(the interval (7, 13))?



3. Considere a densidade de probabilidade

f(x) =
3

2

√
x x ∈ [0, 1]

Escreva uma função em R para gerar v.a.’s com esta distribuição usando (a) o método da trans-

formada inversa, e (b) um método de aceitação-rejeição usando a densidade uniforme para propor

valores. Gere 10000 números com cada um dos dois métodos e mostre seus resultados num histo-

grama. Quantos valores da U(0, 1) foram necessários gerar pelo método de aceitação-rejeição para

obter os 1000 valores da densidade acima?

4. Seja U ∼ U(0, 1). Mostre que W = a + (b − a)U ∼ U(a, b). A partir desse resultado, como

gerar números aleatórios seguindo uma distribuição uniforme no intervalo (a, b) sabendo-se gerar

U ∼ U(0, 1), uma uniforme no intervalo (0, 1)?

5. Exercicio com os dogs de Mosteller

6. Exercicio com random walk - binomial - Feller. Obter por simulacao a distribuicao da proporcao

do tempo de lideranca –¿ arc sin (p)

7. Branching process por simulacao. Teorema de extincao de Galton-Watson.

8. Genetic drift

9. Numa companhia de seguros, a tarefa é simular a perda financeira agregada L que a companhia

pode experimentar no próximo ano em um tipo de apólice. A perda é dada por L = X1 + . . .+XN

onde N é o número aleatório de sinistros que irão ocorrer com os muitos segurados e Xi é a perda

monetária associada com o i-ésimo sinistro.

Supondo que N ∼ Poisson(1.7) e que os Xi são i.i.d. com distribuição exp(1/10), obtenha um valor

simulado de L usando os seguintes valores i.i.d. U(0, 1): 0.672 para obter o valor simulado N ; e

o que for necessário da sequência 0.936, 0.984, 0.198, 0.659, 0.379 para obter os Xi e assim obter

um valor para L. Repita o exerćıcio obtendo um segundo valor simulado para L com a seguinte

seqÃ1
4 ência de valores i.i.d. U(0, 1): 0.013, 0.834, 0.926, 0.648, 0.717, 0.169.

Solução: Os valores acumulados P (X ≤ k) para k = 0, 1, 2, 3, 4 de uma Poisson(1.7) são iguais a

0.183, 0.493, 0.757, 0.907, 0.970. Assim, para a primeira simulação, temos N = 2 e L = X1 + X2

onde X1 = −10 log(0.936) = 0.661 e X1 = −10 log(0.984) = 0.161. Portanto, o valor simulado de

L é L = 0.822. Na segunda simulação, N = 0 e assim L = 0. �

10. X e Y são duas variáveis aleatórias cont́ınuas com funções distribuições acumuladas distintas e

iguais a F1(x) e F2(y), respectivamente, com inversas F−1
1 (u) e F−1

2 (u). Verifique se as afirmações

abaixo são verdadeiras para duas distribuições genéricas F1 e F2 distintas:



• F1(X) ∼ U(0, 1)

• Se um valor X maior que a mediana de sua distribuição for observado, então o valor F1(X)

será maior que 1/2.

• Se U > 0.5 então F−1
1 (U) > F−1

1 (0.5).

• F−1
2 (F1(X)) tem a mesma distribuição que Y .

• F2(Y ) e F1(X) possuem a mesma distribuição.

• F2(X) e F1(X) possuem a mesma distribuição (atenção: este item é diferente do anterior).

• F−1
2 (U) e F−1

1 (U) são i.i.d.

• F2(Y ) e F1(X) são i.i.d.

Solução:

• Correto, demonstrado nestas notas de aula.

• A mediana é m = F−1
1 (0.5). Como a função F1 é crescente então X > m implica que

F1(X) > F1(m) = 0.5

• Correto, similar ao item acima.

• Correto: Se U ∼ U(0, 1) então F−1
2 (U) ∼ Y . Como F1(X) ∼ U(0, 1), segue o resultado.

• Correto: F2(Y ) e F1(X) tem distribuição U(0, 1).

• Incorreto: A variável aleatória F2(X) não possui distribuição U(0, 1), em geral. Para enxergar

isto, esboce um gráfico de F2 supondo que ela refere-se a uma distribuição normal padrão e

que X tem distribuição concentrada no intervalo (0, 2). Então P (F2(X) < 0.5) = 0.

• Incorreto: F−1
2 (U) ∼ Y e F−1

1 (U) ∼ X e X e Y possuem distribuições distintas.

• Incorreto: elas são i.d. pois ambas são U(0, 1) mas podem não ser independentes se X e Y

forem correlacionadas. Intuitivamente, imagine que X e Y possuem correlação próxima de 1.

Então F2(Y ) < 0.5 se Y estiver abaixo da sua mediana. Neste caso, com alta probabilidade,

X também estará abaixo de sua mediana e assim F1(X) também será menor que 0.5.

�

11. Mostrar que razão de densidade de gama sobre Pareto, para quaisquer parâmetros, vai a zero se x

vai a infinito. Isto mostra que Pareto tem caudas mais pesadas que a gama.

Solução: A razão das duas densidades, de uma gama com parâmetros α > 0 e β > 0, e uma

Pareto com parâmetros a > 0 e x0 > 0, para x > x0, é dada por

fg(x)

fp(x)
=
k1x

α−1e−βx

k2/xa+1
= kxα+ae−βx → 0

quando x → ∞ pois o decrescimento exponencial em e−βx domina o crescimento polinomial em

xα+a.

12. Seja c > x0 uma constante qualquer, possivelmente muito grande. Mostrar que, se X é Pareto,

então P (X ≤ c)/P (X > c) decresce para zero se α decresce para zero. Assim, efeito de diminuir α

é aumentar a chance relativa de valores grandes (acima de c).



Solução:
P (X ≤ c)
P (X > c)

=

(
c

x0

)α
− 1

Como c/x0 > 1, se α ↓ 0 então a razão acima também decresce para zero. Assim, a cauda

superior fica mais relativamente com mais massa de probabilidade (mais pesada) que a parte inferior

dadistribuição. Isto implica que valores maiores que c podem ter probabilidade de ocorrência bem

alta bastando que α seja suficientemente pequeno. �

13. Podemos usar simulação Monte Carlo para estimar integrais da forma

I =

∫
A
g(x)dx

onde g é uma função qualquer e A é uma região do espaço euclidiano Rk. Para fazer isto, considere

um retângulo k-dimensional D que contenha A e com volume vol(D). Seja X um vetor uniforme-

mente distribúıdo no retângulo D (basta gerar uma v.a. uniforme para cada eixo coordenado do

retângulo). Seja Y = g(X) se X ∈ A e Y = 0, caso contrário. Pode-se mostrar que

E(Y ) = E(g(X)) =

∫
D
g(x)

1

vol(D)
dx =

∫
A
g(x)

1

vol(D)
dx =

1

vol(D)
I

Gere uma grande amostra X1, X2, . . . , Xn de v.a.’s i.i.d com a mesma distribuição que X e use a

aproximação
I

vol(D)
= E(Y ) ≈ 1

n
(Y1 + . . .+ Yn)

Use esta técnica para estimar a integral dupla

I =

∫∫
Ω
e−
√
x2+y2 dx dy

na região semicircular Ω definida por

x2 + y2 ≤ 1, x ≥ 0.

14. Use simulação Monte Carlo para estimar o volume do elipsóide

x2 +
y2

4
+
z2

16
≤ 1.

Você pode assumir que o elipsóide está contido no paraleleṕıpedo [−1, 1]× [−2, 2]× [−4, 4]. O valor

exato do volume é conhecido e é igual a 32/3 π = 33.51.

Solução: Aqui vai:

# D = [-1,1] x [-2, 2] x [-4, 4]

volD = 2*4*8

set.seed(123)

x = runif(10000, -1, 1)

y = runif(10000, -2, 2)

z = runif(10000, -4, 4)

mean(x^2 + y^2/4 + z^2/16 <= 1) * volD

[1] 33.9072



15. Use o método de transformada inversa para obter uma amostra Monte Carlo de uma distribuição

exp(λ) que possui densidade de probabilidade

f(x) =

{
0, se x < 0

λ exp(−λx), se x ≥ 0

Para isto, use a função de densidade acumulada: F(x) = 1 − exp(−λx) se x > 0. Escolha você

mesmo algum valor para λ

Solução: Aqui vai, com λ = 5 (portanto, com E(X) = 1/5 = 0.2):

lambda = 5

u = runif(10000)

x = - 1/lambda * log(1 - u)

hist(x)

16. Você já sabe gerar de uma exponencial com λ = 1 e densidade g(x). Suponha que você queira gerar

números aleatórios de uma distribuição Gama com parâmetros α = 3 e β = 2. Isto é, você quer

gerar números aleatórios com uma densidade

f(x) =

{
0, se x < 0

4.0x2 exp(−2x), se x ≥ 0

Mostre que f(x)/g(x) atinge seu ponto de máximo em x = 2. Obtenha então o valor da constante c

tal que f(x)/(cg(x)) ≤ 1 para todo x e use esta razão para encontrar c e fazer uma amostragem de

f(x) por aceitação-rejeição (c = 2.44 deve ser suficiente, nas minhas contas). Qual a porcentagem

de valores gerados que foram rejeitados?

17. Uma seguradora possui uma carteira com 50 mil apólices de seguro de vida. Não é posśıvel prever

quanto cada pessoa vai viver mas é posśıvel prever o comportamento estat́ıstico dessa massa de

segurados. Atuários estudam este fenômeno e já identificaram uma distribuição excelente para o

tempo de vida X de adultos: a distribuição de Gompertz que possui densidade de probabilidade

fX(x) dada por:

f(x) = Bcx exp

(
− B

log(c)
(cx − 1)

)
= BcxS(x)

para x ≥ 0, onde B > 0 e c ≥ 1 são constantes positivas que alteram o formato da função

densidade. Evidentemente, f(x) = 0 para x < 0 pois não existe tempo de vida negativo. A função

de distribuição acumulada é igual a

FX(x) = 1− e−
B(cx−1)
log(c)

para x ≥ 0 e FX(x) = 0 para x < 0. Usando dados recentes de uma seguradora brasileira, podemos

tomar B = 1.02× 10−4 e c = 1.0855.

• Com os parâmetros B e c acima, desenhe a curva densidade de probabilidade (use valores x

entre 0 e 100 anos).



• SEM FAZER NENHUMA conta, apenas olhando a curva que você gerou, responda:

– P(X < 40) é aproximadamente igual a 0.03, 0.10, ou 0.20?

– Deslize mentalmente um pequeno intervalo de um ano e considere todas as probabilidades

do tipo P (X ∈ [k, k + 1)) onde k é um natural. Qual a idade em que esta probabilidade

é aproximadamente máxima: aos k = 60, 70 ou 80 anos de idade?

– O que é maior, a probabilidade de morrer com mais de 100 anos ou de morrer antes de

completar 10 anos de idade?

• Inverta a função de distribuição acumulada, mostrando que

F−1(u) = log (1− log(c) log(1− u)/B) / log(c)

onde u ∈ (0, 1).

• Use o método da transformada inversa para gerar 50 mil valores independentes de de X.

• Com estes números simulados, calcule aproximadamente P(X > 80|X > 50). Isto é, calcule

aproximadamente a chance de sobreviver pelo menos mais 30 anos dado que chegou a completar

50 anos de idade.

• A seguradora cobra um prêmio de 2 mil reais por uma apólice de seguro de vida que promete

pagar 100 mil reais a um beneficiário no momento exato de morte do segurado. A apólice é

vendida no momento em que os 50 mil indiv́ıduos nasceram (alterar esta hipótese para que

apenas adultos comprem a apólice dá trabalho e não muda o essencial do exerćıcio). Ela

coloca o dinheiro rendendo juros de 5% ao ano de forma que dentro de t anos os 2 mil reais

terão se transformado em 2×exp(0.05t). Se o indiv́ıduo falecer muito cedo, ela terá uma perda

financeira. Se ele sobreviver muito tempo, seu prêmio vai acumular juros suficiente para cobrir

o pagamento do benef́ıcio.

Para a carteira de 50 mil vidas que você gerou, calcule aproximadamente a probabilidade de

perda da seguradora usando simulação Monte Carlo.

18. Use Importance Sampling para estimar valores associados com X, uma v.a. com distribuição Gama

com parâmetros α = 3 e β = 2 e densidade:

f(x) =

{
0, se x < 0

4.5x2 exp(−2x), se x ≥ 0

Use a distribuição exponencial com λ = 1 para gerar suas amostras. Você sabe que para gerar

W ∼ exp(1) basta tomar W = log(U) onde U ∼ U(0, 1).

A esperança E(X) é conhecida analiticamente e é igual a E(X) = 1.5. Verifique se a média

ponderada da sua amostra tem um valor próximo deste valor.

Use sua amostra para obter valores aproximados das seguintes quantidades que, neste caso simples,

podem ser obtidas analiticamente (ou com métodos numéricos bem precisos):

• DP (X) =
√

V(X) = 0.75 onde V(X) = E(X2)− E(X)2

• P(X > 4.3) = E(I[X > 4.3]) = 0.0086

• E(10e−XI[2 < X < 3]) (este número é o valor presente atuarial de um seguro de equipamento

que paga 10 unidades se uma certa máquina falhar entre 2 e 3 anos de seu ińıcio). Isto é, este

seguro cobre apenas falhas que ocorrem entre e 2 e 3 anos de vida do equipamento.



19. No problema anterior, imagine que você não sabe que a constante de normalização da densidade

f(x) seja igual a 4.5. Use SIR (Sampling Importance Resampling) para obter uma amostra de f(x)

e a seguir estime as mesmas quantidades do problema anterior.

20. No método de de aceitação-rejeição queremos amostra de uma densidade-alvo f(x) mas usamos

uma amostra retirada de uma densidade g(x) de onde sabemos gerar. Precisamos escolher uma

constante M tal que f(x) ≤Mg(x) para todo x. Mostre que M ≥ 1. DICA: integre dos dois lados

da desigualdade.



Caṕıtulo 6

Vetores Aleatórios

1. Considere a distribuição conjunta sobre três variáveis X,Y, Z, que assumem posśıveis valores

{x1, . . . , xl}, {y1, . . . , xm} e {z1, . . . , xn}, respectivamente.

• Em geral, quantos números são necessários para especificar a função de massa de probabilidade

conjunta p(x, y, z) = P(X = x, Y = y, Z = z)?

• Suponha que nos seja dada a tabela de valores para p(xi, yj , zk). Anote uma equação que

especifique o distribuição marginal, p(z), em função desta tabela.

• Agora, suponha que queremos calcular a distribuição condicional p(z|x). Descrever como

calcular isso a partir de uma tabela com a probabilidade conjunta.

2. Considere as variáveis aleatórias X ∈ {0, 1} e Y ∈ {−1, 0, 1} com distribuição de probabilidade

conjunta dada pela tabela abaixo:
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Y

X -1 0 1

0 0.2 0.4 0.2

1 0.0 0.1 0.1

• O que é P(X = 1|Y = 1)?

• Qual é a probabilidade de que Y ≥ 0, dado que X = 0?

• Encontre E(Y )

• Qual é o valor esperado de 3X + 1?

• X e Y são independentes?

• Suponha que tenhamos outra variável aleatória Z que seja independente de Y e tenha proba-

bilidades marginais P(Z = 0) = 0.2 e P(Z = 1) = 0.8. Escreva a tabela para a distribuição de

probabilidade conjunta do vetor (Y,Z).

3. Consideramos um modelo probabiĺıstico para um problema de diagnóstico de falhas. Uma variável

binária C representa a integridade de uma unidade de disco num certo instante de tempo t: Ct = 0

significa que ela está operando normalmente em t e Ct = 1 significa que ela está em estado de

falha. A unidade é monitorada continuamente usando um sensor de temperatura e um sensor de

choque. Em cada instante t, são registradas duas caracteŕısticas binárias, Xt e Yt. Temos Xt = 1 se

o drive foi sujeito a choque (por exemplo, caiu), durante o peŕıodo. E temos Xt = 0, caso contrário.

Definimos Yt = 1 se a temperatura da unidade de disco esteve acima de 70 graus Celsius no peŕıodo,

e Yt = 0, caso contrário. A tabela abaixo define a função de massa de probabilidade conjunta num

instante t dessas três variáveis aleatórias:

x y c pXY C(x, y, c)

0 0 0 0.10

0 1 0 0.20

1 0 0 0.20

1 1 0 0.10

0 0 1 0.00

0 1 1 0.10

1 0 1 0.05

1 1 1 0.25

Forneça o valor numérico das probabilidades abaixo:

• Qual é a probabilidade P(C = 1)?

• Qual é a probabilidade P(C = 0|X = 1, Y = 0)?

• Qual é a probabilidade P(X = 0, Y = 0)?

• Qual é a probabilidade P(C = 0|X = 0)?

• São X e Y independentes? Justifique sua resposta.

• X e Y são condicionalmente independentes dado C? Isto é, temos P(X = x, Y = y|C = c) =

P(X = x|C = c)P(Y = y|C = c)?

4. Num jogo digital, mamonas assassinas movem-se na tela ao acaso (ver Figura 6.1). Cada mamona

movimenta-se de acordo com um modelo probabiĺıstico próprio para não tornar o jogo monótono.



Figura 6.1: Jogo digital com mamonas assassinas perseguindo usuário no chão da imagem.

O movimento de cada uma delas é muito simples: a cada instante t (em frações de segundo), ela

movimenta-se de acordo com uma v.a. Xt ∼ N(0, 1). Ela movimenta-se na direção norte-sul com

probabilidade θ = 1/2 ou na direção leste-oeste com probabilidade 1 − θ = 1/2. As direções e

tamanhos das movimentações são independentes entre si em cada instante de tempo e em instantes

sucessivos também. Qual é a distribuição de probabilidade aproximada da localização de uma

mamona assassina num tempo t se ela partiu da origem (0, 0)? Suponha agora que θ > 1/2 do

forma que ela tenha uma tendencia a preferir movimentar-se na direção vertical. O que muda no

resultado anterior? E se Xt ∼ N(0, σ2).

5. Num jogo digital, mamonas assassinas movem-se na tela ao acaso (ver Figura 6.1). Cada mamona

movimenta-se de acordo com um modelo probabiĺıstico próprio para não tornar o jogo monótono.

O movimento de cada uma delas é muito simples: a cada instante t (em frações de segundo), ela

movimenta-se de acordo com uma v.a. Zt ∼ N(1, 1) na direção norte-sul e de acordo com uma v.a.

Wt ∼ N(0, 1/16) na direção leste-oeste. As v.a.s Zt e Wt são independentes entre si. Além disso,

Z1, Z2, . . . são independentes bem como W1,W2, . . ..

• Simule o movimento de uma mamona assassina por 50 instantes de tempo. Repita a simulação

algumas vezes para ter uma ideia do tipo de movimento que a mamona assassina faz. Quais

as principais caracteŕısticas qualitativas da sua movimentação?

• Dado que a manona assassina está numa posição (x, y) num certo instante de tempo, qual a

distribuição de probabilidade de sua posia̧ão um, dois e tres passos a frente?

• Dado que a mamona estava na posição (x, y) num certo instante, determine um retângulo R

no plano que tenha eixos paralelos ao sistema de coordenadas e tal que, com probabilidade

95%, a mamona esteja dentro de R

• Usando o teorema do limite central, qual é a distribuição de probabilidade aproximada da

localização de uma mamona assassina se ela partiu da origem (0, 0)?

6. Considere o conjunto de dados iris do R digitando os seguintes comandos:

iris

dim(iris)

names(iris)

plot(iris[,3], iris[,4])

plot(iris$Petal.Length, iris$Petal.Width, pch=21,

bg=c("red","green3","blue")[unclass(iris$Species)])

setosa <- iris[iris$Species == "setosa", 1:4]



plot(setosa)

mean(setosa)

cov(setosa)

cor(setosa)

Os dados em setosa são uma amostra de exemplos do vetor aleatório X = (X1, X2, X3, X4) para

a espécie setosa. X1 é o Sepal Length, X2 é o Sepal Width, X3 é o Petal Length e X4 é o Petal

Width. Assuma que a distribuição conjunta do vetor X é uma normal multivariada de dimensaão 4

com parâmetros µ = (µ1, µ2, µ3, µ4) e matriz de covariância Σ de dimensão 4×4. Use os resultados

obtidos no R (e apenas DUAS casas decimais) para responder às seguintes questões:

• Forneça uma estimativa para o vetor µ e para a matriz Σ.

• A partir da matriz de correlações entre os pares de v.a.’s (e do plot de dispersão dos pontos),

quais os grupos que são mais correlacionados?

• Obtenha a distribuição do sub-vetor X∗ = (X1, X3).

• Obtenha a distribuição CONDICIONAL do sub-vetor X∗ = (X1, X3) quando são conhecidos

os valores de (X2, X4).

• Obtenha agora distribuição CONDICIONAL do sub-vetor X∗ = (X1, X3) quando é conhecido

apenas o valor de X2.

• Obtenha também distribuição CONDICIONAL do sub-vetor X∗ = (X1, X3) quando é conhe-

cido apenas o valor de X4.

• Comparando as três últimas respostas que vocêforneceu, qual das duas variáveis isoladamente,

X2 ou X4, diminui mais a incerteza acerca de X3? Isto é, se você tivesse de escolher apenas

uma delas, X2 ou X4, qual você iria preferir se seu objetivo fosse predizer o valor de X3? A

resposta é a mesma se o objetyivo for predizer X1?

• Considere a melhor preditora para X3 que você escolheu, dentre X2 ou X4, na questão an-

terior. Digamos que tenha sido X4. Avalie quanto conhecer a outra variável (neste caso,

X2) reduz ADICIONALMENTE a incerteza acerca de X3. Isto é, compare V ar(X3|X4) com

V ar(X3|X2, X4).

7. Seja Z = (Z1, Z2, Z3) um vetor de variáveis i.i.d. (independentes e identicamente distribúıdas)

N(0, 1). Isto é, Z segue uma distribuição normal multivariada com valor esperado esperado (0, 0, 0)

e matriz 3 × 3 de covariância igual à identidade I. Você aprendeu a gerar estas v.a.’s na lista

anterior.

Queremos agora gerar um vetor aleatório X = (X1, X2, X3) seguindo uma normal multivariada com

valor esperado µ = (µ1, µ2, µ3) = (10, 20,−50) e com matriz de covariância

Σ =

 4 9 −14

9 30 −44

−14 −44 94


Para isto, siga os seguintes passos em R (em matlab, use comandos similares):

• Encontre uma matriz L tal que LLt = Σ. Uma matriz com esta propriedade é aquela obtida

pela decomposição de Cholesky de matrizes simétricas e definidas positivas. Em R, isto é

obtido pelo comando L = t(chol(Sigma)).

• Gere z, um vetor 3-dim com v.a.’s iid N(0, 1).

• A seguir, faça



x = mu + L %*% z

Gere uma amostra de tamanho 2000 dos vetores x 3-dim e armazene numa matriz amostra de

dimensão 2000× 3. A seguir, calcule a média aritmética dos 2000 valores de cada coordenada de x

e compare com os três valores do vetor µ. Eles devem ser parecidos.

Usando a amostra, estime os 9 valores da matriz de covariância Σ. Chame esta matriz estimada

de S. Verifique que as estimativas são próximas dos valores verdadeiros que você usou para gerar

seus dados. Por exemplo, estime o elemento σ12 da matriz Σ por

s12 =
1

2000

2000∑
i=1

(xi1 − x̄1)(xi2 − x̄2)

onde x̄1 e x̄2 são as médias aritméticas dos 2000 valores observados das v.a.’s 1 e 2. Os termos σjj
da diagonal principal são estimados por

sjj =
1

2000

2000∑
i=1

(xij − x̄j)2

O comando cov(x) calcula a matriz S diretamente (usando 1999 no denominador, ao invés de

2000). Procure calcular você os termos da matriz S para ter certeza de que você está entendendo

o que estamos fazendo.

8. A matriz Σ é estimada a partir dos dados substituindo o operador teórico e probabiĺıstico E pela

média aritmética dos números espećıficos da amostra. Assim, σij é estimado por sua versão emṕırica

sij . Qual a diferença entre σij e sij? Uma maneira de responder a isto é notar que sij vai ter um

valor ligeiramente diferente cada vez que uma nova amostra for gerada, mesmo que a distribuição

de probabilidade permaneça a mesma. Já σij não vai mudar nunca, é fixo e determinado pela

distribuição de probabilidade.

Seja ρ a matriz 3× 3 de correlação com elemento

ρij = Corr(Xi, Xj) =
Cov(Xi, Xj)√

σiiσjj
.

Observe que ρii = 1. Esta matriz ρ é estimada pela matriz R, cujos elementos são obtidos a partir

dos dados da amostra. Assim, ρij é estimado por

rij = sij/
√
siisjj

Calcule as matrizes ρ e R e compare-as.

Este é um dos sentidos que empregamos à expressão aprendizagem: usamos os dados observados

para aprender (ou inferir) sobre o mecanismo aleatório que gerou estes mesmos dados. Isto é,

aprendemos sobre µ e Σ através de (x̄1, x̄2) e de S.

9. Usando a distribuição de X do problema anterior, seja b um vetor k-dimensional e C uma matriz

k × 3 formada por constantes. Uma das propriedades da normal multivariada é que a distribuição

do vetor b + CX de dimensão k é normal com vetor de médias b + Cµ e matriz de k×k covariância

CΣCt. Use esta propriedade para obter a distribuição das seguintes variáveis:

• Distribuição marginal de X1, de X2 e de X3.

• Distribuição de um indicador composto pelas 3 variáveis: T = 0.4X1 + 0.3X2 + 0.3X3.

• Distribuição de um indicador composto pelas 3 variáveis normalizadas: T = 0.4(X1− 10)/2 +

0.3(X2 − 20)/
√

30 + 0.3(X3 + 50)/
√

94.



• Distribuição conjunta de (X1 −X2, 4X1 + 2X2 −X3).

• Distribuição conjunta de (X1, aX1 + bX2 + cX3). onde a, b, c são constantes reais. Em par-

ticular, encontre a covariância entre X1 e o indicador Y = aX1 + bX2 + cX3 formado pela

combinação linear de X1, X2 e X3.

10. Considere um vetor X = (X1, . . . , Xp) com distribuição normal multivariada. É posśıvel mostrar

que, com probabilidade 1−α, o vetor aleatório X deve cair dentro da elipse D2 = c onde c = χ2
p(α)

é o quantil (1 − α)100% de uma distribuição qui-quadrado com p graus de liberdade onde p é a

dimensão do vetor X. No caso particular de um vetor bidimensional, o valor de c associado com a

probabilidade 1−α = 0.95 é igual a c = 9.21 ou c ≈ 9.2. Assim, se X = (X1, X2) estiver fora dessa

elipse (isto é, se D2 > 9.2), o ponto pode ser consirado um tanto anômalo ou extremo.

O arquivo stiffness.txt contem dois tipos de medições da rigidez de pranchas de madeira, a pri-

meira aplicando uma onda de choque através da prancha, ea segunda aplicando uma vibração à

prancha. Estime o vetor µ = (µ1, µ2) e a matriz Σ usando os dados do amostra e a seguir calcula

o valor de D2 para cada ponto da amostra. Qual deles parece extremo? Olhando as duas variáveis

INDIVIDUALMENTE seria posśıvel detectar estes pontos extremos?

11. Considere um vetor X = (X1, X2) com distribuição normal bivariada com vetor esperado µ =

(µ1, µ2) e matriz de covariância

Σ =

[
σ11 ρ

√
σ11σ22

ρ
√
σ11σ22 σ22

]

Usando o resultado dos slides, mostre que a distribuição condicional de (X2|X1 = x1) é N(µc, σ
2
c )

onde

µc = µ2 + ρ

√
σ22

σ11
(x1 − µ1) = µ2 + ρ

√
σ22

x1 − µ1√
σ11

e

σ2
c = σ22(1− ρ2)

A partir desses resultados, verifique se as afirmações abaixo são V ou F:

• Saber que o valor X1 = x1 está dois desvios-padrão acima de seu valor esperado (isto é,

(x1 − µ1)/
√
σ11 = 2) implica que devemos esperar que X2 também fique dois desvios-padrão

acima de seu valor esperado.

• Dado que X1 = x1, a variabilidade de X2 em torno de seu valor esperado é maior se x1 < µ1

do que se x1 > µ1.

• Conhecer o valor de X1 (e assim eliminar parte da incerteza existente) sempre diminui a

incerteza da parte aleatória permanece desconhecida (isto é, compare a variabilidade de X2

condicionada e não-condicionada no valor de X1).

• µc é uma função linear de x1.

12. Regressão linear e distribuição condicional: Vamos considerar um modelo (na verdade, mais uma

caricatura) de como a renda do trabalho Y de um indiv́ıduo qualquer está associada com o número

de anos de estudo X desse mesmo indiv́ıduo. Vamos supor que, para um indiv́ıduo com X = x anos

de estudo teremos a renda Y como uma variável aleatória com distribuição normal com esperança

E(Y |X = x) = g(x) = 300 + 100 ∗ x e variância σ2 = 502. Responda V ou F às afirmações abaixo:

• Se X = 10 para um indiv́ıduo (isto é, se ele possui 10 anos de estudo), então a sua renda é

uma variável aleatória com distribuição N(1300, 502).

• E(Y ) = 300 + 100 ∗ x.



• E(Y |X = x) = 300 + 100 ∗ x.

• V(Y ) = 502.

• V(Y |X = x) = 502.

13. Duas variáveis aleatórias cont́ınuas com densidade conjunta fXY (x, y) são independentes se, e so-

mente se, a densidade conjunta é o produto das densidades marginais:

fXY (x, y) = fX(x)fY (y) .

Mostre que X e Y são independentes se o vetor (X,Y ) seguir uma distribuição unforme num

retãngulo [a, b]× [c, d] e densidade

fXY (x, y) =

{
1/A, se (x, y) ∈ [a, b]× [c, d]

0, caso contrário

onde A = (b − a)(d − c) é a área do retângulo. Para isto, obtenha as marginais fX(x) e fY (y)

e mostre que seu produto é igual á densidade conjunta. Verifique também que X e Y seguem

distribuições uniformes. Assim, no método de aceitação-rejeição, podemos gerar facilmente dessa

densidade uniforme: simlesmente gere X e Y independentemente com distribuições uniformes.

14. Gerar uma amostra aleatória com 300 instâncias do vetor aleatório (X,Y ) com densidade

f(x, y) =

{
0.1 (2 + sin(2πx) + sin(2πy)) , se (x, y) ∈ D
0, caso contrário

O suporte D é um poĺıgono dentro do quadrado [0, 3] × [0, 3] que pode ser visualizado com estes

comandos:

poligx = c(1,1,0,1,2,3,2,2,1)

poligy = c(0,1,2,3,3,2,1,0,0)

plot(poligx, poligy, type="l")

Gere uma amostra com distribuição uniforme no quadrado, que tem densidade g(x, y) = 1/9 no qua-

drado [0, 3]2, e retenha cada ponto ((x, y) gerado com probabilidade p(x, y) = f(x, y)/(Mg(x, y)).

Verifique que podemos tomar M ≥ 3.6. Vou usar M = 3.6.

Para visualizar a densidade conjunta f(x, y) na região maior do quadrado [0, 3] × [0, 3], dentro do

qual está a região D, digite:

f <- function(x,y){ 0.1*(2+sin(2*pi*x)+sin(2*pi*y)) }

eixox = eixoy = seq(0,3,length=101)

z = outer(eixox, eixoy, f)

Observe que o suporte de g é maior que o de f . Teoricamente, isto náo é problema: pontos

gerados dentro quadrado mas fora do poĺıgono D devem ser retidos com probabilidade p(x, y) =

f(x, y)/(Mg(x, y)) = 0/(M/9) = 0. Isto é, eles devem ser rejeitados com probabilidade 1. Assim,

antes mesmo de calcular p(x, y), verifique se cada ponto esté dentro de D: se não estiver, elimine-o.

Se D tiver uma forma muito complicada (como a forma da Lagoa da Pampulha ou o contorno de

Minas Gerais), você vai precisar de algoritmos geométricos sofisticados que fazem isto de forma

eficiente. No nosso caso, a forma do poĺıgono é muito simples. Complete o código abaixo para

obter uma função que testa se (x, y) ∈ [0, 3]2 esté dentro de D (ou proponha um código melhor que

o meu):



Figura 6.2: Amostra de f(x, y) junto com poĺıgono D.

dentroD = function(x,y){

dentro = F

if(x >= 1 & x <= 2) dentro = T

else{

if((x > 2) & (y >= -1+x) & (y <= 5-x)) dentro = T

else

if( ??????

}

return(dentro)

}

A seguir, faça a amostragem de f(x, y). Você poderá visualizar sua amostra, armazenada na matriz

mat, junto com a densidade no poĺıgono usando os seguintes comandos, que geram a Figura 6.2:

image(eixox, eixoy, z)

lines(poligx, poligy, lwd=2)

points(mat, pch="*")

Note como as áreas mais claras são aquelas que estão com maior densidade de pontos aleatórios

enquanto as áreas mais vermelhas possuem densidade mais baixa.

15. A função persp nativa no R desenha gráficos de perspectiva de uma superf́ıcie sobre o plano x-y.

Digite demo(persp) no console para ter uma ideia do que esta função pode fazer. A seguir, faça

você mesmo os gráficos de quatro diferentes funções de densidade de probabilidade f(x, y) de um

vetor aleatório bivariado (X,Y ).

• f(x, y) = (2π)−1 exp
(
−(x2 + y2)/2

)
, a densidade de uma gaussiana bivariada com variáveis

independentes e marginais X ∼ N(0, 1) e Y ∼ N(0, 1). A constante de integração é igual a

1/(2π). Faça a superf́ıcie considerando a região [−4, 4]× [−4, 4] do plano (x, y).

• f(x, y) = (2π
√

0.51)−1 exp

(
− x2 + y2 − 1.4xy

1.02

)
em [−4, 4] × [−4, 4]. Esta é a densidade

de uma gaussiana bivariada de variáveis não-independentes, com correlação ρ = 0.7, e com

marginais X ∼ N(0, 1) e Y ∼ N(0, 1).

• f(x, y) = | sin(r)|/(44r) onde r =
√
x2 + y2. Faça a superf́ıcie considerando a região [−10, 10]×

[−10, 10] do plano (x, y) dividindo-a em uma grade 30× 30.



• f(x, y) = 0.5 exp(−(x/3 + y +
√
xy/4)) no retângulo [0, 6]× [0, 3].

• f(x, y) = 0.5∗g(x, y)+0.5∗h(x, y) em [−4, 4]×[−4, 4] onde g(x, y) = (2π)−1 exp
(
−(x2 + y2)/2

)
(como no item 1) e h(x, y) = 2π−1 exp

(
−4(x− 2)2 − 4(y − 2)2

)
O script a seguir exemplifica como fazer o gráfico de uma densidade bivariada usando a primeira

densidade da lista acima.

x = seq(-4, 4, by = 0.2) # usando o parametro by

y = seq(-4, 4, length = 41) # usando o parametro length

# use outer:

z <- outer(x, y, FUN = function(x,y) exp(-(x^2 + y^2)/2) /(2*pi) )

# outer retorna uma matriz em que na posicao (i,j) temos o valor

# de FUN avaliado com x=x[i] e y=y[j]

# Faca o grafico 3-dim da superficie

persp(x, y, z)

# mudando alguns parametros de persp

persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue")

# mais algumas mudancas

persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue",

ltheta = 120, shade = 0.75, ticktype = "detailed",

xlab = "x", ylab = "y", zlab = "densidade f(x,y)")

################

# Quando a funcao a ser passada como argumento de FUN for muito longa ou complexa

# basta defini-la separadamente e passar apenas o seu nome como argumento para FUN.

# Exemplo:

f <- function(x,y){

exp(-(x^2 + y^2)/2) /(2*pi)

}

z <- outer(x, y, FUN=f)

persp(x, y, z)

################

# Um procedimento alternativo usando a funcao mesh do R:

# crie um reticulado no plano (um grid)

M <- mesh(x, y))

# com a funcao "with", calcule uma funcao em cada ponto do grid retangular

# o valor de retorno eh uma matriz identica ’a z anterior.

z <- with (M, exp(-(x^2 + y^2)/2) /(2*pi))



persp(x, y, z)

16. Instale o pacote plot3D, criado por Karline Soetaert e baseado na função persp(). A vinheta (vig-

nette, em ingês) do pacote plot3d mostra alguns gráficos muito bonitos. Carregue o pacote e digite

os seguintes comandos no console: exemplo(persp3D), exemplo(Surf3D) e exemplo(scatter3D)

para ver exemplos. Além disso, tente este código abaixo para ver o belo histograma tri-dimensional

da Figura 6.3. (script adaptado de http://blog.revolutionanalytics.com/2014/02/3d-plots-in-r.

html).

O dataframe quakes fornece informações sobre 1000 terremotos com magnitude maior que 4.0 na

escala Richter em torno da ilha Fiji na Oceania a partir de 1964. A longitude e latitude do epicentro

desses 1000 eventos são as duas primeiras colunas do dataframe. Podemos ver a posição do epicentro

como um vetor aleatório (X,Y ) com certa densidade de probabilidade f(x, y).

# veja alguma informacao sobre o dataframe

help("quakes")

dim(quakes) # verifique a dimensao do dataset

plot(quakes$long, quakes$lat) # scatterplot dos terremotos em lat-long

grid(20,20) # adiciona uma grade 30 x 30 ao plot

# o histograma tri-dim conta o numero de terremotos em cada celula

# do grid e levanta uma pilastra cuja altura e’ proporcional a esta contagem

# Este histograma e’ uma versao grosseira da densidade de probabilidade f(x,y)

# que gera os pontos aleatorios. Voce ja’ consegue imaginar a densidade f(x,y)

# a partir do plot bi-dimensional imaginando altiras maiores nas areas com maior

# densidade de pontos

# agora, o histograma 3-dim

# Carregue o pacote plot3D

require(plot3D)

# particione os eixos x e y

lon <- seq(165.5, 188.5, length.out = 30)

lat <- seq(-38.5, -10, length.out = 30)

# conte o numero de terremotos em cada celula do grid

xy <- table(cut(quakes$long, lon), cut(quakes$lat, lat))

# veja o uso da funcao cut acima.

# aproveite para ler sobre ela pois e’ muito util.

?cut

# obtenha o ponto medio em cada celula do grid nos eixos x e y

xmid <- 0.5*(lon[-1] + lon[-length(lon)])

ymid <- 0.5*(lat[-1] + lat[-length(lat)])



# passando argumentos para os parametros de controle da margem da janela grafica

par (mar = par("mar") + c(0, 0, 0, 2))

# O histograma 3D, na versao default. Cores ajudam a visualizar as alturas das barras

hist3D(x = xmid, y = ymid, z = xy)

# Mudando os parametros que controlam o angulo de visao e a posicao do observador

hist3D(x = xmid, y = ymid, z = xy, phi = 5, theta = 25)

# Tirando as cores, pondo rotulos nos eixos e titulo no grafico

hist3D(x = xmid, y = ymid, z = xy, phi = 5, theta = 25, col = "white", border = "black",

main = "Earth quakes", ylab = "latitude", xlab = "longitude", zlab = "counts")

# Agora uma visao bem mais trabalhada: aumentando o eixo z para criar espaco para os pontos

hist3D(x = xmid, y = ymid, z = xy,

zlim = c(-20, 40), main = "Earth quakes",

ylab = "latitude", xlab = "longitude",

zlab = "counts", bty= "g", phi = 5, theta = 25,

shade = 0.2, col = "white", border = "black",

d = 1, ticktype = "detailed")

# Acrescentando os pontos no grafico acima, agora uma visao realmente linda:

with (quakes, scatter3D(x = long, y = lat,

z = rep(-20, length.out = length(long)),

colvar = quakes$depth, col = gg.col(100),

add = TRUE, pch = 18, clab = c("depth", "m"),

colkey = list(length = 0.5, width = 0.5,

dist = 0.05, cex.axis = 0.8, cex.clab = 0.8) ))

17. Seja f(x, y) = k(x+y+xy) uma densidade de probabilidade do vetor cont́ınuo (X,Y ) com suporte

na região [0, 1] × [0, 1]. O valor de k é uma constante de normalização que faz a integral ser igual

a 1.

• Obtenha k.

• Faça o gráfico 3-dim da densidade conjunta.

• Obtenha a densidade marginal fX(x) e faça seu gráfico. Avalie esta densidade marginal no

ponto x = 0.2 e em x = 0.5.

• Obtenha a densidade condicional fX|Y (x|y) para x e y genéricos. Se y = 0.2, qual é a densidade

condicional fX|Y (x|y = 0.2)? Repita com y = 0.9.



Figura 6.3: Epicentro de terremotos em Fiji com o histograma 3d.



Caṕıtulo 7

Distribuição Gaussiana Multivariada

Estes exerćıcios exploram as distribuições marginais e condicionais associadas com uma normal mul-

tivariada. Lembre-se: se A é uma matriz de constantes e Y um vetor aleatório com E(Y) = µ e matriz

de covariância Cov(Y) = Σ, então

E(AY) = Aµ = A E(Y)

e

Cov(AY) = AΣA′ = A Cov(Y) A′

1. Considere o conjunto de dados iris do R digitando os seguintes comandos:

iris

dim(iris)

names(iris)

plot(iris[,3], iris[,4])

plot(iris$Petal.Length, iris$Petal.Width, pch=21,

bg=c("red","green3","blue")[unclass(iris$Species)])

setosa <- iris[iris$Species == "setosa", 1:4]

plot(setosa)

mean(setosa)

cov(setosa)

cor(setosa)

77



Os dados são uma amostra de exemplos do vetor aleatório X = (X1, X2, X3, X4) onde X1 é o

Sepal Length, X2 é o Sepal Width, X3 é o Petal Length e X4 é o Petal Width. Assuma que

a distribuição conjunta do vetor X é uma normal multivariada de dimensaão 4 com parâmetros

µ = (µ1, µ2, µ3, µ4) e matriz de covariância Σ de dimensão 4 × 4. Use os resultados obtidos no R

(e apenas DUAS casas decimais) para responder às seguintes questões:

• Forneça uma estimativa para o vetor µ e para a matriz Σ.

• A partir da matriz de correlações entre os pares de v.a.’s (e do plot de dispersão dos pontos),

quais os grupos que são mais correlacionados?

• Obtenha a distribuição do sub-vetor X∗ = (X1, X3).

• Obtenha a distribuição CONDICIONAL do sub-vetor X∗ = (X1, X3) quando são conhecidos

os valores de (X2, X4).

• Obtenha agora distribuição CONDICIONAL do sub-vetor X∗ = (X1, X3) quando é conhecido

apenas o valor de X2.

• Obtenha também distribuição CONDICIONAL do sub-vetor X∗ = (X1, X3) quando é conhe-

cido apenas o valor de X4.

• Comparando as três últimas respostas que vocêforneceu, qual das duas variáveis isoladamente,

X2 ou X4, diminui mais a incerteza acerca de X3? Isto é, se você tivesse de escolher apenas

uma delas, X2 ou X4, qual você iria preferir se seu objetivo fosse predizer o valor de X3? A

resposta é a mesma se o objetyivo for predizer X1?

• Considere a melhor preditora para X3 que você escolheu, dentre X2 ou X4, na questão an-

terior. Digamos que tenha sido X4. Avalie quanto conhecer a outra variável (neste caso,

X2) reduz ADICIONALMENTE a incerteza acerca de X3. Isto é, compare V ar(X3|X4) com

V ar(X3|X2, X4).

2. Seja Z = (Z1, Z2, Z3) um vetor de variáveis i.i.d. (independentes e identicamente distribúıdas)

N(0, 1). Isto é, Z segue uma distribuição normal multivariada com valor esperado esperado (0, 0, 0)

e matriz 3 × 3 de covariância igual à identidade I. Você aprendeu a gerar estas v.a.’s na lista

anterior.

Queremos agora gerar um vetor aleatório X = (X1, X2, X3) seguindo uma normal multivariada com

valor esperado µ = (µ1, µ2, µ3) = (10, 20,−50) e com matriz de covariância

Σ =

 4 9 −14

9 30 −44

−14 −44 94


Para isto, siga os seguintes passos em R (em matlab, use comandos similares):

• Encontre uma matriz L tal que LLt = Σ. Uma matriz com esta propriedade é aquela obtida

pela decomposição de Cholesky de matrizes simétricas e definidas positivas. Em R, isto é

obtido pelo comando L = t(chol(Sigma)).

• Gere z, um vetor 3-dim com v.a.’s iid N(0, 1).

• A seguir, faça

x = mu + L %*% z



Gere uma amostra de tamanho 2000 dos vetores x 3-dim e armazene numa matriz amostra de

dimensão 2000× 3. A seguir, calcule a média aritmética dos 2000 valores de cada coordenada de x

e compare com os três valores do vetor µ. Eles devem ser parecidos.

Usando a amostra, estime os 9 valores da matriz de covariância Σ. Chame esta matriz estimada

de S. Verifique que as estimativas são próximas dos valores verdadeiros que você usou para gerar

seus dados. Por exemplo, estime o elemento σ12 da matriz Σ por

s12 =
1

2000

2000∑
i=1

(xi1 − x̄1)(xi2 − x̄2)

onde x̄1 e x̄2 são as médias aritméticas dos 2000 valores observados das v.a.’s 1 e 2. Os termos σjj
da diagonal principal são estimados por

sjj =
1

2000

2000∑
i=1

(xij − x̄j)2

O comando cov(x) calcula a matriz S diretamente (usando 1999 no denominador, ao invés de

2000). Procure calcular você os termos da matriz S para ter certeza de que você está entendendo

o que estamos fazendo.

3. (INCOMPLETO) A matriz Σ é estimada a partir dos dados substituindo o operador teórico e

probabiĺıstico E pela média aritmética dos números espećıficos da amostra. Assim, σij é estimado

por sua versão emṕırica sij . Qual a diferença entre σij e sij? Uma maneira de responder a isto é

notar que sij vai ter um valor ligeiramente diferente cada vez que uma nova amostra for gerada,

mesmo que a distribuição de probabilidade permaneça a mesma. Já σij não vai mudar nunca, é

fixo e determinado pela distribuição de probabilidade.

Seja ρ a matriz 3× 3 de correlação com elemento

ρij = Corr(Xi, Xj) =
Cov(Xi, Xj)√

σiiσjj
.

Observe que ρii = 1. Esta matriz ρ é estimada pela matriz R, cujos elementos são obtidos a partir

dos dados da amostra. Assim, ρij é estimado por

rij = sij/
√
siisjj

Gerando por Monte Carlo uma amostra de tamanho 200, calcule as matrizes R e ρ e compare-as.

Repita gerando uma nova amostra de tamanho 200 e compare novamente as duas matrizes.

Este é um dos sentidos que empregamos à expressão aprendizagem: usamos os dados observados

para aprender (ou inferir) sobre o mecanismo aleatório que gerou estes mesmos dados. Isto é,

aprendemos sobre µ e Σ através de (x̄1, x̄2) e de S.

4. Entendendo a variabilidade de R. Você viu no exerćıcio anterior que ρ 6= R. A matriz ρ não muda

enquanto sua estimativa R dependen da amostra instanciada da distribuição. Até onde R pode ir?

Quão diferentes podem ser ρ e R?

Simule a matriz de dados amostra de dimensão 200 × 3 um grande número de vezes. Digamos,

simule amostra 5000 vezes. Em cada uma dessas simulações de amostra, calcule a matriz de cor-

relação emṕırica R. Façca um histograma dos 5000 valores obtidos para Rij , um gráfico-histograma

separado para cada par (i, j).



Os valores de Rij oscilam em torno do correspondente ρij? Qual o desvio-padrão aproximado de

cada Rij? Pode obter este DP no olhômetro.

5. Seja X′ = (X1, X2, X3, X4) um vetor aleatório com vetor esperado E(X) = µ = (0, 1, 0,−1)′ e

matriz de covariância

Σ =


3 0 2 2

0 1 1 0

2 1 9 −2

2 0 −2 4


Particione X como

X =


X1

X2

X3

X4

 =

[
X(1)

X(2)

]
.

onde X(1) e X(2) possuem dimensão 2. Defina

A =
[

1 −1
]

e B =

[
1 −1

1 2

]

e as combinações lineares AX(1) e BX(2). Obtenha os seguintes elementos:

• A matriz de correlação ρ de X.

• E(X(1))

• E(AX(1))

• Cov(X(1))

• Cov(AX(1))

• E(X(2))

• E(BX(2))

• Cov(X(2))

• Cov(BX(2))

Solução: Seja V = diag(σ11, σ22, σ33, σ44) a matriz diagonal 4×4 formada pelas variâncias de cada

uma das 4 variáveis de X. Então a matriz de correlação ρ de X é dada por

ρ = V−1/2ΣV−1/2

=


1/
√

3

1

1/
√

9

1/
√

4




3 0 2 2

0 1 1 0

2 1 9 −2

2 0 −2 4




1/
√

3

1

1/
√

9

1/
√

4



=


1 0 0.38 0.58

0 1 0.33 0

0.38 0.33 1.0 −0.33

0.58 0 −0.33 1


Em R:



mat = matrix(c(3, 0, 2, 2, 0, 1, 1, 0, 2, 1, 9, -2, 2, 0, -2, 4) ,ncol=4)

round(diag(1/sqrt(diag(mat))) %*% (mat %*% diag(1/sqrt(diag(mat)))), 2)

• E(X(1)) =
(

0
1

)
• E(AX(1)) = E(X1 −X2) = 0− 1 = −1

• Cov(X(1)) =

[
3 0

0 1

]
• Observe que AX(1) = X1 −X2 é um escalar, uma variável aleatória, um vetor de dimensão 1.

Portanto, a sua matriz de covariância é de dimensão 1× 1 contendo simplesmente a variância

da v.a.: Cov(AX(1)) = Cov(X1−X2) = V(X1−X2). Podemos obter esta variância com nossa

fórmula geral para obter a matriz de covariância de uma transformação linear de um vetor

aleatório:

Cov(AX(1)) = ACov(X(1))A′

=
[

1 −1
] [ 3 0

0 1

][
1

−1

]
= 4 = V(X1 −X2)

• E(X(2)) =
(

0
−1

)
• Temos

BX(2) =

[
1 −1

1 2

](
X3

X4

)
=

(
X3 −X4

X3 + 2X4

)
e

E(BX(2)) = BE(X(2)) =

[
1 −1

1 2

](
µ3

µ4

)
=

(
0− (−1)

0 + 2(−1)

)
=

(
1

−2

)

• Cov(X(2)) =

[
9 −2

−2 4

]
• Temos

Cov(BX(2)) = BCov(X(2))B′

=

[
1 −1

1 2

] [
9 −2

−2 4

] [
1 1

−1 2

]

=

[
17 −1

−1 17

]

6. Seja X = (X1, X2, X3)′ um vetor aleatório com distribuição normal multivariada com µ = (µ1, µ2, µ3)′ =

[−1, 0, 2]′ e

Σ =

 1 −2 0

−2 5 0

0 0 2


Obtenha a distribuição marginal de cada uma das v.a.’s

Y1 =
1

4
X1 −

1

4
X2 +

1

2
X3

e de

Y2 =
1

4
X1 +

1

4
X2 −

1

2
X3



Obtenha também a distribuição conjunta de Y1, Y2).

DICA: Escreva (Y1, Y2) como AX onde A é uma matriz 2× 3 de constantes.

Solução: Y1 possui distribuição gaussiana. Se c1 = (1/4,−1/4, 1/2)′ então o valor esperado é igual

a

E(Y1) = E
(
c′1X

)
= c′1µ ==

1

4
µ1 −

1

4
µ2 +

1

2
µ3 = −1/4 + 0 + 2/2 = 3/4

e a variância é

V(Y1) = c′1Σc1 =
[

1/4 −1/4 1/2
] 1 −2 0

−2 5 0

0 0 2


 1/4

−1/4

1/2

 = 9/8

Similarmente, fazendo c2 = (1/4, 1/4,−1/2)′, encontramos Y2 ∼ N(−5/4, 5/8).

O vetor (Y1, Y2) possui distribuição normal bivariada com quase todos os seus parãmetros já calcu-

lados. Falta apenas a correlação (ou covariância) entre Y1 e Y2):(
Y1

Y2

)
∼ N2

([
3/4

−5/4

]
,

[
7/8 ??

?? 5/8

])

O valor faltante é obtido facilmente como o elemento 21 da matriz:[
c′1
c′2

]
Σ
[

c1 c2

]
que é igual a −3/4.

Outra opção mais simples é usar a propriedade da bilinearidade do operador covariância:

Cov(
∑
i

aiXi,
∑
j

bjXj) =
∑
i,j

aibjCov(Xi, Xj) = a′Σb

Assim,

Cov(Y1, Y2) = Cov(X1/4−X2/4 +X3/2, X1/4 +X2/4−X3/2)

= c′1Σc2

=
[

1/4 −1/4 1/2
]  1 −2 0

−2 5 0

0 0 2


 1/4

1/4

−1/2


= −3/4

Portanto, (
Y1

Y2

)
∼ N2

([
3/4

−5/4

]
,

[
7/8 −3/4

−3/4 5/8

])

7. Seja X = (X1, X2, X3)′ um vetor aleatório com distribuição normal multivariada com µ = (µ1, µ2, µ3)′ =

[−1, 0, 2] e

Σ =

 1 −2 0

−2 5 0

0 0 2


Quais das seguintes variáveis aleatórias são independentes?

• X1 e X2



• X2 e X3

• (X1, X2) e X3

• (X1 +X2)/2 e X3

• X2 e X2 + 5X1/2−X3

Solução: Numa normal multivariada Y = (Y1, . . . , Yp)
′, duas de suas variáveis aleatórias i e j são

independentes se, e somente se, o elemento (i, j) da matriz de covariâncias (ou de correlações) é igual

a zero. Para sub-vetores de Y o memso resultado vale olhando-se para a matriz Σ particionada.

Assim,

• X1 e X2: não são independentes

• X2 e X3: são independentes

• (X1, X2) e X3: são independentes pois o bloco formado por Σ1,3 e Σ2,3 é igual a zero.

• (X1 +X2)/2 e X3: são independentes pois g(X1, X2) = (X1 +X2)/2 é uma função apenas de

X1 e X2, que são independentes de X3.

• X2 e g(X1, X2, X3) = X2 + 5X1/2 − X3: são independentes. Usando a bilinearidade da

covariância, calculamos

Cov(X2, X2+5X1/2−X3) = Cov(X2, X2)+(5/2)Cov(X2, X1)−Cov(X2, X3) = 5+(5/2)(−2)−0 = 0

8. Leia os slides 165 e seguintes do material Top09-NormalMult.pdf. Eles apresentam o uso da

distância aleatória de Mahalanobis para detecção de anomalias. A distância de Mahalanobis entre

um ponto aleatório gaussiano X em Rp e o seu perfil esperado E(X) = µ é dada por

D2 = (X− µ)′Σ−1(X− µ) .

onde Σ é a matriz p× p de covariância de X. Lembre-se que a densidade da normal multivariada

é baseada nesta medida de distância.

Como X é um vetor aleatório gaussiano, a medida D2 é um número aleatório: possui uma faixa de

valores posśıveis e probabilidades associadas.

• A quantidade D2 tem um valor t́ıpico (ou valor esperado): E(D2) =??.

• D2 possui um afastamento t́ıpico de seu valor esperado, seu DP. O desvio-padrão de D2 é:√
V(D2) =??.

• Mais que isto, não somente estes dois resumos da distribuição de D2 são conhecidos mas a

própria distribuição de D2 é conhecida. D2 ∼??.

• Fixando uma constante c qualquer, o conjunto de pontos x ∈ Rp que satisfazem D2 = c

formam um elipsóide em p dimensões. Isto é, os pontos x que estão a uma distância D2 igual

a c do seu perfil esperado formam um elipsóide. Quais são os eixos deste elipsóide e os seus

tamanhos relativos?

• É posśıvel mostrar que, com probabilidade 1 − α, o vetor aleatório X deve cair dentro da

elipse D2 = c onde c = χ2
p(α) é o quantil (1 − α)100% de uma distribuição qui-quadrado

com p graus de liberdade onde p é a dimensão do vetor X. No caso particular de um vetor

bidimensional, o valor de c associado com a probabilidade 1 − α = 0.95 é igual a c = 9.21.

Assim, se X = (X1, X2) estiver fora dessa elipse (isto é, se D2 > 9.21), o ponto pode ser

consirado um tanto anômalo ou extremo.



O arquivo stiffness.txt contém quatro tipos de medições da rigidez de pranchas de madeira. A

primeira é obtida aplicando-se uma onda de choque através da prancha, a segunda aplicando-se

uma vibração à prancha e as outas duas são obtidas por meio de testes estáticos. Assuma que

cada as 4 medições em uma prancha são instâncias de um vetor N4(µ,Σ). Estime o vetor µ e

a matriz4× 4 Σ usando os dados do amostra. A seguir, usando estes valores estimados como

se fossem os verdadeiros valores de µ e Σ, calcule o valor de D2 para cada ponto da amostra.

Quais pontos parecem extremos? Olhando as variáveis INDIVIDUALMENTE ou em pares

através de scatterplots seria posśıvel detectar estes pontos extremos? Faça scatterplot dos

dados para entender sua resposta.

Solução: É posśıvel deduzir que, se X ∼ Np(µ,Σ), então D2 segue uma distribuição qui-quadrado

com p graus de liberdade. Isto permite obter E(D2) = p e também V(D2) = 2p. Os eixos do elipsóide

estão na direção dos autovetores da matriz Σ e com tamanhos proporcionais à raiz quadrada de

seus autovalores.

stiffness = matrix(scan("stiffness.txt"), ncol=5, byrow=T)

x = stiffness[,1:4]

mu = apply(x, 2, mean)

sigma = cov(x)

n = nrow(x)

desvio = x - matrix(mu, nrow=nrow(x), ncol=ncol(x), byrow=T)

d2meu = diag(desvio %*% (solve(sigma) %*% t(desvio)))

# comando acima calcula D2

# R possui um comando proprio (e mais eficiente) para isto: mahalanobis

d2 = mahalanobis(x, mu, sigma)

# verificando que meu comando ineficiente calculou a mesma coisa

plot(d2, d2meu)

# identificando as anomalias

anomalias = d2 > qchisq(0.95,4)

x[anomalias,]

nanom = sum(anomalias)

# plotando e marcando em vermelho as anomalias

pairs(rbind(x, x[anomalias,]), pch="*", col=rep(c("black", "red"), c(n, nanom)))

Scatterplot das 4 variáveis com as anomalias marcadas em vermelho estão na Figura 7.1.

9. Considere os dados do data frame iris do R. Este é um famoso conjunto de dados na comunidade

de aprendizagem de máquina. Ele foi analisado inicialmente por Ronald Fisher quando desenvolveu

em 1936 a técnica de análise de componentes principais (PCA). Ele contem medições de 150 flores

iris. Em cada flor, foram feitas quatro medidas: o comprimento e a largura das pétalas e das

sépalas em cent́ımetros. Além disso, cada uma das 150 flores pertence a uma de três espécies

distintas: Iris setosa, Iris virginica e Iris versicolor. São 50 flores de cada espécie. Veja detalhes

em https://en.wikipedia.org/wiki/Iris_flower_data_set.

Os seguntes comandos geram um primeira visão dos dados:



Figura 7.1: Scatterplot das variáveis de stiffness. Anomalias estão marcdas em vermelho.

head(iris) # 1as linhas do data frame iris

dim(iris) # dimensao do data frame

?iris # help sobre o data frame

pairs(iris[,1:4]) # matriz de pares de scatterplots com as 150 flores

Notamos que em cada gráfico existem dois grupamentos de dados. Provavelmente, estes grupa-

mentos correspondem a diferentes espécies de flores. Medidas de diferentes espécies costumam ter

diferentes distribuições de probabilidade, com seus valores concentrados em diferentes intervalos.

Para verificar esta afirmação, vamos colorir cada flor de acordo com sua espécie:

titulo = "Iris Data (red=setosa,green=versicolor,blue=virginica)"

pairs(iris[,1:4],main=titulo, pch=21, bg = iris$Species)

A espécie virginica é bem diferente das outras duas. Embora menos discrepantes, vemos claramente

que cada uma dessas duas, setosa e versicolor, possuem medidas ocupando regiões diferentes em

cada plot. Vamos analisar apenas uma das espécies, setosa, colocando os seus dados num novo data

frame.

setosa <- iris[iris$Species == "setosa", 1:4]

pairs(setosa) # plots de pares das 4 variaveis

apply(setosa, 2, mean) # media aritmetica de cada variavel

cov(setosa) # estimativa da matriz de covariancia

cor(setosa) # estimativa da matriz de correlacao

round(cor(setosa),2) # valores arrendondados em duas casas decimais

Estes dados são uma amostra de 50 exemplos do vetor aleatório X = (X1, X2, X3, X4) onde X1

é o comprimento da sépala, X2 é a largura da sépala, X3 é o comprimento da pépala e X4 é a



largura da pépala. Assuma que a distribuição conjunta do vetor X é uma normal multivariada de

dimensaão 4 com parâmetros µ = (µ1, µ2, µ3, µ4) e matriz de covariância Σ de dimensão 4× 4. Use

os resultados obtidos no R como estimativas para os valores desconhecidos do vetor µ e da matriz

de covariância Σ e da matriz de correlação Σ. A seguir, responda às seguintes questões:

• Forneça uma estimativa para o vetor µ e para a matriz Σ e ρ.

• A partir da matriz de correlação entre os pares de v.a.’s (e do plot de dispersão dos pontos),

quais as variáveis que são mais correlacionadas? E quais são menos correlacionadas?

• Obtenha a distribuição MARGINAL do sub-vetor X∗ = (X1, X2), o comprimento e largura

da sépala.

• Obtenha a distribuição CONDICIONAL do sub-vetor X∗ = (X1, X2) quando são conhecidos

os valores x3 e x4 das v.a.’s (X3, X4). Obtenha esta distribuição para dois valores genéricos x3

e x4. A seguir use dois valores espećıficos: x3 = 1.8 e x4 = 0.6, dois valores relativamente altos

para estas variáveis. Compare DP1 =
√

V(X1) com
√

V(X1|X3 = 1.8, X4 = 0.6), o desvio

padrão da variável X1 condicionada nos valores de X3 e X4.

• Obtenha agora a distribuição CONDICIONAL do sub-vetor X∗ = (X1, X2) quando é conhe-

cido apenas o valor de X3.

• Obtenha também distribuição CONDICIONAL do sub-vetor X∗ = (X1, X2) quando é conhe-

cido apenas o valor de X4.

• Comparando as três últimas respostas que vocêforneceu, qual das duas variáveis isoladamente,

X3 ou X4, diminui a incerteza acerca de X2 mais fortemente? Isto é, se você tivesse de escolher

apenas uma delas, X3 ou X4, qual você iria preferir se seu objetivo fosse predizer o valor de

X2?

• Considere a melhor preditora para X2 que você escolheu, dentre X3 ou X4, na questão anterior.

Digamos que tenha sido X4. Avalie quanto conhecer a outra variável (neste caso, X3) reduz

ADICIONALMENTE a incerteza acerca de X3. Isto é, compare V(X2|X4) com V(X2|X3, X4).

Solução: Para o problema das flores setosa:

• Estimativas de µ e Σ:

> apply(setosa, 2, mean) # estimativa de mu

Sepal.Length Sepal.Width Petal.Length Petal.Width

5.006 3.428 1.462 0.246

> round(cov(setosa),3) # estimativa de Sigma

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 0.124 0.099 0.016 0.010

Sepal.Width 0.099 0.144 0.012 0.009

Petal.Length 0.016 0.012 0.030 0.006

Petal.Width 0.010 0.009 0.006 0.011

• A partir da matriz de correlação cor(setosa), o comprimento X1 e a largura X2 das sépalas

são as variáveis mais correlacionadas: ρ12 = 0.74. A largura da sépala X2 e o comprimento da

pétala X3 são as menos correlacionadas, com ρ23 = 0.18.

• A distribuição do sub-vetor X∗ = (X1, X2), o comprimento e largura da sépala, vem direta-

mente dos elementos 1 e 2 de µ e do bloco da matriz Σ:

X∗ =

(
X1

X2

)
∼ N2 (µ[1 : 2],Σ[1 : 2, 1 : 2]) = N2

((
5.006

3.428

)
,

[
0.124 0.099

0.099 0.144

])



• A distribuição condicional de X∗ = (X1, X2) quando são conhecidos os valores (x3, x4) das

v.a.’s (X3, X4). (
X1

X2

)∣∣∣(X3 = x3

X4 = x4

)
∼ N2 (m,V)

onde, usando a notação das notas de aula,

m =

(
µ1

µ2

)
+ Σ12Σ

−1
22

(
x3 − µ3

x4 − µ4

)
=

(
5.006

3.428

)
+

[
0.016 0.010

0.012 0.009

][
0.030 0.006

0.006 0.011

]−1(
x3 − 1.462

x4 − 0.246

)

=

(
5.006

3.428

)
+

[
0.399 0.712

0.247 0.702

](
x3 − 1.462

x4 − 0.246

)

Para x3 = 1.8 e x4 = 0.6 temos

m =

(
5.006

3.428

)
+

(
0.387

0.332

)
=

(
5.393

3.760

)

Quanto a matriz de covariância V para a distribuição condicional, temos

V = Σ11 −Σ12Σ
−1
22 Σ21

=

[
0.124 0.099

0.099 0.144

]
−

[
0.016 0.010

0.012 0.009

][
0.030 0.006

0.006 0.011

]−1 [
0.016 0.012

0.010 0.009

]

=

[
0.110 0.088

0.088 0.134

]
.

Temos DP1 =
√
V(X1) =

√
0.124 = 0.352 e

√
V(X1|X3 = 1.8, X4 = 0.6) =

√
0.110 = 0.332.

• Queremos a distribuição condicional do sub-vetor X∗ = (X1, X2) quando é conhecido apenas

o valor de X3 = 1.8. Neste caso, é como se a variável X4 não existisse: ela não está envolvida.

Vamos obter a distribuição conjunta do vetor (X1, X2, X3) e então usar a nossa fórmula de

condicional da normal mutivariada. Para obter a distribuição marginal de (X1, X2, X3), basta

olhar µ e Σ e ignorar as entradas associadas com X4.

Temos

 X1

X2

X3

 ∼ N3

 µ1
µ2
µ3

 ,

 σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 = N3

 5.006

3.428

1.462

 ,

 0.124 0.099 0.016

0.099 0.144 0.012

0.016 0.012 0.030



Dividindo este vetor em dois blocos, representados por letras em negrito e com indexação
ligada aos blocos (e não às variáveis), podemos usar as fórmulas derivadas em sala de aula:

 X1

X2

X3

 ∼ N3

 µ1
µ2
µ3

 ,

 σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 =∼ N3

([
m1

m2

]
,

[
Σ11 Σ12

Σ21 Σ22

])

Temos (
X1

X2

)∣∣∣X3 = 1.8 ∼ N2 (m,V)



onde, usando a notação das notas de aula,

m = m1 + Σ12Σ
−1
22 (x2 −m2)

=

(
µ1

µ2

)
+

[
σ13

σ23

]
[σ33]−1 (1.8− µ3)

=

(
5.006

3.428

)
+

[
0.016

0.012

]
[0.030]−1 (1.8− 1.462)

=

(
5.006

3.428

)
+

[
0.533

0.400

]
(1.8− 1.462)

=

(
5.006

3.428

)
+

(
0.180

0.135

)
=

(
5.186

3.563

)
e

V = Σ11 −Σ12Σ
−1
22 Σ21

=

[
σ11 σ12

σ21 σ22

]
−

[
σ13

σ23

]
[σ33]−1

[
σ31 σ32

]
=

[
0.124 0.099

0.099 0.144

]
−

[
0.016

0.012

]
[0.030]−1

[
0.016 0.012

]
=

[
0.115 0.093

0.093 0.139

]

• A distribuição condicional do sub-vetor X∗ = (X1, X2) quando X4 = 0.6 é obtida de forma

idêntica ao item anterior: Temos(
X1

X2

)∣∣∣X4 = 0.6 ∼ N2 (m,V)

onde

m = m1 + Σ12Σ
−1
22 (x2 −m2)

=

(
µ1

µ2

)
+

[
σ14

σ24

]
[σ44]−1 (0.6− µ4)

=

(
5.006

3.428

)
+

[
0.010

0.009

]
[0.011]−1 (0.6− 0.246)

=

(
5.006

3.428

)
+

[
0.909

0.818

]
(0.6− 0.246)

=

(
5.006

3.428

)
+

(
0.322

0.290

)
=

(
5.328

3.718

)
e

V = Σ11 −Σ12Σ
−1
22 Σ21

=

[
σ11 σ12

σ21 σ22

]
−

[
σ14

σ24

]
[σ44]−1

[
σ41 σ42

]
=

[
0.124 0.099

0.099 0.144

]
−

[
0.010

0.009

]
[0.011]−1

[
0.010 0.009

]
=

[
0.115 0.091

0.091 0.136

]



• Temos V(X2|X4 = 0.6) = 0.136 < 0.139 = V(X2|X3 = 1.8). Assim, saber que X4 = 0.6

leva a uma menor incerteza acerca do valor de X2 que aquela que resta quando X3 = 1.8.

Para predizer X2, saber o valor de X4 é melhor que saber o valor de X3. Observe que

0.139 = V(X2|X3 = 1.8) = V(X2|X3 = x) para todo x, bem como 0.136 = V(X2|X4 = 0.6) =

V(X2|X4 = x) para todo x. Portanto, a conclusão sobre a maior redução da incerteza de X2

alcançada pelo conhecimento do valor de X3, não depende dos valores espećıficos x3 = 1.8 e

x4 = 0.6 usados no exerćıcio. Teŕıamos a mesma conclusão com quaisquer dois valores para

x3 e x4 pois as variâncias condicionais não variam com x3 e x4.

• Entre X3 e X4, a melhor preditora de X2 é X4. Acrescentar o conhecimento sobre o valor de

X3 ao conhecimento de que X4 = 0.6 reduz pouco a variabilidade (ou incerteza) acerca de X2:

0.134 = V(X2|X3 = 1.8, X4 = 0.6) < V(X2|X4 = 0.6) = 0.136 < V(X2) = 0.144

10. Seja X = (X1, X2, X3)′ um vetor aleatório com distribuição normal multivariada com µ = (µ1, µ2, µ3)′ =

[−1, 0, 2]′ e

Σ =

 1 −2 0

−2 5 0

0 0 2


Seja b um vetor k-dimensional e C uma matriz k×3 formada por constantes. Uma das propriedades

da normal multivariada é que a distribuição do vetor b + CX de dimensão k é normal com vetor de

médias b + Cµ e matriz de k×k covariância CΣCt. Use esta propriedade para obter a distribuição

das seguintes variáveis:

• Distribuição marginal de X1, de X2 e de X3.

• Distribuição de um indicador composto pelas 3 variáveis: T = 0.4X1 + 0.3X2 + 0.3X3.

• Distribuição de um indicador composto pelas 3 variáveis normalizadas: T = 0.4(X1− 10)/2 +

0.3(X2 − 20)/
√

30 + 0.3(X3 + 50)/
√

94.

• Distribuição conjunta de (X1 −X2, 4X1 + 2X2 −X3).

• Distribuição conjunta de (X1, aX1 + bX2 + cX3). onde a, b, c são constantes reais. Em par-

ticular, encontre a covariância entre X1 e o indicador Y = aX1 + bX2 + cX3 formado pela

combinação linear de X1, X2 e X3.

11. Considere um vetor X = (X1, . . . , Xp) com distribuição normal multivariada. É posśıvel mostrar

que, com probabilidade 1−α, o vetor aleatório X deve cair dentro da elipse D2 = c onde c = χ2
p(α)

é o quantil (1 − α)100% de uma distribuição qui-quadrado com p graus de liberdade onde p é a

dimensão do vetor X. No caso particular de um vetor bidimensional, o valor de c associado com a

probabilidade 1−α = 0.95 é igual a c = 9.21 ou c ≈ 9.2. Assim, se X = (X1, X2) estiver fora dessa

elipse (isto é, se D2 > 9.2), o ponto pode ser consirado um tanto anômalo ou extremo.

O arquivo stiffness.txt contem dois tipos de medições da rigidez de pranchas de madeira, a pri-

meira aplicando uma onda de choque através da prancha, ea segunda aplicando uma vibração à

prancha. Estime o vetor µ = (µ1, µ2) e a matriz Σ usando os dados do amostra e a seguir calcula

o valor de D2 para cada ponto da amostra. Qual deles parece extremo? Olhando as duas variáveis

INDIVIDUALMENTE seria posśıvel detectar estes pontos extremos?



12. Considere um vetor X = (X1, X2) com distribuição normal bivariada com vetor esperado µ =

(µ1, µ2) e matriz de covariância

Σ =

[
σ11 ρ

√
σ11σ22

ρ
√
σ11σ22 σ22

]
Use a propriedade geral que fornece a distribuição condicional em vetores k-dimensionais gaussianos

para obter o caso especial em que temos vetores bi-dimensionais como neste exerćıcio. Mostre que

a distribuição condicional de (X2|X1 = x1) é N(µc, σ
2
c ) onde

µc = µ2 + ρ

√
σ22

σ11
(x1 − µ1) = µ2 + ρ

√
σ22

x1 − µ1√
σ11

e

σ2
c = σ22(1− ρ2)

A partir desses resultados, verifique se as afirmações abaixo são V ou F:

• Saber que o valor X1 = x1 está dois desvios-padrão acima de seu valor esperado (isto é,

(x1 − µ1)/
√
σ11 = 2) implica que devemos esperar que X2 também fique dois desvios-padrão

acima de seu valor esperado.

• Dado que X1 = x1, a variabilidade de X2 em torno de seu valor esperado é maior se x1 < µ1

do que se x1 > µ1.

• Conhecer o valor de X1 (e assim eliminar parte da incerteza existente) sempre diminui a

incerteza da parte aleatória permanece desconhecida (isto é, compare a variabilidade de X2

condicionada e não-condicionada no valor de X1).

• µc é uma função linear de x1.

Solução: Usando a fórmula matricial para a distribuição condicional no o caso bivariado, temos

(X2|X1 = x1) ∼ N(µc, σ
2
c ) onde

µc = µ2 + Σ12Σ−1
22 (x1 − µ1)

= µ2 + ρ
√
σ11σ22 (1/σ11) (x1 − µ1)

= µ2 + ρ
√
σ22

x1 − µ1√
σ11

e

σ2
c = Σ22 − Σ12Σ−1

22 Σ21

= σ22 − ρ
√
σ11σ22 (1/σ11) ρ

√
σ11σ22

= σ22 − ρ2σ22

= σ22(1− ρ2)

Quanto às afirmações:

• F: Se (x1−µ1)/
√
σ11 = 2, o valor de X2 vai oscilar em torno de seu valor esperado condicional

que será µc = µ2 + ρ2
√
σ22. Como |ρ| < 1, temos o incremento |ρ2

√
σ22| < 2

√
σ22, ou seja,

menor que 2 desvios-padrões.

• F: pois V(X2|X1 = x) = σ2
c = σ22(1− ρ2) não depende de x.

• V: pois V(X2|X1 = x) = σ22(1− ρ2) < σ22 = V(X2) já que ρ2 < 1.

• V: pois

E(X2|X1 = x1) = µc = µ2 + ρ
√
σ22

x1 − µ1√
σ11

= a+ b(x1 − µ1) ,

uma função linear de x1.



13. Considerando o exerćıcio naterior, mapeie a fórmula da distribuição condicional de um sub-vetor

dados os valores do restante do vetor de uma normal multivariada pode ser interpretada de forma

similar que no caso bivariado. (COMPLETAR AQUI)

14. Regressão linear e distribuição condicional: Vamos considerar um modelo (na verdade, mais uma

caricatura) de como a renda do trabalho Y de um indiv́ıduo qualquer está associada com o número

de anos de estudo X desse mesmo indiv́ıduo. Vamos supor que, para um indiv́ıduo com X = x anos

de estudo teremos a renda Y como uma variável aleatória com distribuição normal com esperança

E(Y |X = x) = g(x) = 300 + 100 ∗ x e variância σ2 = 502. Responda V ou F às afirmações abaixo:

• Se X = 10 para um indiv́ıduo (isto é, se ele possui 10 anos de estudo), então a sua renda é

uma variável aleatória com distribuição N(1300, 502).

• E(Y ) = 300 + 100 ∗ x.

• E(Y |X = x) = 300 + 100 ∗ x.

• V(Y ) = 502.

• V(Y |X = x) = 502.





Caṕıtulo 8

Modelos multivariados gaussianos

8.1 PCA: Componentes Principais

1. Este exerćıcio é praticamente a mesma coisa que foi feito para o eemplo das das faces (ver caṕıtulo de

PCA no livro-texto). Ele foi extráıdo da página web do livro The Elements of Statistical Learning,

por Hastie, Tibshirani e Friedman. Este excelente livro está dispońıvel para download gratuito e

legal na página http://statweb.stanford.edu/~tibs/ElemStatLearn/.

O objetivo é construir um algoritmo em R para a classificação de d́ıgitos escritos á mão. Os dados

são uma parte da base US Postal Service Database e correspondem à digitalização de números de

CEP escritos a mão em correspondências enviadas pelo correio americano. Estes dados estão na

página do livro, onde é chamado de ZIP code (é o último da lista de datasets).

O conjunto de dados refere-se a dados numéricos obtidos a partir da digitalização de d́ıgitos escri-

tos à mão a partir dos envelopes pelo Serviço Postal dos EUA. Imagens em preto e branco foram

normalizadas em termos de seu tamanho de forma a caber em uma caixa de pixels 20× 20, preser-

vando a sua razão de aspecto (aspect ratio). As imagens resultantes contêm ńıveis de cinza como

um resultado da técnica de anti-aliasing usada pelo algoritmo de normalização. As imagens foram

centradas em uma imagem 28× 28 calculando o centro de massa dos pixels e traduzindo a imagem

de modo a posicionar este ponto no centro da matriz 28×28. O resultado final são imagens 28×28
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k precisão média revocação média

5 ?? ??

6 ?? ??
...

...
...

20 ?? ??

Tabela 8.1: Precisão e revocação do método de classificação de d́ıgitos como função do número k de

autovetores.

em tons de cinza.

Figura 8.1: Imagens dos d́ıgitos 4 da base USPS.

A Figura 8.1 mostra os d́ıgitos 4 da base de dados. O objetivo do exerćıcio é inteiramente análogo

ao de reconhecimento de faces. Queremos um método de classificação de novas imagens de d́ıgitos

manuscritos. Assim, você deverá:

• Usando um conjunto de treinamento, criar uma regra de classificação de novas imagens de

d́ıgitos. Use os primeiros k autovetores da matriz de covariância entre os pixels para fazer esta

regra de classificação. Você deve fazer seus cálculos com k = 5, 10, 15, 20.

• Usando apenas a amostra de TESTE, crie uma tabela de contingência 10× 10 de confusão C.

Nesta matriz C as linhas representam a classe verdadeira do d́ıgito (de 0 a 9) e a coluna a

classe em que ele foi alocado. Na entrada Cij você deve colocar o número de itens (ou imagens)

que cáıram naquela categoria cruzada. Crie esta tabela com os quatro valores distintos de

k = 5, 10, 15, 20.

• Calcule a proporção total das imagens da amostra de teste que caem na diagonal principal.

Esta é uma medida global de classificação correta do método. Para qual valor de k esta

proporção foi máxima?

• Preencha uma tabela como a que está abaixo:



Precisão média é a média aritmética da precisão das 10 classes e definida como:

pm =
1

10

9∑
i=0

Cii
Ci+

com Ci+ sendo a soma da linha i na matriz de confusão. Revocação média é a média aritmética

da revocação das 10 classes e definida como:

rm =
1

10

9∑
i=0

Cii
C+i

com C+i sendo a soma da coluna i na matriz de confusão. Mais detalhes sobre precisão (pre-

cision) e revocação (recall) podem ser vistos no verbete Precision and recall na wikipedia. Ver

também http://www.text-analytics101.com/2014/10/computing-precision-and-recall-for.

html.

2. Neste exerćıcio, você vai gerar alguns vetores gaussianos tri-dimensionais que, de fato vivem em

duas dimensões.

require(MASS)

nsims=200

Sigma = matrix(c(3,2,2,4),2,2)

pts = mvrnorm(nsims, c(1, 2), Sigma)

pts = cbind(pts, 3*pts[,1]+4*pts[,2])

pairs(pts)

library(scatterplot3d)

scatterplot3d(pts)

library(rgl)

plot3d(pts, col="red", size=3)

A = matrix(c(1, 0, 0, 1, 3, 4), 3, 2, byrow=T)

var.pts = A %*% Sigma %*% t(A)

var.pts

round(cov(pts),2)

eigen(var.pts)

eigen(cov(pts))

• Quais os parâmetros µ e Σ da distribuição gaussiana do vetor pts?

• Por que o comando round(cov(pts),2) não gera exatamente Σ (ignore o erro de aproximação

puramente numérico, não estocástico).

• Qual o menor autovalor de Σ?

Agora, um conjunto de dados simulado que está quase completemente contido num plano do R3.



x <- rnorm(1000)

y <- rnorm(1000)

z <- 3 + 1.2*x - 1.2*y + rnorm(1000, sd=0.3)

d2 <- data.frame(x,y,z)

open3d()

plot3d(d2)

Isto mostra que não precisamos realmente de 3 dimensões. Esta massa de pontos vive pratica-

mente num espaço de dimensão 2. Este espaço de dimensão 2 é aquele gerado pelas 2 primeiras

componentes principais.

Agora, um exemplo com dados reais:

?trees # girth = circunferencia

pairs(trees)

x= log(trees)

pairs(x)

scatterplot3d(x)

plot3d(x, col="red", size=3)

eigen(cov(x))

Solução: O vetor (X1, X2) possui distribuição normal bivariada com vetor esperado µ = (1, 2) e

matriz de covariância

Σ =

[
3 2

2 4

]

O vetor X = (X1, X2, X3) possui distribuição normal multivariada de dimensão 3 com vetor espe-

rado

E(X) = E
(

A

(
X1

X2

))
= AE

((
X1

X2

))
=

 1 0

0 1

3 4

(1

2

)
=

 1

2

11


e matriz de covariância dada por

AΣA′ =

 1 0

0 1

3 4

[ 3 2

2 4

][
1 0 3

0 1 4

]
=

 3 2 17

2 4 22

17 22 139

 =

O objeto cov(pts) contém a matriz AΣA′. O objeto var.pts contém uma estimativa emṕırica

desta matriz, uma estimativa baseada nas 200 instâncias de dados que você gerou. Para a amostra

de tamanho nsims, estas duas matrizes são similares.

O comando round(cov(pts),2) calcula a estimativa emṕırica da matriz var.pts= AΣA′. Esta

última matriz é fixa. A estimativa cov(pts) varia de amostra para amostra. Se nsims não for

muito pequeno, cov(pts) e AΣA′ devem ser parecidas, como é o caso neste exerćıcio.

Com a amostra gerada por mim, obtive min(eigen(var.pts)$values) igual a 9.841374× 10−15 e

min(eigen(cov(pts))$values) igual a 6.915267×10−15. Os valores são próximos, ambos próximos

de zero. O menor autovalor de cov.pts é exatamente zero, e isto pode ser verificado se tentamos

fazer uma decomposição de Cholesky:



> chol(var.pts)

Error in chol.default(var.pts) :

the leading minor of order 3 is not positive definite

O algoritmo implementado em R para obter os autovalores de var.pts obtem apenas uma apro-

ximação numérica para os reais autovalores e autovetores. De acordo com a página de help da função

eigen, temos: Computing the eigendecomposition of a matrix is subject to errors on a

real-world computer: the definitive analysis is Wilkinson (1965). All you can hope

for is a solution to a problem suitably close to x. So even though a real asymmetric

x may have an algebraic solution with repeated real eigenvalues, the computed solution

may be of a similar matrix with complex conjugate pairs of eigenvalues.

O segundo bloco de comandos gera também uma gaussiana tri-dimensional. Como x1 = rnorm(1000)

e x2 = rnorm(1000) geram independentemente vetores gaussianosN(0, 1) então (X1, X2) ∼ N2(02, bsI2)

onde bs0 = (0, 0)′ e I2 é a matriz identidade 2× 2.

O vetor (X1, X2, X3) tem a distribuição de suas duas primeiras coordenadas já determinadas acima: X1

X2

X3

 ∼ N3


 0

0

µ3

 ,
 1 0 σ13

0 1 σ23

σ31 σ32 σ33




A terceira coordenada X3 = 3 + 1.2X1 − 2.3X2 + ε onde ε ∼ N(0, 0.32), independente de X1 e X2.

Assim, os elementos que faltam para determinar a distibuição de (X1, X2, X3) são os seguintes:

E(X3) = E(3 + 1.2X1 − 2.3X2 + ε) = 3 + 1.2E(X1) + 2.3E(X2) + E(ε) = 3 + 0 + 0 + 0 = 3

e, pela independência entre X1, X2 e ε,

σ33 = V(X3) = V(3 + 1.2X1 − 2.3X2 + ε)

= (1.2)2V(X1) + (−2.3)2V(X2) + V(ε)

= 1.44 + 5.29 + 1.0 = 7.73

enquanto que

σ13 = σ31 = Cov(X1, X3)

= Cov(X1, 3 + 1.2X1 − 2.3X2 + ε)

= (1.2)Cov(X1, X1)− 2.3Cov(X1, X2) + Cov(X1, ε)

= 1.2V(X1)− 2.3× (0) + 0 = 1.2

e

σ23 = σ32 = Cov(X2, X3)

= Cov(X2, 3 + 1.2X1 − 2.3X2 + ε)

= 1.2Cov(X2, X1)− 2.3Cov(X2, X2) + Cov(X2, ε)

= 1.2× 0− 2.3V(X2) + 0 = −2.3

Assim,  X1

X2

X3

 ∼ N3


 0

0

3

 ,
 1 0 1.2

0 1 −2.3

1.2 −2.3 7.73






8.2 Análise Fatorial

1. Neste exerćıcio, você vai analisar os dados de uma análise qúımica de vinhos. Você vai ler uma

matriz com 178 amostras de diferentes vinhos. Haverá uma linha para cada vinho. A primeira

coluna indica o cultivar do vinho (entenda como o tipo de uva usada na fabricação do vinho)

tal como Sauvignon Blanc, Cabernet ou Chardonnay (rotulados como 1, 2 ou 3). As 13 colunas

seguintes contêm as concentrações de 13 diferentes compostos qúımicos na amostra.

O objetivo é diferenciar entre os 3 tipos de vinho com base na sua composição qúımica representada

pelo vetor 13-dimensional X. Você precisa criar uma regra para predizer o tipo de vinho (a primeira

coluna) a partir das 13 variáveis de composição qúımica. Vamos verificar que,ao invés de usarmos

as 13 variáveis, poderemos nos basear em dois ı́ndices, os dois rimeiros PCAs, que resumem toda a

variabilidade simultânea das 13 variáeis.

Estude o script R abaixo. De propósito, ele tem uma quantidade mı́nima de comentários. Procure

identificar o que cada linha está fazendo.

WARNING: o help da função prcomp é confuso, misturando PCA e análise fatorial nas explicações.

arq = "http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data"

wine=read.table(arq, sep=",")

head(wine)

pairs(wine[,2:6])

round(100*cor(wine[,2:14]))

round(apply(wine[,2:14], 2, sd),2)

wine.pca = prcomp(wine[,2:14, scale. = TRUE)

summary(wine.pca)

wine.pca$sdev

sum((wine.pca$sdev)^2)

screeplot(wine.pca, type="lines")

# Barplot das variancias acumuladas

barplot(cumsum(wine.pca$sdev^2)/sum(wine.pca$sdev^2))

# os dois primeiros PCA’s explicam aprox 60% da variancia total

# os 5 primeiros explicam aprox 80%

# Os autovetores

dim(wine.pca$rot)

# O 1o autovetor

wine.pca$rot[,1]

# O 2o autovetor

wine.pca$rot[,2]

# Coordenadas dos pontos ao longo do primeiro componente

fscore1 = wine.pca$x[,1]

# Coordenadas dos pontos ao longo do segundo componente



fscore2 = wine.pca$x[,2]

# plot dos pontos projetados

plot(fscore1, fscore2, pch="*", col=wine[,1]+8)

Seja Xi = (Xi1, . . . , Xi,13) a linha i da matriz wine. Seja Zi = (Zi1, . . . , Zi,13) a linha i da matriz

wine PADRONIZADA. Isto é, Zij = (Xij − x̄j)/sj onde x̄i é a média aritmética e sj
’e o desvio-padrão da coluna j da matriz wine. Esta matriz padronizada é obtida com o comando

z = scale(wine[2:14]):

z = scale(wine[2:14])

round(apply(z, 2, mean), 5)

round(apply(z, 2, sd), 5)

Vamos considerar Zi como um vetor-coluna 13-dimensional. Ao invés de usarmos o vetor Zi,

estamos usando apenas o vetor Yi composto pelos dois ı́ndices formados pelos dois primeiros com-

ponentes principais:

Yi =

[
Yi1
Y2i

]
=

[
v′1 Zi
v′2 Zi

]
onde v1 e v2 são os dois primeiros autovetores da matriz de correlação de X.

• Preencha os locais com (??) com os valores numéricos corretos (duas casa decimais apenas):

Yi1 = (??)Zi1 + (??)Zi2 + (??)Zi3 + . . .+ (??)Zi,13

Yi2 = (??)Zi1 + (??)Zi2 + (??)Zi3 + . . .+ (??)Zi,13

• O último gráfico do acript R acima é um plot dos pontos Yi dos 178 vinhos. Identifique três

regiões do plano Y1, Y2 que podem ser usadas para classificar futuras amostras de vinhos em

uma das trés categorias. Pode apenas esboçar grosseiramente no gráfico a mão livre.

• Suponha que uma nova amostra de vinho tem sua composição qúımica medida e encontra-se

x = (13.95, 3.65, 2.25, 18.4, 90.18, 1.55, 0.48, 0.5, 1.34, 10.2, 0.71, 1.48, 587.14)

Obtenha seu vetor z, as suas coordenadas (y1, y2) e prediga o seu tipo. Confira sua resposta

no final desta lista.

Solução: Para o problema do vinho:

x = c(13.95, 3.65, 2.25, 18.4, 90.18, 1.55, 0.48, 0.5, 1.34, 10.2, 0.71, 1.48, 587.14)

z = (x - apply(wine[,2:14], 2, mean))/apply(wine[,2:14], 2, sd)

y1 = sum( wine.pca$rot[,1] * z)

y2 = sum( wine.pca$rot[,2] * z)

plot(fscore1, fscore2, pch="*", col=wine[,1]+8)

points(y1, y2, pch="*", cex=4)



Figura 8.2: Para quem gosta de cerveja, uma Indian Pale Ale de alta qualidade produzida em BH.

2. Cerveja de excelente qualidade começa a ser produzida no Brazil em pequenas cervejarias e um dos

centros mais ativos é a região metropolitana de Belo Horizonte, em especial Nova Lima. Se você

gosta, experimente a Kud Kashmir (Figura 8.2).

O arquivo beer.txt é um dataset da página de Karl Wuensch, East Carolina University. Uma

nova cervejaria está interessada em conhecer o comportamento de escolha do consumidor de cerveja

artesanal. Um grupo de 231 consumidores avaliaram a importância de sete qualidades ao decidir

se deve ou não comprar uma cerveja. Para cada qualidade, foi dada uma nota numa escala de 0 a

100 para sua importância. As sete qualidades ou variáveis são as seguintes:

• COST: baixo custo por volume (300ml de cerveja)

• SIZE: grande tamanho da garrafa (volume)

• ALCOHOL: alto percentual de álcool da cerveja

• REPUTATION: boa reputação da marca

• COLOR: a cor da cerveja

• AROMA: agradável aroma da cerveja

• TASTE: gosto saboroso da cerveja

A variável SES é uma categoria de status socioeconômico (valores maiores significam status mais

elevados). A variável grupo não é explicada, não sei do que se trata. Ignore-a durante o exerćıcio.

O script abaixo executa o seguinte: Leia os dados numa matriz. Use summary(beer) (ou olhe

os dados na tela) para verificar que existem 11 NAs na variável AROMA. Obtenha a matriz de

covariância S das 7 variáveis de qualidade e verifique que os seus desvios-padrão não são muito

distintos. Obtenha a matriz de correlação R.

beer = as.matrix(read.table("beer.txt", header=T))

summary(beer)

S = var(beer[,1:7], na.rm=T)

S

sqrt(diag(S)) # sd’s not very different

R = cor(beer[,1:7], use ="complete.obs")

round(100*R)



Vocẽ deve gastar um tempo olhando a matriz de correlação R, a menos que ela seja muito grande.

Você está planejando usar PCA ou FA para capturar a essência das correlações nesta matriz. Ob-

serve que há muitas correlações grandes e médias em R. Todas as variàveis tem algumas correlações

grandes, com a exceção de reputation que é moderadamente (e negativamente) correlacionada com

todo o resto. É óbvio que existe uma estrutura de correlação entre as variáveis.

O pacote corrplot permite visualizar a matriz de correlação R de um jeito muito legal. Veja em

http://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html. Ins-

tale e carregue este pacote. Faça um gráfico na forma da matriz R em que cada célula possui

uma elipse representando grau de correlação entre as duas variáveis. Quanto mais achatada e pa-

recida com uma linha reta, mais correlacionadas são as duas variáveis. Se a elipse for parecida

com um ćırculo, é sinal de que a correlação é próxima de zero. Neste caso, a imagem estará quase

transparente. Correlações positivas são azuis, negativas são vermelhas.

library(corrplot)

corrplot(R, method = "ellipse")

# plotando as elipses e os valores das correlacoes

corrplot.mixed(R, upper = "ellipse")

# rearranjando as linhas e colunas para agrupar variaveis com correlacoes parecidas

corrplot.mixed(R, order = "AOE", upper = "ellipse", cl.align = "r")

Parece haver dois grupos de variáveis, um formado por COST, ALCOHOL, SIZE e outro formado por

COLOR, AROMA, TASTE. Elas são bem positivamente correlacionadas dentro de cada grupo e, ao

mesmo tempo, pouco correlacionas com as variáveis do outro grupo. Uma variável, REPUTATION,

forma um grupo à parte, sendo fracamente e negativamente correlacionada com todas as outras

seis.

Gere uma nova matriz eliminando as poucas linhas em que existem NAs. A seguir, obtenha os

autovetores e autovalores da matriz de covariância S com a função eigen. Vamos trabalhar com

matriz de covariância porque os desvios-padrão das setes varì’aveis são parecidos.

newbeer = na.omit(beer)

S = cov(newbeer[,1:7])

fit = eigen(S) # usa o algoritmo QR em cima da matriz S

# autovalores

fit$values

# autovetores

fit$vectors

Na análise acima, tivemos de gerar a matriz de covariância e, a seguir, passá-la à função eigen.

A função eigen não enxerga mais os dados originais, somente a matriz R. Outra maneira é

fornecer diretamente a matriz X de dados n×p e pedir que os componentes principais da matriz de

covariância induzida (ou da matriz de correlação) seja calculada. A função prcomp faz isto através

da decomposição SVD de X.

pca.beer = prcomp(newbeer[,1:7])

# Se quiser obter PCA da matriz de correla\c{c}\~{a}o, use

# pca.beer = prcomp(newbeer[,1:7], scale. = TRUE)



# Os 7 autovetores

pca.beer$rot

# Os 7 autovalores

(pca.beer$sdev)^2

# verifique que os autovetores acima sao os mesmos daqueles retornados por eigen.

# verifique que os autovetores tem norma euclidiana = 1.

# Por exemplo, o 1o PCA:

sum(pca.beer$rot[,1]^2)

# Grafico scree com os 7 autovalores (ou variancias de cada PCA)

plot(pca.beer)

# Barplot das variancias acumuladas indicando a escolha de 2 PCAs

barplot(cumsum(pca.beer$sdev^2))

# Resumo

summary(pca.beer)

# Note que o quadrado da linha Standard deviation acima eh igual aos autovalores

# obtidos com fit$values

# Vamos usar apenas os dois 1os PCs para representar R com dois fatores

# Carga do Fator = sqrt(LAMBDA) * EIGENVECTOR

cargafat1 = pca.beer$sdev[1] * pca.beer$rot[,1]

cargafat2 = pca.beer$sdev[2] * pca.beer$rot[,2]

# matriz de cargas

L = cbind(cargafat1, cargafat2)

rownames(L) = rownames(R)[1:7]

round(L, 2)

plot(L, type="n",xlim=c(-40, 20), ylim=c(-10, 25))

text(L, rownames(L))

abline(h=0)

abline(v=0)

A interpretação dos resultados obtidos não é simples. Com os eixo rotacionados conseguiremos

um resultado bem mais interpretável. Não existe uma rotina nativa em R para obter a rotação

ótima dos fatores no caso da estimação pelo método de componentes principais. Em R, a rotação

ótima está implementada apenas para a estimação das cargas L por meio do método de máxima

verossimilhança, um método que veremos em breve. Para o caso do método de componentes

principais, o último gráfico mostra que uma rotação horária de aproximadamente 90o + 15o ou

π/2 + 15(π/180) deve colocar a maioria dos pontos em apenas um dos dois eixos ortogonais:



# Fazendo manualmente uma rotacao horaria de pi/2+15*pi/180

phi = pi/2 + 15*(pi/180)

T = matrix(c(cos(phi), -sin(phi), sin(phi), cos(phi)), ncol=2, byrow=T)

Lstar = L %*% T # usando a multiplicacao por linha da matriz L

plot(Lstar, type="n", xlim=c(-20, 30), ylim=c(-15, 35))

text(Lstar, rownames(L))

abline(h=0); abline(v=0)

round(Lstar,2)

A interpretação dos fatores é bem mais simples agora. O primeiro fator tem cargas positivas e

grandes em COLOR, AROMA, TASTE e uma carga negativa moderada em REPUTATION. Algém com

uma nota (ou escore) muito elevado neste fator é alguém que preza e diferencia qualidades ligadas

ao paladar da cerveja e também seus seus aspectos estéticos. Este componente poderia ser chamado

de Degustador.

Os indiv́ıduos que tiverem seu segundo fator muito positivo terão dado notas altas para os as-

pectos de COST, ALCOHOL, SIZE e, ao mesmo tempo, dado uma nota moderadamente baixa para

REPUTATION. Alguém que possui uma nota muito alta neste segundo fator é alguém que gosta de

muita cerveja barata e com muito álcool, e não se importa muito com a reputação da cerveja. Este

componente poderia ser chamado de Bebum Barato.

Para obter uma estimativa das variâncias dos fatores espećıficos (isto é, da matriz Ψ), usamos o

código abaixo:

matpsi = diag(diag(S - Lstar %*% t(Lstar)))

round(matpsi, 2)

sum( (S - Lstar %*% t(Lstar) - matpsi)^2 )/sum(S^2)

O último comando mostra que a matriz residual Σ−L∗(L∗)′ −Ψ tem uma soma de suas entradas

(ao quadrado) muito pequena em comparaçãocom a soma das entradas na matriz de covariância Σ

(apenas 0.005303857 ou 0.5%).

No nosso modelo, os indiv́ıduos recebem escores independentes destes dois fatores. Eles não são

fatores competidores, um indiv́ıduo pode receber altas doses dos dois fatores. Ele pode gostar de

tomar muita cerveja com muito álcool e que seja barata. Isto é, ter um escore alto no fator 2. Ao

mesmo tempo, este mesmo indiv́ıduo pode apreciar também as cervejas mais refinadas, mais caras

e com mais sabor e aroma. Isto é, ter um escore alto também no fator 1. Em suma, ele pode ser

um esteta que adora se embebedar.

Para encontrar uma estimativa dos escores dos dois fatores para cada um dos 220 indiv́ıduos que

restaram na matriz newbeer após eliminar as 11 linhas com NAs, usamos o procedimento de re-

gressão linear. Lembre-se que o modelo de análise fatorial estabelece que as 7 notas do indiv́ıduo i

é representada por

Xi
(7×1)

= µ
(7×1)

+ L∗

(7×2)

Fi
(2×1)

+ εi
(7×1)

onde F′i = (F1i, F2i) são os escores (ou as doses) que o indiv́ıduo i possui dos fatores 1 e 2. Como

observamos diretamente Xi e como estimamos a média populacional µ e a matriz de cargas rota-

cionadas L∗, podemos usar mı́nimos quadrados ou regressão linear para estimar os escores F1i e

F2i.



Por exemplo, o primeiro indiv́ıduo na matriz newbeer tem a sua representação fatorial estimada

por

X1 =



90

80

70

20

50

70

60


= µ̂+ L̂∗F̂1 + ε̂1 =



47.25

43.50

46.50

48.25

51.00

44.75

67.25


+



0.11 31.74

4.84 32.07

3.09 30.19

−12.95 −10.83

25.81 0.05

24.79 −1.37

22.94 −2.28


[
F1i

F2i

]
+



ε̂11

ε̂21

ε̂31

ε̂41

ε̂51

ε̂61

ε̂71


A matriz L̂∗ está na matriz Lstar no final do script R e é a mesma para todos os indiv́ıduos. O

vetor µ̂ também é o mesmo para todos os indiv́ıduos e é obtido simplesmente tomando a média

aritmética de cada uma das sete qualidades de modo que µ é aproximadamente igual ao resultado

do comando mu = apply(newbeer[,1:7], 2, mean).

> apply(newbeer[,1:7], 2, mean)

COST SIZE ALCOHOL REPUTAT COLOR AROMA TASTE

47.25 43.50 46.50 48.25 51.00 44.75 67.25

Assim, para o indiv́ıduo i podemos estimar seus escores F1i e F2i pelos valores F̂1i e F̂2i que

minimizam o comprimento (ao quadrado) da diferença entre Xi e µ̂+ L̂∗Fi:

argmin
Fi

||Xi − µ̂− L̂∗Fi||2

Ou seja, para o indiv́ıduo i = 1, queremos o vetor F1 que minimize a norma euclidiana (ao quadrado)

do vetor

X1 − µ̂− L̂∗F1 =



90− 47.25

80− 43.50

70− 46.50

20− 48.25

50− 51.00

70− 44.75

60− 67.25


−



0.11 31.74

4.84 32.07

3.09 30.19

−12.95 −10.83

25.81 0.05

24.79 −1.37

22.94 −2.28


[
F11

F21

]

O seguinte código em R faz isto através de loop sobre as linhas da matriz newbeer:

## Factor scores dos n=220 individuos

factors = matrix(0, nrow=nrow(beer), ncol=2)

mu = apply(newbeer[,1:7], 2, mean)

for(i in 1:nrow(newbeer)){

y = newbeer[i, 1:7] - mu

factors[i,] = lm(y ~ 0 + Lstar)$coef

}

Podemos visualizar os fatores de cada um dos 220 indiv́ıduos pedindo um plot da matriz factors:

plot(factors, xlab="fator 1", ylab="fator2")

# mas... onde estao os 220 individuos?

# Varios individuos poduziram o MESMO vator x --> estimamos com os mesmos fatores

plot(jitter(factors, amount=0.05), xlab="fator 1", ylab="fator2")



Como vários indiv́ıduos produziram o mesmo vetor Xi seus fatores Fi também coincidem. Assim,

o comando jitter foi usado. Ele perturba as coordenadas de cada ponto aleatoriamente com um

rúıdo uniforme entre -amount e +amount. No novo plot, podemos enxergar todos os indiv́ıduos.

Respostas

• Para o problema do vinho:

x = c(13.95, 3.65, 2.25, 18.4, 90.18, 1.55, 0.48, 0.5, 1.34, 10.2, 0.71, 1.48, 587.14)

z = (x - apply(wine[,2:14], 2, mean))/apply(wine[,2:14], 2, sd)

y1 = sum( wine.pca$rot[,1] * z)

y2 = sum( wine.pca$rot[,2] * z)

plot(fscore1, fscore2, pch="*", col=wine[,1]+8)

points(y1, y2, pch="*", cex=4)

8.3 Análise Discriminante

COMPLETAR





Caṕıtulo 9

Classificação

1. Replicar a análise de classificação usando a função LDA de Fisher em duas páginas da web

(uma sendo a sequência da seguinte): http://www.aaronschlegel.com/discriminant-analysis/

e https://www.r-bloggers.com/classification-with-linear-discriminant-analysis/. Os

dados não estão imediatamente viśıveis apontado pelas páginas mas eu os coloquei na página da

nossa disciplina.

2. Replicar a análise usando LDA de Fisher que está na seguinte página da web: https://www.

datascienceblog.net/post/machine-learning/linear-discriminant-analysis/.

3. Existem duas classes ou populações, 1 e 2, presentes nas proporções positivas π1 e π2 com π1+π2 = 1.

Suponha que o vetor aleatório cont́ınuo X = (X1, . . . , Xp) com p variáveis possua as densidades

f1(x) e f2(x) quando o indiv́ıduo pertence à população 1 ou 2, respectivamente. Sejam c(1|2) o custo

do erro de classificar erradamente no grupo 1 um indiv́ıduo que seja do grupo 2. Analogamente,

defina o custo do outro erro c(2|1). A região ótima R1 de classificação no grupo 1 é dada pela

seguinte região do espaço Rp:

R1 =

{
x ∈ Rp tais que

f1(x)

f2(x)
>
c(1|2)

c(2|1)

π2

π1

}
Note que a ordem das populações na última fração é oposta à ordem na razão das densidades. Isto

é, comparamos f1/f2 com π2/π1.

• Suponha que c(1|2) = c(2|1) e que π1 = π2. Neste caso, a regra ótima fica reduzida a uma

simples comparação. Qual é esta regra de classificação?

• Imagine agora que π1 = 0.01 e que c(1|2) = c(2|1). Para tornar as coisas mais concretas,

suponha que a população 1 sejam portadores de certo v́ırus e a população 2, os demais. A
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regra simples do item acima fica modificada. Agora não basta que f1(x) seja maior que

f2(x). Ela precia ser bem maior que f2(x). Quantas vezes maior f1(x) deve ser para que

classifiquemos o item com caracteŕıstica x em 1?

• Suponha que os custos de má-classificação sejam muito diferentes. O custo de classificar o

portador do v́ırus como são pode custar-lhe a vida ou a vida de outras pessoas. Por outro

lado, o indiv́ıduo saudável ser classificado como infectado custa mais exames confirmatórios,

algumas medidas de isolamento e outras coisas que são relativemente menos custosas. Suponha

que c(1|2) seja 10 vezes menor que c(2|1). Neste caso, com π1 = 0.01, como a regra do item

acima fica modificada?

4. Um programa é usado para classificar fotos de gatos (população 1) versus fotos de não-gatos (po-

pulação 2). As fotos da população 1 (fotos de gatos) são chamadas de relevantes. O classificador

seleciona algumas fotos para classificar no grupo 1 baseado em features aleatórias no vetor X.

A regra de classificação é representada pela função binária D(X) que assume os valores 1 ou 2

dependendo do vetor aleatório X cair ou não na região R1 de classificação no grupo 1.

Haverá erros nesta classificação e queremos torná-los pequenos. Duas métricas muito populares

para avaliar a qualidade de um classificador são: precisão (precision, em inglẽs) e revocação (recall,

em inglês). A palavra revocação não é muito usada na linguagem diária. Ela siginifica “fazer voltar,

retornar, chamar novamente”. Pode significar também revogação, anulamento de um contrato mas

não é este o significado relevante para nosso contexto.

• Precisão: P(foto ∈ gatos | classificado como gato ) = P(X ∈ 1|D(x) = 1)

• Revocação: P( classificado como gato |foto ∈ gatos ) = P(D(x) = 1|X ∈ 1)

É claro que, tanto para precisão quanto para revocação, quanto maior, melhor. Precisão e revocação

são probabilidades condicionais usando os mesmos eventos A e B mas um deles é P(A|B) enquanto

o outro é simplemente P(B|A). Sabemos que estas probabilidades podem ser muito diferentes. A

Figura 9.1, retirada da página Precision and recall na Wikipedia, mostra itens nas suas classes

reais: relevante (pop 1) ou não (pop 2). Mostra também a sua classificação na classe 1 (os itens

dentro da elipse central) ou na classe 2 (os restantes). A Figura ainda mostra as probabilidades

precisão e revocação como diagramas de Venn dos eventos envolvidos.

Marque V ou F nas afirmativas a seguir:

• A precisão mede o quanto os resultados da classificação são úteis.

• A revocação mede o quanto os resultados da aplicação da regra de classificação são completos.

• A soma de precisão e revocação é igual a 1.

• Precisão = Revocação × P(X ∈ 1)

P(D(x) = 1)
.

• Existe um trade-off entre precisão e revocação: se aumentarmos uma métrica, a outra tem de

diminuir.

Solução: VVFVF

5. Existem duas classes ou populações, 1 e 2, presentes nas proporções positivas π1 e π2 com π1+π2 = 1.

Suponha que π1 ≈ 0. O vetor aleatório cont́ınuo X = (X1, . . . , Xp) com p variáveis possui as

densidades f1(x) e f2(x) quando o indiv́ıduo pertence à população 1 ou 2, respectivamente. Seja



Figura 9.1: Retirado da Wikipedia.

c(1|2) o custo do erro de classificar erradamente no grupo 1 um indiv́ıduo que seja do grupo 2.

Analogamente, defina o custo do outro erro c(2|1). A regra de classificação é representada pela

função binária D(X) que assume os valores 1 ou 2 dependendo do vetor aleatório X cair ou não na

região R1 de classificação no grupo 1.

• Uma regra de decisão que vai errar pouco será atribuir a classe 2 a todo e qualquer item:

D(X) ≡ 2 para todo valor de X. Obtenha a probabilidade de classificação errada. A proba-

bilidade é próxima de zero?

• Se o custo de má-clasificação for também desbalanceado, com c(2|1) >> c(1|2), a estratégia

anterior pode ser muito ruim. Obtenha o custo esperado de má-classificação (ECM) da regra

anterior.

Solução: π1 e ECM = c(2|1)π1

6. Você quer classificar objetos em duas classes, 1 ou 2, com base numa única variável X, um vetor

de dimensão 1, usando a regra de classificação ótima. Seja f1(x) = (1 − |x|)/2 para x ∈ (−1, 1) a

densidade de X na população 1 e f2(x) = (1− |x− 0.5|)/2 para −0.5 < x < 1.5 a densidade de X

na população 2. Suponha que os custos de classificação errada são c(2| ∈ 1) = a e c(1| ∈ 2) = 2a.

Além disso, assuma que p1 = 0.3 e p2 = 1− p1 = 0.7.

• Esboce as duas densidades de probabilidade num gráfico.

• Identifique as regiões de classificação ótima R1 e R2.

• Assumindo que p1 = p2, identifique as regiões.

• Assuma agora que, além das probabilidades a priori, os custos também são iguais.



7. Na população 1, o vetor X possui distribuição Np(µ1,Σ1) e distribuição Np(µ2,Σ2) na população

2. Seja d2
k(x,µk) a distância de Mahalanobis avaliada com os parâmetros µk e Σk da população k.

Mostre que a regra de classificação ótima implica que um novo objeto com medições x é alocado a

população 1 se

d2
1(x,µ1)− d2

2(x,µ2) + log

(
|Σ1|
|Σ2|

)
≤ k

onde |A| = det(A). Encontre a constante k em função dos custos e probabilidades a priori p1 e

p2 = 1− p1. Obtenha esta constante no caso de custos iguais e p1 = p2.

8. Quando temos g > 2 populações, a regra de classificação ótima aloca x à população j para a qual

g∑
i=1
i 6=j

pifi(x)c(j| ∈ i)

é mı́nimo. As probabilidades a priori p1, . . . , pg somam 1 e c(j| ∈ i) é o custo de classificar em j

um indiv́ıduo da população i. Mostre que a regra vista em sala de aula é equivalente a esta no caso

de g = 2 populações.

9. Suponha que f(x) é a densidade de uma gaussiana Np(µ,Σ) para x ∈ Rp. Sejam λ1 < λ2 < . . . λp
os autovalores de Σ com os correspondentes autovetores e1, . . . , ep. Responda V ou F:

• A chance de observar um valor x distante do perfil médio µ decresce mais rápido se nos

afastarmos de µ ao longo da direção e1.

• Se os autovalores λi forem todos iguais, os pontos x que tem a mesma chance de serem

selecionados ficam localizados em esferas centradas em µ.

• A regra de classificação ótima para duas populações com Σ1 = Σ2 projeta ortogonalmente

cada dado x ao longo do autovetor com menor autovalor.

10. Thomson e Randall-Maciver (1905) escavaram e obtiveram crânios que, de acordo com o local em

que foram encontrados, puderam ser datados em cinco peŕıodos distintos da hisória do império

eǵıpcio.

• the early predynastic period (circa 4000 BC)

• the late predynastic period (circa 3300 BC)

• the 12th and 13th dynasties (circa 1850 BC)

• the Ptolemiac period (circa 200 BC)

• the Roman period (circa 150 BC)

Measurements in mm on of 30 male Egyptian skulls from each period were taken. The variables

are:

• MB: Maximal Breadth of Skull

• BH: Basibregmatic Height of Skull

• BL: Basialveolar Length of Skull

• NH: Nasal Height of Skull



Figura 9.2: Medições em crânios encontrados em śıtios arqueológicos.

Queremos analisar os dados para determinar se existem diferenças na distribuição de probabilidade

dos tamanhos dos crânio ao longo do tempo. Isto é, a distribuição estat́ıstica dos tamanhos de

crânios variou ao longo do tempo? Antropólogos teorizam que uma mudança no tamanho do crânio

ao longo do tempo é uma evidência da miscigeneção dos eǵıpcios com populações de imigrantes ao

longo dos séculos.

REF: Thomson, A. and Randall-Maciver, R. (1905) Ancient Races of the Thebaid, Oxford: Oxford

University Press. Data also found in: Manly, B.F.J. (1986) Multivariate Statistical Methods, New

York: Chapman & Hall.

Leia os dados do arquivo EgyptianSkull.txt, crie duas classes (ou populações) agregando as

duas primeiras e as duas últimas e deletando os crânios do peŕıodo intermediário, das 12a. e 13a.

dinastias (cerca de 1850 a.C.).

Separe 4 dos crânios para alocar a uma das duas populações. Crie a regra de classificação com os

crânios restantes em duas situações: com Σ1 = Σ2 e com Σ1 6= Σ2. (solução no final do caṕıtulo).

11. Examples of the character images generated by these procedures are presented in Figure 9.3. Each

character image was then scanned, pixel by pixel, to extract 16 numerical attributes. These at-

tributes represent primitive statistical features of the pixel distribution. To achieve compactness,

each attribute was then scaled linearly to a range of integer values from 0 to 15. This final set of

values was adequate to provide a perfect separation of the 26 classes. That is, no feature vector

mapped to more than one class. The attributes (before scaling to 0-15 range) are:

(a) The horizontal position, counting pixels from the left edge of the image, of the center of the

smallest rectangular box that can be drawn with all on pixels inside the box.

(b) The vertical position, counting pixels from the bottom, of the above box.

(c) The width, in pixels, of the box.

(d) The height, in pixels, of the box.

(e) The total number of “on” pixels in the character image.

(f) The mean horizontal position of all “on” pixels relative to the center of the box and divided

by the width of the box. This feature has a negative value if the image is “leftheavy” as would

be the case for the letter L.

(g) The mean vertical position of all “on” pixels relative to the center of the box and divided by

the height of the box.

(h) The mean squared value of the horizontal pixel distances as measured in 6 above. This attribute

will have a higher value for images whose pixels are more widely separated in the horizontal

direction as would be the case for the letters W or M.



Figura 9.3: Examples of the character images from which features were extracted.

(i) The mean squared value of the vertical pixel distances as measured in 7 above.

(j) The mean product of the horizontal and vertical distances for each ”on”pixel as measured in

6 and 7 above. This attribute has a positive value for diagonal lines that run from bottom left

to top right and a negative value for diagonal lines from top left to bottom right.

(k) The mean value of the squared horizontal distance times the vertical distance for each “on”

pixel. This measures the correlation of the horizontal variance with the vertical position.

(l) . The mean value of the squared vertical distance times the horizontal distance for each “on”

pixel. This measures the correlation of the vertical variance with the horizontal position.

(m) The mean number of edges (an ”onÂ´Â´ pixel immediately to the right of either an “on” pixel

or the image boundary) encountered when making systematic scans from left to right at all

vertical positions within the box. This measure distinguishes between letters like “W” or “M”

and letters like “T” or “L”.

(n) The sum of the vertical positions of edges encountered as measured in 13 above. This feature

will give a higher value if there are more edges at the top of the box, as in the letter “Y”.

(o) The mean number of edges (an ”onÂ´Â´ pixel immediately above either an “off” pixel or the

image boundary) encountered when making systematic scans of the image from bottom to top

over all horizontal positions within the box.

(p) The sum of horizontal positions of edges encountered as measured in 15 above. A data file of

the 16 attribute values and outcome category for each of the 20,000 stimulus items is on file

with David Aha (aha@ics.uci.edu). The set of 20,000 unique letter images was organized

into two files. Sixteen thousand items were used as a learning set and the remaining 4000

items were used for testing the accuracy of the rules.



12. Este exerćıcio foi extráıdo da página web do livro The Elements of Statistical Learning de Has-

tie, Tibshirani e Friedman (2009), editado pela Springer-Verlag: http://statweb.stanford.edu/

~tibs/ElemStatLearn/ Este é um dos melhores livros de Machine Learning no momento. Clique

no link Data e no link ZIP code para encontrar os dados e a sua descrição .

Normalized handwritten digits, automatically scanned from envelopes by the U.S. Postal Service.

The original scanned digits are binary and of different sizes and orientations; the images here have

been deslanted and size normalized, resulting in 16 x 16 grayscale images (Le Cun et al., 1990).

The data are in two gzipped files, and each line consists of the digit id (0-9) followed by the 256

grayscale values.

There are 7291 training observations and 2007 test observations, distributed as follows: 0 1 2 3 4 5

6 7 8 9 Total Train 1194 1005 731 658 652 556 664 645 542 644 7291 Test 359 264 198 166 200 160

170 147 166 177 2007

or as proportions: 0 1 2 3 4 5 6 7 8 9 Train 0.16 0.14 0.1 0.09 0.09 0.08 0.09 0.09 0.07 0.09 Test 0.18

0.13 0.1 0.08 0.10 0.08 0.08 0.07 0.08 0.09

Encare cada Assim, as porporções Alternatively, the training data are available as separate files per

digit (and hence without the digit identifier in each row)

The test set is notoriously “difficult”, and a 2.5% error rate is excellent. These data were kindly

made available by the neural network group at AT&T research labs (thanks to Yann Le Cunn).

Soluções

Problema dos crânios:

# R script for some basic classification and

# lda = linear discriminant analysis

skull <- read.table(file="EgyptianSkull.txt",header=T)

dim(skull)

head(skull)

period = skull[,5]

period[skull[,5] < -3000] = 1

period[skull[,5] < -1000 & skull[,5] > -3000] = 2

period[skull[,5] > -1000] = 3

colsk = c("red","green","blue")[period]

pairs(skull[,1:4], main="Egyptian skull", pch=21, bg=colsk)

# pch=21 specifies the marker type. See help(pch)

# bg = background colour of the marker

# In our example we want a different colour for each period.

# Os pontos das tres classes parecem bem misturados.

# Parece dificil ser capaz de classifica-los sem muito erro.



# Vamos fixar a atencao nos dois periodos mais extremos para

# trabalhar apenas com duas classes

skull = skull[period == 1 | period == 3, 1:4]

row.names(skull) = 1:120

period = period[period == 1 | period == 3]

period[period==3] = 2

colsk = c("red","blue")[period]

pairs(skull[,1:4], main="Egyptian skull, 2 periods", pch=21, bg=colsk)

# separando alguns dados, 2 de cada periodo,

# para classificar posteriormente:

teste = skull[c(23, 52, 88, 111), ]

treino = skull[-c(23, 52, 88, 111), ]

period.treino = rep(1:2, c(58,58))

# Visualizando os conjuntos de teste e treino

colsk = c("red","blue")[period]

colsk[c(23, 52, 88, 111)] = "green"

mark = rep(21, nrow(skull))

mark[c(23, 52, 88, 111)] = 22

pairs(skull[,1:4], pch=mark, bg=colsk)

# Regra de classificacao otima supondo Sigma_1 = Sigma_2

# vetor de medias das 4 variaveis

mu1 = apply(treino[period.treino ==1, ], 2, mean)

mu2 = apply(treino[period.treino ==2, ], 2, mean)

matcov1 = cov(treino[period.treino ==1, ])

matcov2 = cov(treino[period.treino ==2, ])

matcov = (matcov1 + matcov2)/2

maha1 = mahalanobis(teste, mu1, matcov)

maha2 = mahalanobis(teste, mu2, matcov)

maha1 - maha2

# O segundo ponto eh alocado a pop1, os demais a pop2

# Assim, cometemos um erro com o primeiro ponto, que

# deveria ser alocado a pop1

# Agora, vamos refazer os calculos supondo Sigma_1 != Sigma_2

mu1 = apply(treino[period.treino ==1, ], 2, mean)

mu2 = apply(treino[period.treino ==2, ], 2, mean)

matcov1 = cov(treino[period.treino ==1, ])

matcov2 = cov(treino[period.treino ==2, ])

det1 = log(det(matcov1))

# este termo adicional, log da matriz de covariancia,

# precisa ser subtraido da distancia de Mahalanobis

det2 = log(det(matcov2))



d1 = mahalanobis(teste, mu1, matcov) - det1

d2 = mahalanobis(teste, mu2, matcov) - det2

d1-d2

# Como a amostra e’ muito pequena, vamos avaliar a classificacao

# omitindo um ponto x de cada vez da base, ajustando os parametros

# mu e Sigma SEM ESTE ponto x e calculando

# a distancia de Mahalanobis entre x e mu

# Esta seia a distancia que usariamos caso quisessemos alocar

# o novo ponto x usando os outros dados.

# Vamosavaliar as taxas de erro cometidos.

# Assumimos custo iguais e proporcoes iguais nas

# duas populacoes

maha = matrix(0, nrow=nrow(skull), ncol=2)

pop1 = skull[period == 1, ]

pop2 = skull[period == 2, ]

mu1 = apply(pop1, 2, mean); mu2 = apply(pop2, 2, mean)

matcov1 = cov(pop1); matcov2 = cov(pop2)

det1 = log(det(matcov1)); det2 = log(det(matcov2))

for(i in 1:60){

aux1 = pop1[-i,]

aux2 = pop2[-i,]

mu1i = apply(aux1, 2, mean)

mu2i = apply(aux2, 2, mean)

matcov1i = cov(pop1[-i,])

matcov2i = cov(pop1[-i,])

det1i = log(det(matcov1i))

det2i = log(det(matcov2i))

maha[i,1] = mahalanobis(pop1[i,], mu1i, matcov1i) - det1i

maha[i,2] = mahalanobis(pop1[i,], mu2, matcov2) - det2

maha[i+60,1] = mahalanobis(pop2[i,], mu1, matcov1) - det1

maha[i+60,2] = mahalanobis(pop2[i,], mu2i, matcov2i) - det2i

}

difmaha = maha[,1] - maha[,2]

boxplot(difmaha ~ period)

## Vemos que a maioria dos pontos da pop1 possuem distancia de

## Mahalanobis a pop1 menor que a distancia a pop 2 (isto eh,

## difmaha < 0 quando pop1 ==1), enquanto o oposto ocorre

## com os pontos da pop2.

# binaria indicando quem seria classificado em pop2

class2 = difmaha > 0



tabmaha = table(class2, period)

tabmaha

# proporcao de acerto global

sum(diag(tabmaha)) / sum(tabmaha)

# acerta 65.8% dos dados, independentemente de onde venham

# propocao de acerto dentro de cada populacao, estimativa de

# P(classif em k | pertence a k)

prop.table(table(class2, period), margin = 2)

# Acerta 61.7% para x vindo da pop1 e acerta 70% para x vindo de pop2

# A probab reversa: P(pertence a k | classif em k)

prop.table(table(class2, period), margin = 1)

# 67.3% dos classificados na pop 1 sao, de fato, da pop1

# 64.6% dos classificados na pop 2 sao, de fato, da pop2



Caṕıtulo 10

Iterated Expectation

1. Suppose that X and Y are independent random variables. Prove that

V(XY ) = σ2
Xσ

2
Y + µ2

Xσ
2
Y + µ2

Y σ
2
X

Solução: We have

V(XY ) = E (V(XY | X)) + V (E(XY | X))

= E
(
X2V(Y | X))

)
+ V (XE(Y | X))

= E
(
X2σ2

Y )
)

+ V (XµY )

= σ2
Y E
(
X2)

)
+ µ2

Y V (X)

= σ2
Y

(
σ2
X + µ2

X

)
+ µ2

Y σ
2
X

= σ2
Y σ

2
X + µ2

Xσ
2
Y + µ2

Y σ
2
X

Note that the V(XY ) = σ2
Y σ

2
X when µX = µY = 0.

2. The variance of a random variable Y can be decomposed into two parts:

V(Y ) = E (V(Y | X)) + V (E(Y | X))

Consider the i.i.d. samples of the vector (X,Y ) in Figure 10.1 representing six different joint distribu-

tions f(x, y). Without doing any calculations, tell which of these six distributions have E (V(Y | X))

substantially larger than V (E(Y | X)). That is, in which cases do we have the first component do-

minating the overall V(Y )? Verify in which cases we have the opposite inequality, and when we

have the two terms approximately equal.

Solução: Considering the plot in position (i, j) in the Figure, we have:

• E (V(Y | X)) >> V (E(Y | X)): plots in (1, 3); (2, 1); (2,3)

• E (V(Y | X)) << V (E(Y | X)): plots in (1,1); (2,1); (2,2)
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Figura 10.1: Samples from 6 different joint distributions f(x, y). In each of them, compare the relative

sizes of E (V(Y | X)) and V (E(Y | X)).

3. The table below shows the joint distribution of the discrete random vector (X,Y ).

x = 0 x = 1 x = 2

y = 0 0.1 0.2 0.20

y = 1 0.1 0.05 0.25

y = 2 0.05 0.0 0.05

• Obtain the marginal distribution of the variables Y and X.

• Using the marginal distribution of Y , obtain E(Y ) and V(Y ).

• Obtain the three conditional distributions (Y |X = x). That is, find conditional distributions

(Y |X = 0), (Y |X = 1), and (Y |X = 2).

• Obtain the three values E(Y |X = x) for x = 0, 1, 2.

• E(Y |X) is a random variable. Provide the two lists that describes its distribution.

• Find E(Y ) again by using E[E(Y |X)].

• Likewise, find again V(Y ) by using E[V(Y |X)] + V[E(Y |X)].

4. Write a code to simulate n = 1000 values of the random vector (X,Y ). It has a joint distribution

specified in two steps. First, X ∼ U(0, 10). Next, (Y |X = x) ∼ U(x/3, 2x).

• What is the set of possible values for Y ? That is, what is the support set of the continuous

random variable Y ?

• Execute your code and plot the generated sample.

• Make a histogram of the simulated Y values. Does it look like a uniform distribution? If not,

how is the density spread over the support set? Which region has higher density?

• Based on the simulated sample, estimate E(Y ) and V(Y ).

5. Considering the random vector (X,Y ) of the previous exercise:

• Obtain the theoretical expressions for E(Y |X = x) and V(Y |X = x).

• Visualize these expressions in your plot with the generated sample.

• Use the theoretical expressions above to obtain E(Y ) using E[E(Y |X)].



• Obtain V(Y ) calculating E[V(Y |X)] + V[E(Y |X)].

• Compare these exact values for E(Y ) and V(Y ) with the estimated values you obtained in the

previous exercise based on your sample.

6. A source transmits signals, and a single signal requires a random number N of time units to be

transmitted. Let N be a geometric random variable with P(N = j) = a(1 − a)j−1 for j = 1, 2, . . .

and a ∈ (0, 1). This source also receives messages, and they arrive randomly. During a time unit,

at most one message arrives with probability p and no new message arrives with probability 1− p.
The possible arrival of a message in a given time unit is independent of the possible arrival in the

other time intervals. Let K be the number of new messages that arrived during the transmission

of a single signal. Find E(K) and V(K) using iterated expectation.

Solução: Given N = n, we have (K|N = n) ∼ Bin(n, p). Therefore, E(K|N = n) = np and

V(K|N = n)np(1− p). We have then

E(K) = E[E(K|N)] = E[Np] =
p

a

and

V(K) = E[V(K|N)] + V[E(K|N)]

= E[Np(1− p)] + V[Np]

= p(1− p)E[N ] + p2V[N ]

= p(1− p)1

a
+ p2 1− a

a2

=
ap(1− p) + p2(1− a)

a2

7. Someone argued that intuitively we can obtain V(Y ) in two steps. First, obtain v(x) = V(Y |X = x)

for each possible value of X. Next, average these v(x) values by taking their weighted average using

the probabilities associated with X as weights. That is, take

E[v(X)] = E[V(Y |X)] =

∫
V(Y |X = x)fX(x)dx =

∫
v(x)fX(x)dx

However, this is not correct. Show that, in fact, V(Y ) ≥ E[V(Y |X)] for any two random variables

X and Y .

Solução: We already learned that

V(Y ) = E (V(Y | X)) + V (E(Y | X)) ≥ E (V(Y | X))

because, being a variance, we must have V (E(Y | X)) ≥ 0

8. Some of the following are VALID conditional expectations, some are not. Which ones are valid?



• E[Y |X] = 1

• E[Y |X] = X

• E[Y |X] = Y

• E[Y |X] = X ∗ cos(X)

• E[Y |X] = XY

Solução:

• E[Y |X] = 1: valid. The conditional expectation of Y is constant and equal to 1, it does not

depend on X.

• E[Y |X] = X: valid. The conditional distribution of Y values varies around X.

• E[Y |X] = Y : invalid. The conditional expectation of Y must be a function of X, not of Y .

• E[Y |X] = X ∗ cos(X): valid, a function of X.

• E[Y |X] = XY : invalid. It can not depend on Y .

9. Some of the following are VALID conditional variances, some are not. Which ones are valid?

Suppose that X ∼ U(−1, 1).

• V[Y |X] = 1

• V[Y |X] = X

• V[Y |X] = Y

• V[Y |X] = X ∗ cos(X)

• V[Y |X] = XY



Caṕıtulo 11

Teoremas Limite: LGN e TCL

Os exerćıcios abaixo são do curso de Patrick Breheny na Univ de Kentucky, o autor do material que

usei em sala de aula: https://myweb.uiowa.edu/pbreheny/4120/s20/notes.html. Veja as notas

de aula desse professor sobre o TCL (uns 12 slides apenas). Por favor, leia o material para entender

algumas das questões. São exerćıcios básicos, que exigem simples manipulação da distribuição

normal. O fato fundamental que precisa ser usado várias vezes é o seguinte: se X̄ ∼ N(µ, σ2/n)

então X̄−µ
σ/
√
n
∼ N(0, 1). Portanto, para qualquer valor a, temos

P(X̄ > a) = P
(
X̄ − µ
σ/
√
n
>
a− µ
σ/
√
n

)
≈ P

(
N(0, 1) >

a− µ
σ/
√
n

)
= 1 - pnorm(b)

onde b =
√
n(a− µ)/σ.

(a) Você quer selecionar uma amostra para estimar a porcentagem θ de pessoas que vai votar num

candidato X. Imagine que a resposta é uma v.a. X de Bernoulli com valores 1 e 0 (vai e não

vai votar, respectivamente) e a probabilidade de sucesso é θ. As respostas de n indiv́ıduos serão

X1, X2, . . . , Xn e você vai estimar θ usando θ̂ = (X1 + . . .+Xn)/n, a proporção amostral. Se

você asumir que as respostas são variáveis aleatórias i.i.d., determine o tamanho n da amostra

necessário para que o erro de estimação |θ̂ − θ| seja menor que 0.02 com probabilidade 0.99.

Para isto, assuma que você sabe que seu candidato está estacionado entre 15% e 35% dos

eleitores (baseado em outras pesquisas mais antigas). Esta é uma faixa de variaçao enorme,

muito pouco precisa, mas que você está bem seguro de que ela contém a verdadeira proporção

de eleitores que votam no candidato em questão.
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Solução: Queremos encontrar n de forma que a probabilidade de ocorrer o evento |θ̂−θ| < 0.02

seja 0.99. Isto é, queremos n de forma que P(|θ̂− θ| < 0.02) < 0.99. Veja que θ̂ = (X1 + . . .+

Xn)/n e portanto podemos usar o TCL. Temos Xi ∼ Bernoulli(θ) (binária) independentes,

com E(Xi) = θ e V(Xi) = θ(1− θ). Assim, pelo TCL,

P(|θ̂ − θ| < 0.02) = P(|X̄ − θ| < 0.02)

= P(−0.02 < X̄ − θ < 0.02)

= P

(
−
√
n

0.02√
θ(1− θ)

<
√
n

X̄ − θ√
θ(1− θ)

<
√
n

0.02√
θ(1− θ)

)

≈ P

(
−
√
n

0.02√
θ(1− θ)

< N(0, 1) <
√
n

0.02√
θ(1− θ)

)

Sabemos que, no caso de uma v.a. N(0, 1), o valor a tal que P(−a < N(0, 1) < a) = 0.99 é

igual a = 2.58 (pois, em R, o comando qnorm(0.01/2) retorna −2.575829). Assim, devemos

ter 0.02
√
n/
√
θ(1− θ) = 2.58. O valor de θ é desconhecido mas sabemos que ele está no

intervalo (0.15, 0.35). Como θ(1 − θ) é crescente com θ nesta região (cheque isto fazendo o

gráfico desta função parabólica no intervalo (0, 1)), tomamos o pior caso, em que θ = 0.35,

para calcular n. Queremos 0.02
√
n/
√

0.35(1− 0.35) = 2.58, o que implica em n = 3785.827.

Basta tomar então uma amostra de tamanho 3786 para garantir o resultado.

(b) No problema acima, usando uma amostra de tamanho n = 500, determine um intervalo da

forma I = (θ̂ − c, θ̂ + c) tal que a probabilidade P(θ̂ − c ≤ θ ≤ θ̂ + c) seja aproximadamente

igual ou maior que 0.95. Este tipo de intervalo é chamado de intervalo de confiança.

Solução: Um ponto fundamental é perceber que

θ̂ − c ≤ θ ≤ θ̂ + c⇐⇒ −c ≤ θ̂ − θ ≤ c⇐⇒ |θ̂ − θ| ≤ c

Assim, com θ̂ = (X1 + . . .+X500)/500, queremos encontrar c tal que

0.95 = P(−c ≤ θ̂ − θ ≤ c)

= P

(
−
√

500
c√

θ(1− θ)
≤
√

500
θ̂ − θ√
θ(1− θ)

≤
√

500
c√

θ(1− θ)

)

≈ P

(
−
√

500
c√

θ(1− θ)
≤ N(0, 1) ≤

√
500

c√
θ(1− θ)

)

Mas, no caso de uma N(0, 1), temos P(−1.96 ≤ N(0, 1) ≤ 1.96) = 0.95 (verifique digi-

tando qnorm(0.05/2)). Assim, devemos fazer c
√

500/
√
θ(1− θ) = 1.96. Como θ é desco-

nhecido (mas dentro do intervalo (0.15, 0.35)), pegamos o pior caso (θ = 0.35) para obter

c
√

500/
√

0.35× 0.65 = 1.96 o que implica em c = 0.0418.

(c) An article in the New England Journal of Medicine reported that among adults living in the

United States, the average level of albumin in cerebrospinal fluid is 29.5 mg/dl, with a standard

deviation of 9.25 mg/dl. We are going to select a sample of size 20 from this population.

• How does the variability of our sample mean compare with the variability of albumin

levels in the population?

• What is the probability that our sample mean will be greater than 33 mg/dl?

• What is the probability that our sample mean will lie between 29 and 31 mg/dl?

• What two values will contain the middle 50



(d) The unemployment rate θ is the proportion of people actively looking for jobs and not finding

them. Assume that it is known for sure that this rate is some number between 0.03 and 0.08

(or between 3% and 8%). Find the sample size need to estimate this rate θ in such a way that

the estimation error is below 0.005 with probability 0.95. That is, we want an estimate θ̂ such

that |θ̂ − θ| < 0.005 with probability 0.95.

(e) According to an article in the American Journal of Public Health, the distribution of birth

weights in a certain population is approximately normal with mean 3500 grams and standard

deviation 430 grams.

• What is the probability that a newborn’s weight will be less than 3200 grams?

• Suppose we take a sample of 9 newborns. What is the probability that their average

weight will be less than 3200 grams?

• In the aforementioned sample of 9 newborns, how many newborns would you expect to

weigh under 3200 grams?

• What is the probability that our sample of 9 newborns will contain exactly 3 newborns

who weigh less than 3200 grams?

• Suppose we take 5 samples of 9 newborns. What is the probability that at least one of

the sample averages will be less than 3200 grams?

• How large must our sample be in order to ensure a 95% probability that the sample mean

will be within 50 grams of the population mean?

(f) In a 2006 study published in The New England Journal of Medicine, 78 pairs of patients with

Parkinson’s disease were randomly assigned to receive treatment (which consisted of deep-

brain stimulation of a region of the brain affected by the disease) or control (which consisted

of taking a prescription drug). The pairs were composed by individuals similar with respect

to several risk factors such as sex, age, occupation, etc. This ensured that, within each pair,

we could considered the individuals more or less coming from the same population except by

the possible effect of the treatment.

The researchers found that in 50 of 78 pairs, the patients who received deep-brain stimulation

had improved more than their partner in the control group. We are interested in conducting

a hypothesis test of these findings.

For each pair, define the random variable

Xi =

{
1 if treatment improves more

0 if control improves more

The key rationale is: IF INDEED THE TREATMENT HAS NO EFFECT AT ALL, the

probability that the treatment individual is 1/2. Let us call this hypothesis or model the null

hypothesis, represented by H0.

• Conduct a z-test of the null hypothesis that deep-brain stimulation has no effect on the

disease by calculating the probability that you can observe something as large as 50 in 78

successes when indeed the “coin” has probability 1/2. That is, use the TCL to calculate

approximately

P ( X1 + . . . Xn ≥ 50 | H0 is true )

• Construct a 95% confidence level for the proportion of patients who would do better on

deep-brain stimulation than control (see the slides).

(g) An irregularly shaped object of unknown area A is located in the unit square 0 ≤ x ≤ 1 and

0 ≤ y ≤ 1. Consider a random point distributed uniformly over the square. Let Z = 1 if



the point lies inside the object and Z = 0 otherwise. Show that E[Z] = A. How could A be

estimated from a sequence of n independent points uniformly distributed on the square?

Hint 1: Imagine this is actually a coin tossing experiment with unknown probability of getting

Head, that is, the coin land on H if the point is inside the object and on T otherwise. How

will you estimate the probability of getting H?

Hint 2: Solution in http://bit.ly/1T2O6Rf

(h) Suppose that a basketball player can score on a particular shot with probability p = 0.3. Use

the central limit theorem to find the approximate distribution of S, the number of successes

out of 25 independent shots. Find the approximate probabilities that S is less than or equal

to 5, 7, 9, and 11 and compare these to the exact probabilities.

Hint 1 : Let X1, X2, . . . , X25 be the indicator random variables of the 25 shots, that is, Xi = 1

if the player scores on the i-th shot and Xi = 0, otherwise.

Hint 2: Solution in http://bit.ly/1T2O6Rf

(i) The amount of mineral water consumed by a person per day on the job is normally distributed

with mean 19 ounces and standard deviation 5 ounces. A company supplies its employees with

2000 ounces of mineral water daily. The company has 100 employees.

• Find the probability that the mineral water supplied by the company will not satisfy the

water demanded by its employees.

• Find the probability that in the next 4 days the company will not satisfy the water

demanded by its employees on at least 1 of these 4 days. Assume that the amount of

mineral water consumed by the employees of the company is independent from day to

day.

• Find the probability that during the next year (365 days) the company will not satisfy

the water demanded by its employees on more than 15 days.

(j) Supply responses true or false with an explanation to each of the following:

• The probability that the average of 20 values will be within 0.4 standard deviations of the

population mean exceeds the probability that the average of 40 values will be within 0.4

standard deviations of the population mean.

• P(X̄ ≥ 4) is larger than P(X ≥ 4) if X ∼ N(8, σ) and X̄ is the sample mean of n > 1

instances of X.

• If X̄ is the average of n values sampled from a normal distribution with mean µ and if c

is any positive number, then P(µ− c ≤ X̄ ≤ µ+ c) decreases as n gets large.

Os próximso exerćıcios são todos copiados diretamente do livro Introduction to Probability, de

Charles M. Grinstead e J. Laurie Snell.

(a) A researcher wants her sample mean to be twice as accurate; how much does she have to

increase her sample size by?

(b) An article in the New England Journal of Medicine reported that among adults living in the

United States, the average level of albumin in cerebrospinal fluid is 29.5 mg/dl, with a standard

deviation of 9.25 mg/dl. We are going to select a sample of size 20 from this population.

• How does the variability of our sample mean compare with the variability of albumin

levels in the population?

• What is the probability that our sample mean will be greater than 33 mg/dl?



• What is the probability that our sample mean will lie between 29 and 31 mg/dl?

• What two values will contain the middle 50

(c) The unemployment rate θ is the proportion of people actively looking for jobs and not finding

them. Assume that it is known for sure that this rate is some number between 0.03 and 0.08

(or between 3% and 8%). Find the sample size need to estimate this rate θ in such a way that

the estimation error is below 0.005 with probability 0.95. That is, we want an estimate θ̂ such

that |θ̂ − θ| < 0.005 with probability 0.95.

(d) According to an article in the American Journal of Public Health, the distribution of birth

weights in a certain population is approximately normal with mean 3500 grams and standard

deviation 430 grams.

• What is the probability that a newborn’s weight will be less than 3200 grams?

• Suppose we take a sample of 9 newborns. What is the probability that their average

weight will be less than 3200 grams?

• In the aforementioned sample of 9 newborns, how many newborns would you expect to

weigh under 3200 grams?

• What is the probability that our sample of 9 newborns will contain exactly 3 newborns

who weigh less than 3200 grams?

• Suppose we take 5 samples of 9 newborns. What is the probability that at least one of

the sample averages will be less than 3200 grams?

• How large must our sample be in order to ensure a 95% probability that the sample mean

will be within 50 grams of the population mean?

(e) In a 2006 study published in The New England Journal of Medicine, 78 pairs of patients with

Parkinson’s disease were randomly assigned to receive treatment (which consisted of deep-

brain stimulation of a region of the brain affected by the disease) or control (which consisted

of taking a prescription drug). The pairs were composed by individuals similar with respect

to several risk factors such as sex, age, occupation, etc. This ensured that, within each pair,

we could considered the individuals more or less coming from the same population except by

the possible effect of the treatment.

The researchers found that in 50 of 78 pairs, the patients who received deep-brain stimulation

had improved more than their partner in the control group. We are interested in conducting

a hypothesis test of these findings.

For each pair, define the random variable

Xi =

{
1 if treatment improves more

0 if control improves more

The key rationale is: IF INDEED THE TREATMENT HAS NO EFFECT AT ALL, the

probability that the treatment individual is 1/2. Let us call this hypothesis or model the null

hypothesis, represented by H0.

• Conduct a z-test of the null hypothesis that deep-brain stimulation has no effect on the

disease by calculating the probability that you can observe something as large as 50 in 78

successes when indeed the “coin” has probability 1/2. That is, use the TCL to calculate

approximately

P ( X1 + . . . Xn ≥ 50 | H0 is true )



• Construct a 95% confidence level for the proportion of patients who would do better on

deep-brain stimulation than control (see the slides).

(f) An irregularly shaped object of unknown area A is located in the unit square 0 ≤ x ≤ 1 and

0 ≤ y ≤ 1. Consider a random point distributed uniformly over the square. Let Z = 1 if

the point lies inside the object and Z = 0 otherwise. Show that E[Z] = A. How could A be

estimated from a sequence of n independent points uniformly distributed on the square?

Hint 1: Imagine this is actually a coin tossing experiment with unknown probability of getting

Head, that is, the coin land on H if the point is inside the object and on T otherwise. How

will you estimate the probability of getting H?

Hint 2: Solution in http://bit.ly/1T2O6Rf

(g) Suppose that a basketball player can score on a particular shot with probability p = 0.3. Use

the central limit theorem to find the approximate distribution of S, the number of successes

out of 25 independent shots. Find the approximate probabilities that S is less than or equal

to 5, 7, 9, and 11 and compare these to the exact probabilities.

Hint 1 : Let X1, X2, . . . , X25 be the indicator random variables of the 25 shots, that is, Xi = 1

if the player scores on the i-th shot and Xi = 0, otherwise.

Hint 2: Solution in http://bit.ly/1T2O6Rf

(h) The amount of mineral water consumed by a person per day on the job is normally distributed

with mean 19 ounces and standard deviation 5 ounces. A company supplies its employees with

2000 ounces of mineral water daily. The company has 100 employees.

• Find the probability that the mineral water supplied by the company will not satisfy the

water demanded by its employees.

• Find the probability that in the next 4 days the company will not satisfy the water

demanded by its employees on at least 1 of these 4 days. Assume that the amount of

mineral water consumed by the employees of the company is independent from day to

day.

• Find the probability that during the next year (365 days) the company will not satisfy

the water demanded by its employees on more than 15 days.

(i) Supply responses true or false with an explanation to each of the following:

• The probability that the average of 20 values will be within 0.4 standard deviations of the

population mean exceeds the probability that the average of 40 values will be within 0.4

standard deviations of the population mean.

• P(X̄ ≥ 4) is larger than P(X ≥ 4) if X ∼ N(8, σ) and X̄ is the sample mean of n > 1

instances of X.

• If X̄ is the average of n values sampled from a normal distribution with mean µ and if c

is any positive number, then P(µ− c ≤ X̄ ≤ µ+ c) decreases as n gets large.

(j) A fair coin is tossed 100 times. The expected number of heads is 50, and the standard deviation

for the number of heads is (100 · 1/2 · 1/2)1/2 = 5. What does Chebyshev’s Inequality tell

you about the probability that the number of heads that turn up deviates from the expected

number 50 by three or more standard deviations (i.e., by at least 15)?



(k) Write a program that uses the function binomial(n, p, x) to compute the exact probability that

you estimated in Exercise ??. Compare the two results.

(l) Write a program to toss a coin 10,000 times. Let Sn be the number of heads in the first n

tosses. Have your program print out, after every 1000 tosses, Sn − n/2. On the basis of this

simulation, is it correct to say that you can expect heads about half of the time when you toss

a coin a large number of times?

(m) A 1-dollar bet on craps has an expected winning of −.0141. What does the Law of Large

Numbers say about your winnings if you make a large number of 1-dollar bets at the craps

table? Does it assure you that your losses will be small? Does it assure you that if n is very

large you will lose?

(n) Let X be a random variable with E(X) = 0 and V (X) = 1. What integer value k will assure

us that P (|X| ≥ k) ≤ .01?

(o) Let Sn be the number of successes in n Bernoulli trials with probability p for success on each

trial. Show, using Chebyshev’s Inequality, that for any ε > 0

P

(∣∣∣∣Snn − p
∣∣∣∣ ≥ ε) ≤ p(1− p)

nε2
.

(p) Find the maximum possible value for p(1− p) if 0 < p < 1. Using this result and Exercise ??,

show that the estimate

P

(∣∣∣∣Snn − p
∣∣∣∣ ≥ ε) ≤ 1

4nε2

is valid for any p.

(q) A fair coin is tossed a large number of times. Does the Law of Large Numbers assure us that,

if n is large enough, with probability > .99 the number of heads that turn up will not deviate

from n/2 by more than 100?

(r) In Exercise ??.??, you showed that, for the hat check problem, the number Sn of people who

get their own hats back has E(Sn) = V (Sn) = 1. Using Chebyshev’s Inequality, show that

P (Sn ≥ 11) ≤ .01 for any n ≥ 11.

(s) Let X by any random variable which takes on values 0, 1, 2, . . . , n and has E(X) = V (X) = 1.

Show that, for any positive integer k,

P (X ≥ k + 1) ≤ 1

k2
.

(t) We have two coins: one is a fair coin and the other is a coin that produces heads with

probability 3/4. One of the two coins is picked at random, and this coin is tossed n times. Let

Sn be the number of heads that turns up in these n tosses. Does the Law of Large Numbers

allow us to predict the proportion of heads that will turn up in the long run? After we have

observed a large number of tosses, can we tell which coin was chosen? How many tosses suffice

to make us 95 percent sure?



(u) (Chebyshev1) Assume that X1, X2, . . . , Xn are independent random variables with possibly

different distributions and let Sn be their sum. Let mk = E(Xk), σ
2
k = V (Xk), and Mn =

m1 +m2 + · · ·+mn. Assume that σ2
k < R for all k. Prove that, for any ε > 0,

P

(∣∣∣∣Snn − Mn

n

∣∣∣∣ < ε

)
→ 1

as n→∞.

(v) A fair coin is tossed repeatedly. Before each toss, you are allowed to decide whether to bet on

the outcome. Can you describe a betting system with infinitely many bets which will enable

you, in the long run, to win more than half of your bets? (Note that we are disallowing a

betting system that says to bet until you are ahead, then quit.) Write a computer program

that implements this betting system. As stated above, your program must decide whether to

bet on a particular outcome before that outcome is determined. For example, you might select

only outcomes that come after there have been three tails in a row. See if you can get more

than 50% heads by your “system.”

(w) Prove the following analogue of Chebyshev’s Inequality:

P (|X − E(X)| ≥ ε) ≤ 1

ε
E(|X − E(X)|) .

(x) We have proved a theorem often called the “Weak Law of Large Numbers.”Most people’s

intuition and our computer simulations suggest that, if we toss a coin a sequence of times, the

proportion of heads will really approach 1/2; that is, if Sn is the number of heads in n times,

then we will have

An =
Sn
n
→ 1

2

as n → ∞. Of course, we cannot be sure of this since we are not able to toss the coin an

infinite number of times, and, if we could, the coin could come up heads every time. However,

the “Strong Law of Large Numbers,” proved in more advanced courses, states that

P

(
Sn
n
→ 1

2

)
= 1 .

Describe a sample space Ω that would make it possible for us to talk about the event

E =

{
ω :

Sn
n
→ 1

2

}
.

Could we assign the equiprobable measure to this space?

(y) In this exercise, we shall construct an example of a sequence of random variables that satisfies

the weak law of large numbers, but not the strong law. The distribution of Xi will have to

depend on i, because otherwise both laws would be satisfied. (This problem was communicated

to us by David Maslen.)

Suppose we have an infinite sequence of mutually independent events A1, A2, . . .. Let ai =

P (Ai), and let r be a positive integer.

1P. L. Chebyshev, “On Mean Values,” J. Math. Pure. Appl., vol. 12 (1867), pp. 177–184.



i. Find an expression of the probability that none of the Ai with i > r occur.

ii. Use the fact that x− 1 ≤ e−x to show that

P (No Ai with i > r occurs) ≤ e−
∑∞
i=r ai

iii. (The first Borel-Cantelli lemma) Prove that if
∑∞

i=1 ai diverges, then

P (infinitely many Ai occur) = 1.

Now, let Xi be a sequence of mutually independent random variables such that for each

positive integer i ≥ 2,

P (Xi = i) =
1

2i log i
, P (Xi = −i) =

1

2i log i
, P (Xi = 0) = 1− 1

i log i
.

When i = 1 we let Xi = 0 with probability 1. As usual we let Sn = X1 + · · ·+Xn. Note

that the mean of each Xi is 0.

iv. Find the variance of Sn.

v. Show that the sequence 〈Xi〉 satisfies the Weak Law of Large Numbers, i.e. prove that

for any ε > 0

P

(∣∣∣∣Snn
∣∣∣∣ ≥ ε)→ 0 ,

as n tends to infinity.

We now show that {Xi} does not satisfy the Strong Law of Large Numbers. Suppose that

Sn/n→ 0. Then because
Xn

n
=
Sn
n
− n− 1

n

Sn−1

n− 1
,

we know that Xn/n → 0. From the definition of limits, we conclude that the inequality

|Xi| ≥ 1
2 i can only be true for finitely many i.

vi. Let Ai be the event |Xi| ≥ 1
2 i. Find P (Ai). Show that

∑∞
i=1 P (Ai) diverges (use the

Integral Test).

vii. Prove that Ai occurs for infinitely many i.

viii. Prove that

P

(
Sn
n
→ 0

)
= 0,

and hence that the Strong Law of Large Numbers fails for the sequence {Xi}.

(z) Let us toss a biased coin that comes up heads with probability p and assume the validity of

the Strong Law of Large Numbers as described in Exercise ??. Then, with probability 1,

Sn
n
→ p

as n→∞. If f(x) is a continuous function on the unit interval, then we also have

f

(
Sn
n

)
→ f(p) .

Finally, we could hope that

E

(
f

(
Sn
n

))
→ E(f(p)) = f(p) .

Show that, if all this is correct, as in fact it is, we would have proven that any continuous

function on the unit interval is a limit of polynomial functions. This is a sketch of a probabilistic

proof of an important theorem in mathematics called the Weierstrass approximation theorem.



() Let X be a continuous random variable with mean µ = 10 and variance σ2 = 100/3. Using

Chebyshev’s Inequality, find an upper bound for the following probabilities.

i. P (|X − 10| ≥ 2).

ii. P (|X − 10| ≥ 5).

iii. P (|X − 10| ≥ 9).

iv. P (|X − 10| ≥ 20).

() Let X be a continuous random variable with values unformly distributed over the interval

[0, 20].

i. Find the mean and variance of X.

ii. Calculate P (|X−10| ≥ 2), P (|X−10| ≥ 5), P (|X−10| ≥ 9), and P (|X−10| ≥ 20) exactly.

How do your answers compare with those of Exercise ??? How good is Chebyshev’s

Inequality in this case?

() Let X be the random variable of Exercise ??.

i. Calculate the function f(x) = P (|X − 10| ≥ x).

ii. Now graph the function f(x), and on the same axes, graph the Chebyshev function g(x) =

100/(3x2). Show that f(x) ≤ g(x) for all x > 0, but that g(x) is not a very good

approximation for f(x).

() Let X be a continuous random variable with values exponentially distributed over [0,∞) with

parameter λ = 0.1.

i. Find the mean and variance of X.

ii. Using Chebyshev’s Inequality, find an upper bound for the following probabilities: P (|X−
10| ≥ 2), P (|X − 10| ≥ 5), P (|X − 10| ≥ 9), and P (|X − 10| ≥ 20).

iii. Calculate these probabilities exactly, and compare with the bounds in (b).

() Let X be a continuous random variable with values normally distributed over (−∞,+∞) with

mean µ = 0 and variance σ2 = 1.

i. Using Chebyshev’s Inequality, find upper bounds for the following probabilities: P (|X| ≥
1), P (|X| ≥ 2), and P (|X| ≥ 3).

ii. The area under the normal curve between −1 and 1 is .6827, between −2 and 2 is .9545,

and between −3 and 3 it is .9973 (see the table in Appendix A). Compare your bounds

in (a) with these exact values. How good is Chebyshev’s Inequality in this case?

() If X is normally distributed, with mean µ and variance σ2, find an upper bound for the

following probabilities, using Chebyshev’s Inequality.

i. P (|X − µ| ≥ σ).

ii. P (|X − µ| ≥ 2σ).

iii. P (|X − µ| ≥ 3σ).

iv. P (|X − µ| ≥ 4σ).

Now find the exact value using the program NormalArea or the normal table in Appendix A,

and compare.



() If X is a random variable with mean µ 6= 0 and variance σ2, define the relative deviation D of

X from its mean by

D =

∣∣∣∣X − µµ

∣∣∣∣ .
i. Show that P (D ≥ a) ≤ σ2/(µ2a2).

ii. If X is the random variable of Exercise ??, find an upper bound for P (D ≥ .2), P (D ≥ .5),

P (D ≥ .9), and P (D ≥ 2).

() Let X be a continuous random variable and define the standardized version X∗ of X by:

X∗ =
X − µ
σ

.

i. Show that P (|X∗| ≥ a) ≤ 1/a2.

ii. If X is the random variable of Exercise ??, find bounds for P (|X∗| ≥ 2), P (|X∗| ≥ 5),

and P (|X∗| ≥ 9).

() i. Suppose a number X is chosen at random from [0, 20] with uniform probability. Find a

lower bound for the probability thatX lies between 8 and 12, using Chebyshev’s Inequality.

ii. Now suppose 20 real numbers are chosen independently from [0, 20] with uniform proba-

bility. Find a lower bound for the probability that their average lies between 8 and 12.

iii. Now suppose 100 real numbers are chosen independently from [0, 20]. Find a lower bound

for the probability that their average lies between 8 and 12.

() A student’s score on a particular calculus final is a random variable with values of [0, 100],

mean 70, and variance 25.

i. Find a lower bound for the probability that the student’s score will fall between 65 and 75.

ii. If 100 students take the final, find a lower bound for the probability that the class average

will fall between 65 and 75.

() The Pilsdorff beer company runs a fleet of trucks along the 100 mile road from Hangtown to

Dry Gulch, and maintains a garage halfway in between. Each of the trucks is apt to break

down at a point X miles from Hangtown, where X is a random variable uniformly distributed

over [0, 100].

i. Find a lower bound for the probability P (|X − 50| ≤ 10).

ii. Suppose that in one bad week, 20 trucks break down. Find a lower bound for the proba-

bility P (|A20− 50| ≤ 10), where A20 is the average of the distances from Hangtown at the

time of breakdown.

() A share of common stock in the Pilsdorff beer company has a price Yn on the nth business

day of the year. Finn observes that the price change Xn = Yn+1− Yn appears to be a random

variable with mean µ = 0 and variance σ2 = 1/4. If Y1 = 30, find a lower bound for the

following probabilities, under the assumption that the Xn’s are mutually independent.

i. P (25 ≤ Y2 ≤ 35).

ii. P (25 ≤ Y11 ≤ 35).

iii. P (25 ≤ Y101 ≤ 35).



() Suppose one hundred numbers X1, X2, . . . , X100 are chosen independently at random from

[0, 20]. Let S = X1 + X2 + · · · + X100 be the sum, A = S/100 the average, and S∗ =

(S − 1000)/(10/
√

3) the standardized sum. Find lower bounds for the probabilities

i. P (|S − 1000| ≤ 100).

ii. P (|A− 10| ≤ 1).

iii. P (|S∗| ≤
√

3).

() Let X be a continuous random variable normally distributed on (−∞,+∞) with mean 0 and

variance 1. Using the normal table provided in Appendix A, or the program NormalArea,

find values for the function f(x) = P (|X| ≥ x) as x increases from 0 to 4.0 in steps of .25.

Note that for x ≥ 0 the table gives NA(0, x) = P (0 ≤ X ≤ x) and thus P (|X| ≥ x) =

2(.5 − NA(0, x). Plot by hand the graph of f(x) using these values, and the graph of the

Chebyshev function g(x) = 1/x2, and compare (see Exercise ??).

() Repeat Exercise ??, but this time with mean 10 and variance 3. Note that the table in

Appendix A presents values for a standard normal variable. Find the standardized version X∗

for X, find values for f∗(x) = P (|X∗| ≥ x) as in Exercise ??, and then rescale these values

for f(x) = P (|X − 10| ≥ x). Graph and compare this function with the Chebyshev function

g(x) = 3/x2.

() Let Z = X/Y where X and Y have normal densities with mean 0 and standard deviation 1.

Then it can be shown that Z has a Cauchy density.

i. Write a program to illustrate this result by plotting a bar graph of 1000 samples obtained

by forming the ratio of two standard normal outcomes. Compare your bar graph with

the graph of the Cauchy density. Depending upon which computer language you use, you

may or may not need to tell the computer how to simulate a normal random variable. A

method for doing this was described in Section ??.

ii. We have seen that the Law of Large Numbers does not apply to the Cauchy density (see

Example ??). Simulate a large number of experiments with Cauchy density and compute

the average of your results. Do these averages seem to be approaching a limit? If so can

you explain why this might be?

() Show that, if X ≥ 0, then P (X ≥ a) ≤ E(X)/a.

() (Lamperti2) Let X be a non-negative random variable. What is the best upper bound you

can give for P (X ≥ a) if you know

i. E(X) = 20.

ii. E(X) = 20 and V (X) = 25.

iii. E(X) = 20, V (X) = 25, and X is symmetric about its mean.

() If the cdfs of X and Y are identical, two random variables are identically distributed. This

does not imply X = Y which is nonsense. To denote the equality of distribution, we will use

notation X∼Y .

2Private communication.



() If Sn = X1 +X2 + · · ·Xn, where Xi are identically distributed random variables coming from

independent events with EXi = µ and VXi = σ2. X1, X2, · · · , Xn are usually called i.i.d.

random variables. Let

Zn =
Sn − ESn√

VSn
=
Sn − nµ√

nσ
.

Then for large n,

P (Zn ≤ x) ≈ Φ(x),

where Φ is the cdf for a standard normal distribution. Note

P (a ≤ Zn ≤ b) ≈ Φ(b)− Φ(a).

() Problem. Let X be the number of heads in 40 tossed coins. Find the probability X = 20.

Solution. Note X = X1 +X2 + · · ·X40 with Xi ∼ Bernoulli(0.5). Note EX = 40 · 0.5,VX =

40 · 0.52. Let S = X−20√
10

.

P (X = 20) = P (19.5 ≤ X ≤ 20.5) = Φ(
0.5√

10
)−Φ(− 0.5√

10
) = 2Φ(

0.5√
10

)−1 = 2 · · · 0.5636−1 = 0.1272.

The exact result is P (X = 20) =
(

40
20

)
0.540 = 0.1254.

() Problem. A fair coin is thrown 1000 times. Find the approximate probability that the total

number of heads among 1000 tosses will lie between 400 and 600 using the Central Limit

Theorem.

Solution. Let Xi ∼ Bernoulli(1
2). With notation X̄ = X1+X2···+Xn

n , P (400 ≤
∑1000

i=1 Xi ≤
600) = P (−0.1 ≤ X̄ − 0.5 ≤ 0.1) = P

(
−0.1

1/20
√

10
≤ X̄−0.5

1/20
√

10
≤ 0.1

1/20
√

10

)
= 2Φ( 2√

10
)− 1 = 0.47.

() Problem. The expected service time for a customer coming through a checkout counter in

a retail store is 2 minutes while its variance is 1. (a) Approximate the probability that 100

customers can be served in less than 3 hours of total service time. (b) Find the number of

customers that can be served in less than 3 hours with probability 0.9.

Solution. (a) Let Xi be the service time for the i-th customers. S = X1 + · · · + X100.

ES = 200,VS = 100. Let Z = S−200
10 . Then

P (S ≤ 180) = Φ(
180− 200

10
) = 1− Φ(2) = 0.0228

. (b) For Sn = X1 + · · · + Xn, ES = 2n,VS = n. Let Z = Sn−2n√
n

. Then we need P (Z ≤
180−2n√

n
) = 0.9. From the table Φ(1.28) = 0.9. So we need to solve 180− 2n = 1.28

√
n.

() A first simple assumption is that the daily change of a company’s stock on the stock market

is a random variable with mean 0 and variance σ2. That is, if Sn represents the price of the

stock on day n with S0 given, then

Sn = Sn−1 +Xn, n ≥ 1

where X1, X2, . . . are independent, identically distributed continuous random variables with

mean 0 and variance σ2. (Note that this is an additive assumption about the change in a stock

price. In the binomial tree models, we assumed that a stock’s price changes by a multiplicative

factor up or down. We will have more to say about these two distinct models later.) Suppose

that a stock’s price today is 100. If σ2 = 1, what can you say about the probability that after

10 days, the stock’s price will be between 95 and 105 on the tenth day?

() Let X1, X2, . . . , X10 be independent Poisson random variables with mean 1. First use the

Markov Inequality to get a bound on P[X1 + · · · + X10 > 15]. Next use the Central Limit

theorem to get a bound on P[X1 + · · ·+X10 > 15].



() Find the moment generating function φX(t) = E[exp(tX)] of the random variable X which

takes values 1 with probability 1/2 and −1 with probability 1/2. Show directly (that is,

without using Taylor polynomial approximations) that φX(t/
√
n)n → exp(t2/2). (Hint: Use

L’Hopital’s Theorem to evaluate the limit, after taking logarithms of both sides.)



Caṕıtulo 12

Regressão Linear

Vamos trabalhar com o modelo de regressão linear supondo p − 1 atributos e n observações. A

matriz de desenho X tem dimensão n× p e a sua primeira coluna é composta pelo vetor n-dim de

1’s representado por 1 = (1, . . . , 1)′. Vamos representar a matriz de desenho X ora por meio de

suas colunas, ora por meio de suas linhas.

Y = Xβ + ε

=
(
1,x(1), . . . ,x(p−1)

)
β + ε

=


x′1
x′2
...

x′n

β + ε

A j-ésima coluna x(j) de dimensão n × 1 representa o conjunto de todos os valores do atributo j

medidos na amostra. A i-ésima linha x′i, de dimensão p×1 representa a observação ou instância da

amostra. Note que xi é um vetor coluna. A i-ésima linha da matriz de desenho X é escrita como

x′i.

Seja H = X (X′X)−1 X′ a matriz de projeção ortogonal no espaço C(X) das combinações lineares

das colunas de X. O vetor resposta Y pode ser decomposto em

Y = HY + (I−H)Y = Ŷ + r

onde Ŷ é o vetor de valores preditos (ou ajustados) pelo modelo para a variável resposta e r é o

vetor de reśıduos.

(a) O arquivo aptos.txt possui dados de apartamentos vendidos no bairro Sion em BH em 2011

obtidos com um coletor em páginas web de uma imobiliária. A primeira coluna é um identi-

ficador do anúncio. Use o script R abaixo para fazer uma regressão linear simples de preço

versus area. As seguir, faça uma regressão múltipla de preço versus todas as covariáveis.
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Use as expressões matriciais derivadas em sala de aula.

Solução:

setwd("u:/regression") # set the working directory

# Lendo os dados como um dataframe

aptos = read.table("aptosBH.txt", header = T)

attach(aptos) # attach o dataframe

aptos[1:5,] # visualizando as 5 1as linhas

par(mfrow=c(2,2)) # tela grafica dividia em 2 x 2

plot(area, preco) # scatter plot de (area_i, preco_i)

plot(quartos, preco)

plot(suites, preco)

plot(vagas, preco)

# Para fazer uma regressao em R, use o comando lm (linear model)

# Mas vamos antes obter a regressao fazendo as operacoes matriciais

# que vimos em sala

# Ajustando um modelo de regressao linear SIMPLES apenas com area

x = as.matrix(cbind(1, aptos[,2])) # matriz de desenho n x 2

b.simples = (solve(t(x) %*% x)) %*% (t(x) %*% preco)

b.simples

# Ajustando um modelo de regressao linear MULTIPLA com 4 covariaveis

x = as.matrix(cbind(1, aptos[,2:5])) # matriz de desenho n x 2

b.all = (solve(t(x) %*% x)) %*% (t(x) %*% preco)

b.all

Veja a mudança do valor do coeficiente de área nas duas regressões: o efeito de área em

preço depende de quais outras covariáveis estão no modelo. A razao e’ que as covariaveis são

correlacionadas entre si: aptos grandes tendem a ter mais quartos, por exemplo. Parte do

efeito de área medido no coeficiente da a regressão simples está capturando também o efeito

do números de quartos. Quando quartos entra na regressão, o efeito puro de área diminui.

(b) Regressão no R é feita usando-se o comando lm que implementa uma série de algoritmos

numéricos eficientes para lidar com matrizes, incluindo a decomposição QR, a principal técnica

para obter o vetor estimado de coeficientes. A sintaxe básica é a seguinte: lm(y ∼ x1 + x2 +

x3, data=aptos) onde y é a variável que queremos modelar (a variável resposta ou variável

dependente) e x1, x2 etc. são as covariáveis do modelo. O argumento data fornece o nome

do data.frame ou matriz que contém TODOS os dados (y e x).

setwd("u:/ESTATICS") # set the working directory

# Lendo os dados como um dataframe

aptos = read.table("aptosBH.txt", header = T)

lm(preco ~ area+quartos+suites+vagas, data=aptos)$coef

lm(preco ~ area, data=aptos)$coef

A sáıda de lm é uma lista (um objeto tipo list) que pertence à classe lm. A lista possui muitas

informações para a análise dos dados e sobre as quais vamos aprender ao longo da disciplina.

Podemos extrair informação da lista de diversas formas. Por exemplo:



aptos = read.table("aptosBH.txt", header = T)

reg.all = lm(preco ~ area+quartos+suites+vagas, data=aptos) # guardo a lista

class(reg.all) # classe do objeto reg.all

names(reg.all) # nomes dos elementos da lista. Eles sao vetores, matrizes, strings, etc.

reg.all$coef # extraindo o elemento da lista de nome coefficients

summary(reg.all) # saida padronizada de regressao quando o objeto e’ da classe lm

reg.all$fitted # vetor dos precos preditos pelo modelo de regressao linear

reg.all$res # vetor dos residuos = Y - Yhat = preco obervado - preco predito

(c) Vamos começar simulando um modelo de regressão linear com UM atributo apenas e estimando

o vetor de coeficientes β = (β0, β1)′. A seguir, vamos verificar que o comportamento estat́ıstico

do estimador β̂ está de acordo com o comportamento estocástico deduzido teoricamente. Como

este primeiro exerćıcio envolve apenas um atributo, será simples visualizar os vários resultados.

Vamos fixar um modelo de regressão em que CONHECEMOS o vetor de coeficientes

β = (β0, β1)′ = (1, 1.5)′ .

Vamos usar n = 25 observações com um único atributo, x1. A matriz X é de dimensão

n× p = 25× 2. A linha i da matriz X é igual a x′i = (1, xi1). O modelo será:

Yi = x′iβ + εi = β0 + β1xi1 + εi = 1 + 1.5xi1 + εi

Os erros εi serão i.i.d. N(0, σ2 = 25).

Rode o script abaixo no R:

set.seed(0) # fixando a semente do gerador aleatorio

x1 = 1:24 # coluna com 1o atributo

x1 # visualizando x1

beta = c(4, 1.5) # vetor beta

X = cbind(1, x1) # matriz de desenho X

mu = X %*% beta # vetor com E(Y)= X*beta

sigma = 5

epsilon = rnorm(24, 0, sigma) # vetor epsilon de "erros"

y = mu + epsilon # resposta y = X*beta + erros N(0,1)

plot(x1,y) # scatterplot dos dados

abline(4,1.5, col="blue") # reta "verdadeira" beta_0 + beta_1 * x

plot(x1,y, xlim=c(0, max(x1)), ylim=c(0, max(y))) # redesenhando para ver o intercepto beta_0

abline(4,1.5, col="blue") # reta "verdadeira" beta_0 + beta_1 * x

cor(y, x1) # correlacao entre y e x1

sim1 = lm(y ~ x1 ) # sim1 e’ objeto da classe lm com resultados do ajuste

is.list(sim1) # sim1 e’ uma lista

names(sim1) # nomes dos objetos que compoem a lista sim1

summary( sim1 ) # funcao summary em sim1: info sobre ajuste

plot(x1,y, xlim=c(0, max(x1)), ylim=c(0, max(y))) # redesenhando para ver o intercepto beta_0

abline(4,1.5, col="blue") # reta "verdadeira" beta_0 + beta_1 * x

abline(sim1$coef, col="red") # reta ajustada beta_0HAT + beta_1HAT * x usando as 24 obs.



O último gráfico mostra uma diferença FUNDAMENTAL entre β̂
′

= (5.7981, 1.3737) e β′ =

(4, 1.5): eles não são iguais. β̂
′
é um vetor que está usando os 24 dados para ESTIMAR o valor

verdadeiro de β′. Na prática, não saberemos o valor de β′ e é por isto que estamos usando os

dados da amostra para inferir sobre seu valor. Olhando a sáıda de summary, veja que

β̂
′
= (5.7981, 1.3737) 6= (4, 1.5) = β′ .

O erro de estimação NESTA AMOSTRA PARTICULAR é igual a

β̂
′ − β′ = (5.7981, 1.3737)− (4, 1.5) = (1.7981− 0.1263)

Vamos gerar uma segunda amostra de 24 valores y com os mesmos x. Apenas os “erros”

epsiloni vão variar. Vamos estimar β novamente com esta segunda amostra.

set.seed(1)

epsilon2 = rnorm(24, 0, sigma) # NOVO vetor epsilon de "erros"

y2 = mu + epsilon2 # NOVA resposta y = X*beta + NOVOS erros N(0,1)

sim2 = lm(y2 ~ x1 ) # sim2 e’ o ajuste dos NOVOS dados.

summary(sim2)

Note que a reta estimada com esta segunda amostra é 4.7559 + 1.4995x, diferente da reta

original e também diferente da reta estimada com a primeira amostra. Vamos visualizar estas

diferentes retas e amostras.

plot(x1,y2) # scatterplot dos NOVOS dados

abline(4, 1.5, col="blue") # reta "verdadeira" beta_0 + beta_1 * x

abline(sim2$coef, col="red") # NOVA reta ajustada

# plotando os dois conjuntos de pontos

par(mfrow=c(1,2))

plot(x1,y2, main="Dados novos") # scatterplot dos NOVOS dados

abline(4, 1.5, col="blue") # reta "verdadeira" beta_0 + beta_1 * x

abline(sim2$coef, col="red") # NOVA reta ajustada

plot(x1,y,main="Dados antigos") # scatterplot dos dados ANTIGOS

abline(4, 1.5, col="blue") # reta "verdadeira" E’ A MESMA

abline(sim1$coef, col="red") # reta ajustada com os dados ANTIGOS

# os dois conjuntos de dados num unico plot

par(mfrow=c(1,1))

plot(x1,y2, col="black") # scatterplot dos NOVOS dados

points(x1, y, col="red") # dados antigos

abline(4, 1.5, col="blue") # reta "verdadeira" beta_0 + beta_1 * x

abline(sim2$coef, col="black") # NOVA reta ajustada

abline(sim1$coef, col="red") # reta ajustada com os dados ANTIGOS

Agora temos TRÊS retas disintas: a reta verdadeira que queremos estimar beta0 + β1x =

4 + 1.5x, a reta estimada com a primeira amostra de 24 dados β̂0
(1)

+ β̂1
(1)
x = 5.798 + 1.374x

e a reta estimada com a segunda amostra de 24 dados β̂0
(2)

+ β̂1
(2)
x = 4.756 + 1.500x. O erro

de estima ção com esta segunda amostra foi igual a

β̂
′ − β′ = (4.7559, 1.4995)− (4, 1.5) = (0.7559,−0.0005)



diferente do erro de estimação com a primeira amostra, que foi igual a (1.7981− 0.1263).

Como o vetor estimado β̂ = (X′X)−1X′Y é uma função dos dados aleatórios Y, ele próprio

é um vetor aleatório. Para cada amostra, gerada sob o mesmo modelo probabiĺıstico, temos

diferentes valores para β̂. O erro de estimação β̂
′−β′ = β̂

′−(4, 1.5) também é uma quantidade

aleatória. Algumas vezes, este vetor será pequeno, algumas vezes será grande. Queremos saber

o que seria um erro grande na estimação do vetor β e com que frequência ele vai ocorrer. Em

suma, queremos conhecer a distribuição de probabilidade do VETOR erro de estimação

β̂
′ − β′ = (β̂0 − 4, β̂1 − 1.5)

Veja que a única parte aleatório nesta expressão é o estimador β̂ de mı́imos quandrados já

que β é um vetor fixo. Para estudar o comportamento probabiĺıstico do estimador β̂ (ou do

erro de estimação), podemos usar simulação Monte Carlo. Vamos gerar centenas de vetores

Y, sempre nas mesmas condições, e verificar como o estimador β̂ e o erro de estimação

β̂
′ − β′ = (β̂0 − β̂1)− (4, 1.5)

se comportam estat́ısticamente.

Queremos calcular o R2 em cada simulação. Uma maneira simples de extrair seu valor a

partir do objeto retornado pelo comando lm é acessá-lo a partir do objeto summary. Di-

gite str(summary(sim1)) para ver o que pode ser extráıdo. No caso do R2 basta usar

summary(sim1)$r.squared. Outra estat́ıstica que vamos precisar é uma estimativa de σ,

explicada mais abaixo e obtida com summary(sim1)$sigma. Com isto, vamos às simulações:

set.seed(1)

nsim = 1000 # numero de simulacoes

betasim = matrix(0, ncol=nsim, nrow=2) # matriz para guardar as nsim estimativas de beta

R2 = rep(0, nsim)

S2 = rep(0, nsim)

for(j in 1:nsim){

y = mu + rnorm(24, 0, sigma) # gera novo vetor y

simj = lm(y ~ x1)

betasim[, j] = simj$coef # estima beta e salva

R2[j] = summary(simj)$r.squared

S[j] = summary(simj)$sigma

}

# visualizando os resultados

par(mfrow=c(2,2)) # particiona a janela grafica em 2 x 2

hist(betasim[1,], prob=T, main="beta0") # histograma dos 1000 interceptos estimados beta_0_hat

abline(v=beta[1], lwd=2, col="blue") # verdadeiro beta_0

hist(betasim[2,], prob=T, main="beta1") # histograma dos 1000 interceptos estimados beta_1_hat

abline(v=beta[2], lwd=2, col="blue") # verdadeiro beta_1

plot(t(betasim), xlab="beta0", ylab="beta1") # correlacao entre beta_0_hat e beta_1_hat

abline(v=beta[1], h=beta[2]) # valores verdadeiros beta_0 e beta_1

hist(R2, main="R2")

Alguns comentários muito importantes: observe que o valor verdadeiro dos parâmetros nunca

mudou ao longo das simulações. Sempre tivemos β0 = 4 e β1 = 1.5. Os 24 valores do



atributo x1 também não mudaram. Apenas Y variou e isto ocorreu por causa dos erros εi que

não possuem nenhuma conexão com X1 ou com o β0 e β1. A análise que você vai fazer na

prática é uma dessas 1000 simulaç ões. Todas elas foram geradas da mesma forma e poderiam

legitimamente ser qualquer uma delas, a única instância espećıfica de dados que você terá em

mãos na prática de análise de dados. Você então observar nos gráficos o que poderia acontecer

com sua análise. Até onde você pode errar? E com que frequência erros grandes podem

ocorrer?

Veja o histograma dos 1000 valores estimados da inclinação, β
(1)
1 , . . . , β

(1000)
1 . O valor verad-

deiro usado para gerar os dados foi β1 = 1.5. Os valores estimados estão centrados aproxi-

madamente em torno do valor verdadeiro β1 = 1.5. Além disso, eles variaram entre 1.0 e

2.0 causando então um erro máximo de aproximadamente 0.5. Os valores acima de 1.8 ou

abaixo 1.2 (e portanto, com um erro de estimação maior que 0.3) aconteceram com baixa

frequência. De fato, a proporção de vezes em que isto ocorreu nas 1000 simulações foi igual a

sum( abs(betasim[2,] - beta[2]) > 0.3 )/nsim, que resultou em 0.034, ou apenas 3.4%.

Assim, podemos concluir que ao estimar β1 = 1.5 com o estimador de mı́nimos quadrados

neste problema podemos ter uma boa confiança de que erraremos o seu valor verdadeiro por

máximo 0.3 (isto vai ocorrer aproximadamente 98.6% das vezes). Além disso, os valores es-

timados estarão oscilando em torno do valor verdadeiro, ora um pouco mais, ora um pouco

menos que β1.

Chegamos a uma conclusão semelhante olhando para o histograma de β̂0, que parece estar

centrado em torno do valor verdadeiro β0 = 4 e com um erro que, na maioria das vezes,

não ultrapassa 4 (tivemos sum( abs(betasim[1,] - beta[1]) > 4 )/nsim igual a 0.052 ou

5.2%).

Outro aspecto claro nos histogramas é que as distribuições de probabilidade de β̂0 e β̂1 se

parecem com distribuições normais. De fato, vamos repetir os últimos gráficos ajustando uma

densidade normal a cada um dos histogramas usando a média aritmética e o desvio-padrão

amostra das 1000 simulações de cada um dos estimadores. Temos mean(betasim[1,]) igual

a 3.97 e sd(betasim[1,]) igual a 2.08, enquanto para ˆbeta1 temos mean(betasim[2,]) igual

a 1.50 e sd(betasim[2,]) igual a 0.15. Usando estes valores com o comando curve:

# visualizando os resultados

par(mfrow=c(2,2)) # particiona a janela grafica em 2 x 2

hist(betasim[1,], prob=T, main="beta0") # histograma dos 1000 interceptos estimados beta_0_hat

abline(v=beta[1], lwd=2, col="blue") # verdadeiro beta_0

# ajustando uma densidade normal aos dados de beta_0_hat

curve(dnorm(x, mean=mean(betasim[1,]), sd=sd(betasim[1,])), add=TRUE)

hist(betasim[2,], prob=T, main="beta1") # histograma dos 1000 interceptos estimados beta_1_hat

abline(v=beta[2], lwd=2, col="blue") # verdadeiro beta_1

# ajustando uma densidade normal aos dados de beta_1_hat

curve(dnorm(x, mean=mean(betasim[2,]), sd=sd(betasim[2,])), add=TRUE)

plot(t(betasim), xlab="beta0", ylab="beta1") # correlacao entre beta_0_hat e beta_1_hat

abline(v=beta[1], h=beta[2]) # valores verdadeiros beta_0 e beta_1

hist(R2, main="R2")

Não somente a distribuição marginal de cada componente de β̂ = (β̂0, β̂1) parece seguir uma

distribuia̧ão gaussiana mas, observando que o plot dos 1000 pares de pontos (β̂0, β̂1) tem



a forma de uma elipse, parece que a distribuição conjunta dos componentes do vetor segue

uma distribuição gaussiana bivariada. A partir deste plot vemos que a correlação entre β̂0

e β̂1 é negativa. Quando a inclinação estimada β̂1 fica muito acima de sua média (que é

aproximadamente 1.5), o intercepto estimado β̂0 tende a ficar abaixo de sua média (que é

aproximadamente 4).

Mais uma observação referente ao último gráfico: a estat́ıstica R2 também é uma variável

aleatória! Ao longo das 1000 simulaçãoes, R2 teve um valor médio igual a 0.8234 e 50% de

seus valores estão entre 0.79 e 0.86. Apenas 2.3% dos 1000 valores calculados foram menores

que 0.7. Uma das amostras chegou a gerar um R2 igual a 0.60, o mı́nimo nas 1000 simulações.

O drama do analista de dados: O estudo de simulação que fizemos mostra claramente

as propriedades estat́ısticas do estimador de mı́nimos quadrados β̂. Obtivemos o comporta-

mento estat́ıstico do erro de estimação descobrindo o valor esperado de cada componente de

β̂, incluindo um valor máximo que, com alta probabilidade, este erro pode atingir. Acontece

que, na prática da análise de dados, este estudo é imposśıvel de ser realizado. Para estudar

o comportamento estat́ıstico de β̂, tivemos de gerar os dados Y uma grande quantidade de

vezes. Para esta geração, precisamos conhecer o verdadeiro valor do parâmetro β. Entretanto,

o objetivo da estimação na prática é inferir um valor aproximado para β, supostamente des-

conhecido. Se conhecermos o valor verdadeiro de β, não há necessidade de estimá-lo, muito

menos de conhecer as propriedades estat́ısticas do estimador β̂. Parece que estamos num beco

sem sáıda: para conhecer as propriedades estat́ısticas de β̂ por simulação precisamos conhecer

o verdadeiro valor de β. Mas, na prática, não saberemos este valor já que o objetivo de calcular

β̂ é exatamente obter um valor aproximado para o vetor β.

Todo este suspense é para fornecer um resultado surpreendente. Para conhecer como o esti-

mador β̂ vai variar considerando as diferentes amostras que poderiam ser geradas pela modelo

não vamos precisar simular o modelo milhares de vezes. Usando apenas a única amostra de

dados que temos em mãos e o cálculo de probabilidades somos capazes de obter todo o com-

portamento estat́ıtico de β̂! Com uma única amostra de dados conseguimos descobrir todos

os resultados obtidos nas simulações acima.

De fato, já obtivemos todo o comportamento estat́ıtico de β̂ nas notas de aula. Nós já apren-

demos que, como β̂ é uma matriz de constantes (A = (X′X)−1X) multiplicando o vetor

gaussiano multivariado Y, pudemos deduzir que β̂ é normal multivaiado:

β̂ ∼ N2

(
β, σ2(X′X)−1

)
.

Portanto, olhando para o componente 1 deste vetor, temos

β̂0 ∼ N(β0, σ
2(X′X)−1

11 )



enquanto que, para o segundo componente,

β̂1 ∼ N(β1, σ
2(X′X)−1

22 )

A matriz (X′X)−1 é facilmente obtida em R:

> solve(t(X) %*% X)

x1

0.17753623 -0.0108695652

x1 -0.01086957 0.0008695652

Assim, sem nenhuma simulação nós podemos conhecer de forma quase completa todo o com-

portamento estat́ıstico de β̂:

β̂0 ∼ N(β0, σ
20.1775)

enquanto que, para o segundo componente,

β̂1 ∼ N(β1, σ
20.0009)

Fica faltando apenas conhecer σ2, a variância do erros εi no modelo de regressão linear Yi =

x′iβ+ εi. É claro que sabemos que σ = 5 pois nóes mesmos geramos os dados. Mas também é

claro que, numa análise de dados reais, temos apenas os dados Y e a matriz X. Nãoconhecemos

o modelo que gerou os dados e portanto não conhecemos σ2.

Acontece que, embora não possamos conhecer σ2 com exatidão, podemos estimá-lo com

razoável precisão. Para isto usamos os reśıduos ri = yi − ŷi. Pode-se mostrar que a variável

aleatória

SSE = r′r =

n∑
i=1

r2
i =

n∑
i=1

(yi − ŷi)2

possui uma distibuição qui-quadrado com n − p = n − 2 graus de liberdade multiplicada por

σ2. Portanto E(SSE) = σ2(n− p) e, como consequẽncia, S2 = E(SSE/(n− p)) = σ2. Isto é,

a soma do quadrado dos reśıduos dividida por n−2 (quase a sua média, portanto) tem o valor

esperado igual a σ2. Algumas vezes, um pouco mais que σ2, algumas vezes, um pouco menos.

Vamos ver como foi a estimativa S2 do parãmetro σ2 em cada uma das 1000 simulações. Com

o comando S[j] = summary(simj)$sigma, nós guardamos os valores de
√
S2 e portano de

uma estimativa de σ. Vamos elevá-lo ao quadrado e transformá-lo para verificar duas coisas:

• O ajuste da distribuição qui-quadrado com df = n−2 = 22 graus de liberdade aos valores

simulados de SSE/σ2 = SSE/25. Este é um resultado teórico que estamos verificano

empiricamente.

• Como S =
√
S2 =

√
SSE/(24− 2) comporta-se como estimador de σ2 ao longo das 1000

simulações.

par(mfrow=c(1,2))

S2 = S^2 # obtendo estimativa de sigma^2 em cada simulacao

SSE = (24-2)*S2 # obtendo a soma dos residuos ao quadrado em cada simulacao

hist(SSE/sigma^2, prob=T)

curve(dchisq(x, df=24-2), add=T) # ajuste de qui-quadrado

hist(S, prob=T)

sum(S > 7 | S < 3)/1000

A maioria dos valores estimados de σ estão entre 3 e 7. Já que σ = 5, o último comando

acima produz 0.008, ou 0.8% das vezes, para a proporção das simulações em que S teve um



erro de estimaç ao S − σ maior que 2. Na prática, apenas um desses valores será usado,

aquele associado com o conjunto particular de dados que está em sua mãos. Por exemplo, se

tiverms em mãos apenas o primeiro conjunto de dados (dentre os 1000 simulados), teremos

a estimativa S[1] = 4.937436, um valor bem próximo de σ. Nós fomos felizes neste primeiro

conjunto de dados mas que valores mais altos ou mais baixo poderiam ter sido obtidos como

estimativa de S, embora estas estimativas dificilmente ultrapassem 7 ou sejam menores que 3.

O ponto relevante é que, com esta aproximação de σ baseada em UMA ÚNICA amostra

de dados, podemos agora conhecer o comportamento estat́ıstico do estimador β̂ COMO SE

FIZÉSSSEMOS centenas de simulações. De fato, baseado na teoria que já deduzimos, como

sabemos que

β̂ ∼ N2

(
β, σ2(X′X)−1

)
,

podemos concluir que

β̂ ≈ N2

(
β, S2(X′X)−1

)
,

e que portanto, como S = 4.937436 na primeira amostra (supondo que é a única amostra de

dados que temos), conclúımos que

β̂0 ≈ N(β0, (4.937)2 0.1775)

enquanto que, para o segundo componente,

β̂1 ∼ N(β1, (4.937)2 0.0009)

O erro de estimação: Com isto, podemos ter uma boa idéia do erro máximo que podemos

estar cometendo ao estimar β pelo método de mı́nimos quadrados. De fato, como 95% da área

de uma gaussiana fica entre dois desvios-padrão de sua esperança, temos para β1:

P(|β̂1 − β1| < 2
√

(4.937)2 0.0009) ≈ 0.95

Isto é,

P(|β̂1 − β1| < 0.29622) ≈ 0.95

Assim, com alta probabilidade, a diferença entre a estimativa β̂1 (uma variável aleatória cal-

culada a partir dos dados) e β1 (um valor fixo mas desconhecido) não deve ultrapassar 0.30.

Manipulação simples do operador valor absoluto permite escrever o evento |β̂1−β1| < 0.30 de

outra forma equivalente:

|β̂1 − β1| < 0.30⇔ −0.30 < β̂1 − β1 < 0.30⇔ β̂1 − 0.30 < β1 < β̂1 + 0.30

Retornando ao cálculo de probabilidade, temos então

P
(
β̂1 − 0.30 < β1 < β̂1 + 0.30

)
≈ 0.95

Ou seja, com probabilidade 95% o intervalo (aleatório) (β̂1 − 0.15, β̂1 + 0.30) vai cobrir o ver-

dadeiro valor do parâmetro aproximadamente 95% das vezes que o procedimento de estimação

de mı́nimos quadrados for adotado.

Lição a levar para casa: O ponto mais importante de todo este exerćıcio é que: não apenas

obtemos uma estimativa do vetor β mas conseguimos também ter uma boa aproximação para

os outros posśıveis valores que podeŕıamos ter se a amostra fosse um pouco diferente (mas

gerada sob o mesmo modelo). Com isto, temos uma boa idéia do tamanho máximo do erro

que podemos estar cometendo ao estimar βi: dificilmente vamos ultrapassar 2S
√

(X′X)−1
ii .



Outra maneira de expressar este resultado é apresentar ochamdo intervalo de confiança de

95%:

(β̂i − 2S

√
(X′X)−1

ii , β̂i + 2S

√
(X′X)−1

ii )

Este intervalor aleatório cobre o verdadeiro (e desconhecido) valor de βi 95% das vezes, apro-

ximadamente.

(d) Repita o exerćıcio anterior simulando um modelo de regressão linear com DOIS atributos.

Este exerćıcio tem o objetivo de forçá-lo a refletir sobre o significado da expressão “β̂ é um

vetor aleatório”. Seu entedimento é crucial na teoria da aprendizagem estat́ıstica.

Vamos simular um modelo de regressão linear com dois atributos usando o R e estimar o vetor

de coeficientes β em cada caso. A seguir, vamos verificar que o comportamento estat́ıstico do

estimador β̂ está de acordo com o comportamento estocástico deduzido teoricamente.

Vamos fixar um modelo de regressão em que CONHECEMOS o vetor de coeficientes

β = (β0, β1, β2)′ = (1, 1.5, 0.7)′ .

Vamos usar n = 25 observações com dois atributos. O modelo será:

Yi = x′iβ + εi = β0 + β1xi1 + β2xi2 + εi = 1 + 1.5xi1 + 0.7xi2 + εi

Os erros εi serão i.i.d. N(0, σ2 = 25).

Rode o script abaixo no R:

set.seed(0) # fixando a semente do gerador aleatorio

x1 = 1:24 # coluna com 1o atributo

x1 # visualizando x1

x2 = round(25*runif(24),1) # coluna com 2o atributo

x2 # visualizando x2

beta = c(1, 1.5, 0.7) # vetor beta

mu = cbind(1, x1, x2) %*% beta # vetor com E(Y)= X*b

sigma = 5

y = mu + rnorm(24, 0, sigma) # resposta y = X*b + erros N(0,1)

pairs(cbind(y, x1, x2)) # scatterplots bivariado

Nos gráficos de dispersão que resultaram do comando pairs você deve ter notado como, visu-

almente, o atributo x2 parece ter pouco efeito para explicar a variação de y quando comparado

com a associação forte e óbvia entre y e x1. No entanto, você sabe que x2 tem algum efeito

sobre y pois seu coeficiente não é exatamente igual a zero. Na verdade, podemos comparar os

dois coeficientes pois os dois atributos possuem aproximadamente a mesma escala (variando

entre 0 e 24). O efeito de x1 em y é medido pelo seu coeficiente (igual a 1.5) e o de x2 pelo

seu coeficiente (igual a 0.7). Assim, o efeito de x1 parece ser 1.5/0.7 ≈ 2.0, ou duas vezes

maior, que o de x2. No entanto, o gráfico de y×x2 dá a impressão visual de que x2 tem muito

menos efeito em y. Na verdade, o que afeta a nossa avaliação do efeito de x2 neste gráfico é o

efeito simultâneo de x1. Voltaremos a isto mais abaixo. Ainda nestes gráficos, note como os

preditores x1 e x2 são muito pouco correlacionados.

x = cbind(x1, x2) # matriz de desenho (sem a constante 1)

sim1 = lm(y ~ x ) # sim1 e’ objeto da classe lm com results do ajuste

is.list(sim1) # sim1 e’ uma lista

names(sim1) # nomes dos objetos que compoem a lista sim1

summary( sim1 ) # funcao summary em sim1: retorna info sobre minimos quadrados



Veremos agora apenas alguns dos itens listados na saida de summary. Veja que

β̂
′
= (0.46, 1.64, 0.58) 6= (1, 1.5, 0.7) = β′ ,

considerando as estimativas com duas casas decimais. O erro de estimação NESTA AMOSTRA

PARTICULAR é igual a

β̂
′ − β′ = (0.46, 1.64, 0.58)− (1, 1.5, 0.7) = (−0.54, 0.14, 0.12)

O vator ALEATÓRIO β̂
′

possui distribuição gaussiana p-variada (3-variada aqui) com

β̂
′ ∼ N3(β, σ2(X′X)−1

O que isto significa?O resto do exerćıcio procura te dar uma idéia da resposta.

O vetor Ŷ = Xβ̂ com os valores ajustados é obtido manipulando matrizes e vetores: ou

diretamente a partir do objeto sim1:

betahat = sim1$coef # extraindo o vetor beta-hat.

yhat = sim1$fitted # Fitted values. Alternativa: yhat0 = cbind(1, x) %*% betahat

plot(yhat, y) # R2 e’ o (coeficiente de correlacao linear)^2 deste grafico

cor(yhat, y)^2 # compare com o valor de Multiple R-squared em summary(sim1)

r = y - yhat # Vetor de residuos. Alternativa: sim1$res

S2 = sum(r*r)/(length(y) - 3) # estimativa nao-viciada de sigma^2

sqrt(S2) # O mesmo que ’’Residual standard error...’’ em summary(sim1)

# veja que o verdadeiro valor e’ sigma=5

vcov(sim1) # extrai a estimativa da matriz de covariancia de

# beta-hat = S2 * (X’X)^{-1}

sdhat = sqrt(diag(vcov(sim1))) # sqrt dos elementos da diagonal: Estimativa dos DPs

# dos beta-hats.

# Mesmos valores que a coluna Std. Error em summary(sim1)

Vamos agora simular este processo 1000 vezes, sempre gerando um novo vetor resposta y,

ajustando o modelo (com a matriz de desenho X fixa) e calculando as estimativas. Tere-

mos sempre um vetor β̂ diferente do verdadeiro valor de β. Vamos avaliar empiricamente o

comportamento deste estimador e comparar com o que a teoria diz.

nsim = 1000 # numero de simulacoes

betasim = matrix(0, ncol=nsim, nrow=3) # matriz para guardar as nsim estimativas de beta

betasim[,1] = betahat # primeira coluna = estimativa com 1a amostra

for(j in 2:nsim){

y = mu + rnorm(24, 0, sigma) # gera y

betasim[, j] = lm(y ~ x)$coef # estima e salva betahat na simulacao j

}

sdbeta = sigma * sqrt(diag(solve(t(cbind(1,x)) %*% cbind(1,x))))

par(mfrow=c(2,2)) # particiona a janela grafica em 2 x 2

hist(betasim[1,], prob=T) # histograma dos 1000 interceptos



abline(v=betasim[1,1], lwd=2, col="blue") # verdadeiro beta_0

aux = seq(min(betasim[1,]), max(betasim[1,]), len=100) # beta_0_hat e’ gaussiano?

lines(aux, dnorm(aux, beta[1], sdbeta[1]))

hist(betasim[2,], prob=T); abline(v=beta[2], lwd=2, col="red")

abline(v=betasim[2,1], lwd=2, col="blue")

aux = seq(min(betasim[2,]), max(betasim[2,]), len=100)

lines(aux, dnorm(aux, beta[2], sdbeta[2]))

hist(betasim[3,], prob=T); abline(v=beta[3], lwd=2, col="red")

abline(v=betasim[3,1], lwd=2, col="blue")

aux = seq(min(betasim[3,]), max(betasim[3,]), len=100)

lines(aux, dnorm(aux, beta[3], sdbeta[3]))

plot(betasim[2,], betasim[3,])

(e) The vector HY is the orthogonal projection of Y into the linear subspace of the linear combi-

nations of the p columns of X. Show that indeed HY can be written as a linear combination

of columns of X.

Solution: A linear combination of the p columns of X is a vector written as Xb where b is

any p-dimensional vector. Using the definition of H, we have

HY = X
(
X′X

)−1
X′Y = Xβ̂

where β̂ = (X′X)−1 X′Y is a p-dimensional vector.

(f) Numa análise de dados com o modelo de regressão linear comum (isto é, com a primeira coluna

da matriz X sendo a colunas de 1’s), checar numericamente que o vetor de reśıduos r = Y−Ŷ

é ortogonal ao vetor projetado Ŷ. Faça isto com os dados de apartamentos em BH.

Solution: Obtemos um valor aproximadamente zero, mas não exato, devido a erros de arre-

dondamento numérico:

aptos = read.table("aptosBH.txt", header = T)

reg.all = lm(preco ~ area+quartos+suites+vagas, data=aptos)

sum(reg.all$fitted * reg.all$res) # produto interno de residuos x preditos

# resultado eh -0.003036737

(g) Responda V ou F às questões abaixo:

• O vetor de reśıduos r = Y − Ŷ é ortogonal ao vetor Y.

• The orthogonal projection Ŷ is orthogonal to the data Y.

• The inner product between r and Ŷ is zero. That is,

〈r, Ŷ〉 = r′︸︷︷︸
(1×n)

Ŷ︸︷︷︸
(n×1)

= 0

• Ŷ pertence ao espaço das combinações lineares das colunas de X.

• O vetor de reśıduos r = Y − Ŷ pertence ao espaço das combinações lineares das colunas

de X.



Solução: F (r é ortogonal a Ŷ), F (Ŷ is orthogonal to Y − Ŷ = r), T, T (pois Ŷ = Xβ̂), F

(r pertence ao espaço ortgonal ao espaço das combinações lineares das colunas de X; o vetor

r é ortogonal a cada coluna da matriz X).

(h) Em um modelo de regressão linear, a variável resposta é o rendimento de uma reação qúımica

em duas situações diferentes, 0 e 1. São feitas n0 e n1 repetições independentes da reação em

cada um dos dois casos gerando os n0 +n1 valores da resposta Yij onde i = 1, . . . , nj e j = 0, 1.

Suponha Y = (Y10, Y20, . . . , Yn00, Y11, . . . , Yn11) e que X é a matriz de desenho com a primeira

colunas de 1’s e a segunda coluna com uma variável indicadora com valores 0 (se estado é 0)

e 1 (se estado é 1). Isto é,

Y =



y10

y20

...

yn00

y11

y21

...

yn11


=



1 0

1 0
...

...

1 0

1 1

1 1
...

...

1 1



(
β0

β1

)
+ ε = X β + ε

Mostre que o estimador de mı́nimos quadrados é dado por

β̂ =

[
β̂0

β̂1

]
= (X′X)−1X′Y =

[
Ȳ0

Ȳ1 − Ȳ0

]

onde Ȳj é a média aritmética das nj observações no estado j.

OBS:

A−1 =

[
a b

c d

]−1

=
1

ad− bc

[
d −b
−c a

]

(i) Considere um modelo de regressão linear onde a matriz de desenho X possui uma única coluna

formada pelo atributo j de forma que X é uma matriz n× 1. Digamos que o atributo j seja o

número total de linhas de código de um software e a resposta seja o tempo até a obtenção de

uma primeira versão estável do software. Obtemos dados relacionados a n distintos software.

Nosso modelo de regressão linear SEM INTERCEPTO é dado por:

Y = x(j)βj + ε
y1

y2

...

yn

 =


x1j

x2j

...

xnj

βj +


ε1

ε2

...

εn



=


x1jβj + ε1

x2jβj + ε2

...

xnjβj + εn


Note que o vetor-coeficiente neste caso é simplesmente o escalar βj , um vetor de dimensão 1.



Ao contrário do que fazemos quase sempre por default, no modelo acima, nós não estamos

usando a coluna de vetor n-dim de 1’s representado por 1 = (1, . . . , 1)′. Isto significa que o

modelo assume que a resposta Y está relacionada ao atributo através de uma relação linear

que passa pela origem da forma:

y ≈ xβ

Este modelo simplificado não é apropriado na maioria das situações práticas pois quase sempre

podemos esperar um intercepto não-nulo. A utilidade deste modelo simplificado vai ficar clara

no exerćıcio 9j.

• Seja 〈x,y〉 =
∑

i xiyi o produto interno de dois vetores x e y. Mostre que o estimador de

mı́nimos quadrados de βj neste modelo com um único atributo é dados por

βj =
x(j)′Y

x(j)′x(j)

=

∑n
i=1 xijyi∑n
i=1 x

2
ij

=
〈x(j),y〉
〈x(j),x(j)〉

=
〈x(j),y〉
‖x(j)‖2

• Suponha que o único atributo no modelo seja a coluna de 1’s representada por 1 =

(1, . . . , 1)′. Mostre que o (único) coeficiente neste caso é dado pela média aritmética das

observações

β0 =
1′Y

1′1
=

1

n

∑
i

yi = Ȳ

• Considerando o item anterior, conclua que o modelo no caso em que o único atributo é a

coluna de 1’s é da forma:

Y = 1 β0 + ε

o que significa que Y1, Y2, . . . , Yn são i.i.d. N(β0, σ
2).

O modelo estimado por mı́nimos quadrados produz a seguinte decomposição do vetor Y:

Y = Ȳ 1 +
(
Y − Ȳ 1

)
Neste modelo, Ŷ = Ȳ 1 e o vetor de reśıduos é r = Y − Ȳ 1.

(j) Em estudos experimentais, como nos testes AB feitos pelo Google, as colunas da matriz X

podem ser escolhidos de antemão pelo usuário. Um desenho experimental muito usado é

o chamado full factorial design. Vou considerar um desses desenhos (se estiver interessado,

estou tomando um desenho com dois fatores, dois ńıveis em cada um deles e apenas com duas

replicações). Para este desenho, temos o seguinte modelo de regressão linear para uma resposta

experimental.

Y =



y1

y2

y3

y4

y5

y6

y7

y8


=



1 −1 −1 1

1 1 −1 −1

1 −1 1 −1

1 1 1 1

1 −1 −1 1

1 1 −1 −1

1 −1 1 −1

1 1 1 1




β0

β1

β2

β3

+



ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8





Não se preocupe com significado exato dos atributos neste momento. Mas, para não ficar

muito abstrato, você pode imaginar que, neste problema, a resposta Y é a a produção por

minuto de um processo qúımico numa indústria. Os dois primeiros atributos não constantes

representam os efeitos individuais de dois fatores influentes na produção. O último atributo

representa a interacção ou efeito sinergético entre estes dois fatores.

Ignorando a semântica do modelo e concentrando apenas na sua sintaxe, verifique o seguinte:

• As colunas da matriz de desenho são todas ortogonais entre si. Isto é, x(j)′x(k) =∑
i xijxik = 0 se j 6= k.

• Conclua que a matriz X′X é diagonal.

• Conclua que a matriz (X′X)−1 também é diagonal.

• Conclua que o estimador de mı́nimos quadrados de β é dado por

β̂ =


β̂0

β̂1

β̂2

β̂3

 =


〈1,y〉/‖1‖2

〈x(1),y〉/‖x(1)‖2

〈x(2),y〉/‖x(2)‖2

〈x(3),y〉/‖x(3)‖2

 =


∑

i yi/8

〈x(1),y〉/8
〈x(2),y〉/8
〈x(3),y〉/8


• Conclua que o estimador β̂j do atributo j é igual àquele que seria obtido caso tivéssemos

rodado uma regressão usando APENAS o atributo j.

• Verifique que esta conclusão é geral: caso as colunas de X sejam ortogonais entre si, o

estimador β̂j do atributo j não é afetado pela presença ou ausência dos demais atributos

na regressão.

• Verifique também que a matriz de covariância

V(β̂) = σ2
(
X′X

)−1

do estimador β̂ é uma matriz diagonal. Conclua que as estimativas de diferentes atributos

são v.a.’s independentes pois Corr(β̂j , β̂k) = se j 6= k.

• Apenas para seu conhecimento, é posśıvel mostrar que a eficiência máxima na estimação

dos coeficientes é alcançada quando as colunas em X são ortogonais entre si. Mais

especificamente, é posśıvel mostrar que dada qualquer matriz de desenho X, tal que

‖x(j)‖2 = c2
j > 0, então

V(β̂j) ≥
σ2

c2
j

e o mı́nimo é atingido quando x(j)′x(k) = 0 para todo par j 6= k (isto é, quando as

colunas são ortogonais entre is, o erro esperado de estimação é mı́nimizado). Para mais

informações, ver Rao (1973, pag. 236).

(k) Suponha que a matriz de desenho possui apenas a coluna 1 e seja H1 a matriz de projeção no

espaço C(1) dos múltiplos do vetor 1. Mostre que esta matriz é dada por

H1 =
1

n
11′ =

1

n


1 1 . . . 1

1 1 . . . 1
...

... . . .
...

1 1 . . . 1





(l) Verifique que, qualquer que seja o vetor resposta Y, ele pode ser decomposto como

Y = H1Y + (I−H1) Y = ȳ1 + (Y − ȳ1)

e que os dois vetores do lado direito da equação são ortogonais.

(m) Conclua que Y − ȳ1 pertence ao espaço ortogonal C(1)⊥ e que o comprimento (ao quadrado)

de Y pode ser decomposto da seguinte maneira

||Y||2 =
n∑
i=1

y2
i = nȳ2 +

n∑
i=1

(yi − ȳ)2 = ||ȳ1||2 + ||Y − ȳ1||2

(n) Seja H = X (X′X)−1 X′ onde X é a matriz de desenho com a primeira coluna sendo o vetor

de 1’s. Seja H1 a matriz do exerćıcio anterior. Mostre que as três matrizes H1, H −H1, e

I−H são matrizes de projeções ortogonais. Isto é, elas são simétricas e idempotentes.

(o) Outra decomposição mais relevante é a seguinte:

I = H1 + (H−H1) + (I−H) .

Use esta decomposição matricial para decompor o vetor Y em três outros vetores ortogonais entre si.

DICA: No produto matricial AB = C, a coluna j de C é o resultado de multiplicar a matriz

A pela coluna j de B.

Solução:

Y = (H1 + (H−H1) + (I−H)) Y = Ȳ 1 + (H−H1) Y + (I−H) Y

Basta fazer o produto interno desses vetores do lado direito para ver que são ortogonais entre

si. Por exemplo,

〈(H−H1) Y, (I−H) Y〉 = 0

usando que as matizes são idempotentes e simétricas.

(p) Como consequência, mostre que

||Y||2 =

n∑
i=1

y2
i = nȳ2 +

n∑
i=1

(ŷi − ȳ)2 +

n∑
i=1

(yi − ȳ)2

e também que
n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(ŷi − ȳ)2 +
n∑
i=1

(yi − ŷi)2

(q) O ı́ndice de correlação múltipla R2 é uma medida global do grau de proximidade do vetor

ajustado ou predito pelo modelo Ŷ ao vetor resposta Y e ele é definido como

R2 = 1−
∑

i(yi − ŷi)2∑
i(yi − ȳ)2

.

Quanto maior o R2, melhor o ajuste.

Mostre que sempre temos R2 ∈ [0, 1] e que o R2 também pode ser escrito como

R2 =

∑
i(ŷi − ȳi)2∑
i(yi − ȳ)2



(r) Mostre que a média aritmética dos valores no vetor ajustado Ŷ é igual a média dos valores

observados sempre que 1 estiver na matriz X. Isto é, mostre que
∑n

i=1 ŷi/n = ȳ. DICA:

represente a soma como o produto interno de dois vetores.

(s) Considere o ı́ndice emṕırico de correlação linear de Pearson entre os vetores Y e Ŷ dado por

r =

∑
i(yi − ȳ)(ŷi − ¯̂y){∑

i(yi − ȳ)2
∑

i(ŷi − ¯̂y)2
}1/2

Você vai mostrar que R2 = r2 trabalhando primeiro o numerador de r:

〈Y − ȳ1, Ŷ − ¯̂
Y 1〉 = 〈Y − ȳ1, Ŷ − ȳ1〉 pois

∑n
i=1 ŷi/n = ȳ.

= 〈Y − Ŷ + Ŷ − ȳ1, Ŷ − ȳ1〉

Conclua que o numerador de r é igual a ||Ŷ − ȳ1||2 e que r2 = R2. Assim, o ı́ndice R2 mede

o quadrado da correlação entre os vetores Y e Ŷ.

(t) Responda V ou F para as seguintes afirmativas:

• R2 mede a proporção da variabilidade (ou variação) total da resposta que é explicada pelo

modelo.

• R2 mede a proporção da variação da resposta que o modelo não consegue explicar.

• R2 é igual a zero se a matriz de desenho tiver apenas a coluna 1.

(u) Seja X uma matriz de números reais de dimensão n × (p + 1), seja β = (β0, β1, . . . , βp) um

vetor (p+ 1)× 1 e y um vetor n× 1.

• Sejam v1, . . . , vk vetores do Rn. Verifique que o conjunto das combinações lineares desses

vetores forma um sub-espaço vetorial do Rn.

• Verifique que Xβ = β0X0 +β1X1 + . . .+βpXp onde X0, X1, . . . , Xp são os vetores colunas

de X. Assim, o conjunto M(X) das combinações lineares das colunas de X é igual a

M(X) = {Xβ | β ∈ Rp+1}.
• Seja W um subespaço do espaço vetorial V . Definimos o espaço ortogonal de W como

sendo

W⊥ = {u ∈ V | < u,w >= 0 ∀ w ∈W}

Mostre que W⊥ é um subespaço vetorial de V .

Solução:
−→
0 ∈W⊥ pois <

−→
0 , w >= 0 para todo w ∈W . E tambem < a1u1 +a2u2, w >=

0 se < u1, w >= 0 e < u2, w >= 0

• Seja H = X(X ′X)−1X ′ de dimensão n × n. Verifique que H é idempotente (H2 = H) e

simétrica (H ′ = H).

• Seja y ∈ Rn. A matriz P de dimensão n × n é dita de projeção ortogonal num certo

subespaço vetorial se y − Py ⊥ Py para todo y ∈ Rn. Mostre que H = X(X ′X)−1X ′ é

uma matriz de projeção ortogonal usando que H é idempotente e simétrica.

• Como H = X(X ′X)−1X ′ é uma matriz de projeção ortogonal, resta saber em que sub-

espaço vetorial W a matriz H projeta os vetores y ∈ Rn. Mostre que H projeta ortogo-

nalmente em M(X) (isto é, mostre que W = M(X).)

Solução: Para todo y ∈ Rn, temos Hy = X(X ′X)−1X ′y = Xb onde b = (X ′X)−1 X ′y.

Assim, Hy ∈ M(X) para todo y e portanto W ⊂ M(X). Por outro lado, tome um



elemento Xb qualquer de M(X). Por definição, Hy ∈ W para todo y. Em particular,

tomando y = Xb, temos então HXb ∈ W . Mas HXb = X(X ′X)−1X ′Xb = Xb. Isto é,

Xb ∈W e portanto M(X) ⊂W . Conclúımos então que W = M(X).

• Seja H = X(X ′X)−1X ′ a matriz de projeção ortogonal no espaço M(X) das combinações

lineares das colunas de X. Mostre que ao escolher β tal que Xβ = Hy estamos minimi-

zando a distância ‖y − Xβ‖2. DICA: Escreva some e subtraia Hy em ‖y − Xβ‖2 e use

que ‖v‖2 =< v, v >

Solução: ‖y −Xβ‖2 =< y −Xβ, y −Xβ >. Somando e subtraindo Hy obtemos

‖y −Xβ‖2 = < y −Hy +Hy −Xβ, y −Hy +Hy −Xβ >
= < y −Hy, y −Hy > + < Hy −Xβ,Hy −Xβ > −2 < y −Hy,Hy −Xβ >
= ‖y −Hy‖2 + ‖Hy −Xβ‖2 + 0 .

O último termo acima é zero pois Hy −Xβ ∈M(X) já que Hy ∈M(X) e Xβ ∈M(X)

e o conjunto M(X) é um sub-espaço vetorial (e portanto contém a diferença dos vetores).

Além disso, y−Hy ∈M(X)⊥. Portanto, o produto interno < y−Hy,Hy−Xβ > é nulo.

Assim, ‖y − Xβ‖2 = ‖y − Hy‖2 + ‖Hy − Xβ‖2. O primeiro termo do lado direito não

depende de β e o segundo é não-negativo. Ele será minimizado se for igual a zero, o que

ocorre se tomamos Xβ = Hy.

(v) Regressão linear e distribuição condicional: Vamos considerar um modelo (na verdade, mais

uma caricatura) de como a renda do trabalho Y de um indiv́ıduo qualquer está associada com

o número de anos de estudo X desse mesmo indiv́ıduo. Vamos supor que, para um indiv́ıduo

com X = x anos de estudo teremos a renda Y como uma variável aleatória com distribuição

normal com esperança E(Y |X = x) = g(x) = 300 + 100 ∗ x e variância σ2 = 502.

Responda V ou F às afirmações abaixo:

• Se X = 10 para um indiv́ıduo (isto é, se ele possui 10 anos de estudo), então a sua renda

é uma variável aleatória com distribuição N(1300, 502).

• E(Y ) = 300 + 100 ∗ x.

• E(Y |X = x) = 300 + 100 ∗ x.

• V(Y ) = 502.

• V(Y |X = x) = 502.

• A distribuição de Y é normal (ou gaussiana).

• Dado o valor de x, a distribuição de Y é normal (ou gaussiana).

(w) Numa lista anterior, você usou os dados do arquivo aptos.txt com preços de apartamento no

bairro Sion em Belo Horizonte para criar um modelo de regressão. Usando algebra matricial

no R, obtenha uma estimativa da matriz de covariância do estimador de mı́nimos quadrados

β̂ dada por

V
(
β̂
)

= σ̂2
(
X ′X

)−1

onde

σ̂2 =
1

n− p

(
Y − Ŷ

)′ (
Y − Ŷ

)
=

1

n− p

n∑
i=1

(yi − ŷi)2



(x) Considere um vetor X = (X1, X2) com distribuição normal bivariada com vetor esperado

µ = (µ1, µ2) e matriz de covariância

Σ =

[
σ11 ρ

√
σ11σ22

ρ
√
σ11σ22 σ22

]

Usando o resultado dos slides, mostre que a distribuição condicional de (X2|X1 = x1) é

N(µc, σ
2
c ) onde

µc = µ2 + ρ

√
σ22

σ11
(x1 − µ1) = µ2 + ρ

√
σ22

x1 − µ1√
σ11

e

σ2
c = σ22(1− ρ2)

A partir desses resultados, verifique se as afirmações abaixo são V ou F:

• Saber que o valor X1 = x1 está dois desvios-padrão acima de seu valor esperado (isto

é, (x1 − µ1)/
√
σ11 = 2) implica que devemos esperar que X2 também fique dois desvios-

padrão acima de seu valor esperado.

• Dado que X1 = x1, a variabilidade de X2 em torno de seu valor esperado é maior se

x1 < µ1 do que se x1 > µ1.

• Conhecer o valor de X1 (e assim eliminar parte da incerteza existente) sempre diminui a

incerteza da parte aleatória permanece desconhecida (isto é, compare a variabilidade de

X2 condicionada e não-condicionada no valor de X1).

• µc é uma função linear de x1.

(y) Considere um modelo de regressão linear onde a matriz de desenho X possui uma única coluna

formada pelo atributo j de forma que X é uma matriz n× 1. Digamos que o atributo j seja o

número total de linhas de código de um software e a resposta seja o tempo até a obtenção de

uma primeira versão estaável do software. Obtemos dados relacionados a n distintos software.

Nosso modelo de regressão linear SEM INTERCEPTO é dado por:

Y = x(j)βj + ε
y1

y2

...

yn

 =


x1j

x2j

...

xnj

βj +


ε1

ε2

...

εn



=


x1jβj + ε1

x2jβj + ε2

...

xnjβj + εn


Note que o vetor-coeficiente neste caso é simplesmente o escalar βj , um vetor de dimensão 1.

Ao contrário do que fazemos quase sempre por default, no modelo acima, nós não estamos

usando a coluna de vetor n-dim de 1’s representado por 1 = (1, . . . , 1)′. Isto significa que o

modelo assume que a resposta Y está relacionada ao atributo através de uma relação linear

que passa pela origem da forma:

y ≈ xβ

É claro que a maioria das situações práticas terá um intercepto não-nulo. A utilidade deste

modelo vai ficar clara no exerćıcio 9j.



• Seja 〈x,y〉 =
∑

i xiyi o produto interno de dois vetores x e y. Mostre que o estimador de

mı́nimos quadrados de βj neste modelo com um único atributo é dados por

βj =
x(j)′Y

x(j)′x(j)

=

∑n
i=1 xijyi∑n
i=1 x

2
ij

=
〈x(j),y〉
〈x(j),x(j)〉

=
〈x(j),y〉
‖x(j)‖2

• Suponha que o único atributo no modelo seja a coluna de 1’s representada por 1 =

(1, . . . , 1)′. Mostre que o (único) coeficiente neste caso é dado pela média aritmética das

observações

β0 =
1′Y

1′1
=

1

n

∑
i

yi = Ȳ

• Considerando o item anterior, conclua que o modelo no caso em que o único atributo é a

coluna de 1’s é da forma:

Y = 1 β0 + ε

o que significa que Y1, Y2, . . . , Yn são i.i.d. N(β0, σ
2).

O modelo estimado por mı́nimos quadrados produz a seguinte decomposição do vetor Y:

Y = Ȳ 1 +
(
Y − Ȳ 1

)
Neste modelo, Ŷ = Ȳ 1 e o vetor de reśıduos é r = Y − Ȳ 1.

(z) Suponha que o modelo de regressão correto envolve dois conjuntos de atributos. O primeiro

deles é de fato medido empiricamente e está armazenado na matriz X de dimensão n× p onde

a primeira coluna é o vetor 1 de 1’s. O segundo conjunto de atributos também é importante

para explicar a variação de Y mas esses atributos não são medidos porque são desconhecidos

ou porque sua medição é imposśıvel ou inviável em termos práticos. Vamos supor que existam

k atributos nesse segundo conjunto. Caso eles fossem medidos, estariam numa matriz Z de

dimensão n× k (sem a coluna 1). Assim, o modelo correto é dado por

Y = Xβ + Zγ + ε . (12.1)

onde γ é um vetor k × 1 dos coeficientes associados com as colunas-atributos em Z.

O analista de dados possui apenas a matriz X para fazer a regressão e ele obtem a estimativa

de mı́nimos quadrados para o coeficiente β da maneira usual:

β̂ =
(
X′X

)−1
X′Y

• Substitua a expressão (12.1) de Y na fórmula de β̂ e mostre que E
(
β̂
)

é viciado para

estimar β sendo que o v̈ıcio de estimação é dado por

E
(
β̂
)
− β =

(
X′X

)−1
X′Zγ

• Para entender melhor este v́ıcio, imagine que Z contenha um único atributo. Dessa forma,

Z é uma matriz n × 1, um vetor-coluna. Imagine que vamos explicar a variação deste



atributo Z usando os p atributos da matriz X. Isto é, vamos imaginar um modelo de

regressão linear da seguinte forma:

Z = Xα+ ε∗

onde α é um vetor p× 1 de coeficientes. Verifique que o estimador de mı́nimos quadrados

de α é dado por

α̂ =
(
X′X

)−1
X′Z

Interprete agora o v́ıcio associado com o estimador β̂.

Solução: O estimador de regressão de β no modelo reduzido é viciado por uma quantidade

correspondente a γ (coef do modelo full) vezes o coef da regressao de Z em X.

• Generalize para Z com varios atributos usando o fato de que um produto matricial AB é

igual a uma matriz cuja j-ésima coluna é a aplicaçã da matriz A à j-ésima coluna de B.

() Considere agora o problema inverso, em que colocamos no modelo de regressão mais atributos

do que o necessário. O modelo correto é dado por

Y = Xβ + ε .

mas, sem saber disso, assumimos um modelo da seguinte forma

Y = Xβ + Zγ + ε∗ .

onde γ é um vetor k × 1 de coeficientes associados com as colunas-atributos em Z que não

necessárias pois a distribuição de Y não depende desses atributos. Vamos estimar os coefici-

entes dos atributos com uma matriz de desenho da forma W = [X|Z]. Note que o verdadeiro

valor do parâmetro γ é o vetor 0 = (0, . . . 0)′.

Usando apenas um simples argumento em palavras, mostre que o estimador usual de mı́nimos

quadrados estima β sem v́ıcio.

() O arquivo exames.txt mostra os escores F em um exame final e os escores em dois exames

preliminares P1 e P2 de 22 estudantes. Use o comando pairs e cor para visualizar e estimar

a correlação entre os dados.

dados = read.table("exames.txt", header=T)

head(dados)

attach(dados)

pairs(dados)

cor(dados)

Veja que F é bastante correlacionada com as notas prévias, sendo um pouco mais correlacio-

nada com a nota mais recente P2. Rode um modelo de regressão linear para explicar F usando

apenas P1 como variável preditora e depois usando ambas, P1 e P2. Veja que o coeficiente

linear de P1 é bem diferente nos dois casos.

summary(lm(F ~ P1))

summary(lm(F ~ P1 + P2))

A relação entre os coeficientes de regressão simples (com um único atributo) e os coeficientes de

regressão múltipla podem ser vistos quando comparamos as seguintes equações de regressão:

F̂ = β̂0 + β̂1P1 + β̂2P2

F̂ = β̂′0 + β̂′1P1

F̂ = β̂′′0 + β̂′′2P2

P̂1 = α̂0 + α̂2P2

P̂2 = α̂′0 + α̂′1P1



Usando os dados do arquivo mostre que, empiricamente, temos:

β̂′1 = β̂1 + β̂2α̂
′
1

Isto é, o coeficiente da regressão linear simples de F em P1 é o coeficiente de regressão múltipla

de P1 mais coeficiente da regressão múltipla de P2 vezes o coeficiente da regressão do atributo

P2 regredido em P1. Compare com o resultado teórico que voce encontrou no exerćıcio 4

da Lista 08. É posśıvel fazer uma prova matemática e geral deste fato mas ela exige muita

manipulação matricial.

() Muitas vezes, o modelo de regressão linear ajusta-se perfeitamente a dados não-lineares após

fazermos uma transformação nos dados. Este é o caso dos dados no arquivo mortalidade.txt

com informações obtidas junto a uma seguradora brasileira referentes ao público consumidor

de planos de seguro de vida num certo ano. Neste arquivo consideramos apenas a população

masculina com 21 anos ou mais. Ele possui três colunas. A primeira apresenta x, a idade em

anos. A segunda apresenta o número nx de participantes do fundo que possúıam a idade x

no dia 01 de Janeiro. A terceita coluna apresenta o número dx desses indiv́ıduos da segunda

coluna que não chegaram vivos ao dia 01 de janeiro do ano seguinte.

• Leia os dados no R e crie um vetor mx = dx/nx com a razão entre a terceira e a segunda

colunas. Dado que um indiv́ıduo da população chega a fazer x anos de idade, o valor

mx = dx/nx estima a probabilidade dele falecer antes de completar x+ 1 anos.

• Queremos um modelo para o aumento de mx com x. Faça um gráfico de dispersão de mx

versus x. Existem dois problemas aqui. O primeiro é que o aumento de mx é claro mas não

a forma exata pela qual este aumento ocorre. O segundo é que as últimas idades tem um

número muito pequeno de indiv́ıduos e assim mx não é uma estimativa razoável. Vamos

eliminar os dados de idades superiores a 77 anos. Isto ajuda com o segundo problema.

• Para lidar com o primeiro problema, faça um gráfico de dispersão da variável log(mx)

versus x. Você deve observar uma ńıtida relação linear entre os dois. Isto é, temos

log(mx) ≈ β0 + β1x

o que implica, tomando exponencial dos dois lados, em

mx ≈ eβ0eβ1x = b0

(
eβ1
)x

= b0b
x
1

• Interprete o parâmetro b1 = eβ1 em termos do aumento da mortalidade com o aumento

da idade. Para isto, calcule aproximadamente mx+1/mx e conclua que a cada ano adici-

onal de vida a chance de falecer antes de completar o próximo aniversário aumenta em

aproximadamente eβ1 .

• Ajuste um modelo de regressão linear simples tomando log(mx) como resposta e x como

atributo (além da coluna 1.

• Conclua que a cada ano adicional de vida a chance de falecer antes de completar o próximo

aniversário aumenta em aproximadamente 5%. O mais relevante: este aumento não de-

pende de x: seja um jovem ou um idoso, um ano a mais de vida faz seu risco de morte

anual aumentar em 5% do era antes.

Solução:

# Read the data

dados = read.table("mortalidade.txt", header=T); attach(dados)

mx = dados$mortes/dados$pop ; plot(x, mx)

# eliminando as ultimas faixas etarias, ficando apenas com idades < 78 anos



par(mfrow=c(1,2))

plot(x[x < 78], mx[x < 78]) ; plot(x[x < 78], mx[x < 78], type="l")

plot(x[x < 78], log(mx[x < 78])); plot(x[x < 78], log(mx[x < 78]), type="l")

res = lm( log(mx[x < 78]) ~ x[x < 78]); summary(res)

() O arquivo TurtleEggs.txt contém dados de Ashton et al. (2007). Eles mediram o com-

primento da carapaça (em mm), de 18 Tartarugas Gopher fêmeas (Gopherus Polifemo) do

Okeeheelee County Park, Florida. Tomaram também um raio-X para contar o número de ovos

em cada uma delas. Faça um gráfico de eggs versus length para verificar que um modelo linear

não é apropriado. Uma regressão com um modelo polinomial de segundo grau parece razoável:

E(Yi|x) = β0 + β1x+ β2x
2

onde Y é o número de ovos e x é o comprimento da carapaça.

Ajuste uma regressão de segundo grau. Superponha a parábola de melhor ajuste aos dados

no gráfico de dispersão de eggs versus length. De acordo com http://udel.edu/~mcdonald/

statcurvreg.html, “a primeira parte do gráfico não É surpreendente, É fácil imaginar por que

as tartarugas maiores teriam mais ovos. o decĺınio no número de ovos acima 310 miĺımetros

comprimento da carapaça É o interessante Este resultado sugere que a produção de ovos

diminui nestes tartarugas a medida em que envelhecem e ficam grandes”.

Solução:

dados = read.table("TurtleEggs.txt", header=T)

attach(dados); plot(length, eggs)

x = length; x2 = length^2

res = lm(eggs ~ x + x2) ; summary(res)

xx = seq(280, 340, by=1)

yy = -8.999e+02 + 5.857*xx -9.425e-03*xx^2

lines(xx, yy)

() Movimentos planetários em torno das suas estrelas podem causar variações na velocidade

radial da estrela. Os dados do arquivo starvelocity.txt foram obtidos por Geoff Marcy,

no Observatório Lick, e referem-se à estrela Pegasus 51, uma estrela similar ao nosso sol e

localizada na constelação de Pégaso a 50 anos-luz da Terra.

• Faça um gráfico da velocidade (Y ) versus o tempo t, medido em dias. A velocidade da

estrela 51 Pegasi varia de maneira ćıclica com um peŕıodo de aproximadamente 4.231 dias

e com uma amplitude de 56 metros por segundo. Isto sugere que a estrela está cercada por

um corpo celeste com uma massa aproximadamente igual a metade daquela de Júpiter.

• Use regressão linear para estimar o modelo

Yt = a+ b cos(2πwt+ φ) + ε

= = a+ b cos(2πwt) sin(φ) + b sin(2πwt)cos(φ) + ε

= β0 + β1 cos(2πwt) + β2 sin(2πwt)

= β0 + β1xt1 + β2xt2

Se a frequência w tiver de ser estimada teremos um problema de mı́nimos quadrados não-

lineares. Para evitar este problema nesta altura do curso, assuma que a frequência w é

conhecida igual a w = 1/4.231 (isto é, o peŕıodo orbital é de 41/w = 4.231 dias). Com w

fixado, podemos obter as colunas X1 e X2 para cada instante t e ajustar um modelo de

regressão usual.



• Trace a curva encontrada no gráfico com os pontos.

Solução:

dias = c(2.65, 2.80, 2.96, 3.80, 3.90, 4.60, 4.80, 4.90, 5.65, 5.92)

vel = c(-45.5, -48.8, -54.0, -13.5, -7.0, 42.0, 50.5, 54.0, 36.0, 14.5)

plot(dias, vel); % w = 1/4.231; x1 = sin(2*pi*w*dias); x2 = cos(2*pi*w*dias)

res = lm(vel ~ x1 + x2); % summary(res); dd = seq(2.60, 6, by=0.01)

vv = 1.3471 + 49.8894*sin(2*pi*w*dd) + 17.9099*cos(2*pi*w*dd); lines(dd,vv)

() O efeito de centrar os atributos. O objetivo deste exerćıcio é mostrar que, ao centrar os atribu-

tos, temos coeficientes relacionados de forma simples aos coeficientes obtidos com coeficientes

não-centrados. Seja β̂
∗

= (β̂∗0 , β̂
∗
1 , β̂
∗
2) o vetor que minimiza∑

i

(yi − (β∗0 + β∗1(xi1 − x̄1) + β∗2(xi2 − x̄2)))2

Isto é, a matriz de desenho tem suas colunas com média zero (exceto a primeira coluna). Seja

β̂ = (β̂0, β̂1, β̂2) o coeficiente que minimiza a distância entre Y e as combinações lineares das

colunas não-centradas: ∑
i

(yi − (β0 + β1xi1 + β2xi2))2

Mostre que as soluções dos dois problemas estão relacionadas da seguinte forma:

β̂0 = β̂∗0 − β̂∗1 x̄1 − β̂∗2 x̄2

β̂1 = β̂∗1

β̂2 = β̂∗2

() Prove que m = E(Y ) minimiza E(Y −m)2.

Solução: some e subtraia E(Y ) dentro do parênteses, expanda o quadrado e tome esperança

de cada termo. A seguir, derive com relação a m.

() INCOMPLETO AINDA: Estudar a matriz X′X−1: Se X tiver colunas linearmente indepen-

dentes então X′X é inverśıvel e definida positiva. Ajudar na interpretacao do elemento (i, j)

de X′X−1 como correlação parcial.

() Obtenha o arquivo miete03.asc no site http://www.stat.uni-muenchen.de/service/datenarchiv/

miete/miete03_e.html. Ele contem os dados de aluguel de 2053 apartamentos em Munique

em 2002 com vários atributos/preditores potenciais, todos descritos na página. Use este dados

no restante desta lista.

Existem duas posśıveis variáveis resposta: nm, o aluguel ĺıquido em euros, e nmqm, este aluguel

dividido pela área do apartamento. Vamos usar a primeira delas como resposta y. Elimine a

segunda variável do restante da análise (não a coloque entre os preditores!!).

i. Separa o conjunto de 2053 exemplos em dois conjuntos, um com 600 exemplos escolhidos

ao acaso para avaliar a qualidade do ajuste de vários modelos (amostra de validação) e

outro com os 2053 − 600 = 1453 restantes para ser a amostra de treinamento. Use o

comando sample para selecionar os dados.



ii. Usando a amostra de treinamento e as 11 variáveis preditoras, ajuste um modelo de

regressão linear.

iii. Obtenha o R2 deste modelo completo.

iv. Obtenha o valor da estat́ıstica F (e seu p-valor) para a hipótese nula de que todos os

coeficientes são zero.

v. Verifique que todos os preditores é significativo num teste de H0 : βj = 0 versus HA : βj 6=
0 observando o valor da estat́ıstica t e o seu p-valor.

vi. Obtenha o intervalo de confiança de 95% de cada um dos coeficientes.

vii. As últimas 7 variáveis são qualitativas com duas categorias apenas. Considerando cada

uma delas individualmente, qual o efeito esperado em preço que cada uma delas produz?

Qual tem o maior efeito? Note que esta variável de efeito máximo não é aquela com o

menor p-valor (ou o maior valor absoluto t∗ da estat́ıstica t? Isto é, grande significância

estat́ıstica não implica maior efeito na resposta.

viii. Considere um modelo alternativo sem os preditores bez e zh0. Sejam Mf o modelo

completo e Mr o modelo reduzido. Avalie qual dos dois é melhor calculando o SPSE de

cada modelo onde

SPSEM =
1

n

n∑
i=1

(yi − x′iβ
(−i))2 =

1

n

n∑
i=1

(
yi − ŷi
1− hii

)2

Isto pode ser obtido com os seguintes comandos em R:

# ajustando o modelo completo de regressao linear

modg = lm(nm ~ ., dados)

# obtendo vetor com os valores de H[i,i]

hii = influence(modg)$hat

# calculando o leave-one-out cross-validation measure (loocv)

loocv = sum( ( modg$res/(1-hii) )^2 )/length(hii)

() Se quisermos ajustar uma função y = f(x) usando um conjunto de dados (x1, y1), (x2, y2), . . . , (xn, yn),

e o critério de mı́nimos quadrados, devemos minimizar a função:

(A)
∑n

i=1 (yi − f(xi))

(B)
∑n

i=1 | yi − f(xi) |
(C)

∑n
i=1 (yi − f(xi))

2

(D)
∑n

i=1 (yi − ȳ)2 onde ȳ =
∑n

i=1 yi/n.

() Part́ıculas são emitidas num certo meio, todas com a mesma velocidade constante β. Deseja-se

estimar esta velocidade a partir de dados estat́ısticos. São feitos n experimentos e neles são

mensurados o tempo ti e a distãncia di que a part́ıcula percorreu até encontrar um obstáculo.

Assim, temos (t1, d1), . . . , (tn, dn). Como existem pequenos erros de mensuração, usmaos todos

os dados e o critério de mı́nimos quadrados para obter uma boa estimativa de β. Explique

como isto é feito e obtenha a fórmula para a estimativa β̂.

() (de Boyd e Vandenberghe) Temos N pacientes que podem ter qualquer número (incluindo

zero) dentre K posśıveis sintomas. Isto fica expresso numa matriz binária S de dimensão

N ×K tal que o elemento ij dessa matriz é

Sij =

{
1, se o paciente i tem o sintoma j

0, caso contrário

Explique em palavras cada uma das seguintes expressões matriciais. Inclua as dimensões e

descreva as entradas.



• S 1, onde 1 éo vetor coluna de dimensão apropriada e composto apenas de 1’s: 1 =

(1, 1, . . . , 1)t.

• St 1

• St S
• S St

• ||si − sj ||2 onde stk é a vetor-linha k da matriz S.

() (do curso EE103/CME103: Introduction to Matrix Methods lecionado por Stephen Boyd na

Stanford University, em http://stanford.edu/class/ee103/) Uma rede de computadores

possui K links entre pares de máquinas. Cada link possui um tempo médio de transmissão

de um pacote de tamanho padrão. O tempo médio (ou tempo esperado) do link k é escrito

como βk para k = 1, 2, . . . ,K. O tempo real em cada transmissão particular é um pouco mais

ou um pouco menos que esse tempo médio βk. Deseja-se estimar os valores dos βk e para isto

coleta-se um grande número N de tempos t1, t2, . . . , tN de transmissão de pacotes de tamanho

padrão. Cada tempo está associado com um determinado caminho entre os nós da rede de

forma que o tempo ti é o tempo total gasto para percorrer uma determinada sequência de de

um ou mais links da rede. Este caminho é conhecido para cada um dos tempos tk mas não

setem o tempo gasto em cada link separadamente.

• Explique como você poderia usar a técnica de mı́nimos quadrados para estimar os valores

βk. Especifique o vetor Y e a matriz X do modelo de regressão linear a ser usado.

• Que restrições você precisa impor em K e N para que a estimação seja posśıvel?

• Que caracteŕıstica adicional você precisa impor para que todos os βk sejam estimados?

Se um dos links nunca aparecer nos caminhos da amostra de N tempos, ele pode ser

estimado?

() (Do curso EE133A - Applied Numerical Computing, lecionado por Lieven Vandenberghe na

UCLA, http://www.seas.ucla.edu/~vandenbe/ee133a.html) Neste problema, vamos usar

mı́nimos quadrados para ajustar um ćırculo a um conjunto de pontos (ui, vi) do plano que

estão localizados aproxidamente em torno de uma órbita circular, como na Figura 12.1.

Figura 12.1: Conjunto de n pontos (ui, vi) localizados aproxidamente em torno de uma órbita circular.

Vamos denotar por (uc, vc) as coordenadas do centro do ćırculo e por R o seu raio, todos

desconhecidos. Desejamos obter estimativas para uc, vc e R. Um ponto (u, v) está no ćıculo

se (u− uc)2 + (v− vc)2 −R2 = 0. Quando um ponto encontra-se próximo do ćırculo podemos



esperar a diferença (em valores absolutos) | (u − uc)
2 + (v − vc)

2 − R2 |≈ 0. Se fizermos

esta diferença pequena para o conjunto de todos os n pontos teremos um único ćırculo pas-

sando aproximdamente pelos pontos. Por isto, vamos procurar pelos valores de uc, vc e R que

minimizam

Q(uc, vc, R) =

n∑
i=1

(
(ui − uc)2 + (vi − vc)2 −R2

)2
onde os n pontos Ui, vi) são dados e uc, vc e R são desconhecidos.

• Abra os quadrados (ui − uc)2 e (vi − vc)2 e defina β0 = −(u2
c + v2

c −R2).

• Mostre que este problema pode ser resolvido usando regressão linear. Identifique o vetor

Y, a matriz X e o vetor β = (β0, β1, β2).

• O arquivo DadosCirculo.txt contém as coordenadas dos 50 pontos da Figura 12.1. Use

estes pontos para escrever um pequeno script em Scilab e estimar uc, vc e R.

() A fatoração QR para resolver as equações normais. Vamo comparar a acurácia dos dois

métodos para resolver um problema de mı́nimos quadrados

min
β
||Y −X β||2

Use

X =

 1 1

10−k 0

0 10−k

 e Y =

 −10−k

1 + 10−k

1− 10−k


para k = 6, 7 e 8.

• Escreva as equações normais e obtenha a solução β̂ analiticamente (isto é, no papel, sem

usar o Scilab).

• Resolva o problema de mı́nimos quadrados no Scilab para k = 6, 7 e 8 usando o método

nativo do programa: b = X y. Este método é baseado na fatoração QR.

• Resolva agora usando a expressão matricial b = (X’ * X) (X* y). Compare os resul-

tados com os que você encontrou no item anterior. DICA: Digite format("e", 20); para

o Scilab exibir mais casas decimais.

Algumas soluções

(a) Pacientes e sintomas na matriz S:

• S 1: vetor-coluna de dimensão N com i-ésima entrada é igual ao número de sintomas do

paciente i. Aqui, o vetor coluna 1 é de dimensão K.

• St 1: vetor-coluna de dimensão K com k-ésima entrada é igual ao número de pacientes

com o sintoma k. Aqui, o vetor coluna 1 é de dimensão N . paciente i.

• St S: Matriz quadrada K × K cuja entrada (r, u) é o número de pacientes que têm os

sintomas r e u quando r 6= u. Na diagonal, o elemento (r, r) da matriz é o número de

pacientes com o sintoma r. Esta matriz é simétrica.

• S St: Matriz simétrica e quadrada N ×N cuja entrada (r, u) é o número de sintomas que

os pacientes r e u têm em comum, quando r 6= u. Na diagonal, o elemento (r, r) da matriz

é o número de sintomas do paciente r.

• ||si− sj ||2: número de sintomas que um dos dois pacientes (i ou j) tem, mas o outro não.

(b) Yi = u2
i + v2

i e a matriz X tem sua linha i da forma (1, 2ui, 2vi) com β = (β0, β1, β2) =

(R2 − u2
c − v2

c , uc, vc). Script scilab:



plot(u, v, "o");

a=gca(); // get the handle of the current axes

a.isoview="on"; // set the two axes with equal scale

y = u.^2 + v.^2; // vetor y

X = [ones(50,1), 2*u, 2*v]; // matriz X

b = (X’*X) \ (X’*y); // coeficientes de minimos quadrados

b

uc = b(2);

vc = b(3);

R = sqrt(b(1)+ uc^2 + vc^2);

clf();

t = linspace(0, 2*%pi, 1000);

plot(u, v, "o", R * cos(t) + uc, R * sin(t) + vc, "-");

a=gca(); // get the handle of the current axes

a.isoview="on";

(c) Usando a expressão da solução de mı́nimos quadrados, temos:

β̂ =
(
X′ X

)−1 (
X′ Y

)
=

[ 1 10−k 0

1 0 10−k

] 1 1

10−k 0

0 10−k



−1 [ 1 10−k 0

1 0 10−k

]  −10−k

1 + 10−k

1− 10−k




=

[
1

−1

]
Verifique agora as diferentes opç oes dispońıveis no Scilab. VOcê verá que apenas o cálculo

numérico feito usando a decomposição QR fornece a resposta correta:

k = -8;

X = [1 1; 10^k 0; 0 10^k];

y = [-10^k; 1 + 10^k; 1 - 10^k];

b1 = X \ y;

b2 = inv(X’*X)*X’*y;

b3 = (X’ * X) \ (X’ * y);

format("e", 20);

b1

b2

b3

(d) Um problema com seno . Por figura.
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Caṕıtulo 13

Regressão Loǵıstica

(a) No modelo de regressão loǵıstica, a probabilidade de sucesso na execução de tarefas por crianças

de idade x é dada por

p(x) =
1

1 + exp(−β(x− µ))
.

• Verifique que p(µ) = 0.5.

• Verifique que log(p(x)/(1− p(x))) = β(x−µ). Uma vantagem desta escala de log da odds

é não ter limites (como 0 e 1). De fato, trace um gráfico de log(p/(1− p)) versus p. Veja

que log(p/(1− p)) pode ser positivo, negativo, zero...

• Verifique que a derivada de p(x) com relação a x avaliada no ponto x = µ é igual a β/4.

Assim, o valor de β diz qual é a taxa de variação de p(x) no “ponto central” da loǵıstica.

• Responda então quais das seguintes opções é uma interpretação correta para o parâmetro

µ:

– µ é a idade média em que as crianças executam a tarefa.

– Aproximadamente 50% das criançcas com idade µ executam a tarefa.

– µ é a idade em que uma criança tem 50% de chance de executar a tarefa.

– Dado que uma criança que executa a tarefa, com 50% de chance ela tem idade µ.

– Aproximadamente 50% das crianças com idade x ≤ µ executam a tarefa.

• Suponha que, além da idade, exista também efeito de sexo. Para a iésima criança, seja si
uma variável binária indicando se ela é do sexo masculino (si = 0) ou do sexo feminino

(si = 1). O modelo simples é expandido para

pi = g(xi, si) =
1

1 + exp(−β0 − β1xi − β2si))
.

Verifique que este modelo implica que a odds de ter sucesso no caso feminino é igual a

odds de ter sucesso no caso masculino multiplicada por eβ2 . Isto é, verifique que

p(x, 1)

1− p(x, 1)
=

p(x, 0)

1− p(x, 0)
eβ2
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Assim, o efeito de passar de masculino para feminino é multiplicar a razão de chances

masculina por eβ2 . Suponha, por exemplo, que β2 = 1.2. A odds feminina igual a

eβ2 = 3.32 vezes a odds masculina (digamos, 2 para 98).



Caṕıtulo 14

Regularização

Aqui vao os exercicios
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Caṕıtulo 15

Máxima Verossimilhança

(a) Suponha que X1, X2, . . . , Xn sejam v.a.’s i.i.d. com distribuição Poisson com parâmetro θ.

Obtenha o MLE de θ. Supondo que n = 4 e que as observações tenham sido 3, 0, 1, 1 diga qual

o valor do MLE.

(b) No Brasil, o Ministério da Previdência Social assegura um benef́ıcio de aux́ılio-doença ao

trabalhador que paga pelos dias em que ele foi impedido de trabalhar por doença ou acidente.

Como parte dos pagamentos é efetuado pelas empresas, um sindicato patronal de empresas de

ônibus urbano de certa cidade contratou uma consultoria atuarial para analisar o número de

faltas ao trabalho por doença. Dados de 20 empresas de ônibus urbano foram coletados.

O número de dias faltosos na empresa i é denotado por Yi e depende do tamanho da em-

presa: tudo o mais igual, esperamos ver mais dias faltosos numa empresa enorme, com muitos

funcionários do que numa empresa pequena, com poucos funcionários. Vamos mensurar o

tamanho da empresa pelo número de homem-hora trabalhado no peŕıodo de observação. Este

número de homem-hora é representado por hi e é medido em unidades de 10 mil horas. Assim,

hi = 3.5 representa 35 mil homens-horas. Quanto maior hi, maior tende a ser o número de

dias parados pois a exposição ao risco é maior na empresa com hi maior.

Para cada empresa defina o parâmetro λi que representa o número médio ou esperado de dias

faltosos na empresa i por cada 10 mil homens-hora. Veja que 12 homens trablhando 40 horas

por semana ao longo de 21 = 30−9 dias por mês dá um total de 12×40×21 = 10080. Assim,

grosseiramente, 10 mil homens/horas representam 12 homens trabalhando em tempo integral

num mês.

O modelo estat́ıstico para os dados é que Y1, . . . , Y20 são independentes. Entretanto, essas

variáveis aleatórias não são identicamente distribúıdas pois os valores de h1, . . . , h20 são dife-
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rentes. Assim, supõe-se que

Yi ∼ Poisson(λi) ou Poisson(hiθ)

para i = 1, . . . , 20. Os dados são do seguinte tipo:

Empresa hi yi

1 94.5 5

2 15.7 1

3 62.9 5

... ... ...

O interesse é em fazer inferência sobre o valor desconhecido θ, a taxa (por 10 mil homam-hora)

de dias ausentes por doença nas empresas. Em particular, para uma nova empresa que vai

fazer seguro-doença para cobrir faltas de empregados, é preciso saber qual a expectativa de

faltas durante um mês se ela tem um certo número h de homens-hora de trabalho.

Calcule:

• o EMV de θ.

• O EMV é não-viciado?

• Calcule o número de informação de Fisher I(θ).

• É verdade que a informação In(θ) com n observações é igual a n vezes a informação com

uma única informação? Como a informação aumenta com n?

• Suponha que os dados sejam esses abaixo:

h <- c(118.3, 13.4, 68.3, 141.6, 113.1, 63.6, 135.5, 107.5, 35.2,

28.1, 34.7, 42.5, 139.7, 140.4, 79.2, 148.2, 28, 72.4, 50.9, 89.1)

y <- c(8, 0, 6, 18, 7, 6, 13, 4, 7, 4, 0, 3, 26, 10, 4, 15, 7, 10,

9, 14)

Usando um diagrama de dispersão, verifique se existe associação entre h e y. Estime θ

usando o MLE.

(c) Vinte empresas de transporte urbano de passageiros via ônibus foram analisadas do ponto de

vista dos acidentes de trânsito ocorridos ao longo do peŕıodo de observação. Vamos assumir

que as contagens do número de acidentes em cada empresa siga uma distribuição de Poisson

com valor esperado θihi onde hi é o número total de quilômetros que o conjunto de ônibus

da empresa i trabalhou no peŕıodo. O valor hi é medido em unidades de 1000 quilômetros de

forma que, se hi = 3.2, isto significa que os ônibus da empresa i rodaram 3200 quilômetros no

peŕıodo de observação.

O parâmetro θi é a taxa de acidentes (por 1000 quilômetros rodados) e ele pode variar entre

as empresas. Deseja-se verificar se esta variação pode ser devida à algumas caracteŕısticas que

distinguem as empresas. Em particular, o interesse estava focado em duas caracteŕısticas. As

empresas podem ser classificadas em quatro grupos distintos e esperamos que o valor de θi
seja diferente nesses quatro grupos. As empresas são classificadas em 4 grupos de acordo com

as seguintes categorias:

• Algumas empresas promovem cursos de treinamento regulares para aprimorar as habili-

dade de dirigir de forma segura e responsável. Seja Z1 = 0 se a empresa promove estes

cursos e Z1 = 1, caso contrário.

• Z2 = 0 se a empresa cobra de cada motorista responsável por um acidente parte das

perdas causadas (o valor cobrado é limitado a um máximo) e Z2 = 1, caso contrário



No caso de Z2, se o motorista envolvido num acidente não é considerado culpado do mesmo, a

cobrança não é feita. A cobrança também é limitada a um máximo de 1 salário mensais. Em

cada mês, até um máximo de 10% do salário é descontado da folha de pagamentos.

Espera-se que empresas com Z1 = 1 e Z2 = 1 tenham θi maiores que aquelas com Z1 = 0 e

Z2 = 0. Empresas com Z1 = 0 e Z2 = 1 ou Z1 = 1 e Z2 = 0 seriam casos intermediários.

Pode-se pensar que a variável Z1 representa uma políıtica de prevenção de acidentes enquanto

a variável Z2 representa uma poĺıtica de punição por condução imprudente.

É claro que, mesmo dentro de um dos grupos (Z1 = 1 e Z2 = 1, por exemplo) as empresas

não são idênticas e portanto seus θi’s podem diferir. Entretanto, vamos supor que a maior

parte das diferenças entre seus θi’s é devida às poĺıticas de prevenção e de punição. Ainda

sobraria um reśıduo de causas não controladas tornando os θi’s dentro de cada um dos 4 grupos

ligeiramente diferentes. No entanto, nós vamos ignorar estas diferenças residuais e supor que

empresas numa mesma categoria tenham θi’s idênticos.

Queremos agora estimar o impacto dessas poĺıticas de prevenção/punição na redução do

número de faltas. Existe algum impacto? Qual poĺıtica é mais eficaz? Como estudar isto?

Uma possibilidade é fazer uma análise separada para cada um dos 4 grupos posśıveis. Outra

alternativa muito melhor é fazer um único modelo em que todos os quatro grupos estejam

presentes e com parâmetros medindo o impacto dos programas de prevenção/punição. Para

isto, vamos assumir que

Yi ∼ Poisson(hiθi)

para i = 1, . . . , 20 que elas sejam v.a.’s independentes.

Existem quatro valores posśıveis para θi, dependendo da categoria à qual a empresa i pertence.

Vamos supor que, ao passar de Z1 = 0 para Z1 = 1 o valor de θi seja aumentado por um fator

multiplicativo. O mesmo ao passar de Z2 = 0 para Z2 = 1. Isto é, supomos que

θi = eβ0 eβ1Zi1 eβ2Zi2 = eβ0+β1Zi1+β2Zi2 =


eβ0 , if Zi1 = 0 and Zi2 = 0

eβ0eβ1 , if Zi1 = 1 and Zi2 = 0

eβ0eβ2 , if Zi1 = 0 and Zi2 = 1

eβ0eβ2eβ1 , if Zi1 = 1 and Zi2 = 1

onde Zi1 e Zi2 são os valores das variáveis independentes para a empresa i. Assim, se a empresa

estiver no grupo Z1 = 0, Z2 = 0, ela terá θi = eβ0 . Se ela não tiver cursos de treinamento

(Zi1 = 1) e tiver a poĺıtica de punição (Zi2 = 0), ela terá uma taxa de acidentes por 10

mil quilômetros igual a eβ0+β1 = eβ0eβ1 . Assim, ela tem a sua taxa θi como sendo a taxa

eβ0 do grupo de referência formado por Z1 = 0, Z2 = 0 multiplicada por eβ1 . Se β1 > 0,

teremos eβ1 > 1 e a taxa do grupo Z1 = 1, Z2 = 0 será maior que a do grupo de referência

Z1 = 0, Z2 = 0. Se β1 < 0, teremos 0 < eβ1 < 1, reduzindo a taxa do grupo de refereência.

Assim, o parâmetro β1 representa o efeito da poĺıtica de prevenç ao. Do mesmo modo, o

parâmetro β2 representa o efeito da poĺıtica de puniç ao.

Os dados de hi e yi são são os seguintes:

h <- c(118.3, 13.4, 68.3, 141.6, 113.1, 63.6, 135.5, 107.5, 35.2,

28.1, 34.7, 42.5, 139.7, 140.4, 79.2, 148.2, 28, 72.4, 50.9, 89.1)

y <- c(8, 0, 6, 18, 7, 6, 13, 4, 7, 4, 0, 3, 26, 10, 4, 15, 7, 10,

9, 14)

Os dados de Z1 e Z2 são os seguintes:



Z1 <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

Z2 <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1),

• Descreva o modelo estat́ıstico.

• Interprete os parâmetros do modelo. Para isto, verifique qual o efeito em E(Yi) de uma

empresa mudar de uma categoria para outra categoria. Compare o valor de θi e de log(θi)

para uma empresa que tenha Z1 = 0 e Z2 = 0 e outra empresa com Z1 = 1 e Z2 = 0.

E com uma empresa com Z1 = 1 e Z2 = 1. Faça comparações entre todos os 6 tipos de

pares de empresas posśıveis.

• Obtenha o EMV e a MATRIZ 3×3 de informação de Fisher para os parâmetros do modelo.

• Obtenha o EMV e a MATRIZ 3×3 de informação de Fisher para os parâmetros eβ0 , eβ1 , eβ2 .

(d) Considere um modelo estat́ıstico para dados de sobrevivência que supõe que X1, X2, ..., Xn

são i.i.d. com distribuição exponencial parametrizada por λ. Suponha que, com n = 10, os

dados observados sejam os seguintes: 1.21, 0.15, 2.02, 0.37, 2.55, 2.20, 1.06, 0.10, 0.35, e 0.15.

Use o conjunto de comandos R dados abaixo para desenhar a função de verossmilhança para

o parâmetro λ. Procure entender o que cada comando está fazendo.

dados <- c(1.21,0.15,2.02,0.37,2.55,2.20,1.06,0.10,0.35,0.15)

lambda <- seq(0,3,length=300)

veross <- (lambda^10) * exp(-lambda * sum(dados))

plot(lambda,veross,type="l")

Os comandos abaixo sobrepõem uma segunda curva de verossimilhança baseada numa posśıvel

segunda amostra independente da primeira e gerada pelo mesmo mecanismo.

dados2 <- c(0.08,2.72,0.04 0.27 0.99 0.25 0.39 1.84 1.60 3.51

veross2 <- (lambda^10) * exp(-lambda * sum(dados2))

lines(lambda,veross2,lty=2)

Construa agora uma função que recebe os dados da amostra como entrada e que retorna o

gráfico da veromilhança para λ ∈ (a, b).

veross.exp <-function(x, a, b)

{

# funcao para desenhar a funcao de verossimilhanca

# para dados exponencais

# INPUT: x = dados de entrada

ene <- length(x)

lambda <- seq(a,b,length=300)

veross <- (lambda^ene) * exp(-lambda * sum(x))

plot(lambda, veross, type= "l",ylab= "verossimilhanca")

title("Funcao de verossimilhanca para dados exponenciais")

return()

}

Gere um conjunto de dados de uma exponencial com um parâmetro λ num intervalo (a, b) a

sua escolha. Chame a função acima com os dados que você gerou e verifique se o máximo

da função de verossimilhança fica próximo do valor λ que você escolheu. Repita o exerćıcio

escolhendo diferentes tamanhos n de amostra.



(e) A distribuição exponencial será usada como modelo para o tempo de sobrevida de pacientes

diagnosticados com certo tipo de câncer. Sabe-se que a distribuição de probabilidade do tempo

de sobrevida depende do estágio em que o câncer foi diagnosticado e do sexo do indiv́ıduo.

Considere duas variáveis independentes x1 e x2 medidas em cada indiv́ıduo. Para o i-ésimo

indiv́ıduo, xi1 = 1, se ele é homem, e xi1 = 0, se mulher. A medida xi2 é um valor cont́ınuo

entre 1 a 10 e mede o estágio do câncer no momento do diagnóstico, um estágio mais avançado

correspondendo a valores maiores.

Um modelo estat́ıstico para este problema supõe que Y1, . . . , Yn sejam variáveis aleatórias

independentes mas não identicamente distribúıdas. O valor esperado E(Yi) = 1/λi depende

dos valores de xi1 e de xi2. Isto é, cada indiv́ıduo tem uma distribuição própria para o seu

tempo de vida adicional, uma exponencial com valor esperado 1/λi que depende de seu sexo

e do estágio do seu câncer no momento do diagnóstico. Os dados na tabela 15.1 constituem

uma amostra de 12 indiv́ıduos com os respectivos valores de yi, xi1, e xi2.

i 1 2 3 4 5 6 7 8 9 10 11 12

yi 3.19 16.87 24.65 2.04 5.73 1.03 6.02 42.41 36.08 7.34 24.88 5.90

xi1 0 0 0 0 0 1 1 1 1 1 1 1

xi2 11 67 92 32 85 36 20 69 58 47 100 72

Tabela 15.1: Tabela com tempos de vida (em meses) de 12 indiv́ıduos após diagnóstico com câncer.

Um modelo que é muito usado é o modelo linear generalizado que adota a seguinte relação

entre o parâmetro λ e as caracteŕısticas x1 e x2:

λi = exp(β0 + β1xi1 + β2xi2)

onde θ = (β0, β1, β2) é o parâmetro desconhecido. Dessa forma, a distribuição de probabilidade

do tempo sobrevida Yi de um dado indiv́ıduo dependem apenas de seu sexo e do estágio da

doença e

E(Yi) =
1

λi
= e−(β0+β1xi1+β2xi2)

Podemos também escrever

E(Yi) = e−β0 e−β1xi1 e−β1xi1

= e−β0
(
e−β1

)xi1 (
e−β2

)xi2
= b0 b

xi1
1 bxi22 onde bj = eβj

=

{
b0b

xi2
2 , se i é mulher

b0b1b
xi2
2 , se i é homem

i. Suponha que θ = (β0, β1, β2) = (−2.0,−0.4,−0.005). Suponha que os valores de x2

variam entre 10 e 100 para os diversos indiv́ıduos de uma população de interesse. Num

único gráfico, trace duas curvas que mostrem a relação entre E(Y ) versus x2 para homens

e para mulheres.

ii. V ou F: Considere dois indiv́ıduos no mesmo estágio x2 da doença mas de sexos diferentes.

Para obter o tempo esperado de sobrevida do homem basta somar b1 = exp(−β1) ao tempo

esperado de sobrevida da mulher.

iii. V ou F: Suponha que β1 > 0. Por exemplo, suponha que β1 = 0.2. Então o fato de ser

homem reduz o tempo esperado de sobrevida pelo fator exp(−0.2) ≈ 0.82 (isto é, reduz

em aproxidamente 18%) em relação ao tempo esperado de uma mulher com o mesmo valor

de x2.



iv. V ou F: Sejam Y1 e Y2 os tempos esperados de sobrevida de um homem e uma mulher,

respectivamente, ambos com x2 = 50. Então E(Y1) = eβ1E(Y2). Entretanto, se X2 não

for igual a 50 essa relação entre E(Y1) e E(Y2) não é válida.

v. Sejam Yi e Yj os tempos de sobrevida de dois homens com xi2 = 50 e xj2 = 50 + x. O

efeito de passar do estágio x2 = 50 para o estágio x2 = 50 + x pode ser explicado como:

multiplique o tempo esperado de vida de Yi por bx2 = exp(−β2x).

vi. O efeito em E(Y ) de aumentar em x unidades o estágio x2 da doença entre os homens é

diferente do efeito desse mesmo aumento entre as mulheres.

vii. Obtenha a densidade conjunta das observações. Este modelo pertence à famı́lia exponen-

cial de distribuições?

viii. Qual a estat́ıstica suficiente para estimar θ?

ix. Para obter o estimador de máxima verossimilhança (EMV) de θ, encontre a equação de

verossimilhança mostrando que

Dl(θ) =

 ∂l/∂β0

∂l/∂β1

∂l/∂β2

 =

 −n+
∑

i yiλi(θ)

−nx̄1 +
∑

i yixi1λi(θ)

−nx̄2 +
∑

i yixi2λi(θ)

 =

 0

0

0


onde x̄j =

∑
i xij/n.

x. Mostre que a matriz com as derivadas parciais de segunda ordem é dada por

D2l(θ) =

 ∂2l/∂β2
0 ∂2l/∂β1β0 ∂2l/∂β2β0

∂2l/∂β0β1 ∂2l/∂β2
1 ∂2l/∂β2β1

∂2l/∂β0β2 ∂2l/∂β1β2 ∂2l/∂β2
2


= −


∑

i yiλi(θ)
∑

i yixi1λi(θ)
∑

i yixi2λi(θ)∑
i yixi1λi(θ)

∑
i yix

2
i1λi(θ)

∑
i yixi1xi2λi(θ)∑

i yixi2λi(θ)
∑

i yixi1xi2λi(θ)
∑

i yix
2
i2λi(θ)


xi. Se β1 = β2 = 0 caimos no caso usual de variáveis i.i.d. exponenciais com parâmetro

comum λ = exp(β0). A estimativa de máxima verossimilhança de λ é 1/y e portanto

β0 pode ser estimado como − log(y). Use θ(0) = (y, 0, 0) como valor inicial para θ num

procedimento de Newton-Raphson para obter a estimativa de máxima verossimilhança de

θ. Minhas contas produziram θ̂EMV = (−0.614,−0.629,−0.026).

xii. Interprete numericamente o efeito de sexo e do estágio no tempo esperado de sobrevida

E(Y ).

xiii. Os dados foram gerados por mim usando θ = (−2.0,−0.4,−0.005). Avalie a diferença

entre sua estimativa e o valor verdadeiro do parâmetro.

xiv. Obtenha a matriz 3× 3 de informação de Fisher I(θ) = −E(D2l(θ)):

I(θ) = −E
[
D2l(θ)

]
= n

 1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2


onde x2

j =
∑

i x
2
ij/n e x1x2 =

∑
i xi1xi2/n.

xv. Obtenha intervalos de confiança de 95% para β1 e β2.

(f) Algoritmo EM: Leia o exemplo de misturas gaussianas (MoG ou Misture of Gaussians, em ma-

chine learning) no final da página da Wikipedia: http://en.wikipedia.org/wiki/Expectation-maximization_



algorithm. Usando os dados do Old Faithful dataset (pegue os dados, por exemplo, em

http://tinyurl.com/cndlsp3), estime os parâmetros de uma mistura de duas gaussianas

bivariadas usando o algoritmo EM.

(g) Suponha que X1, . . . , Xn forme uma amostra aleatória de v.a.’s i.i.d. com uma das seguintes

densidades (caso cont́ınuo) ou função de probabilidade (caso discreto). Encontre o EMV de θ

e verifique se ele é função da estat́ıstica suficiente para estimar θ em cada caso.

• f(x; θ) = θxe−θ/x! para x = 0, 1, 2, . . . e com θ ∈ (0,∞) (função de probabilidade Poisson).

• f(x; θ) = θe−θx para x > 0 com θ ∈ (0,∞) (densidade exponencial).

• f(x; θ) = θcθx−(θ+1) para x ≥ c com θ ∈ (0,∞) (densidade Pareto).

• f(x; θ) =
√
θx−

√
θ−1 para 0 ≤ x ≤ 1 com θ ∈ (0,∞) (densidade beta(

√
θ, 1)).

• f(x; θ) = (x/θ)2 exp
(
−x2/(2θ2)

)
para x > 0 com θ ∈ (0,∞) (densidade Rayleigh).

• f(x; θ) = θcxc−1 exp(−θxc) para x ≥ 0 com θ ∈ (0,∞) e c > 0 sendo uma constante

conhecida (densidade Weibull com c fixo).

• f(x; θ) = θ(1 − θ)x−1 para x = 1, 2, . . . e com θ ∈ (0,∞) (função de probabilidade

geométrica).

• f(x; θ) = θ2xe−θx para x > 0 com θ ∈ (0,∞) (densidade Gama(2, θ)).

(h) Sejam X1 e X2 duas v.a.’s independentes com esperança comum θ ∈ R e com Var(X1) = σ2 e

Var(X2) = σ2/4. Isto é, X1 e X2 tendem a oscilar em torno de θ mas X2 possui um desvio-

padrão duas vezes menor que X1. Podemos usar estes dois pedaços de informação para estimar

θ. Podemos, por exeplo, formar uma combinação linear de X1 e X2 propondo o estimador

θ̂ = c1X1 + c2X2 onde C − 1 e c2 são constantes conhecidas. Por exemplo, podemos pensar

em usar θ̂ = (X1 +X2)/2 ou então usar θ̂ =
2X1

3
+
X2

3
ou até mesmo θ̂ = 4X1 − 2X2.

Mostre que θ̂ = c1X1 + c2X2 é não-viciado para estimar θ (qualquer que seja o valor de θ ∈ R)

se, e somente se, c1 + c2 = 1. Dentre os estimadores da forma θ̂ = c1X1 + c2X2 e que são

não-viciados para estimar θ, encontre aquele que minimiza o MSE, dado por E(θ̂ − θ)2.

(i) Generalize o problema anterior para n v.a.’s: Sejam X1, . . . , Xn v.a.’s independentes com

esperança comum θ e com a variância de Xi igual a σ2/ai, sendo os ai > 0 conhecidos e

com σ2 > 0 desconhecido. Considere a classe de todos os estimadores lineares de θ. Isto é,

considere a classe de todos os estimadores que podem ser escritos como θ̂ =
∑

i ciXi onde ci
são contantes.

Mostre que na classe dos estimadores lineares, θ̂, é não-viciado para estimar θ se, e somente

se
∑

i ci = 1. Dentre todos os estimadores lineares
∑

i αiXi de θ que são não-viciados (isto é,

satisfazendo
∑

i αi = 1), encontre aquele que minimiza o MSE.

(j) Suponha queX1, X2, . . . , Xn sejam v.a.’s i.i.d. com distribuição Poisson com parâmetro comum

θ. É posśıvel mostrar matematicamente que

θ̂1 = X̄ =
X1 + . . .+Xn

n

e

θ̂2 =
1

n− 1

n∑
i+1

(Xi − X̄)2



são ambos estimadores não viciados para estimar θ. Considere adicionalmente um terceiro

estimador não-viciado para θ:

θ̂3 = (θ̂1 + θ̂2)/2

Faça um pequeno estudo de simulação para identificar qual dos três possui um erro de es-

timação MSE menor. Para isto, fixe o valor de θ = 3. Gere um grande número de amostras

(digamos, 10 mil), cada uma delas de tamanho n = 10. Para cada amostra calcule os valores

dos três estimadores de θ. Estime o MSE E(θ̂j − θ)2 de cada estimador usando a média das

diferenças ao quadrado entre os 10 mil valores de θ̂j e θ. Qual dos estimadores produz um erro

MSE menor? Isto significa que o melhor estimador teve SEMPRE o seu valor mais próximo

do verdadeiro valor do parâmetro θ? Estime a probabilidade de que, baseados numa mesma

amostra, θ̂2 esteja mais próximo de θ que θ̂1.

A conclusão muda se você tomar n = 20 e θ = 10?

(k) Responda V ou F para as afirmações abaixo.

• Como o parâmetro θ não pode ser predito antes do experimento, ele é uma variável

aleatória.

• Num problema de estimação de uma população com distribuição normalN(µ, σ2) encontrou-

se x = 11.3 numa amostra de tamanho n = 10. A distribuição de probabilidade desse

valor 11.3 é também uma normal com média µ e variância σ2/10.

• Suponha que X esteja sendo usado como estimador da média populacional µ. Como

a variância de X decresce com o tamanho da amostra, então toda estimativa obtida a

partir de uma amostra de tamanho 15 possui erro de estimação menor que qualquer outra

estimativa obtida a partir de uma amostra de tamanho 10.

• Um estimador não viciado é sempre melhor que um estimador viciado.

• Considere uma estimativa da média populacional µ baseada na média aritmética de uma

amostra de tamanho 10 e outra estimativa com uma amostra de tamanho 15. Nunca deve-

mos preferir a estimativa baseada na amostra de 15 pois a estimativa baseada na amostra

de tamanho 10 tem alguma chance de estar mais perto do verdadeiro valor desconhecido

de µ.

(l) Sejam X1, . . . , Xn i.i.d.’s com distribuição exponencial com parâmetro λ. O interesse é estimar

E(Xi) = 1/λ. Suponha que apenas as variáveis Xi’s que ficarem maiores ou iguais a x = 10

sejam observadas. Todas as observações menores que x = 10 são perdidas. Assim, a amostra

final é possui um número 0 < k ≤ n de observações.

O estimador baseado na média amostral da amostra de k variáveis é viciado. Ele subestima

ou superestima sistematicamente E(Xi)? Não precisa calcular o v́ıcio.

A distribuição de Xi DADO QUE X>10 tem a densidade dada por

f(x;λ) =

{
0, se x < 10

λ exp(−λ(x− 10)), se x ≥ 10

Se X1, . . . , Xk é uma amostra desta distribuição TRUNCADA (em que só observamos os Xi’s

maiores que 10), encontre o MLE de λ.

RESP: O MLE é k/
∑

i(xi − 10).



(m) Suponha que será coletada uma amostra de observações independentes Y com distribuição

normal. Elas não são identicamente distribúıdas. A média de Y varia de acordo com o valor

de uma covariável x de forma que Y = α + βx + ε. onde ε possui distribuição normal com

média 0 e variância σ2. Os valores posśıveis de x são três: baixo (x = −1), médio (x = 0) e

alto (x = 1). Os valores de x são fixios e conhecidos. Eles não são variáveis aleatórias.

São feitas três observações em cada ńıvel de x. Podemos representar os dados na tabela e no

gráfico dos valores observados de Y versus x que Figura 16.1.
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Figura 15.1: Gráfico dos valores observados yij versus xj .

xj = −1 xj = 0 xj = 1

Y11 Y21 Y31

Y12 Y22 Y32

Y13 Y23 Y33

Vamos representar as observações como Yij = α+ βxj + εij onde xj = −1, 0 ou 1, e os εij são

i.i.d. com distribuição N(0, σ2).

• é correto dizer que (Yij |xj) ∼ N(α + βxj , σ
2) e que as variáveis Yij são independentes?

DICA: não existe pegadinha aqui.

• Calcule E(Yij |xj) e Var(Yij |xj) nos três casos: xj = −1, xj = 0 e xj = 1. A variância

depende do valor de xj? E o valor esperado?

• Deseja-se um estimador para E(Y |xj = 0) = α quando x = 0. Um primeiro estimador

bem simples é proposto:
Y21 + Y22 + Y23

3
Ele simplesmente toma a média das três observações quando x = 0. Mostre que este

estimador é não viciado para α e encontre sua variância. Qual o risco quadrático desse

estimador? OBS: Risco quadrático de um estimador é o seu MSE.

• Um segundo estimador é proposto:

Y11 + Y12 + Y13 + Y21 + Y22 + Y23 + Y31 + Y32 + Y33

9

Ele toma a média aritmética simples de todas as 9 observações dispońıveis. Mostre que

este estimador também é não viciado para α e encontre sua variância.

• Qual dos dois estimadores é prefeŕıvel?

• O interesse agora é em estimar β, o quanto Y aumenta em média quando passamos de

um ńıvel de x para o ńıvel seguinte. Um primeiro estimador é o valor médio de Y quando

x = 0 menos o valor médio de Y quando x = −1. Isto é,

T1 = Y0 − Y−1 =
Y21 + Y22 + Y23

3
− Y11 + Y12 + Y13

3

Mostre que T1 é uma combinação linear
∑

ij aijYij dos Y ’s e identifique os valores de aij .



• Mostre que E(T1) é não-viciado para β e ache sua variância.

• De maneira análoga, defina

T1 = Y1 − Y0

e ache sua média e variância.

• Um terceiro estimador, melhor que os dois anteriores, leva em conta apenas as observações

nos dois extremos, quando x = −1 e x = 1.

T3 =
1

2
Y1 − Y−1

Mostre que T3 também é uma combinação linear dos Y ’s, que é não-viciado e que possui

risco quadrático (ou MSE) menor que T1 e T2.

(n) Numa seguradora, foi feita uma análise de 12000 apólices de seguros de automóveis emitidas

para proprietários individuais. Como parte da análise, em cada apólice foram considerados

a idade x (em anos) do motorista (variando de 18 a 60 anos) e o resultado Y em termos de

sucesso (Y = 1) do motorista em conduzir o véıÂculo por um ano sem sinistros de nenhum

tipo. Caso contrário, registra-se que houve um fracasso (Y = 0).

O interesse é entender como a idade está associada com a probabilidade de sucesso. Decide-se

usar um modelo loǵıÂstico para modelar estes dados onde p(x) = P(Y = 1|x) = 1
1+e−(w0+w1x)

.

• Esboce num gráfico qual é a relação esperada pelo modelo entre a idade x e a probabilidade

p(x) de sucesso.

• Escreva a log-verossimilhança para este problema.

• Obtenha o vetor gradiente necessário para obter o MLE.

• Suponha que o interesse do pesquisador é estimar a idade x na qual a probabilidade dos

segurados terem sucesso é maior ou igual a 0.90. Escreva essa idade como função dos

parâmetros do modelo acima.

Solução: Espera-se uma curva em forma de S com p(x) decrescendo com x pois o risco de

acidente diminui com a idade, fruto de maior experiência no volante e menor impulsividade.

Além disso, podemos esperar nas duas idades extremas probabilidades não saturadas, longe de

seus valores extremos 0 e 1. Assim, antecipamos que p(18) esteja substancialmente abaixo de

1 e que p(50) esteja substancialmente acima de zero.Um esboço posśıvel da função p(x) está

na Figura ??.

A log-verossmilhança do vetor de parâmetros (w0, w1) é:

`(w0, w1) = log

(∏
i=1

12000p(xi)
yi(1− p(xi))1−yi

)
(15.1)

=
∑
i=1

12000 (yi log(p(xi)) + (1− yi) log(1− p(xi))) (15.2)

=
∑
i:yi=1

log(p(xi)) +
∑
i:yi=0

log(1− p(xi)) (15.3)

=
∑
i=1

12000 (yi log(p(xi)) + (1− yi) log(1− p(xi))) (15.4)

= w0

12000∑
i=1

yi + w1

12000∑
i=1

xiyi −
∑
i

log(1 + ew0+w1xi) (15.5)



O vetor gradiente é o vetor das derivadas parciais com respeito aos parâmetros (w0, w1).

Contas rotineiras levam ao resultado desejado:

∇`(w0, w1) =

[
∂`
∂w0
∂`
∂w1

]
=


12000∑
i=1

(yi − p(xi))
n∑
i=1

xi(yi − p(xi))


Seja x∗ a idade tal que p(x∗) = 0.90. Então

1

1 + e−(w0+w1x∗)
= 0.90→ −(w0 + w1x

∗) = log(0.1/0.9)→ x∗ =
1

w1
(log(9)− w0)

Tendo estimativas de w0 e w1, encontramos uma estimativa da idade limite x∗

(o) Uma operadora de planos de saúde sabe que o custo médio das internações varia muito de

acordo com a idade do cliente. Aqueles com mais de 70 anos de idade acarretam a maior parte

dos custos embora eles tenham uma participação pequena no portfolio de clientes.

A operadora decidiu investigar um pouco mais a incidência de internações entre seus clientes

idosos. Para isto, escolheu uma amostra de clientes com idade acima de 70 anos e obteve o

número de internações que cada um teve nos últimos dois anos. Decidiu-se adotar um modelo

de Poisson para as contagens do número de internações.

Nem todos os selecionados foram clientes por todo o peŕıodo de dois anos. Aqueles que estão

na operadora há pouco tempo devem apresentar, em média, menos internações do que aqueles

que estão na operadora durante os últimos dois anos. Por isto, a média da Poisson deveria

refletir o tempo de permanência no plano de cada cliente. Dessa forma chegou-se ao seguinte

modelo estat́ıstico.

Sejam Y1, . . . , Yn a amostra de clientes. Suponha que essas sejam variáveis aleatórias inde-

pendentes e que Yi ∼ Poisson(λti) onde ti é o tempo de permanência do i-ésimo cliente na

empresa (em meses) e λ > 0 é desconhecido e representa o número esperao de internações por

mês. O interesse é estimar λ a partir dos dados que podem ser representados como na tabela

abaixo:

i ti yi

1 24 4

2 12 1

3 3 0

4 24 1

. . . . . . . . .

• Pensou-se inicialmente em estimar λ simplesmente tomando o número médio de internações

e dividir pelo tempo de observação de 24 meses. Isto é, T1 = Y /24. Mostre que este es-

timador é viciado para estimar λ a menos que
∑

i ti = 24n. Por exemplo , se todos os

clientes tiverem ti = 24 esta condição seria válida.

• Tentando corrigir o v́ıcio do estimador T1, pensou-se então em adotar

T2 =
Y

t
=
Y1 + . . .+ Yn
t1 + . . .+ tn

Mostre que T2 é não-viciado para estimar λ e encontre seu risco quadrático de estimação.

• Mais tarde, outro analista resolveu considerar o estimador

T3 =
1

n

(
Y1

t1
+ . . .+

Yn
tn

)
Mostre que T3 é não-viciado para estimar λ e encontre seu risco quadrático de estimação.



• É posśıvel dizer que T2 é sempre melhor ou igual a T3 considerando-se os riscos quadráticos

dos dois. Prove isto usando a desigualdade entre a média aritmética e a média harmônica

que diz que
x1 + · · ·+ xn

n
≥ n

1
x1

+ · · ·+ 1
xn

para quaisquer números reais positivos x1, . . . , xn.

Solução: Considerando o estimador T1 inicialmente:

E(T1) = E
(
Ȳ

24

)
=

1

24
E (Y1 + . . .+ Yn) =

1

24n
(E(Y1) + . . .+ E(Yn))

=
1

24n
(λt1 + . . .+ λtn) =

λ

24n
(t1 + . . .+ tn) =

λt̄

24
,

que é igual a λ se, e só se, t̄ = 24.

Considerando o estimador T2:

E(T2) = E
(
Ȳ

t̄

)
=

1

t̄n
E (Y1 + . . .+ Yn) =

λ

t̄n
(t1 + . . .+ tn) = λ .

Portanto, T2 é não-viciado para estimar λ. O seu risco quadrático de estimação é:

MSE(T2, λ) = E
[
(T2 − λ)2

]
= V(T2) + bias2(T2, λ) = V(T2) + 0 = V

(
Y

t

)
=

V(Y )

t
2

=
1

t
2

1

n2
V (Y1 + . . .+ Yn) =

1

t
2

1

n2
[V (Y1) + . . .+ V (Yn)]

=
1

t
2

1

n2
[λt1 + . . .+ λtn] =

λ

n

1

t

O terceiro estimador, T3, tem valor esperado:

E(T3) =
1

n
E
(
Y1

t1
+ . . .+

Yn
tn

)
=

1

n
E
(
E(Y1)

t1
+ . . .+

E(Yn)

tn

)
=

1

n
E
(
λt1
t1

+ . . .+
λtn
tn

)
=

λ

n

(
t1
t1

+ . . .+
tn
tn

)
= λ ,

e portanto, também não-viciado para estimar λ. O seu risco quadrático de estimação é:

MSE(T3, λ) = E
[
(T3 − λ)2

]
= V(T3) =

1

n2

[
V
(
Y1

t1

)
+ . . .+ V

(
Yn
tn

)]
=

1

n2

[
V(Y1)

t21
+ . . .+

V(Yn)

t2n

]
=

1

n2

[
λt1
t21

+ . . .+
λtn
t2n

]
=

λ

n2

[
1

t1
+ . . .+

1

tn

]
=
λ

n
H

onde H é a média harmônica dos tempos assegurados dos clientes:

H =
1

n

(
1

t1
+ . . .

1

tn

)
A comparação entre os riscos de T2 e T3 depende da desigualdade entre a média aritmétmica

e a média harmônica dos tempos ti. Usando a desigualdade mencionada no enunciado, temos

MSE(T2, λ) =
λ

n

1

t
≤ λ

n
H = MSE(T3, λ) .

Em resumo, queremos estimar λ, o número esperado de internações mensais usando as con-

tagens de episódios de internações de clientes expostos a diferentes tempos ti sob o seguro.



O parâmetro λ é a taxa mensal de internações por indiv́ıduo. Temos dois estimadores não-

viciados. O primeiro deles, T2, soma as internações de todos os clientes e divide pelo tempo

total exposto ao risco de todos eles, obtendo uma estimativa intuitivamente simples. O outro,

T3, usa a taxa mensal individual ao calcular Yn/tn e em seguida tira sua média aritmética

simples, também uma estimativa intuitivamente simples. A conclusão é que é prefeŕıvel usar

T2.

(p) Suponha queX1, . . . , Xn sejam n variáveis aleatórias com distribuição de Rayleigh com parâmetro

θ > 0 com densidade dada por

f(x; θ) =

{
0, se x < 0

x/θ2 exp
(
−x2/(2θ2)

)
, se x ≥ 0

Encontre o estimador de máxima verossimilhança de θ.

(q) A distribuição logaŕıtmica serve para modelar contagens em ecologia. Essa distribuição tem

função de probabilidade dada por

P (X = x; θ) =
−θx

x log(1− θ)

para x = 1, 2, . . . onde θ é um parâmetro desconhecido no intervalo (0, 1). Mostre que, se

X1, X2, X3, X4 é uma amostra aleatória da distribuição acima, a estimativa de máxima veros-

similhança θ̂ satisfaz a equação

θ̂ = X(1− θ̂) log(1− θ̂)

onde X é a média aritmética dos dados. Se x1 = 1, x2 = 2, x3 = 3 e x4 = 2, e se você tiver

o valor inicial θ(0) = 0.6, encontre o valor θ(1) do processo iterativo de Newton-Raphson (faça

as contas).

OBS: Como θ ∈ (0, 1), temos − log(1− θ) > 0, mas não faz sentido tomar log(−θ).
Solução: Como θ ∈ (0, 1), temos − log(1− θ) > 0. A log-verossimilhança de θ baseada em n

dados x1, x2, . . . , xn é igual a

`(θ) = log

(
n∏
i=1

θxi

xi(− log(1− θ)

)
= log

(
θ
∑
xi

(− log(1− θ))n
∏
xi

)

=

(∑
i

xi

)
log(θ)−

∑
i

log(xi)− n log (− log(1− θ))

A derivada da log-verossimilhança é a função escore:

`′(θ) =
∂`

∂θ
=

∑
xi
θ

+
n

(1− θ) log(1− θ)

A Figura 15.2 mostra a função log-verossimilhança `(θ) no lado esquerdo e a derivada (ou

função escore no lado direito.

A derivada parcial de segunda ordem é:

`′′(θ) =
∂2`

∂θ2
= −

[∑
xi
θ2

+
n(1 + log(1− θ))

((1− θ) log(1− θ))2

]



Figura 15.2: Log-verossimilhança `(θ) no lado esquerdo e a derivada (ou função escore no lado direito,

considerando a distribuição logaŕıtmica.

A equação de itereção de Newton é

θ(t+1) = θ(t) − `′(θ(t))

`′′(θ(t)) = θ(t) +

∑
xi

θ(t)
+ n

(1−θ(t)) log(1−θ(t))[ ∑
xi

(θ(t))2
+

n(1+log(1−θ(t)))

((1−θ(t)) log(1−θ(t)))
2

]

Considerando a pequena amostra de n = 4 observaçôes com
∑
xi = 8 e começando com o

valor inicial θ(0) = 0.6, encontramos

θ(1) = θ(0) − `′(θ(0))

`′′(θ(0))
= 0.6− 2.4198

−24.7148
= 0.6979

θ(2) = θ(1) − `′(θ(1))

`′′(θ(1))
= 0.6979− 0.4012

−10.3977
= 0.7365

(r) Num estudo de seguro agŕıcola, acredita-se que a produção de trigo Xi da área i é normalmente

distribúıda com média θzi, onde zi é a quantidade CONHECIDA de fertilizante utilizado na

área. Assumindo que as produções em diferentes áreas são independentes, e que a variância é

conhecida e igual a 1 (ou seja, que Xi ∼ N(θzi, 1), para i = 1, . . . , n:

• Encontre o EMV de θ

• Mostre que o EMV é não viciado para θ. Lembre-se que os valores de zi são constantes.

(s) Uma função de interesse quando trabalha-se com ressseguros de perdas X com uma certa

distribuição é a função média do excesso definida como e(a) = E(X − a|X > a). Isto é, e(a) é

o valor médio do excesso de X acima da constante a. Para cada valor a existe um valor de e(a).

Com base numa amostra X1, . . . .Xn de v.a.’s i.i.id., sugerem-se dois posśıveis estimadores para

e(a):

ê(a) =

∑n
i=1XiI(Xi > a)

n
− a

e

ê(a) =

∑n
i=1XiI(Xi > a)∑n
i=1 I(Xi > a)

− a

Um deles é muito ruim e foi proposto por alguém que não entendeu a definição de e(a). Diga

qual é e explique por quê.



(t) Dados de perda geralmente tem caudas pesadas. Suponha que x0 é um valor de franquia

conhecido (isto é, são observadas apenas as perdas que têm valores monetários acima de x0).

Uma possibilidade sempre pensada é usar a distribuição de Pareto com função distribuição

acumulada dada por:

FX(x) = P (X ≤ x) =

{
0, se x ≤ x0∫ x

0 αx
α
0 /y

α+1dy = 1− (x0/x)α , se x > x0

onde α > 0.

• Mostre que a densidade de probabilidade de X é igual a f(x) = αxα0 /x
α+1.

• Se X1, . . . , Xn é uma amostra de v.a.’s i.i.d., obtenha o EMV de α dado por

α̂ =
n∑

i log(xi/x0)
=

1

log
(
n
√
x1x2 . . . xn/x0

)
(u) A distribuição de Gumbel é uma escolha popular para modelar dados de catástrofes natu-

rais tais como enchentes. Temos dados da maior precipitação pluvial diária durante um ano

para o peŕıodo de 1956 a 2001. Suponha que os valores aleatórios X1, . . . , X46 das maiores

precipitações diárias anuais sigam uma distribuição de Gumbel com parâmetros µ e σ e com

densidade dada por

f(x;µ, σ) =
1

σ
exp

(
− x− µ

σ

)
exp

(
−e

x−µ
σ

)
• Mostre que o EMV de µ e de σ são as soluções do sistema de equações simultâneas não-

lineares

µ̂ = −σ̂ log

(
1

n

∑
i

e−xi/σ̂

)

σ̂ =
1

n

∑
i

xi −
∑

i xie
−xi/σ̂∑

i e
−xi/σ̂

• Estimativas para iniciar o procedimento numérico e obter o EMV são as estimativas de

momentos e que são dadas por

µ̂ = x̄− 0.45s

σ̂ = s/1.283

onde s é o desvio-padrão amostral. Explique como você faria para obter as estimativas

de máxima verossimilhnça usando estas estimativas iniciais. Monte a equação recursiva

necessária para o procedimento numérico.

(v) Suponha que X1, . . . , Xn forme uma amostra aleatória de v.a.’s i.i.d. com distribuição Poisson

com esperança θ desconhecida.

• Encontre a função escore ∂l
∂θ .

• Considerando a função escore como uma variável aleatória, calcule o seu valor esperado

E( ∂l∂θ ).

• Calcule também a sua variância.

• Calcule a informação de Fisher I(θ) de duas formas distintas: I(θ) = E( ∂l∂θ )2 e como

I(θ) = −E( ∂
2l

∂θ2
).



(w) Repita o exerćıcio acima supondo que X1, . . . , Xn sejam iid com distribuição exp(λ).

(x) Repita o exerćıcio acima supondo que X1, . . . , Xn sejam iid com distribuição Pareto, com

densidade f(x; θ) = θcθx−(θ+1) para x ≥ c com θ ∈ (0,∞). Esta distribuição é muito usada

para modelar dados de reseguro, quando as perdas podem chegar a valores muito grandes.

(y) Suponha que X1, . . . , X5 forme uma amostra aleatória de 23 v.a.’s i.i.d. com distribuição

Poisson com esperança θ = 1.2. No R, o comando rpois(5, 1.2) gerou a amostra x =

(1, 2, 1, 2, 1). Suponha que você não conhecesse este valor verdadeiro de θ.

• Faça um gráfico da função de log-verossmilhança log f(x, θ) = log f((1, 2, 1, 2, 1), θ) versus

θ. Use um intervalo para θ grande o suficiente para cobrir o verdadeiro valor do parâmetro.

• Faça também um gráfico da função escore ∂
∂θ log f(x, θ) = ∂

∂θ log f((1, 2, 1, 2, 1), θ) versus

θ.

• O EMV neste caso é a média aritmética. Portanto, o valor do EMV observado nesta

amostra particular é igual a θ̂ = 7/5. Verifique graficamente que θ̂ = 7/5 é ponto de

máximo da função de log-verossimilhança.

• Verifique graficamente que o verdadeiro valor do parâmetro θ = 1.2 não maximiza a

função de log-verossimilhança.

• Verifique graficamente que θ̂ = 7/5 é o zero da função escore.

• Verifique também que a função escore não se anula no ponto θ = 1.2.



Caṕıtulo 16

Teoria da Estimação Pontual

(a) Três experimentos binomiais independentes são executados de maneira sucessiva. Em cada

um deles, mede-se o número de respostas positivas que um sujeito fornece em certo número de

tentativas. Seja Xi ∼ Bin(ni, θi) o número de sucessos no experimento i. Um est́ımulo é for-

necido no experimento do meio de forma que a probabilidade de sucesso muda no experimento

do meio e retorna para o ńıvel inicial no terceiro experimento. Isto é, assume-se que θ1 = α,

θ2 = α+ β, e que θ3 = α. Sabemos que uma v.a. Y ∼ Bin(n, θ) tem função de probabilidade

P(Y = k) = n!/(k!(n− k)!)θk(1− θ)n−k. Qual é o vetor de parâmetros neste problema?

Suponha agora que o est́ımulo é aumentado no terceiro experimento e que θ3 = α+ 2α, além

de termos θ1 = α e θ2 = α+ β. Qual é o vetor de parâmetros neste problema?

Solução: Denote por pi1, π2 e π3 as probabilidades nos tres experimentos binomiais suces-

sivos. Embora existam três probabilidades envolvidas, elas dependem apenas de dois termos

desconhecidos, α e β. No primeiro caso, temos (π1, π2, π3) = (α, α+ β, α) e no segundo caso,

temos (π1, π2, π3) = (α, α+ β, α+ 2β). Nos dois casos, θ = (α, β), um vetor de dimensão 2. A

ideia intuitiva é que precisamos apenas de dois termos para descrever as três probabilidades.

(b) Imagine uma fabricação de peças cujo diâmetro é uma variável aleatória com distribuição

normal com parâmetro µ. Duas amostras de variáveis aleatórias i.i.d., ambas de tamanho 5,

foram retiradas da população e os valores observados são os seguintes:

Amostra 1 5.8 9.8 12.2 14.4 14.5 média = 11.3

Amostra 2 9.7 10.7 12.6 10.7 4.6 média = 9.7

• Qual é a melhor estimativa de µ, a primeira média ou a segunda? Isto é, qual delas possui

menor erro de estimação?
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• A estimativa (11.3 + 9.7)/2 possui erro de estimação menor que a primeira ou segunda

média calculada na tabela?

• E quanto ao estimador T = (X̄1 + X̄2)/2, a média aritmética das amostras 1 e 2? Ele

é melhor que o estimador X̄1? Qual o critério que você usou para decidir sobre essa

pergunta?

• Considerando a primeira amostra acima, calcule a mediana amostral. Ela possui erro de

estimação menor que a média amostral 11.3? Qual das duas estimativas você usuaria?

Por quê?

Solução:

• Sem saber o verdadeiro valor de µ não é posśıvel saber qual das duas estimativas é a melhor.

Elas são apenas duas instãncias (ou estimativas) independentes do mesmo estimador (a

mesma v.a.).

• Como antes, é imposśıvel responder a isto pois não conhecemos µ. Embora o comporta-

mento estat́ıstico da estimativa combinada seja de apresentar uma distância menor a µ

que uma das amostras individuais (com 5 dados), não é garantido que isto aconteça em

toda instaãncia de dados.

• Ao falarmos de estimadires podemos preferir T em relação a X̄1. Seja σ2 a variância

da gaussiana associada com os dados individuais. Então MSE(T, µ) = σ2/10 enquanto

MSE(X̄1, µ) = σ2/5. Assim, MSE(T, µ) é bem menor que MSE(X̄1, µ). Note que

MSE(X̄1, µ) = MSE(X̄2, µ) e portanto não temos como distinguir o comportamento

estat́ıstico de X̄1 e X̄2. Na prática, vamos preferir usar a média das duas estimativas

(11.3 + 9.7)/2 pois ele é a mesma coisa que tomar a média aritmética de todas as 10

observações. O estimator baseado na amostra de tamanho 10 é melhor que o estimador

baseado apenas em 5 observações. Entretanto, embora em geral o estimador baseado em

10 observações tenha uma MSE menor que aquele baseado em 5 observações, isto não

quer dizer que em toda em qualquer duas instâncias de dados (ou duas amostras 1 e 2),

a estimativa combinada seja garantidamente mais próxima de µ que a estimativa baseada

apenas em 5 observações.

• Considerando a primeira amostra, a sua mediana é 12.2. Não é posśıvel saber se esta

mediana amostral está mais próxima de µ que a média aritmética igual a 11.3. Entre-

tanto, se o estimador (v.a.) mediana tiver um MSE maior que o estimador X̄1 (ele tem),

vamos preferir usar a média aritmética na expecativa de que nesta amostra particular o

comportamento usual prevaleça e assim tenhamos um erro menor usando a média ao invés

da mediana.

(c) Sejam X1 e X2 duas v.a.’s independentes com esperança comum θ ∈ R e com Var(X1) = σ2 e

Var(X2) = σ2/4. Isto é, X1 e X2 tendem a oscilar em torno de θ mas X2 possui um desvio-

padrão duas vezes menor que X1. Podemos usar estes dois pedaços de informação para estimar

θ. Podemos, por exeplo, formar uma combinação linear de X1 e X2 propondo o estimador

θ̂ = c1X1 + c2X2 onde c1 e c2 são constantes conhecidas. Por exemplo, podemos pensar em

usar θ̂ = (X1 +X2)/2 ou então usar θ̂ =
2X1

3
+
X2

3
ou até mesmo θ̂ = 4X1 − 2X2.

Mostre que θ̂ = c1X1 + c2X2 é não-viciado para estimar θ (qualquer que seja o valor de θ ∈ R)

se, e somente se, c1 + c2 = 1. Dentre os estimadores da forma θ̂ = c1X1 + c2X2 e que são

não-viciados para estimar θ, encontre aquele que minimiza o MSE, dado por E(θ̂ − θ)2.

(d) Generalize o problema anterior para n v.a.’s: Sejam X1, . . . , Xn v.a.’s independentes com

esperança comum θ e com a variância de Xi igual a σ2/ai, sendo os ai > 0 conhecidos e



com σ2 > 0 desconhecido. Considere a classe de todos os estimadores lineares de θ. Isto é,

considere a classe de todos os estimadores que podem ser escritos como θ̂ =
∑

i ciXi onde ci
são contantes.

Mostre que na classe dos estimadores lineares, θ̂, é não-viciado para estimar θ se, e somente

se
∑

i ci = 1. Dentre todos os estimadores lineares
∑

i αiXi de θ que são não-viciados (isto é,

satisfazendo
∑

i αi = 1), encontre aquele que minimiza o MSE.

(e) Suponha queX1, X2, . . . , Xn sejam v.a.’s i.i.d. com distribuição Poisson com parâmetro comum

θ. É posśıvel mostrar matematicamente que

θ̂1 = X̄ =
X1 + . . .+Xn

n

e

θ̂2 =
1

n− 1

n∑
i+1

(Xi − X̄)2

são ambos estimadores não viciados para estimar θ. Considere adicionalmente um terceiro

estimador não-viciado para θ:

θ̂3 = (θ̂1 + θ̂2)/2

Faça um pequeno estudo de simulação para identificar qual dos três possui um erro de es-

timação MSE menor. Para isto, fixe o valor de θ = 3. Gere um grande número de amostras

(digamos, 10 mil), cada uma delas de tamanho n = 10. Para cada amostra calcule os valores

dos três estimadores de θ. Estime o MSE E(θ̂j − θ)2 de cada estimador usando a média das

diferenças ao quadrado entre os 10 mil valores de θ̂j e θ. Qual dos estimadores produz um erro

MSE menor? Isto significa que o melhor estimador teve SEMPRE o seu valor mais próximo

do verdadeiro valor do parâmetro θ? Estime a probabilidade de que, baseados numa mesma

amostra, θ̂2 esteja mais próximo de θ que θ̂1.

A conclusão muda se você tomar n = 20 e θ = 10?

(f) Responda V ou F para as afirmaç̈ı¿1
2es abaixo.

• Como o parâmetro θ n̈ı¿1
2o pode ser predito antes do experimento, ele é uma variável

aleatória.

• Num problema de estimação de uma população com distribuição normalN(µ, σ2) encontrou-

se x = 11.3 numa amostra de tamanho n = 10. A distribuição de probabilidade desse

valor 11.3 é também uma normal com média µ e variância σ2/10.

• Suponha que X esteja sendo usado como estimador da média populacional µ. Como a

variância de X decresce com o tamanho da amostra, enẗı¿1
2o toda estimativa obtida a

partir de uma amostra de tamanho 15 possui erro de estimação menor que qualquer outra

estimativa obtida a partir de uma amostra de tamanho 10.

• Um estimador n̈ı¿1
2o viciado é sempre melhor que um estimador viciado.

• Considere uma estimativa da média populacional µ baseada na média aritmética de uma

amostra de tamanho 10 e outra estimativa com uma amostra de tamanho 15. Nunca deve-

mos preferir a estimativa baseada na amostra de 15 pois a estimativa baseada na amostra

de tamanho 10 tem alguma chance de estar mais perto do verdadeiro valor desconhecido

de µ.



(g) Sejam X1, . . . , Xn i.i.d.’s com distribuição exponencial com parâmetro λ. O interesse é estimar

E(Xi) = 1/λ. Suponha que apenas as variáveis Xi’s que ficarem maiores ou iguais a x = 10

sejam observadas. Todas as observações menores que x = 10 são perdidas. Assim, a amostra

final é possui um número 0 < k ≤ n de observações.

O estimador baseado na média amostral da amostra de k variáveis é viciado. Ele subestima

ou superestima sistematicamente E(Xi)? Não precisa calcular o v́ıcio.

A distribuição de Xi DADO QUE X>10 tem a densidade dada por

f(x;λ) =

{
0, se x < 10

λ exp(−λ(x− 10)), se x ≥ 10

Se X1, . . . , Xk é uma amostra desta distribuição TRUNCADA (em que só observamos os Xi’s

maiores que 10), encontre o MLE de λ.

RESP: O MLE é k/
∑

i(xi − 10).

(h) Suponha que será coletada uma amostra de observaç̈ı¿1
2es independentes Y com distribuição

normal. Elas n̈ı¿1
2o s̈ı¿1

2o identicamente distribüı¿1
2das. A média de Y varia de acordo com

o valor de uma covariável x de forma que Y = α+ βx+ ε. onde ε possui distribuição normal

com média 0 e variância σ2. Os valores poss̈ı¿1
2veis de x s̈ı¿1

2o três: baixo (x = −1), médio

(x = 0) e alto (x = 1). Os valores de x s̈ı¿1
2o fixios e conhecidos. Eles n̈ı¿1

2o s̈ı¿1
2o variáveis

aleatórias.

S̈ı¿1
2o feitas três observaç̈ı¿1

2es em cada n̈ı¿1
2vel de x. Podemos representar os dados na tabela

e no gráfico dos valores observados de Y versus x que Figura 16.1.
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Figura 16.1: Gráfico dos valores observados yij versus xj .

xj = −1 xj = 0 xj = 1

Y11 Y21 Y31

Y12 Y22 Y32

Y13 Y23 Y33

Vamos representar as observaç̈ı¿1
2es como Yij = α + βxj + εij onde xj = −1, 0 ou 1, e os εij

s̈ı¿1
2o i.i.d. com distribuição N(0, σ2).

• ı̈¿1
2 correto dizer que (Yij |xj) ∼ N(α+βxj , σ

2) e que as variáveis Yij s̈ı¿1
2o independentes?

DICA: n̈ı¿1
2o existe pegadinha aqui.

• Calcule E(Yij |xj) e Var(Yij |xj) nos três casos: xj = −1, xj = 0 e xj = 1. A variância

depende do valor de xj? E o valor esperado?

• Deseja-se um estimador para E(Y |xj = 0) = α quando x = 0. Um primeiro estimador

bem simples é proposto:
Y21 + Y22 + Y23

3



Ele simplesmente toma a média das três observaç̈ı¿1
2es quando x = 0. Mostre que este

estimador é n̈ı¿1
2o viciado para α e encontre sua variância. Qual o risco quadrático desse

estimador? OBS: Risco quadrático de um estimador é o seu MSE.

• Um segundo estimador é proposto:

Y11 + Y12 + Y13 + Y21 + Y22 + Y23 + Y31 + Y32 + Y33

9

Ele toma a média aritmética simples de todas as 9 observaç̈ı¿1
2es dispon̈ı¿1

2veis. Mostre

que este estimador também é n̈ı¿1
2o viciado para α e encontre sua variância.

• Qual dos dois estimadores é prefer̈ı¿1
2vel?

• O interesse agora é em estimar β, o quanto Y aumenta em média quando passamos de

um n̈ı¿1
2vel de x para o n̈ı¿1

2vel seguinte. Um primeiro estimador é o valor médio de Y

quando x = 0 menos o valor médio de Y quando x = −1. Isto é,

T1 = Y0 − Y−1 =
Y21 + Y22 + Y23

3
− Y11 + Y12 + Y13

3

Mostre que T1 é uma combinação linear
∑

ij aijYij dos Y ’s e identifique os valores de aij .

• Mostre que E(T1) é n̈ı¿1
2o-viciado para β e ache sua variância.

• De maneira análoga, defina

T1 = Y1 − Y0

e ache sua média e variância.

• Um terceiro estimador, melhor que os dois anteriores, leva em conta apenas as observaç̈ı¿1
2es

nos dois extremos, quando x = −1 e x = 1.

T3 =
1

2
Y1 − Y−1

Mostre que T3 também é uma combinação linear dos Y ’s, que é n̈ı¿1
2o-viciado e que possui

risco quadrático (ou MSE) menor que T1 e T2.

(i) Uma operadora de planos de saúde sabe que o custo médio das internações varia muito de

acordo com a idade do cliente. Aqueles com mais de 70 anos de idade acarretam a maior parte

dos custos embora eles tenham uma participação pequena no portfolio de clientes.

A operadora decidiu investigar um pouco mais a incidência de internações entre seus clientes

idosos. Para isto, escolheu uma amostra de clientes com idade acima de 70 anos e obteve o

número de internações que cada um teve nos últimos dois anos. Decidiu-se adotar um modelo

de Poisson para as contagens do número de internações.

Nem todos os selecionados foram clientes por todo o peŕıodo de dois anos. Aqueles que estão

na operadora há pouco tempo devem apresentar, em média, menos internações do que aqueles

que estão na operadora durante os últimos dois anos. Por isto, a média da Poisson deveria

refletir o tempo de permanência no plano de cada cliente. Dessa forma chegou-se ao seguinte

modelo estat́ıstico.

Sejam Y1, . . . , Yn a amostra de clientes. Suponha que essas sejam variáveis aleatórias inde-

pendentes e que Yi ∼ Poisson(λti) onde ti é o tempo de permanência do i-ésimo cliente na

empresa (em meses) e λ > 0 é desconhecido e representa o número esperao de internações por

mês. O interesse é estimar λ a partir dos dados que podem ser representados como na tabela

abaixo:



i ti yi

1 24 4

2 12 1

3 3 0

4 24 1

. . . . . . . . .

• Pensou-se inicialmente em estimar λ simplesmente tomando o número médio de internações

e dividir pelo tempo de observação de 24 meses. Isto é, T1 = Y /24. Mostre que este es-

timador é viciado para estimar λ a menos que
∑

i ti = 24n. Por exemplo , se todos os

clientes tiverem ti = 24 esta condição seria válida.

• Tentando corrigir o v́ıcio do estimador T1, pensou-se então em adotar

T2 =
Y

t
=
Y1 + . . .+ Yn
t1 + . . .+ tn

Mostre que T2 é não-viciado para estimar λ e encontre seu risco quadrático de estimação.

• Mais tarde, outro analista resolveu considerar o estimador

T3 =
1

n

(
Y1

t1
+ . . .+

Yn
tn

)
Mostre que T3 é não-viciado para estimar λ e encontre seu risco quadrático de estimação.

• É posśıvel dizer que T2 é sempre melhor ou igual a T3 considerando-se os riscos quadráticos

dos dois. Prove isto usando a desigualdade entre a média aritmética e a média harmônica

que diz que
x1 + · · ·+ xn

n
≥ n

1
x1

+ · · ·+ 1
xn

para quaisquer números reais positivos x1, . . . , xn.



Caṕıtulo 17

Modelos Lineares Generalizados

Aqui vao os exercicios
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Caṕıtulo 18

Regressão Não-Paramétrica
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Caṕıtulo 19

Seleção de Modelos

19.1 Entropia

19.2 Distância de Kullback-Leibler

19.3 Critério de Akaike

19.4 MDL: Minimum Description Length
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