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1. 4 PONTOS A mouse is trapped in a room with three exits at the center of a maze.

• Exit 1 leads directly outside the maze after 3 minutes.

• Exit 2 leads back to the room after 5 minutes.

• Exit 3 leads back to the room after 7 minutes.

Every time the mouse makes a choice, it is equally likely to choose any of the three exits. Upon reentering the room,
the process resets, and everything proceeds as at the experiment’s start. Considering the probabilities shown in Figure
1, what is the expected time for the mouse to leave the maze?

Figura 1: Mouse in a maze. Diagram with probabilities.

Solution: Let T be the time to leave the maze, starting from the central room. Let D be the first door selected by
the mouse. Then:

E(T ) = E [E(T |D)]

= E(T |D = 1)P(D = 1) + E(T |D = 2)P(D = 2) + E(T |D = 3)P(D = 3)

We have

E(T |D = 1) = 3 minutes

E(T |D = 2) = 5 + E(T )
E(T |D = 3) = 7 + E(T )

Therefore,

E(T ) = 3
1

3
+ (5 + E(T ))

1

3
+ (7 + E(T ))

1

3
1

3
E(T ) = 15× 1

3
⇒ E(T ) = 15 minutes

Also, we can obtain the possible values of the random variable E(T |D):

E(T |D = 1) = 3 minutes

E(T |D = 2) = 5 + E(T ) = 20 minutes

E(T |D = 3) = 7 + E(T ) = 22 minutes
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2. 4 PONTOS In the previous problem, find the variance of the random time for the mouse to leave the maze.

Solution: We have
V(T ) = V [E(T |D)] + E [V(T |D)]

We start by obtaining the first term. As seen at the end of the first item, the random variable E(T |D) has the
possible values 3, 20, and 22. We already know that the expected value of this random variable is E(T ) = 15 because
E(T ) = E [E(T |D)]. However, we can also verify this directly:

E [E(T |D)] = 3× 1

3
+ 20× 1

3
+ 22× 1

3
= 15

The variance of this random variable can be easily obtained:

V [E(T |D)] = E (E(T |D)− E(T ))2

= (3− 15)
2 1

3
+ (20− 15)

2 1

3
+ (22− 15)

2 1

3
= 72.7

To obtain the second term, E [V(T |D)], we start by obtaining the possible values of the random variable V(T |D). The
first one is V(T |D = 1) = 0. This is so because T does not vary in this case. When D = 1 we always have T = 3, with
no variation. The second one is V(T |D = 2). As the system is restored when the mouse returns after exiting door 2,
we have (T |D = 2) with the same distribution as 5 + T and therefore V(T |D = 2) = V(5 + T ) = V(T ). Likewise, we
obtain V(T |D = 2) = V(T ). We conclude that

E [V(T |D)] = V(T |D = 1)× 1

3
+ V(T |D = 2)× 1

3
+ V(T |D = 3)× 1

3

= 0× 1

3
+ V(T )× 1

3
+ V(T )× 1

3

=
2V(T )

3

Now we can conclude the calculation

V(T ) = V [E(T |D)] + E [V(T |D)]

= 72.7 +
2V(T )

3
V(T )
3

= 72.7

V(T ) = 3× 72.7 = 218

Note that, in the variance decomposition, the second term is twice the value of the first term:

V(T ) = V [E(T |D)] + E [V(T |D)]

= 72.7 + (2× 72.7)

3. 4 PONTOS In the first problem, let N be the number of trials until the mouse leaves the maze. Find E(N) and V(N).

Solution: This has a very similar solution to the previous problem. Let N be the number of trials to leave the maze,
starting from the central room. This number of trials corresponds to the number of doors open until the mouse leaves
the maze. Let D be the first door selected by the mouse. Then:

E(N) = E [E(N |D)]

= E(N |D = 1)P(D = 1) + E(N |D = 2)P(D = 2) + E(N |D = 3)P(D = 3)

= 1× 1

3
+ (1 + E(N))× 1

3
+ (1 + E(N))× 1

3

= 1 +
2

3
E(N)

⇒ E(N) = 3
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Similarly to what we did in the first problems, we find the possible values of the random variable E(N |D):

E(N |D = 1) = 1

E(T |D = 2) = 1 + E(T ) = 4 minutes

E(T |D = 3) = 1 + E(T ) = 4 minutes

with the expected value given by E [E(N |D = 1)] = E(N) = 3. Hence, its variance is given by

V [E(N |D)] = E (E(N |D)− E(N))
2

= (1− 3)
2 1

3
+ (4− 3)

2 1

3
+ (4− 3)

2 1

3
= 2

To complete the calculation of the variance, we have

E [V(N |D)] = V(N |D = 1)× 1

3
+ V(N |D = 2)× 1

3
+ V(N |D = 3)× 1

3

= 0× 1

3
+ V(N)× 1

3
+ V(N)× 1

3

=
2V(N)

3

Therefore,

V(N) = V [E(N |D)] + E [V(N |D)]

= 2 +
2V(N)

3
V(N)

3
= 2

V(N) = 3× 2 = 6

4. 2 PONTOS Your task is to prove the law of iterated expectation:

E(Y ) = E [E(Y |X)]

Assume that X and Y are both discrete random variables with possible values {1, 2, 3} and {5, 7}. For this, remember
that the random variable E(Y |X) is discrete with the possible values and associated probabilities given by:

E(Y |X = 1) with probability P(X = 1)

E(Y |X = 2) with probability P(X = 2)

E(Y |X = 3) with probability P(X = 3)

We also know how to obtain each of these expected values. For example,

E(Y |X = 2) =
∑
y

y ∗ P(Y = y|X = 2) = (5) ∗ P(Y = 5|X = 2) + (7) ∗ P(Y = 7|X = 2)

Solution: To prove the law of iterated expectation, we need to show that: E(Y ) = E [E(Y |X)]. The list of possible
values and associated probabilities of the random variable E(Y |X) was given in the problem statement. We also were
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given the expression of these possible values. Therefore, the expected value E(Y ) is equal to

E [E(Y |X)] = E(Y |X = 1)× P(X = 1) + E(Y |X = 2)× P(X = 2) + E(Y |X = 3)× P(X = 3)

= P(X = 1)
∑
y

y ∗ P(Y = y|X = 1) + P(X = 2)
∑
y

y ∗ P(Y = y|X = 2) + P(X = 3)
∑
y

y ∗ P(Y = y|X = 3)

= P(X = 1)
∑
y

y ∗ P(Y = y,X = 1)

P(X = 1)
+ P(X = 2)

∑
y

y ∗ P(Y = y,X = 2)

P(X = 2)
+ P(X = 3)

∑
y

y ∗ P(Y = y,X = 3)

P(X = 3)

=
∑
y

y ∗ P(Y = y,X = 1) +
∑
y

y ∗ P(Y = y,X = 2) +
∑
y

y ∗ P(Y = y,X = 3)

=
∑
y

y ∗ (P(Y = y,X = 1) + P(Y = y,X = 2) + P(Y = y,X = 3))

=
∑
y

y ∗ (P(Y = y,X = 1) + P(Y = y,X = 2) + P(Y = y,X = 3))

=
∑
y

y ∗ P(Y = y)

= E(Y )

5. 4 PONTOS A retail store has collected data on its customers to better understand their purchasing behavior. The
data consists of four variables for each customer:

• X1: Amount spent on electronics (in dollars)

• X2: Amount spent on clothing (in dollars)

• X3: Amount spent on groceries (in dollars)

• X4: Amount spent on home goods (in dollars)

Assume the data follows a multivariate normal distribution with expected vector µ and covariance matrix Σ.

Given the following parameters: - Mean vector: µ = [µ1, µ2, µ3, µ4] = [100, 150, 200, 250] - Covariance matrix:

Σ =


400 150 100 50
150 300 80 60
100 80 500 200
50 60 200 450


Define the subvectors Y = [X1, X2] and Z = [X3, X4]. The conditional mean vector µY|Z is given by:

µY|Z = µY +ΣYZΣ
−1
ZZ(Z− µZ)

The conditional covariance matrix ΣY|Z is given by:

ΣY|Z = ΣYY − ΣYZΣ
−1
ZZΣZY

(a) Obtain the conditional distribution of Y given Z = [z3, z4] = [240, 250]. Mostre explicitamente todas as matrizes
envolvidas mas deixe as operações matriciais (multiplicação e inversa) apenas indicadas.

(b) Suponha que o sub-vetor Z = [z3, z4] tenha o seu valor exatamente igual à sua média marginal: Z = [z3, z4] =
[µ3, µ4] = [200, 250]. Pode-se afirmar que (V ou F e justifique):

• A média conditional µY|Z é igual à média marginal [µ1, µ2].

• A matriz de covariâcia conditional ΣY|Z é igual à matriz de covariância conditional ΣYY.

Solution: (a) We have
(Y|Z = [z3, z4] = [240, 250]) ∼ N2

(
µY |Z ,ΣY |Z

)
where

µY |Z =

[
100
150

]
+

[
100 50
80 60

] [
500 200
200 450

]−1 [[
240
250

]
−

[
200
250

]]
and

ΣY |Z =

[
400 150
150 300

]
−
[
100 50
80 60

] [
500 200
200 450

]−1 [
100 80
50 60

]
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(b) When Z = [z3, z4] = [µ3, µ4] = [200, 250] we have

µY|Z = µY +ΣYZΣ
−1
ZZ(Z− µZ)

= µY +ΣYZΣ
−1
ZZ

[
0
0

]
= µY

and the first statement is True. As for the second statement, the conditional covariance ΣY|Z does not involve the the
specific values Z = [Z3, Z4] in which we are conditioning the distribution of Y. Hence, the conditional covariance is the
same whatever the value of Z and it is

ΣY|Z = ΣYY − ΣYZΣ
−1
ZZΣZY ̸= ΣYY

unless we have the special case in which ΣZY is the zero matrix (and Y and Z are independent). In conclusion, the
second statement is False.

6. 4 PONTOS You are given a dataset X with 10 variables (as columns of a table) and N rows. We estimate the
Σ covariance matrix of the dataset, which is a 10 × 10 symmetric and positive definite matrix. Its eigenvectors
bsv1,v2, . . . ,v10 are 10 vectors of dimension 10 × 1. Any item of the dataset (a row of the dataset seen as a 10 × 1
column vector) can be written as a linear combination of the 10 eigenvectors: x =

∑
k ckvk.

• Explain why it is always possible to represent any x as a linear combination
∑

k ckvk of the eigenvectors. That
is, what are the properties of the eigenvectors that allow this representation?

• Is this representation unique or there is more than one way to represent it as a linear combination
∑

k ckvk of the
eigenvectors?

• The values of ck in such representation is a function g of vk and x. What is this ck = g(vk,x) function?.

• If we express one the eigenvector, say v3, as a linear combination of all eigenvectors (including v3), what will be
the linear combination

∑
k ckvk?

Solution:

• The 10 eigenvectors form an orthogonal basis of the R10. Hence, x can be written as a linear combination
∑

k ckvk.

• The number of elements in the basis is the dimension of the vector space R10. Hence, the representation is unique.

• If we calculate the inner product of x and one of the eigenvectors vi we have:

vT
i x = vT

i

∑
k

ckvk

=
∑
k

ckv
T
i vk

= civ
T
i vi because vT

i vk = 0 if i ̸= k

= ci because the norm of each vi is 1

• Because the linear combination is unique, we must have c3 = 1 and all other ck = 0 for k ̸= 3.

7. 4 PONTOS Let X be a univariate continuous random variable. Based on X we want to decide if the item belongs to
class 1 or class 2. The density of X in each class is given by f1(x) and f2(x). The proportion of items coming from class
1 is π. A very simple classification rule is selected: A threshold a is chosen and if X > a, classify it as 1. Otherwise,
classify it as 2. The misclassification error cost is equal to the two possible errors.

• Show that the probability of error for this rule is given by

P(error) = π

∫ a

−∞
f1(x)dx+ (1− π)

∫ ∞

a

f2(x)dx .

DICA: P(A) = P(A| ∈ 1)P(∈ 1) + P(A| ∈ 2)P(∈ 2)

• Taking derivatives, show that to minimize P(error) the threshold a should satisfy

πf1(a) = (1− π)f2(a) .
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Solution:

P(error) = P(error| ∈ 1)P(∈ 1) + P(error| ∈ 2)P(∈ 2)

= πP(X ≤ a| ∈ 1) + (1− π)P(X > a| ∈ 2)

= π

∫ a

−∞
f1(x)dx+ (1− π)

∫ ∞

a

f2(x)dx

Taking the derivative with respect to a, we have

∂P(error)
∂a

= πf1(a) + (1− π)(−f2(a)) = 0 ⇒ πf1(a) = (1− π)f2(a)

8. 4 PONTOS Assume that a factor analysis model can represent three correlated random variables X1, X2, and X3

with one single latent factor F . More specifically, assume that

X1 = 0.9F + ϵ1

X2 = 0.7F + ϵ2

X3 = 0.5F + ϵ3

F and the vector ϵ = (ϵ1, ϵ2, ϵ3) are independent. Additionally, E(F ) = 0 and V(F ) = 1. Also, E(ϵ) = 0 e V(ϵ) =
diag(0.1, 0.2, 0.1).

• Obtain 3× 1 expected vector E(X).

• Obtain the 3× 3 covariance matrix V(X). You can only indicate which operations are necessary.

Solution: We use the properties of expectation and variance of random vectors:

E

X1

X2

X3

 =

E(X1)
E(X2)
E(X3)


=

E(0.9F + ϵ1)
E(0.7F + ϵ2)
E(0.5F + ϵ3)


=

 0.9E(F ) + E(ϵ1)
0.7E(F ) + E(ϵ2))
0.5E(F ) + E(ϵ3))


=

 0.9 ∗ 0 + 0
0.7 ∗ 0 + 0)
0.5 ∗ 0 + 0


and

V

X1

X2

X3

 = V

0.90.7
0.5

 F +

ϵ1ϵ2
ϵ3


= V

0.90.7
0.5

 F

+ V

ϵ1ϵ2
ϵ3


=

0.90.7
0.5

 V(F )
[
0.9 0.7 0.5

]
+ diag(0.1, 0.2, 0.1)

=

0.90.7
0.5

 [
0.9 0.7 0.5

]
+ diag(0.1, 0.2, 0.1) because V(F ) = 1

=

0.81 0.63 0.45
0.63 0.49 0.35
0.45 0.35 0.25

+

0.1 0.2
0.1


0.91 0.63 0.45
0.63 0.69 0.35
0.45 0.35 0.35


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