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1. Suponha que X1, . . . , Xn forme uma amostra aleatória de v.a.’s i.i.d. com a seguinte densidade
para x ∈ (0,∞) e θ > 0:

f(x; θ) =
1

θ
exp

(
−x
θ

)
• Encontre o MLE de θ.

• Obtenha a estat́ıstica suficiente para θ.

• Esta distribuição é um membro da famı́lia exponencial?

• Encontre a informação de Fisher usando a segunda derivada da log-verossimilhança e usando
o resultado de que E(Xi) = θ.

• Se
∑
i xi = 20 e n = 10, obtenha um IC de 95% para θ.

Solução: A densidade conjunta das observações é igual a

f(x; θ) =
1

θn
exp

(
−1

θ

∑
i

xi

)
.

Pelo Teorema da fatoração, T (X) =
∑
iXi é estat́ıstica suficiente para estimar θ. A distribuição

encaixa-se na definição de famı́lia exponencial.

A log-verossimilhança é dada por

`(θ) = −n log(θ)− 1

θ

n∑
i=1

xi

e o escore por

∂`

∂θ
= − n

θ
+

1

θ2

n∑
i=1

xi

Igualando a zero, encontramos o MLE: θ̂ =
∑
iXi/n, a média aritmética.

Derivando uma segunda vez, temos

∂2`

∂θ2
=

n

θ3
− 2

θ3

n∑
i=1

xi

e portanto encontramos a informação de Fisher igual a

I(θ) = −E
(
∂2`

∂θ2

)
=

n

θ3
− 2

θ3

n∑
i=1

E(Xi)

=
n

θ3
− 2

θ3
nθ

=
n

θ2
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Usando a aproximação normal para o MLE, podemos construi um IC de 95%:(
θ̂ ± 1.95

√
I−1(θ̂)

)
=

(
θ̂ ± 1.95

θ̂√
n

)
=

(
20

10
± 1.95

20/10√
10

)

2. Y1, . . . , Yn são v.a.’s independentes. Cada Yi é uma variável binária, com valores 0 ou 1, e com
probabilidade de sucesso pi que varia com i. Esta probabilidade de sucesso depende de uma variável
explicativa xi (tomada como constante) da seguinte forma:

pi = pi(β) = β0 + β1xi .

Este modelo se parece com o de regressão loǵıstica, apenas não usa a função loǵıstica para repre-
sentar pi. Suponha que os dados sejam semelhantes aos abaixo:

i xi yi
1 2.3 0
2 4.3 1
3 1.7 0
4 3.2 1
...

...
...

n 5.4 1

• Obtenha a equação de verossimilhança para encontrar o MLE de β = (β0, β1). (um sistema
com duas equações, não tente resolve-las).

• Este sistema deve ser resolvido numericamente. Especifique o algoritmo de Newton-Raphson
para obter a estimativa MLE de θ. Explique como o MLE é obtido numericamente a partir
do valor inicial β(0) = (0.5, 0).

• Encontre a matriz 2× 2 de informação de Fisher.

Solução: A verossimilahnça é dada por

L(β) =

n∏
i=1

pyii (1− pi)1−yi =

n∏
i=1

(β0 + β1xi)
yi(1− β0 − β1xi)1−yi .

A log-verossmilhança é igual a

`(θ) =
∑
i

yi log(β0 + β1xi) +
∑
i

(1− yi) log(1− β0 − β1xi)

e a equação de verossmilhança é

∂`

∂β0
=

∑
i

yi
β0 + β1xi

+
∑
i

(1− yi)(−1)

1− β0 − β1xi
= 0

∂`

∂β1
=

∑
i

yixi
β0 + β1xi

−
∑
i

(1− yi)xi
1− β0 − β1xi

= 0

Isto é equivalente a

∂`

∂β0
=

∑
i

2yi − 1

β0 + β1xi
= 0

∂`

∂β1
=

∑
i

(2yi − 1)xi
β0 + β1xi

= 0
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O k-ésimo passo iterativo do algoritmo Newton é dado por

β(k) = β(k−1) −
[
D2
]−1 ∂`

∂β

onde
∂`

∂β
=

(
∂`

∂β0
,
∂`

∂β1
,

)t
é o vetor gradiente e D2 é a matriz hessiana (ou matriz de derivadas parciais de segunda ordem)
da função `(θ), com

D2 =

[
∂2`
∂β2

0

∂2`
∂β0∂β1

∂2`
∂β0∂β1

∂2`
∂β2

1

]
Tomando cuidado com a multiplicação de vários sinais negativos, encontramos

∂2`

∂β2
0

= −
∑
i

yi
(β0 + β1xi)2

−
∑
i

(1− yi)(−1)(−1)

(1− β0 − β1xi)2

= −
∑
i

yi
(β0 + β1xi)2

−
∑
i

(1− yi)
(1− β0 − β1xi)2

= −
∑
i

yi + (1− yi)
(1− β0 − β1xi)2

= −
∑
i

1

(1− β0 − β1xi)2

De forma similar, obtemos as demais derivadas parciais de segunda ordem e portanto

D2 = −
∑
i

1

(β0 + β1xi)2

[
1 xi
xi x2i

]

O vetor gradiente e a matriz D2 são avaliadas no valor corrente β(k−1) do parâmetro.

Supondo que temos apenas os n = 5 dados mostrados na tabela no enunciado no problema, se o
valor inicial for β(0) = (0.5, 0), temos na primeira iteração

β(1) = β(0) −
[
D2
]−1 ∂`

∂β

=

[
0.5
0

]
−
(
− 1

(β0 + β12.3)2

[
1 2.3

2.3 2.32

]
− . . .− 1

(β0 + β15.4)2

[
1 5.4

5.4 5.42

])−1
[

∂`
∂β0
∂`
∂β1

]

Fazendo o cálculo numericamente, encontramos

D2 =

[
−10.0 −33.80
−33.80 −132.14

]
e portanto, [D2]

−1
=

[
−0.74 0.19
0.19 −0.06

]

Precisamos também do vetor gradiente avaliado em β(0) = (0.5, 0). Temos[
∂`
∂β0
∂`
∂β1

]
=

[ ∑
i

2yi−1
β0+β1xi∑

i
(2yi−1)xi

β0+β1xi

]
=

[
2∗0−1

β0+β1∗2.3 + . . .+ 2∗1−1
β0+β1∗5.4

(2∗0−1)∗2.3
β0+β1∗2.3 + . . .+ (2∗1−1)∗5.4

β0+β1∗5.4

]
=

[
2.0
17.8

]
onde tomamos β0 = 0.5 e β1 = 0.
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Assim,

β(1) =

[
0.5
0

]
−
[
−0.74 0.19
0.19 −0.06

] [
2.0
17.8

]
=

[
−1.39
0.62

]
Usamos β(1) = (−1.39, 0.62)t para obter β(2), etc.

Como D2 não envolve as variáveis leatórias Y1, . . . , Yn, a matriz de informação de Fisher é dada
por

I(β) = −E(D2) = −D2 .

Esta matriz de informação é avaliada usando a estimativa β̂ resultante do algoritmo de Newton-
Raphson.
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