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1. UC Berkeley, CS 194-10, Introduction to Machine Learning Fall 2011, Prof Stuart Russell Um
modelo de regressão linear da resposta yi tem um único atributo xi que tem sempre valores positivos
(isto é, xi > 0 em qualquer observação i). Todas as hipóteses usuais aplicam-se (dados gaussianos,
independência, etc) EXCETO que a variância seja constante para todas as n observações. Verifica-se
que a variância do rúıdo ou erro εi é proporcional a xi.

• Qual das seguintes densidades para o vetor y = (y1, y2, . . . , yn) descreve corretamente a veros-
similhança dos parâmetros β0, β1, σ

2:

–

L(β0, β1, σ
2) =

1
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2π)nσn
∏
i xi
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∑
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2

2x2iσ
2

)
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√
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∑
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)
–

L(β0, β1, σ
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∏
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√
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−
∑
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(yi − (β0 + β1xi))
2

2xiσ2

)
• Identifique na Figura 1, com notação de matriz qual (ou quais) dos plots poderia ser gerado

por uma instância do modelo identificado no item anterior.

Figura 1: Quatro conjuntos de dados para regressão com variância não constante.

• Obtenha a derivada com respeito a β1 da LOG-verossimilhança escolhida no primeiro item.
Obtenha uma expressão para o MLE de β1 supondo que os demais parâmetros são conhecidos.

Solução: Dado xi, temos Yi = β0 + β1xi + εi onde εi ∼ N(0, σ2
i ) = N(0, σ2xi) pois a variância do

rúıdo ou erro εi é proporcional a xi e σ2 é agora simplesmente a constante de proporcionalidade.
Desssa forma, Yi ∼ N(β0 + β1xi, σ

2
i ) com densidade dada por

f(y) =
1√

2πσ2xi
exp

(
− 1

σ2xi
(yi − (β0 + β1xi))

2

)
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Como Y1, . . . , Yn são v.a.’s independentes, a sua densidade conjunta é o produto das densidades.
Portanto, a verossmilhança é

L(β0, β1, σ
2) =

n∏
i=1

1√
2πσ2xi

exp

(
− (yi − (β0 + β1xi))

2

σ2xi

)

=
(
2πσ2

)−n/2
exp

(
−
∑
i

(yi − (β0 + β1xi))
2

2xiσ2

)

Portanto, a terceira opção é a correta.

A resposta são os plots nas posições (1, 2) e (2, 2). Nos dois, a v.a. (Y |x) tem seu valor esperado
E(Y |x) variando linearmente com x (isto é, E(Y |x) = β0 + β1x). Em (1, 1) temos β1 > 0 e em
(2, 2) temos β1 < 0. Nestes dois plots, a variabilidade de (Y |x) cresce com x. Vemos que V(Y |x)
aumenta com x nos dois casos. No plot na posição (1, 1), E(Y |x) aumenta com x mas V(Y |x) é
a mesma para todo x. No caso do plot (2, 1), E(Y |x) não varia com x (isto é, β1 = 0) e V(Y |x)
também não varia com x.

A log-verossmilhança é dada por

`(β0, β1, σ
2) = −n

2
log(2πσ2)−

∑
i

(yi − (β0 + β1xi))
2

2xiσ2

e portanto

∂`

∂β1
= −

∑
i

1

2xiσ2
2 (yi − (β0 + β1xi)) (−xi)

=
1

σ2

(∑
i

yi − (β0n+ β1
∑
i

xi)

)
=

n

σ2
(ȳ − (β0 + β1x̄)

Note que para esta derivada ser igual a zero, estamos pedindo que β0 e β1 sejam tais que a média
ȳ iguale o valor da reta quando tomarmos x igual à média x̄ (isto é, que ȳ = β0 + β1x̄).

2. Um modelo de regressão linear da resposta yi tem um único atributo xi com valores sempre positivos.
Sabe-se que a relação linear entre y e x é tal que o intercepto β0 = 0. Assim, o modelo de regressão
linear é da forma yi = βxi + εi onde εi ∼ N(0, σ2). A verossimilhança desse modelo é dada por

L(β, σ2) =
(
2πσ2

)−n/2
exp

(
−
∑
i

(yi − βxi)2

2σ2

)

• Obtenha o MLE βmle.

• Um modelo de regressão regularizado modifica a log-verossmilhança para a função

J(β, σ2) = log(L(β, σ2))− λ

σ2
β2

onde λ > 0 é uma constante conhecida. Obtenha o valor βreg que maximiza a log-verossimilhança
regularizada J(β, σ2).

• É posśıvel adiantar a desigualdade entre os estimadores. Isto é, podemos dizer de teremos
sempre |βreg| > |βmle|?
• A variância do erro de estimação está associada com o valor de |∂2J/∂β2|. Obtenha este valor.
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Solução: Derivando diretamente a verossimilhança e igualando a zero, temos:

∂L(β, σ2)

∂β
=

(
2πσ2

)−n/2
exp

(
−
∑
i

(yi − βxi)2

2σ2

)
∂

∂β

(
−
∑
i

(yi − βxi)2

2σ2

)

=
(
2πσ2

)−n/2
exp

(
−
∑
i

(yi − βxi)2

2σ2

)(
− 1

2σ2

∑
i

2(yi − βxi)(−xi)

)
= 0

Como (
2πσ2

)−n/2
exp

(
−
∑
i

(yi − βxi)2

2σ2

)
> 0

pois ex > 0 para todo x, a única forma dessa expressão ser zero é se

− 1

2σ2

∑
i

2(yi − βxi)(−xi) = 0

o que implica em ∑
i

yixi − β
∑
i

x2i = 0

ou seja,

βmle =
∑
i

yixi/
∑
i

x2i .

Observe que nós quase nunca derivamos diretamente a verossimilhança como fizemos acima. Em
geral, tomamos o log e derivamos. Neste caso,

∂ log(L(β, σ2))

∂β
=

∂

∂β

(
−n

2
log(2πσ2)−

∑
i

(yi − βxi)2

2σ2

)

= − 1

2σ2

∑
i

2(yi − βxi)(−xi)

= − 1

σ2

(∑
i

yixi − β
∑
i

x2i

)

Igualando a zero, obtemos o mesmo MLE de antes.

A log-verossimilhança regularizada é igual a

J(β, σ2) = −n
2

log(2πσ2)−
∑
i

(yi − βxi)2

2σ2
− λ

σ2
β2

Derivando em relação a β e igualando a zero, obtemos:

∂J

∂β
=

1

σ2

(∑
i

xiyi − β
∑
i

x2i − 2λβ

)
= 0

o que implica em

βreg =

∑
i xiyi∑

i x
2
i + 2λ

Como λ > 0, temos |βreg| < |βmle|.
Por simples derivação adicional encontramos

∂2J

∂β2
= −

∑
i x

2
i + 2λ

σ2
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3. O peso (em quilos) de um brasileiro do sexo masculino entre 20 e 24 anos escolhido ao acaso segue
uma distribuição com valor esperado 75. O desvio-padrão desse peso é denotado por σ.

• O valor de σ é um dos números na seguinte lista: {1, 2, 5, 10, 15, 20, 25}. Diga qual deles é o
mais razoável na sua opinião (justificando, claro).

• O elevador do DCC no ICEx diz que o limite máximo de segurança para seu uso é de 975
quilos ou 13 pessoas (note que 75× 13 = 975). Usando o valor de σ escolhido anteriormente,
use o TCL para calcular aproximadamente a probabilidade de que 10 pessoas escolhidas ao
acaso entrem no elevador e o peso ultrapasse 975 quilos.

• Se n pessoas escolhidas ao acaso entrarem no elevador ao mesmo tempo, existe certa probabi-
lidade de que a soma de seus pesos ultrapasse 975 quilos. Esta probabilidade aumenta com n.
Qual o menor n tal que esta probabilidade seja 0.10? OBS: Use que P(N(0, 1) > 1.28) = 0.10.

Solução: Distribuições de medidas antropométricas como peso e altura seguem aproximadamente
uma distribuição gaussiana. Aproximadamente 95% dos indiv́ıduos deverão estar no intervalo (75−
2σ, 75 + 2σ). Considerando que o peso de brasileiros adultos deve estar na faixa de 100 a 50 quilos,
devemos ter um valor de σ em torno de (100− 50)/4 = 12.5. Assim, a resposta σ = 10 ou σ = 15
são as mais razoáveis.

Sejam X1, . . . , X10 os pesos aleatórios de 10 adultos do sexo masculino escolhidos ao acaso. Então,
com X = (X1 + . . .+X10)/10, temos

P(X1 + . . .+X10 > 975) = P
(
X1 + . . .+X10

10
>

975

10

)
= P

(
X − 75

σ/
√

10
>

97.5− 75

σ/
√

10

)
≈ P(N(0, 1) >

71.15

σ
)

= P(N(0, 1) > 4.74) usando σ = 15

= 1.07× 10−6 ,

uma chance muito pequena.

Com um n genérico, fazendo Xn = (X1 + . . .+Xn)/n, queremos calcular

P(X1 + . . .+Xn > 975) = P
(
X1 + . . .+Xn

n
>

975

n

)
= P

(
Xn − 75

σ/
√
n

>
975/n− 75

σ/
√
n

)
≈ P

(
N(0, 1) >

975/n− 75

15/
√
n

)
usando σ = 15 .

No caso de uma N(0, 1), temos P(N(0, 1) > −1.28) = 0.10. Portanto, queremos um n tal que
(975/n− 75)/(15/

√
n) ≈ −1.28. Isto é, n tal que

975

n
− 75 ≈ −19.2√

n

ou 975 − 75n + 19.2
√
n ≈ 0. Substituindo x =

√
n e a proximação por uma igualdade, devemos

resolver uma equação do segundo grau, 975 − 75x2 + 19.2x = 0, cujas soluções são x = 3.479673
e x = −3.735983. Como x =

√
n > 0, a segunda solução pode ser descartada. Usando a primeira

solução, temos n ≈ 12.10, ou n = 12.

4. Sejam Y1, Y2, . . . , Yn v.a’s cont́ınuas i.i.d. com a seguinte densidade de probabilidade:

f(x|θ) = θx−(θ+1)
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onde θ > 1 e x ≥ 1. Ache o MLE de θ.

Solução: A log-verossimilhança é

`(θ) = log

θn(∏
i

xi

)−(θ+1)
 = n log(θ)− (θ + 1)

∑
i

log(xi)

Derivando e igualando a zero:
∂`(θ)

∂β
=
n

θ
−
∑
i

log(xi) = 0

o que implica em θmle = n/
∑
i log(xi), o inverso da a média dos logs dos valores.

5. O efeito de centrar os atributos. O objetivo deste exerćıcio é mostrar que, ao centrar os atributos,
temos coeficientes relacionados de forma simples aos coeficientes obtidos com coeficientes não-

centrados. Seja β̂
∗

= (β̂∗
0 , β̂

∗
1 , β̂

∗
2) o vetor que minimiza∑

i

(yi − (β∗
0 + β∗

1(xi1 − x̄1) + β∗
2(xi2 − x̄2)))

2

Isto é, a matriz de desenho tem suas colunas com média zero (exceto a primeira coluna). Seja

β̂ = (β̂0, β̂1, β̂2) o coeficiente que minimiza a distância entre Y e as combinações lineares das
colunas não-centradas: ∑

i

(yi − (β0 + β1xi1 + β2xi2))
2

Mostre que as soluções dos dois problemas estão relacionadas da seguinte forma:

β̂0 = β̂∗
0 − β̂∗

1 x̄1 − β̂∗
2 x̄2

β̂1 = β̂∗
1

β̂2 = β̂∗
2

Solução: Seja

β̂
∗

= min
β∗

{∑
i

(yi − (β∗
0 + β∗

1(xi1 − x̄1) + β∗
2(xi2 − x̄2)))

2

}

= min
β∗

{∑
i

(yi − ((β∗
0 − β∗

1 x̄1 − β∗
2 x̄2) + +β∗

1xi1 + β∗
2xi2))

2

}

= min
β∗

{∑
i

(yi − (β0 + β∗
1xi1 + β∗

2xi2))
2

}

onde fizemos β0 = β∗
0 − β∗

1 x̄1 − β∗
2 x̄2. Como todo vetor da forma (β0, β

∗
1 , β

∗
2) tem um único

correspondente da forma (β∗
0 , β

∗
1 , β

∗
2) com β0 = β∗

0 − β∗
1 x̄1 − β∗

2 x̄2. Assim, a solução do problema

centrado obtém um vetor ótimo β̂
∗

= (β̂∗
0 , β̂

∗
1 , β̂

∗
2) que minimiza a última expressão e portanto

resolve também o problema ótimo para as variáveis não-centradas bastando tomar

β̂0 = β̂∗
0 − β̂∗

1 x̄1 − β̂∗
2 x̄2

β̂1 = β̂∗
1

β̂2 = β̂∗
2
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