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1. Suponha que Xi,...,X, forme uma amostra aleatéria de v.a.’s i.i.d. com a seguinte densidade
para z € (0,00) e 8 > 0:
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Encontre o MLE de 6.
Obtenha a estatistica suficiente para 6.

Esta distribui¢do é um membro da familia exponencial?

e Encontre a informacao de Fisher usando a segunda derivada da log-verossimilhanca e usando
o resultado de que E(X;) = 0.

e Se >, x; =20 e n =10, obtenha um IC de 95% para 6.

Solugao: A densidade conjunta das observacoes ¢é igual a
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Pelo Teorema da fatoracao, T'(X) = >, X; ¢é estatistica suficiente para estimar #. A distribuicao
encaixa-se na definicao de familia exponencial.

A log-verossimilhanca é dada por
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Igualando a zero, encontramos o MLE: § = >; Xi/n, a média aritmética.

Derivando uma segunda vez, temos
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e portanto encontramos a informagao de Fisher igual a
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Usando a aproximacgao normal para o MLE, podemos construi um IC de 95%:
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. Y1,...,Y, sao v.a.’s independentes. Cada Y; é uma varidavel binaria, com valores 0 ou 1, e com
probabilidade de sucesso p; que varia com ¢. Esta probabilidade de sucesso depende de uma variavel
explicativa x; (tomada como constante) da seguinte forma:

pi =pi(B) = Bo + Brw; .

Este modelo se parece com o de regressao logistica, apenas nao usa a fungao logistica para repre-
sentar p;. Suponha que os dados sejam semelhantes aos abaixo:
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e Obtenha a equagdo de verossimilhanca para encontrar o MLE de 8 = (8, 81). (um sistema
com duas equagdes, nao tente resolve-las).

e Este sistema deve ser resolvido numericamente. Especifique o algoritmo de Newton-Raphson
para obter a estimativa MLE de 6. Explique como o MLE é obtido numericamente a partir
do valor inicial 3 = (0.5,0).

e Encontre a matriz 2 x 2 de informacao de Fisher.

Solugao: A verossimilahnga é dada por
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A log-verossmilhanga é igual a

=2 _uilog(fo + Brai) + 3 (1 — i) log(1 = fo = Bre)
e a equacgao de verossmilhanlga é 1
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O k-ésimo passo iterativo do algoritmo Newton é dado por
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é o vetor gradiente e D? é a matriz hessiana (ou matriz de derivadas parciais de segunda ordem)

da fungéo £(0), com
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Tomando cuidado com a multiplicacao de varios sinais negativos, encontramos
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De forma similar, obtemos as demais derivadas parciais de segunda ordem e portanto

2 _ 1 1z
b= ;(504'51%)2 {ml m2]

3

O vetor gradiente e a matriz D? sdo avaliadas no valor corrente ,B(kfl) do parametro.

Supondo que temos apenas os n = 5 dados mostrados na tabela no enunciado no problema, se o
valor inicial for ,8(0) = (0.5,0), temos na primeira iteracao
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Fazendo o célculo numericamente, encontramos

-33.80 —132.14
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:| e portanto, [DZ]_l _ |: —-0.74 0.19 }

Precisamos também do vetor gradiente avaliado em B = (0.5,0). Temos
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onde tomamos 3y = 0.5 e B; = 0.



Assim,
ﬁ(l) _ 105 ] | -074 0.19 20 | | —1.39
| o0 0.19 —0.06 178 | | 0.62
Usamos ﬂ(l) = (—1.39,0.62)" para obter ﬂ(z), etc.

Como D? nao envolve as varidveis leatérias Y7,...,Y,,, a matriz de informacdo de Fisher é dada
por
I(B) = —E(D?) = —D?.

Esta matriz de informagao é avaliada usando a estimativa B resultante do algoritmo de Newton-
Raphson.



