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1. 4 PONTOS As v.a.’s binárias y1, y2, . . . , yn são independentes com yi ∼ Bernoulli(pi) onde

pi =
1

1 + e−ηi
=

1

1 + e−(β0+β1xi1+...+βpxip)
=

1

1 + e−x
t
iθ

onde o vetor-COLUNA xi = (1, xi1, . . . , xip)
t é a i-ésima LINHA da matriz X de dimensão n × (p + 1) e θ =

(β0, β1, . . . , βp) é o vetor-coluna de parâmetros desconhecidos. Mostre EM DETALHES que a equação de verossi-
milhança é dada por

0 =
∂`(θ)

∂θ
= Xt(y − p)

OBS: Eu saltei alguns detalhes nos slides. Por exemplo, não mostrei como os pi’s aparecem na equação acima. Você
deve mostrar estes detalhes também, não basta copiar os slides.

Solução: Os slides possuem toda a derivação necessária faltando poucos detalhes. Seja

X =


1 x11 x12 . . . x1p
1 x21 x22 . . . x2p
...

...
... . . .

...
1 xn1 xn2 . . . xnp

 .

a matriz n × (p + 1) com os preditores (ou features) como colunas (lembrando que a primeira coluna é formada por
1’s). A log-verossimilhança é

`(θ) = log

(
n∏
i=1

P (Yi = 1)yi P (Yi = 0)1−yi

)

=

n∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] =

n∑
i=1

[
yi xtiθ − log(1 + ex

t
iθ)
]

Para maximizar `(θ), tomamos derivadas em relação a cada coordenada de θ = (β0, . . . , βp) e igualamos a zero. O
único detalhe relevante que deve ser acrescentado é que

pi = pi(θ)) =
1

1 + e−x
′
iθ

=
ex

t
iθ

1 + ex
t
iθ

Assim,

∂`(θ)

∂βj
=

n∑
i=1

xijyi −
n∑
i=1

xij
ex

t
iθ

1 + ex
t
iθ

=

n∑
i=1

xijyi −
n∑
i=1

xijpi(θ))

=

n∑
i=1

xij(yi − pi(θ))

para todo j = 0, 1, . . . , p. Devemos ter esta derivada igual a zero, o que implica em ter
∑n
i=1 xij(yi − pi(θ)) = 0 ou∑

i xijyi =
∑
i xijpi(θ). Os dois lados desta igualdade representam uma soma ponderada dos n valores do j-ésimo

preditor ou feature ( valores da coluna j da matriz X). O lado esquerdo dá um peso binário, 0 ou 1, a cada xij . Assim,
ele é a soma dos valores do predito j para aqueles itens que tiveram yi = 1. O lado direito usa a probabilidade pi(θ)

que depende da escolha dos coeficientes no vetor θ. Assim, encontrar o MLE significa escolher θ̂ de forma a equilibrar
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(ou igualar) estas duas somas ponderadas. Na verdade, devemos ter este equiĺıbrio para todos as colunas de X usando

a mesma escolha para θ̂. São p+ 1 equações formando um sistema de equações não-lineares em θ. Então
∂`(θ)
∂β0
∂`(θ)
∂β1

...
∂`(θ)
∂βp

 =


∑n
i=1 1 · (yi − pi(θ))∑n
i=1 xi1 · (yi − pi(θ))

...∑n
i=1 xip · (yi − pi(θ))

 =


1 1 . . . 1
x11 x21 . . . xn1

...
...

x1p x2p . . . xnp

 ·

y1 − p1(θ))
y2 − p2(θ))

...
yn − pn(θ))

 = X′(y − p(θ)) = 0

onde p(θ) é o vetor coluna (p1(θ), p2(θ), . . . , pn(θ))′. O MLE é a solução θ̂ do sistema de equações não-lineares acima,
que pode ser escrito em forma matricial como Xt(y − p(θ)) = 0 ou, de forma equivalente, Xty = Xtp(θ).

2. 4 PONTOS Ainda com relação ao problema acima, faça a derivação detalhada mostrando que

∂2`(θ)

∂θ∂θt
= −XtWX

e esclarecendo o que é a matriz W.

Solução: Vamos considerar uma das derivadas parciais de segunda ordem:

∂

∂βk

∂`(θ)

∂βj
=

∂

∂βk

n∑
i=1

xij(yi − pi(θ))

= −
n∑
i=1

xij
∂pi(θ)

∂βk

Temos

∂pi(θ)

∂βk
=

−1

(1 + e−x
′
iθ)2

e−x
′
iθ (−xik)

= xik
1

1 + e−x
′
iθ

e−x
′
iθ

1 + e−x
′
iθ

= xik pi(θ) (1− pi(θ))

Dessa forma,

∂2`(θ)

∂βk∂βj
= −

n∑
i=1

xij xik pi(θ) (1− pi(θ))

Esta expressão é o elemento (j, k) da matriz −XtWX onde W é uma matriz diagonal n × n com i-ésimo elemento
diagonal igual a pi(θ) (1− pi(θ)).

3. 4 PONTOS Encontre o MLE do parâmetro σ2 se Y1, . . . , Yn são i.i.d. com distribuição gaussiana N(µ0, σ
2) onde µ0

é um valor conhecido. Por exemplo, assuma que µ0 = 7 e forneça o MLE de σ2.

Solução: A verossimilhança de σ2 é

L(σ2) =

n∏
i=1

1√
2πσ2

exp

(
− (yi − µ0)2

2σ2

)
e portanto a log-verossmilhança é

`(σ2) = −n
2

log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(yi − µ0)2

Precisamos agora derivar com respeito a σ2. A única posśıvel dificuldade aqui é que alguns alunos costumam derivar
com respeito a σ ou ficam confusos com a presença do expoente 2. Uma maneira muito simples de resolver isto é
substituir σ2 na log-verossmilhança por, por exemplo, v e derivar com respeito a v. No final, voltamos a substituir v
por σ2. Assim,

`(v) = −n
2

log(2π)− n

2
log(v)− 1

2v

n∑
i=1

(yi − µ0)2
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e portanto

∂`(v)

∂v
= −n

2

1

v
+

1

2v2

n∑
i=1

(yi − µ0)2

Igulando esta derivada a zero e isolando v encontramos v̂ =
∑
i=1 n(yi − µ0)2/n. Ou seja, quando o valor esperado µ0

é conhecido, o MLE de σ2 é igual a

σ̂2 =

∑n
i=1(yi − µ0)2

n

4. 4 PONTOS Seja Y uma v.a. com µ = E(Y ). Prove que m = µ é o valor que minimiza E(Y − m)2. Isto é, que
µ = arg minm E(Y −m)2.

Solução: Vamos mostrar duas soluções. Para a primeira, vou assumir inicialmente que a v.a. Y seja cont́ınua com
densidade f(y). Comece derivando g(m) = E(Y − m)2 com respeito a m e igualando a zero para encontrar os seus
pontos cŕıticos:

∂g(m)

∂m
=

∂

∂m
E(Y −m)2 =

∂

∂m

∫
(y −m)2f(y)dy

=

∫
f(y)

∂(y −m)2

∂m
f(y)dy

=

∫
f(y)

∂(y −m)2

∂m
f(y)dy

=

∫
−2(y −m)f(y)dy = −2

∫
yf(y)dy + 2m

∫
f(y)dy

= −2µ+ 2m× 1 = 0

o que implica em m = µ é o único ponto cŕıtico da função g(m). Ele é um ponto de mı́nimo pois

∂2g(m)

∂m2
=

∫
(−2)(−1)f(y)dy = 2

∫
f(y)dy = 2 > 0

O caso de v.a.’s discretas é idêntico, substituindo as integrais por somas.

Matemáticos e probabilistas teriam objeção à solução acima pois existem v.a.’s que são misturas de v.a.’s cont́ınuas e
discretas. Neste caso, a próxima solução é melhor pois é geral e serve para qulaquer v.a. Use o velho truque de somar
e subtrair µ no parÃanteses de g(m):

g(m) = E(Y −m)2

= E(Y − µ+ µ−m)2

= E
[
(Y − µ)2 + 2(Y − µ)(µ−m) + (µ−m)2

]
= E

[
(Y − µ)2

]
+ 2E [(Y − µ)(µ−m)] + E

[
(µ−m)2

]
= V(Y ) + 2(µ−m)E [(Y − µ)] + (µ−m)2 pois (µ−m) é uma constante

= V(Y ) + 2(µ−m)× 0 + (µ−m)2 pois µ = E(Y )

= V(Y ) + (µ−m)2

O primeiro termo é a variância de Y e ela não depende da constante m que você vai escolher. Assim, para minimizar
g(m) você deve considerar aqpenas o segundo termo. Ele é não-negativo e será minimizado se for igual a zero. Isto
ocorre se tomarmos m = µ.

5. 4 PONTOS Seja

H1 =
1

n
11′ =

1

n


1 1 . . . 1
1 1 . . . 1
...

... . . .
...

1 1 . . . 1


Verifique que, qualquer que seja o vetor resposta Y de dimensão n× 1, ele pode ser decomposto como

Y = H1Y + (I−H1) Y = ȳ1 + (Y − ȳ1)

3



e que os dois vetores do lado direito da equação são ortogonais entre si.

Solução: Como

H1Y =
1

n
11′Y = 1

(
1

n
1′Y

)
= 1ȳ ,

temos então, somando e subtraindo H1Y,

Y = Y + H1Y −H1Y = H1Y + (I−H1) Y

= ȳ1 + Y − ȳ1

A parte mais relevante é mostrar que os componentes desta decomposição são ortogonais entre si. Temos

(ȳ1)
′ · (Y − ȳ1) = ȳ (nȳ)− (ȳ)

2
1′1 = n (ȳ)

2 − (ȳ)
2
n = 0

Outra opção trabalhando com as matrizes, é checar que H1H1 = H2
1 = H1 (isto é, é uma matriz idempotente). Além

disso, H1 é simétrica (H1 = H′1). Em seguida, veja que

(H1Y)
′ · (I−H1) Y = Y′H′1 (I−H1) Y = Y′ (H1 −H1H1) Y = Y′ (H1 −H1) Y = Y′ (0) Y = 0
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