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1. Esboce aproximadamente o vetor-direção do primeiro componente principal no gráfico a esquerda
na Figura 1 ignorando os dois tipos de śımbolo para os pontos. No gráfico da direita, esboce
aproximadamente o vetor direção do (primeiro) discriminante linear de Fisher considerando as
duas classes para os pontos.

Figura da prova reproduzida abaixo com a solução.

Solução: Solução na figura 1.

Figura 1: 1o. componente principal (esquerda) e 1o. discriminante linear (direita).

2. Todo objeto pertence a uma de duas classes ou populações, π1 ou π2. Suponha que a classe π1 é
extremamente rara (isto é, P(∈ π1) ≈ 0).

• Isto significa que se classificarmos todo novo objeto na população 2 teremos um pequeno
número de erros, supondo que os custos dos dois erros sejam iguais. Mostre que, com esta
regra de classificação radical temos P(erro) ≈ 0.

• Podemos tentar colocar as duas classes em pé de igualdade considerando a seguinte quantidade:
η = P(class 2| ∈ 1) + P(class 1| ∈ 2). Mostre que η = 1 com a regra de classificação radical
que portanto não é uma boa regra se quisermos um η pequeno.

• Mostre que a regra que minimiza η é aquela em que a região R de classificação é dada por
R = {x tais que f2(x) < f1(x)}.

Solução: Seja P(∈ π1) = ε ≈ 0. Então, com a regra de classificação radical temos:

P(erro) = P(class 2 e ∈ 1) + P(class 1 e ∈ 2)

= P(class 2 | ∈ 1)P(∈ 1) + P(class 1 | ∈ 2)P(∈ 1)

= P(class 2 | ∈ 1)ε+ P(class 1 | ∈ 2)(1− ε)
= 1× ε+ 0× (1− ε)
= ε ≈ 0

Para mostrar que η = 1 com a regra de classificação radical:

η = P(class 2 | ∈ 1) + P(class 1 | ∈ 2) = 1 + 0 = 1
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Para minimizar η, suponha que tenhamos definido uma regra e que portanto temos o espaço das
variáveis dividid em duas regiões disjuntas, R e R̄, onde R é a região de clasificação na classe 1.
Então:

η = P(class 2| ∈ 1) + P(class 1| ∈ 2)

=

∫
R̄

f1(x)x +

∫
R

f2(x)x (1)

Como as densidades f1 e f2 integram 1 no espaço Ω = R ∪ R̄, sabemos que

1 =

∫
Ω

f1(x)x =

∫
R

f1(x)x +

∫
R̄

f1(x)x .

Substituindo em (1), temos

η =

(
1−

∫
R

f1(x)x

)
+

∫
R

f2(x)x

= 1 +

∫
R

(f2(x)− f1(x)) x

Para minimizar η devemos tornar a integral o mais negativa posśıvel. Isto é obtido tomando

R = {x tais que f2(x) < f1(x)}

Se você ainda não está completamente convencido de que esta integral pode ser negativa, veja que

0 = 1− 1 =

∫
Ω

f1(x)x−
∫

Ω

f2(x)x =

∫
Ω

(f1(x)− f2(x)) x

Como f1 6= f2 e são ambas geq0 integrando 1, não podemos ter f1(x) ≥ f2(x) em todo ponto x de
Ω. Seja

R = {x tais que f2(x) < f1(x)}

Então podemos decompor

0 =

∫
Ω

(f1(x)− f2(x)) x =

∫
R̄

(f2(x)− f1(x)) x +

∫
R

(f2(x)− f1(x)) x

O primeiro termo é positivo e o segundo termo é negativo. Além disso, R é a maior região em que
f2(x)− f1(x) < 0. Qualquer outro ponto fora de R contribui um valor positivo para a integral de
interesse.

3. Considere um vetor aleatório bi-dimensional X = (X1, X2)′ ∼ N2(µ,Σ). Marque V ou F justifi-
cando sua resposta:

• Se X1 e X2 são independentes, a nuvem dos n pontos (xi1, xi2), i = 1, . . . , n com as instâncias
observadas e a curva de ńıvel f(x) = c com a densidade tem necessariamente a forma de um
ćırculo.

• Se X1 e X2 são independentes, a nuvem de pontos (xi1, xi2), i = 1, ldots, n com as instâncias
observadas e a curva de ńıvel f(x) = c com a densidade tem de ter a forma eĺıptica com os
eixos principais da elipse alinhados com os eixos das abscissas e ordenadas (SE NECESSÁRIO,
considere um ćırculo como uma forma especial de uma elipse)

• A matriz de covariância Σ é simétrica apenas se X1 e X2 são independentes.

• A matriz de covariância Σ é diagonal se X1 e X2 são independentes.

• A matriz de covariância Σ é diagonal se X1 e X2 possuem correlação positiva.

Solução:
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• F: As curvas de ńıvel tem a forma de uma elipse com os seus dois eixos proporcionais aos
autovalores da matriz Σ. Se os dois autovalores form iguais, a elipse vai se tornar um ćırculo.
As variáveis não precisam ser independentes.

• V: Se X1 e X2 são independentes, Σ é uma matriz diagonal e portanto os dois autovetores são
e1 = (1, 0) e e2 = (0, 1). Portanto, os eixo da elipse são paralelos aos eixos das coordenadas.

• F: Σ é sempre simétrica pois

Σ12 = Cov(X1, X2) = σ1σ2ρ12 = Cov(X2, X1) = Σ21

onde ρ12 = Corr(X1, X2).

• V: Se X1 e X2 são independentes então 0 = Cov(X1, X2) = Σ12.

• F: Σ é diagonal se, e somente se, Corr(X1, X2) = 0.

4. A Figura 2 mostra dados bi-dimensionais extráıdos de uma distribuição normal multivariada.

Figura 2: Dados bi-dimensionais extráıdos de uma distribuição normal multivariada.

• Qual é o valor esperado de cada variável? Estime a resposta visualmente e arredonde para o
número inteiro mais próximo.

• O valor do elemento (1, 2) da matriz de covariância Σ é positivo, negativo ou zero?

• Defina e1 e e2 como as direções do primeiro e segundo componentes principais, ambos com
comprimento igual a 1. Estas direções definem uma nova base do R2 onde cada ponto x é
tranformado para z = (z1, z2) com

z1 = (x− µ)′e1

e
z2 = (x− µ)′e2

Esboce E ROTULE e1 e e2 na figura 2. Os vetores devempartir do centro da distribuição-
nuvem de pontos.

• A covariância Cov(Z1, Z2) é negativa, positiva ou aproximadamente zero?

• Como A e B estão mais ou menos a uma mesma distância do centro eles possuem igual chance
de serem observados. V ou F? Justifique.
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• A probabilidade de observar um ponto tão afastado de µ quanto B é aproximadamente 5%,
50% ou 95%?

Solução:

• µ1 ≈ 5 ≈ µ2 e σ1 ≈ 2 ≈ σ2. (Eu pedi apenas o valor esperado na prova).

• Positivo pois a correlação entre as variáveis é positiva: quando X1 está acima de sua média
µ1, a variável X2 também tende a estar acima de sua média µ2.

• e1 e e2 esboçados na Figura 2.

• Cov(Z1, Z2) = 0. Este item é mais dif́ıcil. A justificativa correta é que

Cov(Z1, Z2) = Cov((x− µ)′e1, (x− µ)′e2)

= Cov(e′
1(x− µ), e′

2(x− µ))

= e′
1Cov((x− µ), (x− µ))e2

= e′
1Cov((x− µ), (x− µ))e2

= e′
1Σe2

= e′
1 (λ2e2) pois e2 é autovetor

= λ2 e′
1e2 = 0 pois os autovetores são ortogonais.

• A distância correta é a de Mahalanobis. A está numa região do plano com probabilidade muito
menor que B. É por isto que não vemos outras instâncias com valores similares aos de A.

• Estar tão ou mais afastado que B não acontece com frequência. A probabilidade é aproxima-
damente 5%.

5. Seja X = (X1, X2, X3)′ ∼ N3(0,Σ) com

Σ =

 4 0 2
0 2 0
2 0 9


• Ache a distribuição de Y = 3X1 + 2X2 +X3.

• Para que valores de a e b as variáveis X1 + aX3 e X1 + bX3 possuem covariãncia 0 e portanto
são independentes.

Solução: Y = 3X1 + 2X2 +X3 = (3, 2, 1)(X1, X2, X3)′ é uma normal com valor esperado

E(Y ) = (3, 2, 1)

 µ1

µ2

µ3

 = (3, 2, 1)

 0
0
0

 = 0

e variância

V(Y ) = (3, 2, 1) Σ

 3
2
1

 = (3, 2, 1)

 4 0 2
0 2 0
2 0 9

  0
0
0

 = 65

Para obtermos covariância zero e portanto independência, calculamos

Cov(X1 + aX3, X1 + bX3) = Cov((1, 0, a)X, (1, 0, b)X)

= (1, 0, a)Σ

 1
0
b


= 4 + 2b+ 2a+ 9ab = 0

Esta é uma equação linear com duas variáveis e portanto possui infinitas soluçõoes. Por exemplo,
tomando a = 0 temos b = −2. Tomando a = 1, temos b = −6/11.
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6. Mostre que a matriz de covariância

Σ =

 1.0 0.63 0.45
0.63 1.0 0.35
0.45 0.35 1.0


do vetor X = (X1, X2, X3)′ ∼ N3(0,Σ) pode ser gerada pelo modelo de análise fatorial com m = 1
fator e dado por

X1 = 0.9F1 + ε1

X2 = 0.7F1 + ε2

X3 = 0.5F1 + ε3

com var(F1) = 1, Cov(F1, ε) = 0 e

Ψ = Cov(ε) =

 0.19 0 0
0 0.51 0
0 0 0.75


Solução: Basta obter a matriz de covariância do vetor 0.9F1 + ε1

0.7F1 + ε2
0.7F1 + ε2

 =

 0.9
0.7
0.7

F1 +

 ε1
ε2
ε2


Pela independência entre F1 e o vetor ε, a matriz de covariância é a soma das covariâncias:

Cov

 0.9
0.7
0.7

F1 +

 ε1
ε2
ε2

 =

 0.9
0.7
0.7

V(F1) + Ψ = Σ

Se você não se sente a vontade com as manipulações matriciais acima, vocẽ pode verificar a igualdade
termo a termo na matriz. Por exemplo, vamos verificar que os elementos diagonais de Σ são os
memsos daqueles obtidos com o modelo fatorial:

1.0 = Σ11 = V(X1)

= V(0.9F1 + ε1) de acordo com o modelo fatorial

= V(0.9F1) + V(ε1) pela independência entre F1 e ε1

= (0.9)2V(F1) + 0.19

= 0.81× 1.0 + 0.19

De forma análoga verificamos que V(X2) e V(X3) coincidem com os valores obtidos através do
modelo fatorial.

Para os elementos fora da digonal,

0.63 = Σ12 = Cov(X1, X2)

= Cov(0.9F1 + ε1, 0.7F1 + ε2) de acordo com o modelo fatorial

= Cov(0.9F1, 0.7F1) + Cov(ε1, ε2) pela independência entre F1 e os ε’s

= (0.9)(0.7)V(F1) + 0

= 0.63× 1.0

Os outros são obtidos de maneira análoga.
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