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1. Numa seguradora, foi feita uma análise de 12000 apólices de seguros de automóveis emitidas para
proprietários individuais. Como parte da análise, em cada apólice foram considerados a idade x
(em anos) do motorista (variando de 18 a 60 anos) e o resultado Y em termos de sucesso (Y = 1)
do motorista em conduzir o véıculo por um ano sem sinistros de nenhum tipo. Caso contrário,
registra-se que houve um fracasso (Y = 0).

O interesse é entender como a idade está associada com a probabilidade de sucesso. Decide-se usar
um modelo loǵıstico para modelar estes dados onde p(x) = P(Y = 1|x) = 1

1+e−(w0+w1x)
.

• Esboce num gráfico qual é a relação esperada pelo modelo entre a idade x e a probabilidade
p(x) de sucesso.

• Escreva a log-verossimilhança para este problema.

• Obtenha o vetor gradiente necessário para obter o MLE.

• Suponha que o interesse do pesquisador é estimar a idade x na qual a probabilidade dos segu-
rados terem sucesso é maior ou igual a 0.90. Escreva essa idade como função dos parâmetros
do modelo acima.

Solução: Espera-se uma curva em forma de S com p(x) decrescendo com x pois o risco de acidente
diminui com a idade, fruto de maior experiência no volante e menor impulsividade. Além disso,
podemos esperar nas duas idades extremas probabilidades não saturadas, longe de seus valores
extremos 0 e 1. Assim, antecipamos que p(18) esteja substancialmente abaixo de 1 e que p(50)
esteja substancialmente acima de zero.Um esboço posśıvel da função p(x) está na Figura ??.

A log-verossmilhança do vetor de parâmetros (w0, w1) é:

`(w0, w1) = log

(∏
i=1

12000p(xi)
yi(1− p(xi))1−yi

)
(1)

=
∑
i=1

12000 (yi log(p(xi)) + (1− yi) log(1− p(xi))) (2)

=
∑

i:yi=1

log(p(xi)) +
∑

i:yi=0

log(1− p(xi)) (3)

=
∑
i=1

12000 (yi log(p(xi)) + (1− yi) log(1− p(xi))) (4)

= w0

12000∑
i=1

yi + w1

12000∑
i=1

xiyi −
∑
i

log(1 + ew0+w1xi) (5)

O vetor gradiente é o vetor das derivadas parciais com respeito aos parâmetros (w0, w1). Contas
rotineiras levam ao resultado desejado:

∇`(w0, w1) =

[ ∂`
∂w0
∂`
∂w1

]
=


12000∑
i=1

(yi − p(xi))
n∑

i=1

xi(yi − p(xi))


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Seja x∗ a idade tal que p(x∗) = 0.90. Então

1

1 + e−(w0+w1x∗)
= 0.90→ −(w0 + w1x

∗) = log(0.1/0.9)→ x∗ =
1

w1
(log(9)− w0)

Tendo estimativas de w0 e w1, encontramos uma estimativa da idade limite x∗

2. Uma operadora de planos de saúde sabe que o custo médio das internações varia muito de acordo
com a idade do cliente. Aqueles com mais de 70 anos de idade acarretam a maior parte dos cursos
embora eles tenham uma participação pequena no portfolio de clientes.

A operadora decidiu investigar um pouco mais a incidência de internações entre seus clientes idosos.
Para isto, escolheu uma amostra de clientes com idade acima de 70 anos e obteve o número de
internações que cada um teve nos últimos dois anos. Decidiu-se adotar um modelo de Poisson para
as contagens do número de internações.

Nem todos os selecionados foram clientes por todo o peŕıodo de dois anos. Aqueles que estão na
operadora há pouco tempo devem apresentar, em média, menos internações do que aqueles que estão
na operadora durante os últimos dois anos. Por isto, a média da Poisson deveria refletir o tempo
de permanência no plano de cada cliente. Dessa forma chegou-se ao seguinte modelo estat́ıstico.

Sejam Y1, . . . , Yn a amostra de clientes. Suponha que essas sejam variáveis aleatórias independentes
e que Yi ∼ Poisson(λti) onde ti é o tempo de permanência do i-ésimo cliente na empresa (em meses).
Os valores de ti de cada cliente são conhecidos. O parâmetro λ > 0 é desconhecido e representa o
número esperado de internações por mês. Sendo Poisson, sabe-se que E(Yi) = λti.

O interesse é estimar λ a partir dos dados que podem ser representados como na tabela abaixo:

i ti yi
1 24 4
2 12 1
3 3 0
4 24 1
. . . . . . . . .

• Pensou-se inicialmente em estimar λ simplesmente tomando o número médio de internações e
dividir pelo tempo de observação de 24 meses. Isto é, T1 = Y /24. Mostre que este estimador
é viciado para estimar λ a menos que

∑
i ti = 24n. Por exemplo , se todos os clientes tiverem

ti = 24 esta condição seria válida.

• Tentando corrigir o v́ıcio do estimador T1, pensou-se então em adotar

T2 =
Y

t
=
Y1 + . . .+ Yn
t1 + . . .+ tn

Mostre que T2 é não-viciado para estimar λ e encontre seu risco quadrático de estimação.

• Mais tarde, outro analista resolveu considerar o estimador

T3 =
1

n

(
Y1
t1

+ . . .+
Yn
tn

)
Mostre que T3 é não-viciado para estimar λ e encontre seu risco quadrático de estimação.

• É posśıvel dizer que T2 é sempre melhor ou igual a T3 considerando-se os riscos quadráticos
dos dois. Prove isto usando a desigualdade entre a média aritmética e a média harmônica que
diz que

x1 + · · ·+ xn
n

≥ n
1
x1

+ · · ·+ 1
xn

para quaisquer números reais positivos x1, . . . , xn.
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OBS: Um estimador T é não-viciado para estimar um parâmetro θ se E(T ) = θ para todo valor de
θ.

Solução: Considerando o estimador T1 inicialmente:

E(T1) = E
(
Ȳ

24

)
=

1

24
E (Y1 + . . .+ Yn) =

1

24n
(E(Y1) + . . .+ E(Yn))

=
1

24n
(λt1 + . . .+ λtn) =

λ

24n
(t1 + . . .+ tn) =

λt̄

24
,

que é igual a λ se, e só se, t̄ = 24.

Considerando o estimador T2:

E(T2) = E
(
Ȳ

t̄

)
=

1

t̄n
E (Y1 + . . .+ Yn) =

λ

t̄n
(t1 + . . .+ tn) = λ .

Portanto, T2 é não-viciado para estimar λ. O seu risco quadrático de estimação é:

MSE(T2, λ) = E
[
(T2 − λ)

2
]

= V(T2) + bias2(T2, λ) = V(T2) + 0 = V
(
Y

t

)
=

V(Y )

t
2

=
1

t
2

1

n2
V (Y1 + . . .+ Yn) =

1

t
2

1

n2
[V (Y1) + . . .+ V (Yn)]

=
1

t
2

1

n2
[λt1 + . . .+ λtn] =

λ

n

1

t

O terceiro estimador, T3, tem valor esperado:

E(T3) =
1

n
E
(
Y1
t1

+ . . .+
Yn
tn

)
=

1

n
E
(
E(Y1)

t1
+ . . .+

E(Yn)

tn

)
=

1

n
E
(
λt1
t1

+ . . .+
λtn
tn

)
=

λ

n

(
t1
t1

+ . . .+
tn
tn

)
= λ ,

e portanto, também não-viciado para estimar λ. O seu risco quadrático de estimação é:

MSE(T3, λ) = E
[
(T3 − λ)

2
]

= V(T3) =
1

n2

[
V
(
Y1
t1

)
+ . . .+ V

(
Yn
tn

)]
=

1

n2

[
V(Y1)

t21
+ . . .+

V(Yn)

t2n

]
=

1

n2

[
λt1
t21

+ . . .+
λtn
t2n

]
=

λ

n2

[
1

t1
+ . . .+

1

tn

]
=
λ

n
H

onde H é a média harmônica dos tempos assegurados dos clientes:

H =
1

n

(
1

t1
+ . . .

1

tn

)
A comparação entre os riscos de T2 e T3 depende da desigualdade entre a média aritmétmica e a
média harmônica dos tempos ti. Usando a desigualdade mencionada no enunciado, temos

MSE(T2, λ) =
λ

n

1

t
≤ λ

n
H = MSE(T3, λ) .

Em resumo, queremos estimar λ, o número esperado de internações mensais usando as contagens
de episódios de internações de clientes expostos a diferentes tempos ti sob o seguro. O parâmetro
λ é a taxa mensal de internações por indiv́ıduo. Temos dois estimadores não-viciados. O primeiro
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deles, T2, soma as internações de todos os clientes e divide pelo tempo total exposto ao risco
de todos eles, obtendo uma estimativa intuitivamente simples. O outro, T3, usa a taxa mensal
individual ao calcular Yn/tn e em seguida tira sua média aritmética simples, também uma estimativa
intuitivamente simples. A conclusão é que é prefeŕıvel usar T2.

3. Seja X uma variável aleatória discreta com distribuição dada por

P (X = x; θ) =
−θx

x log(1− θ)

para x = 1, 2, . . . onde θ é um parâmetro desconhecido no intervalo (0, 1). Suponha que x1 = 1,
x2 = 2, x3 = 3 e x4 = 2 são os valores observados de uma amostra aleatória dessa distribuição.
Começando com o valor inicial θ(0) = 0.6, encontre o valor θ1 do processo iterativo de Newton-
Raphson para obter o EMV de θ.

Solução: Como θ ∈ (0, 1), temos − log(1 − theta) > 0. A log-verossimilhança de θ baseada em n
dados x1, x2, . . . , xn é igual a

`(θ) = log

(
n∏

i=1

θxi

xi(− log(1− θ)

)
= log

(
θ
∑

xi

(− log(1− θ))n
∏
xi

)

=

(∑
i

xi

)
log(θ)−

∑
i

log(xi)− n log (− log(1− θ))

A derivada da log-verossimilhança é a função escore:

`′(θ) =
∂`

∂θ
=

∑
xi
θ

+
n

(1− θ) log(1− θ)

A Figura ?? mostra a função log-verossimilhança `(θ) no lado esquerdo e a derivada (ou função
escore no lado direito.

A derivada parcial de segunda ordem é:

`′′(θ) =
∂2`

∂θ2
= −

[∑
xi
θ2

+
n(1 + log(1− θ))

((1− θ) log(1− θ))2

]

A equação de itereção de Newton é

θ(t+1) = θ(t) − `′(θ(t))

`′′(θ(t)) = θ(t) +

∑
xi

θ(t)
+ n

(1−θ(t)) log(1−θ(t))[ ∑
xi

(θ(t))2
+

n(1+log(1−θ(t)))

((1−θ(t)) log(1−θ(t)))
2

]

Considerando a pequena amostra de n = 4 observaçôes com
∑
xi = 8 e começando com o valor

inicial θ(0) = 0.6, encontramos

θ(1) = θ(0) − `′(θ(0))

`′′(θ(0))
= 0.6− 2.4198

−24.7148
= 0.6979

θ(2) = θ(1) − `′(θ(1))

`′′(θ(1))
= 0.6979− 0.4012

−10.3977
= 0.7365
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