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1. 5 PONTOS Suponha que o vetor aleatório X = (X1, X2) seja observado em vários indiv́ıduos ou itens que
compõem uma amostra. Existem duas classes de itens, classe 0 e classe 1. Em cada classe, a densidade de
probabilidade de X segue uma Gaussiana bivariada:

(X| ∈ 1) ∼ N2

(
µ0,

∑
0

)
= N2

([
0
0

]
,

[
1 0
0 4

])
and

(X| ∈ 2) ∼ N2

(
µ1,

∑
1

)
= N2

([
0
0

]
,

[
4 0
0 1

])
Suponha que as duas classes são igualmente frequentes na população. Isto é, que π1 = P(X ∈ 0) seja igual a
π2 = P(X ∈ 1).

Suponha também que os custos c1 e c2 de má classificação sejam iguais onde c1 é o custo de classificar como
1 um item da classe 2 e c2 é o custo de classificar como 2 um item da classe 1.

Produza um código R ou python que desenhe algumas curvas de ńıvel das densidades de X em cada classe e
esboce a fronteira de deciss̃ao determinada pela regra ótima de Bayes. O resultado deverá ser uma imagem
como a da Figura 1.

A seguir, refaça a figura assumindo que a classe 1 aparece 3 vezes mais frequentemente que a classe 2 (isto é,
que π1 = 3π2). Faça uma terceira figura supondo adicionalmente que os custos também são diferentes, com
c1 = 5c2.

Solução: Seja R1 a região dos pontos x = (x1, x2) que são alocados à classe 1 (veja que troquei de classes 0 e
1 para classes 1 e 2 neste gabarito para aproveitar minhas fórmulas já digitadas). Pela regra de classificação
ótima de Bayes, temos R1 composto por todos os pontos x tais que:

f1(x)

f2(x)
≥ c(1| ∈ π2)

c(2| ∈ π1)

P(π2)

P(π1)
.

Figura 1: Curvas de ńıvel de X em cada uma das classes e fronteira de decisão com custos iguais e probabiliades a
priori iguais.
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Figura 2: Fronteira de decisão com π2 = 3π (esquerda) e com c1 = 5c2, além de π2 = 3π (direita).

Com c(1| ∈ π2) = c(2| ∈ π1) e com π1 = π2, temos R1 = {x tais que f1(x) ≥ f2(x)}. Com as densidades
gaussianas, temos

f1(x)

f2(x)
=

(2π)−2/2|Σ1|−1/2 exp
(
− 1

2xtΣ−11 x
)

(2π)−2/2|Σ2|−1/2 exp
(
− 1

2xtΣ−12 x
) pois |Σ1| = |Σ2|

= exp

(
−1

2
xt

[
1− 1/4 0

0 1/4− 1

]−1
x

)

= exp

(
−1

2

(
3

4
x21 −

3

4
x22

))

Assim, f1(x)/f2(x) se, e somente se, x21 ≤ x22. Isto é, se, e somente se, |x1| ≤ |x2|. Ou ainda, se e somente
−|x2| ≤ x1 ≤ |x2|. Esta região é determinada pelas duas retas x2 = x1 e x2 = −x1.

Se a classe 1 aparece 3 vezes mais frequentemente que a classe 2, basta modificar os cálculos anteriores. Neste
caso, R1 é o conjunto de pontos x = (x1, x2) tais que f1(x)/f2(x) ≥ 1/3. Isto é,

exp

(
−1

2

(
3

4
x21 +−3

4
x22

))
≥ 1

3

ou seja,
x22 ≥ x21 + 2.93

implicando em x2 >
√
x21 + 2.93 e x2 < −

√
x21 + 2.93. O lado esquerdo da Figura 2 mostra a região R1.

Script R:

x = seq(-5, 5, by=0.1)

y1 = sqrt( x^2 - 8*log(1/3)/3)

y2 = -sqrt( x^2 - 8*log(1/3)/3)

plot(x, y1, type="l", ylim=c(-5,5)); lines(x, y2)

text(0, 4, "Regiao 1"); text(0, 0, "Regiao 2"); text(0, -4, "Regiao 1")

Adicionando custos diferentes, devemos ter f1(x)/f2(x) ≥ 5/3 o que implica em x2 >
√
x21 + 1.36 e x2 <

−
√
x21 + 1.36. O lado direito da Figura 2 mostra a nova região R1.

Script R:

x = seq(-5, 5, by=0.1)

y1 = sqrt( x^2 + 8*log(5/3)/3)

y2 = -sqrt( x^2 + 8*log(5/3)/3)

plot(x, y1, type="l", ylim=c(-5,5), xlab="x_1", ylab="x_2");

lines(x, y2)

text(0, 4, "Regiao 1"); text(0, 0, "Regiao 2"); text(0, -4, "Regiao 1")
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Figura 3: Quatro pontos amostrais.

2. 5 PONTOS Considere a seguinte tabela de dados, representando uma amostra composta por quatro pontos
amostrais, cada um dos pontos X = (X1, X2) com dois atributos ou features:

4 1
2 3
5 4
1 0


Queremos representar os dados em apenas uma dimensão usando PCA.

� Obtenha as direções dos dois componentes principais (ambos com comprimento 1) e indique qual deles
é o primeiro.

� O gráfico da esquerda na Figura 3 mostra os quatro pontos amostrais. Desenhe a direção do componente
principal como uma linha e as projeções de todos os quatro pontos de amostra no componente principal
principal. Pode fazer o desenho a mão, fotografar e colar na sua prova como figura. Rotule cada ponto
projetado com seu valor de coordenada principal (onde a coordenada principal de origem é zero).

� O gráfico da direita na Figura 3 mostra os mesmos quatro pontos amostrais após sofrer uma rotação
de 30 graus. Supondo que estes novos pontos constituem a amostra, como o PCA da primeira amostra
relaciona-se com o PCA da segunda amostra? Justifique sua resposta.

Solução: Subtráımos a média de cada variável (cada coluna) para obter a matriz centralizada X̃:

X̃ =


1 −1
−1 1
2 2
−2 −2


e calculamos a matriz de covariância

1

4
X̃′X̃ =

[
10/4 6/4
6/4 10/4

]
produzindo o primeiro PC v1 = [1/

√
2, 1/
√

2] com autovalor λ1 = 16 e o segundo PC v2 = [1/
√

2,−1/
√

2]
com autovalor λ2 = 4.

Os pontos projetados estão no lado esquerdo da Figura 4 e eles possuem coordenadas ao longo do PC dadas
por [1, 5, 5, 9]/

√
2. Já o caso rotacionado está no lado direito e possui as mesmas coordenadas [1, 5, 5, 9]/

√
2.

3. 5 PONTOS Suponha que os pontos da amostra venham de uma distribuição normal gaussiana multivariada
p-dimensional com vetor esperado µ e com uma matriz de covariãncia p× p representada por Σ.

� Mostre que, se Σ for uma matriz diagonal, a densidade conjunta será o produto de p densidades gaussi-
anas univariadas. Pode assumir µ = 0 para simplificar suas contas.
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Figura 4: Quatro pontos amostrais projetados no primeiro PC.

� Suponha agora que Σ não é diagonal mas ainda é simétrica e definida positiva. Faa̧a a decomposição
espectral de Σ e mostre que podemos escrever a densidade gaussiana multivariada como um produto de
densidades gaussianas univariadas, cada uma delas associada com um dos autovetores de Σ.

Solução: O caso diagonal é muito simples pois, com µ = 0, a distância estat́ıstica é dada por

xtΣ−1x = xt

σ
2
1 . . .

. . .

. . . σ2
p


−1

x =

p∑
i=1

x2i
σ2
i

O determinante é igual a |Σ| =
∏p

i=1 σ
2
i . Portanto, a densidade f(x) da gaussiana multivariada com µ = 0

e Σ diagonal fica igual a

f(x) =
(2π)−p/2√∏p

i=1 σ
2
i

exp

(
−1

2
xtΣ−1x

)
=

p∏
i=1

1√
2πσ2

i

exp

(
−1

2

x2i
σ2
i

)
A última expressão é o produto de gaussianas univariadas com valor esperado 0 e variância σ2

i .

Pelo teorema da deomcposição espectral, σ = PΛP′ onde P = [v1

... . . .
...vp] é uma matriz p×p cujas colunas são

os autovetores de Σ e Λ é uma diagonal com os correspondentes autovalores. Além disso, temos PPprime =
PprimeP = I (isto é, a inversa de P é P′. Assim,

xtΣ−1x = xt(PΛP′)−1)−1x

= xt(P′)−1Λ−1P−1x

= xtPΛ−1P′x

= (P′x)′Λ−1P′x

= y′Λ−1y

onde y = P′x. Como Λ−1 é uma matriz diagonal, usando o resultado do primeiro item teremos um produto
de gaussianas univariadas com

De fato, como |Σ| = |Λ| =
∏

i λi, teremos

f(x) = (2π)−p/2|Σ|−1/2 exp

(
−1

2
xtΣ−1x

)
= (2π)−p/2

∏
i

|λi|−1/2 exp

(
−1

2
y′Λ−1y

)
=
∏
i

1√
2πλi

exp

(
−1

2

y2i
λi

)
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Assim, a densidade conjunta gaussiana multivariada de p variáveis pode ser vista como a densidade de p
gaussianas univariadas yi = v′ix com variância λi.

4. 5 PONTOS Suponha que você tenha uma distribuição normal multivariada com uma matriz de covariância
definida positiva Σ. Considere uma segunda distribuição gaussiana multivariada com o mesmo valor esperado
mas cuja matriz de covariância seja cos(θ) Σ. Isto é, a matriz anterior multiplicada por um escalar (um número
real) positivo cos(θ) > 0 onde θ é um certo ângulo. Você aprendeu como as curvas de ńıvel da desnidade de
probabilidade estão associados com os autovetores da matriz de covariância.

� Os autovetores da nova matriz de covariância são rotacionados pelo ângulo θ? Justifique sua resposta.

� Os autovalores da nova matriz de covariância são alterados? Justifique sua resposta.

� Como serão alteradas as curvas de ńıvel da segunda distribuição em comparação com aquelas da primeira
distribuição?

Solução: Seja v um autovetor de Σ. Isto é, Σv = λv. Então, cos(θ)Σv = cos(θ)λv. Assim, v também é
um autovetor de cos(θ)Σ e os autovetores são os mesmos. Os autovalores passam a ser cos(θ)λ.

Como 0 < cos(θ) ≤ 1 e os autovetores são os mesmos, as curvas de ńıvel são as mesmas.
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