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1. Considere um modelo de regressão linear em que a matriz de desenho X é de dimensão n× 1 com
apenas uma única coluna. Esta coluna é a coluna de 1’s. Isto é,

X =


1
1
...
1


• Explique geometricamente o que é o espaço M(X) neste modelo particular.

• Obtenha a matriz H de projeção ortogonal de Y no espaço M(X).

• Obtenha o vetor projetado Ŷ = HY.

• Qual a expressão de de β̂?

• O que é o vetor de reśıduos r neste caso?

Solução:

• M(X) = {c1 : c ∈ R}. Isto é, M(X) é formado pelos múltiplos do vetor 1.

• Por definição,

H = X (X′X)
−1

X′ = 1(1′1)−11′ e 1′1 = (1, . . . , 1)


1
1
...
1

 = n

Então

H =
1

n
11′ =

1

n


1 1 . . . 1
1 1 . . . 1
...

... . . .
...

1 1 . . . 1


• Temos Ŷ = HY = Ȳ 1 onde Ȳ = (Y1 + . . .+ Yn)/n.

• β̂ = Ȳ

• Temos

r = Y − Ȳ 1 =


Y1 − Ȳ
Y2 − Ȳ

...
Yn − Ȳ


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2. Considere o modelo de regressão usual com matriz de desenho X de dimensão n× p cuja primeira
coluna é o vetor 1. Mostre que a soma dos reśıduos

∑
i ri é igual a zero.

Solução: O vetor de reśıduos é dado por r = (I−H) Y onde H é a matriz de projeção ortogonal
no espaço das combinações lineares das colunas de X.

A soma
∑

i ri é igual ao produto interno dos vetores 1 e r:

r1 + . . .+ rn = r′1

= Y′(I−H)′ 1

= Y′(I−H) 1 pois H é simétrica

= Y′(1−H1)

= Y′(1− 1)

= 0

A penúltima passagem é justificada pois 1 pertence ao espaço M(X) já que 1 é umas das colunas
de X. Assim, a projeção ortogonal de 1 em M(X) é o próprio 1.

3. Mostre que o vetor de reśıduos r é ortogonal ao vetor ajustado Ŷ e conclua que eles são vetores
aleatórios independentes. Assuma o modelo de regressão usual com matriz de desenho X n×p cuja
primeira coluna é o vetor 1.

Solução: Temos

〈r, Ŷ〉 = r′Ŷ

= Y′(I−H)′ HY

= Y′(I−H) HY pois H é simétrica

= Y′(H−H2)Y

= Y′(H−H)Y

= 0

Como r e Ŷ são transformações lineares do vetor gaussiano multivariado Y, a distribuição conjunta
do vetor (r, Ŷ) de dimensão 2n é uma normal gaussiana com matriz de covariância 2n × 2n. O

bloco (1, 2) de dimensão n× n desta matriz representa a matriz de covariância entre r e Ŷ e ele é
dado por

Cov(r, Ŷ) = Cov ((I−H)Y,H) Y)

= (I−H)Cov(Y,Y)H′

= (I−H)σ2IH′

= σ2(I−H)H

= σ2(H−H2)

= σ2(H−H)

= 0

No caso gaussiano, covariância (ou correlação) nula implica independência. Assim, concĺımos que

r e Ŷ são independentes.

4. Seja X1, . . . Xn v.a.’s i.i.d. N(0, 1). Defina Y1 = X1 e Yi = Xi −Xi−1 para i = 2, . . . , n. Encontre
a distribuição do vetor Y = (Y1, . . . , Yn)′.
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Solução: O vetor X segue uma distribuição gaussiana multivariada Nn(0, I) e

Y =



Y1
Y2
Y3
Y4
...
Yn


=



1 0 0 0 . . . 0 0
−1 1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
0 0 −1 1 . . . 0 0
...

...
...

... . . .
...

...
0 0 0 0 . . . −1 1





X1

X2

X3

X4

...
Xn


= AX

Portanto, Y também é um vetor gaussiano Nn(A0,AIA′) = Nn(0,AA′). A matriz de covariância
é dada por

AA′ =



1 −1 0 0 . . . 0 0
−1 2 −1 0 . . . 0 0
0 −1 2 −1 . . . 0 0
0 0 −1 2 . . . 0 0
...

...
...

... . . .
...

...
0 0 0 0 . . . −1 2



5. Se X1, . . . , Xn são v.a.’s tais que V(X1) = σ2 e satisfazendo Xi+1 = ρXi onde ρ ∈ (0, 1) é uma
constante e i = 2, . . . , n. Encontre a matriz de covariância V(X) do vetor X.

Solução: Como X2 = ρX1, X3 = ρX2 = ρ2X1 e, em geral, Xi = ρi−1X1 para i > 1, temos as
variâncias dadas por

V(Xi) = V(ρi−1X1) = ρ2(i−1)V(X1) = ρ2(i−1)σ2 .

Quanto às covariâncias, temos

Cov(Xi, Xj) = Cov(ρi−1X1, ρ
j−1X1) = ρi−1Cov(X1, X1)ρj−1 = ρi+j−2V(X1) = ρi+j−2σ2

6. No modelo abaixo,
Y = Xβ + ε

onde a matriz de desenho X tem dimensão n × p, o vetor ε tem distribuição normal multivariada
com vetor esperado µ = (0, . . . , 0)′ e matriz de covariância igual a matriz diagonal com elementos

diag(V(ε) = σ2(c1, c2, . . . , cn)

onde ci > 0 são constantes CONHECIDAS. Assim, os erros não possuem variância constante.

Ignorando a matriz de covariância diferente da usual, aplica-se a fórmula matricial para obter o
estimador de mı́nimos quadrados de β. Mostre que este estimador é não viciado para estimar β.
EXTRA BONUS: Obtenha a matriz de covariância do estimador β̂.

Solução: Como os erros ε possuem esperança zero, temos

E(Y) = E (Xβ + ε) = Xβ + E (ε) = Xβ

e portanto

E
(
β̂
)

= E
(

(X′X)
−1

X′Y
)

= (X′X)
−1

X′E (Y) = (X′X)
−1

X′Xβ = β

BONUS:
V
(
β̂
)

= (X′X)
−1

X′V(Y)X (X′X)
−1

= (X′X)
−1

X′VX (X′X)
−1
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7. Suponha que Y = (Y1, Y2) seja uma vetor aleatório gaussiano com valor esperado µ = (10, 15) e
matriz de covariância

V(Y) =

[
4 1.6

1.6 1

]
Dois pontos que fazem da amostra são y1 = (12, 15) e y2 = (10, 17), ambos a uma distância
euclidiana de 2 unidades de µ. Qual deles está a uma distância estat́ıstica maior de µ?

Solução:

d2(y1,µ) = (y1 − µ)′V(Y)−1(y1 − µ) = (2, 0)V(Y)−1
(

2
0

)
= (2)2

[
V(Y)−1

]
11

Uma fórmula similar para o segundo ponto.

8. Se colocarmos mais atributos na matriz X (sempre mantendo as colunas lineamente independentes),
podemos garantir que o R2 vai sempre aumentar. Explique porque isto acontece.

Solução: Seja X∗ a matriz de desenho aumentada. O espaço vetorial M(X∗) inclui M(X) como
sub-espaço vetorial. Assim, minimizar a distância entre Y e um elemento de X∗ inclui todas as
posśıveis soluções restritas apenas a M(X) e o comprimento do vetor de reśıduos deve ser, no
mı́nimo, a solução encontrada usando apenas M(X). Como o R2 é obtido como 1 menos a razão
entre o comprimento ao quadrado do vetor de reśıduos sobre

∑
i(Yi − Ȳ )2, e este denominador

não muda nos dois casos, devemos ter R2 aumentando a medida que colocamos mais atributos na
matriz de desenho.
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