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1. Suponha que X1, . . . , Xn forme uma amostra aleatória de v.a.’s i.i.d. com densidade de probabili-
dade Rayleigh dada por

f(x; θ) = (x/θ)2 exp
(
−x2/(2θ2)

)
para x > 0 e com θ ∈ (0,∞) sendo um parâmetro desconhecido controlando a forma da densidade.
Obtenha o MLE de θ.

Solução: A log-verossimilhança de θ baseada numa amostra é igual a

`(θ) = log

[∏
i x

2
i

θ2n
exp

(
−
∑
i x

2
i

2θ2

)]
= −2n log(θ) +

∑
i

log(x2i )−
1

2θ2

∑
i

x2i .

Derivando com respeito a θ e igualando a zero, temos

0 =
∂`(θ)

∂θ
= −2n

θ
+

∑
i x

2
i

θ3

o que implica no MLE

θ̂ =

√∑
i x

2
i

2n

2. Suponha que X1, . . . , Xn forme uma amostra aleatória de v.a.’s i.i.d. com densidade de probabili-
dade Weibull dada por

f(x;α, β) = αβxβ−1 exp
(
−αxβ

)
para x > 0. Você vai usar o método de Newton para obter o MLE de θ = (α, β). Como valor inicial

você vai usar θ(0) = (1/x̄, 1).

Obtenha explicitamente a equação de iteração do algoritmo de Newton com a densidade acima (mas
não precisa inverter a matriz).

DICA: A derivada em β da função xβ é igual a

d

dβ

(
xβ
)

= log(x) xβ

onde log é o logaritmo na base e.

Solução: A log-verossimilhança de θ = (α, β) baseada numa amostra é igual a

`(α, β) = log

[
αnβn(

∏
i

xβ−1i ) exp

(
−α

∑
i

xβi

)]
= n log(α) + n log(β) + (β − 1)

∑
i

log(xi)− α
∑
i

xβi .

Derivando com respeito a α e depois com respeito a β encontramos o vetor gradiente:

∇`(θ) =
∂`

∂θ
=

[
∂`(α,β)
∂α

∂`(α,β)
∂β

]
=

[
n
α −

∑
i x

β
i

n
β +

∑
i log(xi)− α

∑
i

(
log(xi)x

β
i

) ]
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Não é posśıvel obter o MLE de forma expĺıcita. Devemos usar métodos numéricos. Para usar o
método de Newton precisamos da matriz de derivadas parciais de segunda ordem (o Hessiano da
função `(θ)):

D2(θ) =
∂2`(θ)

∂θ2

=

[
∂2`(α,β)
∂α2

∂2`(α,β)
∂α∂β

∂2`(α,β)
∂β∂α

∂2`(α,β)
∂β2

]

=

 − n
α2 −

∑
i

(
log(xi)x

β
i

)
−
∑
i

(
log(xi)x

β
i

)
− n
β2 − α

∑
i

(
log2(xi)x

β
i

) 
O MLE é encontrado aplicando iterativamente a seguinte atualização:

θ(k+1) = θ(k) −
[
D2(θ(k))

]−1
∇`(θ(k))

3. No modelo de regressão loǵıstica com uma única feature numérica x, temos variáveis aleatórias
binárias Y1, . . . , Yn em que a probabilidade de sucesso do item i depende de sua feature xi da
seguinte forma:

pi = p(xi) =
1

1 + exp(−β0 − β1xi)

• Mostre que pi = exp(β0+β1xi)
1+exp(β0+β1xi)

• Obtenha a função log-verossmilhança de θ = (β0, β1) mostrando que ela é igual a

`(β) = β0
∑
i

yi + β1
∑
i

xiyi −
∑
i

log
(
1 + eβ0+β1xi

)
(Não precisa obter a derivada da log-verossimilhança).

Solução: Multiplicando o numerador e o denominador de pi por exp(β0 + β1xi) temos

pi =
exp(β0 + β1xi)

exp(β0 + β1xi) + exp(β0 + β1xi) exp(−β0 − β1xi)
=

exp(β0 + β1xi)

exp(β0 + β1xi) + 1

Para a função log-verossmilhança temos

`(β) = log
∏
i

[P(Yi = yi|β)]

=
∑
i

log
[
pyii (1− pi)1−pi

]
=

∑
i

[yi log(pi) + (1− yi) log(1− pi)]

=
∑
i

[yi log(pi) + (1− yi) log(1− pi)]

=
∑
i

[
yi log

(
exp(β0 + β1xi)

1 + exp(β0 + β1xi)

)
+ (1− yi) log

(
1

1 + exp(β0 + β1xi)

)]
=

∑
i

[yi(β0 + β1xi)− yi log(1 + exp(β0 + β1xi))− (1− yi) log(1 + exp(β0 + β1xi))]

=
∑
i

[yi(β0 + β1xi)− log(1 + exp(β0 + β1xi))]

= β0
∑
i

yi + β1
∑
i

(yixi)−
∑
i

log(1 + exp(β0 + β1xi))

2



4. Considere o modelo de regressão usual com matriz de desenho X de dimensão n× p cuja primeira
coluna é o vetor 1. As colunas são linearmente independentes. O estimador de mı́nimos quadrados
dos coeficientes β = (β0, β1, . . . , βp) coincide o MLE e é igual a β̂ = (X′X)−1X′Y.

• Para avaliar se o modelo de regressão linear é adequado, costuma-se trablhar com o vetor de
reśıduos r. Tendo X e Y, quais as contas matricias você precisa fazer para obter o vetor r?
Isto é, qual a expressão matricial do vetor r em função de X e Y?

• Mostre que o vetor de reśıduos r é ortogonal ao vetor de valores preditos Ŷ.

• A partir do item acima, conclua que a soma dos reśıduos
∑
i ri é igual a zero quando a primeira

coluna de X é o vetor 1.

Solução: Como o reśıduo é o vetor diferença entre as observações Y e os vetor de predições Xβ̂,
temos

r = Y −Xβ̂ = Y −X(X′X)−1X′Y

O vetor r é ortogonal ao vetor de valores preditos Ŷ pois o seu produto interno é zero. Existem
muitas maneiras de provar isto, uma delas sendo:

Ŷ′r =
(
Xβ̂
)′ (

Y −Xβ̂
)

= β̂′X′
(
Y −Xβ̂

)
= β̂′X′Y − β̂′X′Xβ̂ (1)

Use agora a expressão fornecida β̂ = (X′X)−1X′Y para obter

β̂′X′Xβ̂ = β̂′X′X(X′X)−1X′Y = β̂′X′Y

Portanto, o produto interno em (1) é zero.

Novamente, existem muitas maneira distintas de provar este último resultado. Aqui está uma delas.
Como r está no espaço ortogonal das colunas de X, o produto interno de r com estas coluna é zero.
Como 1 é uma das colunas de X, temos 0 = 1′r =

∑
i ri.

Outra maneira, apenas manipulando as fórmulas dos itens acima:

X′r = X′
(
Y −Xβ̂

)
= X′Y −X′Xβ̂ = X′Y −X′X(X′X)−1X′Y = X′Y −X′Y = 0

Assim, cada linha de X′ é ortogonal a r. Isto é, cada coluna de X é ortogonal a r e, como 1 é uma
das colunas de X, temos 0 = 1′r =

∑
i ri.
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