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Adaptado de questão de exame do curso EE511 - Introduction to Statistical Learning, da University of
Washington, 2008.

Seja o tempo de espera T até que um comentário seja postado por um certo usuário sobre um v́ıdeo no
YouTube. Este tempo de espera pode ser de dois tipos: 1 e 2. O primeiro tipo é um tempo de espera
de usuários que escrevem pouco, e segue uma distribuição exponencial com parâmetro λ1. O segundo
tipo é um tempo de espera de usuários mais ativos e também segue uma distribuição exponencial com
parâmetro λ2. A proporção de usuários do tipo 1 é π e a proporção do segundo tipo é 1− π.

1. Você recebe uma amostra rotulada (t1, r1), . . . , (tn, rn) de dados i.i.d. onde ri = 1 ou ri = 2 indica a
população do usuário i, do tipo 1 ou tipo 2. O MLE de π é simplesmente a proporção de indiv́ıduos
da população do primeiro tipo. Obtenha o MLE de λ1 e λ2

Solução: Podemos pensar em duas maneiras de resolver e você recebeu créditos se tiver feito de
qualquer uma dessas meneiras. Na primeira, mais simples e estimulada pelo enunciado do problema,
ignoramos o parâmetro π e focamos na estimação apenas de λ1 e λ2. Seja n1 o número de elementos
(ti, ri) com ri = 1 e

t̄1 =
1

n1

∑
i

tiI[ri = 1]

a média aritmética de seus tempos de espera. De maneira análoga, defina n2 = n− n1 e t̄2.

A verossimilhaça de λ1 e λ2 é dada por:

L(λ1, λ2) =

n∏
i=1

f(xi, ri;λ1, λ2, π)

=

n∏
i=1
ri=1

f(xi, ri;λ1, λ2, π)

n∏
i=1
ri=2

f(xi, ri;λ1, λ2, π)

=

n∏
i=1
ri=1

λ1 exp(−λ1ti)
n∏

i=1
ri=2

λ2 exp(−λ2ti)

= λn1
1 exp(−λ1n1t̄1) λn2

2 exp(−λ2n2t̄2)

A log-verossmilhança (que é muito mais fácil de derivar) é dada por

`(λ1, λ2) = n1 log(λ1)− λ1n1t̄1 + n2 log(λ2)− λ2n2t̄2 .

A sua derivada em relaa̧ão a λ1 é
∂`

∂λ1
=
n1
λ1
− n1t̄1

o que implica no MLE λ̂1 = 1/t̄1, o inverso da média aritmética dos tempos de espera. De maneira

análoga, encontra-se λ̂2 = 1/t̄2.
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Na segunda soluç ao, mais apropriada, o parãmetro π é incorporado e a verossimilhança é

L(λ1, λ2, π) =

n∏
i=1

(πλ1 exp(−λ1ti))2−ri ((1− π)λ2 exp(−λ2ti))ri−1
.

Você pode ter trocado ri por zi = ri − 1 para ficar com rótulos valendo 0 ou 1 e assim terminar
com fórmulas mais fáceis. Vou seguir com a notação ri do problema.

A log-verossmilhança é igual a

`(λ1, λ2, π) =

n∑
i=1

(2− ri) log (πλ1 exp(−λ1ti)) + (ri − 1) log ((1− π)λ2 exp(−λ2ti))

Notando que
∑

i(2− ri) = n1 e que
∑

i(2− ri)ti = t̄1 temos

`(λ1, λ2, π) = n1 log(π) + n1 log(λ1)− λ1t̄1 + n2 log(1− π) + n2 log(λ2)− λ2t̄2

Tomando as derivadas parciais, obtemos

∂`

∂π
=
n1
π
− n1

1− π

o que implica em π̂ = n1/(n1 + n2).

Como antes,
∂`

∂λ1
=
n1
λ1
− n1t̄1

produzindo λ̂1 = 1/t̄1. Analogamente, para λ2.

2. Você recebe uma amostra t1, . . . , tn sem os rótulos da população a qual pertence o usuário. Obtenha
os dois passos do algoritmo EM para os parâmetros λ1, λ2 e π.

Solução: Para o passo E do algoritmo EM, você precisa da log-verossmilhança completa, como
se todos os dados estivessem dispońıveis. Esta log-verossimilhança completa já foi obtida no item
anterior:

`c(λ1, λ2, π) =

n∑
i=1

(2− ri) log (πλ1 exp(−λ1ti)) + (ri − 1) log ((1− π)λ2 exp(−λ2ti))

Agora, substitua os valores ri que, de fato, não observados pelas variáveis aleatórias Ri e tome a
sua esperança condicionada nos dados t1, . . . tn:

E [`c(λ1, λ2, π)|T = t] =

n∑
i=1

E[(2−Ri)|ti] log (πλ1 exp(−λ1ti))+E[(Ri−1)|ti] log ((1− π)λ2 exp(−λ2ti))

Como 2−Ri é uma v.a. binária, temos

π̂i = E[(2−Ri)|ti] = P[Ri = 1|ti] =
πλ1 exp(−λ1ti)

πλ1 exp(−λ1ti) + (1− π)λ2 exp(−λ2ti)
(1)

onde π̂i é avaliado com os valores correntes θ0 de θ = (λ1, λ2, π).

Para o passo M, temos de maximizar em θ a função

Q(θ|θ0, t) =

n∑
i=1

π̂i log (πλ1 exp(−λ1ti)) + (1− π̂i) log ((1− π)λ2 exp(−λ2ti))
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o que resulta em

π̂ =
1

n

∑
i

π̂i (2)

λ̂1 =

∑
i π̂i∑
i π̂iti

(3)

λ̂2 =

∑
i(1− π̂i)∑
i(1− π̂i)ti

(4)

Com estes novos valores para θ, novas estimativas para π̂i são obtidas com (1). Com estes novos
valores de π̂i, novas estimativas para θ são obtidas usando (2), (3), (4). O algoritmo EM itera estes
dois passos até convergência.
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