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Parte sem consulta

1. O gráfico na Figura 1 exibe uma amostra do vetor aletório (X,Y ) com certa densidade f(x, y).
Com base neste gráfico, identifique a opção correta:

• E(Y |X = 8) ≈??: (i) 8 (ii) 18 (iii) 33 (iv) 40 (v) 48

• E(X|Y = 0) ≈??: (i) 2 (ii) 4 (iii) 8 (iv) 10 (v) 0

• σ(Y |X = x) =
√
V(Y |X = x) é uma função de x. Ela é:

(i) crescente em x;

(ii) constante com respeito a x;

(iii) decrescente em x;

(iv) parabólica em x.

• σ(X|Y = 0) =
√
V(X|Y = 0) é aproximadamente igual a: (i) 1 (ii) 2 (iii) 4 (iv) 8 (v) 0.1

Figura 1: Amostra de um vetor aleatório (X,Y ).

Solução:

• E(Y |X = 8) ≈ 33 (iii)

• E(X|Y = 0) ≈ 2 (i)

• σ(Y |X = x) =
√

V(Y |X = x) é uma função de x. Ela é: (ii) constante com respeito a
x. Veja que é a E(Y |X = x), a esperança de Y como função de x, quem tem uma forma
crescente (ligeiramente parabólica). Considerando que X = x está fixado (condicionado), veja
que o tamanho t́ıpico dos desvios de Y em torno de sua média condicional E(Y |X = x) é
aproximadamente constante em x, não muda se variarmos x.
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y|x x = 0 x = 1 x = 2

y = 0 0.1 0.05 0.05
y = 1 0.1 0 0.2
y = 2 0 0.2 0.1
y = 3 0.05 0.1 0.05

Tabela 1: Distribuição de probabilidade discreta do vetor (X,Y ).

• σ(X|Y = 0) =
√

V(X|Y = 0) ≈ 1 (i). A faixa de variação de X dado que Y = 0 vai de 0 a
4, aproximadamente, sendo que E(X|Y = 0) ≈ 2 (segundo item acima). Assim, o desvio em
relação a este valor esparado (condicionado em Y = 0) deve ser com certeza menor que 2. As
opções σ(X|Y = 0) = 1 ou 0.1 são as únicas dispońıveis com um valor menor que 2 e a opção
0.1 não é razoável, muito pequena.

2. A Tabela 1 mostra a distribuição conjunta do vetor aletório discreto (X,Y ). Obtenha a distribuição
marginal da variável X e a distribuição condicional da variável (Y |X = 1).

Solução: Temos P(X = x) =
∑

y P(X = x, Y = y). Assim,

P(X = x) =

 0.1 + 0.1 + 0 + 0.05, para x = 0
0.05 + 0 + 0.2 + 0.1, para x = 1
0.05 + 0.2 + 0.1 + 0.05, para x = 2

Ou seja,

P(X = 0) = 0.25

P(X = 1) = 0.35

P(X = 2) = 0.40

Para a distribuição condicional, temos P(Y = y|X = 1) ∝ P(X = 1, Y = y). Assim,

P(Y = 0|X = 1) ∝ 0.05

P(Y = 1|X = 1) ∝ 0

P(Y = 2|X = 1) ∝ 0.2

P(Y = 3|X = 1) ∝ 0.1

Agora, basta normalizar estes valores para que eles somem 1 e assim encontrar a distribuição
condicional. Como a soma é 0.05 + 0 + 0.2 + 0.1 = 0.35, teremos

P(Y = 0|X = 1) = 0.05/0.35

P(Y = 1|X = 1) = 0

P(Y = 2|X = 1) = 0.2/0.35

P(Y = 3|X = 1) = 0.1/0.35

3. Numa análise de componentes principais com k = 6 variáveis, os autovalores foram obtidos:
λ1 = 6, λ2 = 4, λ3 = 1, λ4 = 0.1, λ5 = 0.1 e λ6 = 0.01 Quantos componentes devem ser usa-
dos? Justifique sua resposta calculando a proporção acumulada da variância total exlicada pelos
primeiros k autovetores.

Solução: A soma dos autovalores é
∑

i λi = 6 + 4 + 1 + 0.1 + 0.01 = 11.11. O primeiro autovalor
sozinho é responsável por 6/11.11 ≈ 50% da variabilidade total. Os dois primeiros autovalores

2



respondem por 10/11.11 ≈ 90% da variabilidade total. Assim, usar os dois primeiros autovetores
para reduzir a dimensionalidade é a decisão indicada.

4. Seja ρ ∈ (0, 1). Mostre que a matriz de covariância

Σ =

 1 ρ ρ
ρ 1 ρ
ρ ρ 1


do vetor aleatório X = (X1, X2, X3)t possui um autovetor igual a v = (1, 1, 1)/

√
3. Qual o autovalor

associado com este autovetor?

Solução: Basta mostrar que Σv = λv onde λ é um valor real e positivo. De fato, multiplicação
matricial elementar produz

Σv = (2ρ+ 1)v

e portanto v é autovetor com autovalor igual a (2ρ+ 1).

5. Resultado (2-51) de Johnson and Wichern: Seja B uma matriz definida positiva p×p com autovalores
λ1 ≥ λ2 ≥ . . . λp > 0 e associados autovetores v1,v2, . . . ,vp de comprimento (ou norma) 1. Então

max
x 6=0

x′Bx

x′x
= λ1

e este máximo é atingido quando x = v1.

Solução: Esta é uma prova ligeiramente diferente daquela do livro. Costuma existir mais de
uma maneira de se provar um resultado matemático. Pelo teorema espectral, podemos fatorar (ou
decompor) a matriz B como B = P Λ P′ onde P é uma matriz ortogonal (isto é, P′ P = I = P P′)
com suas colunas formadas pelos autovetores de B e com Λ = diag(λ1, . . . , λp) onde λ1 ≥ λ2 ≥
. . . ≥ λ1 > 0. Assim, podemos escrever

x′Bx

x′x
=

x′Bx

|| x ||2

=
x′

||x||
B

x

||x||
= y′ B y onde y = x/||x|| tem norma 1

= y′ (P Λ P′) y

= (P′y)
′

Λ (P′y)

= z′ Λ z onde z = P′y

=
∑
i

λiz
2
i já que Λ é diagonal

≤
∑
i

λ1z
2
i já que λi ≤ λ1

= λ1

∑
i

z2
i

= λ1||z||2

= λ1 pois ||z||2 = z′z = y′PP′y = y′y = 1

.

Além disso, se tomarmos x = v1, teremos

x′Bx

x′x
=

v′1Bv1

v′1v1
=

v′1Bv1

1
= v′1λ1v1 = λ1||v1||2 = λ1 .
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6. Resultado 8.1 da página 432 de Johnson and Wichern: : Seja Σ a matriz de covariância do vetor
aleatório X = (X1, . . . , Xp)′ com autovalores λ1 ≥ λ2 ≥ . . . λp > 0 e associados autovetores
v1,v2, . . . ,vp de comprimento (ou norma) 1. Então a combinação linear Y = l1X1+. . .+lpXp = l′X
com comprimento ||l|| = 1 e que maximiza V(Y ) é obtida ao tomarmos l igual ao primeiro autovetor.
Neste caso, Y = v′1X e a variância desta variável atinge V(Y ) = λ1.

Solução: Seja Y = l′X onde ||l|| = 1. Então

V(Y ) = l′Σl =
l′Σl

1
=

l′Σl

||l||
.

Pelo resultado anterior, sabemos então que V(Y ) ≤ λ1 para qualquer escolha para ||l|| e que este
limite (ou cota) superior é atingido se escolhermos l = v1. Assim,

V(Y ) = V(v′1X) = v′1Σv1 = v′1λ1v1 = λ1||v1||2 = λ1 .

Parte com consulta

1. Vamos analisar um conjunto de dados que possui apenas 3 variáveis X1, X2, X3 usando o modelo
de análise fatorial ortogonal. Os autovalores e autovetores da matriz de covariância da amostra de
três variáveis são os seguintes:

λ1 = 2.25, λ = 1.96, λ3 = 0.16

v1 =

 1/2
1/2

1/
√

2

 v2 =

 1/2
1/2

−1/
√

2

 v3 =

 1/
√

2

−1/
√

2
0


(i) Reconstrua a matriz de covariância das variáveis com base nesses autovalores e autovetores.
Suponha que haja apenas um único fator no modelo fatorial. Use a abordagem de componente
principal para encontrar: (ii) a matriz de carga de fator, (iii) as comunalidades, (iv) as variâncias
espećıficas.

Solução: Pelo teorema espectral, a matriz 3× 3 de covariância Σ pode ser fatorada como

Σ =

 1/2
1/2

1/
√

2

∣∣∣∣ 1/2
1/2

−1/
√

2

∣∣∣∣ 1/
√

2

−1/
√

2
0

  2.25 0
0 1.96 0
0 0 0.16

  1/2
1/2

1/
√

2

∣∣∣∣ 1/2
1/2

−1/
√

2

∣∣∣∣ 1/
√

2

−1/
√

2
0

′

≈

 1.13 0.97 0.10
0.97 1.13 0.1
0.10 0.10 2.1

 aprox com duas casas decimais

Usando apenas o primeiro componente principal, vamos obter uma aproximação para a matriz de
covariância seguindo as notas de aula:

Σ ≈

 √
2.25/2√
2.25/2√

2.25/
√

2

× [ √2.25/2
√

2.25/2
√

2.25/
√

2
]
≈

 0.56 0.56 1.59
0.56 0.56 1.59
1.59 1.59 4.50


Esta é uma aproximação pobre para Σ pois o segundo autovalor não é pequeno. Mas este é apenas
um exerćıcio numérico de exame para checar o entendimento das definições do modelo fatorial.

No modelo fatorial (ver definição no slide 26 das notas de aula), temos:

V(Xi) = ||li||2︸ ︷︷ ︸
comunalidade

+ ψi︸︷︷︸
variância espećıfica
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onde li é a linha i da matriz de cargas L. Como temos apenas um fator neste exemplo, a matrriz de
cargas L é uma matriz-coluna 3× 1: L =

√
2.25v1. Portanto, as comunalidades são simplesmente

os quadrados dos três elementos de L. A variância espećıfica é o resto que falta para completar
V(Xi). Assim:

1.13 = V(X1) =

com.︷ ︸︸ ︷
(
√

2.25/2)2 +

var. esp.︷︸︸︷
ψ1 =⇒ ψ1 = 0.57

1.13 = V(X1) = (
√

2.25/2)2 + ψ2 =⇒ ψ2 = 0.57

2.10 = V(X1) = (
√

2.25/
√

2)2 + ψ3 =⇒ ψ3 = 0.98

O problema da prova termina aqui. Mas, aproveitando o embalo, veja que a igualdade matricial do
teorema espectral, Σ = P Λ P′, pode ser escrita de outra forma, usando as colunas-autovetores de
P:

Σ = λ1 v1︸︷︷︸
3×1

v′1︸︷︷︸
1×3

+λ2 v2︸︷︷︸
3×1

v′2︸︷︷︸
1×3

+λ3 v3︸︷︷︸
3×1

v′3︸︷︷︸
1×3

Na expressão acima, note que aparece o produto vv′, que é uma matriz 3 × 3, e não o produto
interno v′v, que é um escalar(um número real, 1× 1). Como os autovetores possuem comprimento
1, as matrizes tem uma tamanho controlado, pequeno, Se o autovalor λi for pequeno, próximo de
zero, podemos jogar fora os termos envolvendo os autovalores pequenos.

2. Suponha que o vetor aleatório cont́ınuo e positivo X = (X1, X2) possui a densidade f1(x) =
6 exp(−(3x1 + 2x2)) quando o indiv́ıduo pertence à população 1. Quando ele pertence à população
2, temos f2(x) = exp(−(x1 + x2)). O custo c(1|2) do erro de classificar erradamente no grupo 1
um indiv́ıduo do grupo 2 é 3 vezes maior que o custo contrário c(2|1) de colocar no grupo 2 alguém
do grupo 1. Se o grupo 1 constitui 90% da população total, mostre que a região ótima R1 de
classificação no grupo 1 é dada pelo semi-plano 2x1 + x2 ≤ log(18).

Solução: A região ótima R1 de classificação na população 1 (no sentido de minimizar o erro de
classificação errada) é dada pelos pontos x = (x1, x2) ∈ R+ × R+ tais que

f1(x)

f2(x)
≥ c(1|2)

c(2|1)

π2

π1
= 3× 0.1

0.9
=

1

3
.

Mas
f1(x)

f2(x)
=

6 exp(−(3x1 + 2x2))

exp(−(x1 + x2))
= 6 exp(−2x1 − x2) .

Portanto, a região R1 é dada pelos pontos x tais que

6 exp(−2x1 − x2) ≥ 1

3
→ −2x1 − x2 ≥

1

18
→ 2x1 + x2 ≤ log(18)
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