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Conditional expectation

Given that you’ve read the earlier chapters, you already know what conditional
expectation is: expectation, but using conditional probabilities. This is an essential
concept, for reasons analogous to why we need conditional probability:

e Conditional expectation is a powerful tool for calculating expectations. Using
strategies such as conditioning on what we wish we knew and first-step analysis,
we can often decompose complicated expectation problems into simpler pieces.

e Conditional expectation is a relevant quantity in its own right, allowing us to
predict or estimate unknowns based on whatever evidence is currently available.
For example, in statistics we often want to predict a response variable (such as
test scores or earnings) based on explanatory variables (such as number of practice
problems solved or enrollment in a job training program).

There are two different but closely linked notions of conditional expectation:

e Conditional expectation E(Y|A) given an event: let Y be an r.v., and A be an
event. If we learn that A occurred, our updated expectation for Y is denoted by
E(Y]A) and is computed analogously to E(Y"), except using conditional probabil-
ities given A.

o Conditional expectation E(Y|X) given a random variable: a more subtle question
is how to define E(Y|X), where X and Y are both r.v.s. Intuitively, E(Y|X) is
the r.v. that best predicts Y using only the information available from X.

In this chapter, we explore the definitions, properties, intuitions, and applications
of both forms of conditional expectation.

9.1 Conditional expectation given an event

Recall that the expectation E(Y) of a discrete r.v. Y is a weighted average of its
possible values, where the weights are the PMF values P(Y = y). After learning
that an event A occurred, we want to use weights that have been updated to reflect
this new information. The definition of E(Y|A) simply replaces the probability
P(Y = y) with the conditional probability P(Y = y|A).
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416 Introduction to Probability

Similarly, if Y is continuous, E(Y") is still a weighted average of the possible values
of Y, with an integral in place of a sum and the PDF value f(y) in place of a PMF
value. If we learn that A occurred, we update the expectation for Y by replacing
f(y) with the conditional PDF f(y|A).

Definition 9.1.1 (Conditional expectation given an event). Let A be an event
with positive probability. If Y is a discrete r.v., then the conditional expectation of
Y given A is

E(Y|A) = Z yP(Y =y|A),

where the sum is over the support of Y. If Y is a continuous r.v. with PDF f, then

BV = | ufla)y,
where the conditional PDF f(y|A) is defined as the derivative of the conditional
CDF F(y|A) = P(Y < y|A), and can also be computed by a hybrid version of
Bayes’ rule:
PAY = y)f(y)
P(A)

f(yl4) =

Intuition 9.1.2. To gain intuition for E(Y|A), let’s consider approximating it
via simulation (or via the frequentist perspective, based on repeating the same
experiment many times). Imagine generating a large number n of replications of the
experiment for which Y is a numerical summary. We then have Y-values y1,...,yn,

and we can approximate
1 n
j=1

To approximate FE(Y|A), we restrict to the replications where A occurred, and
average only those Y-values. This can be written as

i1 Yil5,
Z;L:I I ’

where I; is the indicator of A occurring in the jth replication. This is undefined
if A never occurred in the simulation, which makes sense since then there is no
simulation data about what the “A occurred” scenario is like. We would like to
have n large enough so that there are many occurrences of A (if A is a rare event,
more sophisticated techniques for approximating F(Y|A) may be needed).

EY|A) =

The principle is simple though: E(Y|A) is approximately the average of Y in a large
number of simulation runs in which A occurred. O

® 9.1.3. Confusing conditional expectation and unconditional expectation is a
dangerous mistake. More generally, not keeping careful track of what you should be
conditioning on and what you are conditioning on is a recipe for disaster.
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For a life-or-death example of the previous biohazard, consider life expectancy.

Example 9.1.4 (Life expectancy). Fred is 30 years old, and he hears that the
average life expectancy in his country is 80 years. Should he conclude that, on
average, he has 50 years of life left? No, there is a crucial piece of information that
he must condition on: the fact that he has lived to age 30 already. Letting T be
Fred’s lifespan, we have the cheerful news that

E(T) < E(T|T > 30).

The left-hand side is Fred’s life expectancy at birth (it implicitly conditions on the
fact that he is born), and the right-hand side is Fred’s life expectancy given that he
reaches age 30.

A harder question is how to decide on an appropriate estimate to use for E (7). Is
it just 80, the overall average for his country? In almost every country, women have
a longer average life expectancy than men, so it makes sense to condition on Fred
being a man. But should we also condition on what city he was born in? Should we
condition on racial and financial information about his parents, or the time of day
when he was born? Intuitively, we would like estimates that are both accurate and
relevant for Fred, but there is a tradeoff since if we condition on more characteristics
of Fred, then there are fewer people who match those characteristics to use as data
for estimating the life expectancy.

Now consider some specific numbers for the United States. A Social Security Admin-
istration study estimated that between 1900 and 2000, the average life expectancy
at birth in the U.S. for men increased from 46 to 74, and for women increased from
49 to 79. Tremendous gains! But much of the gain is due to decreases in child mor-
tality. For a 30-year-old person in 1900, the average number of years remaining was
35 for a man and 36 for a woman; in 2000, the corresponding numbers were 46 for
a man and 50 for a woman.

There are some subtle statistical issues in obtaining these estimates. For example,
how were estimates for life expectancy for someone born in 2000 obtained without
waiting at least until the year 21007 Estimating survival distributions is a very
important topic in biostatistics and actuarial science. O

The law of total probability allows us to get unconditional probabilities by slicing
up the sample space and computing conditional probabilities in each slice. The same
idea works for computing unconditional expectations.

Theorem 9.1.5 (Law of total expectation). Let Aj,..., A, be a partition of a
sample space, with P(A;) > 0 for all 4, and let Y be a random variable on this
sample space. Then

E(Y) =Y E(Y|4;)P(4)).
=1

In fact, since all probabilities are expectations by the fundamental bridge, the law
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of total probability is a special case of the law of total expectation. To see this, let
Y = Ip for an event B; then the above theorem says

n

P(B) = E(Ip) = ZE(IB|Ai)P(Ai) = ZP(B|A1')P(A1'),
i=1 i=1

which is exactly LOTP. The law of total expectation is, in turn, a special case of a
major result called Adam’s law (Theorem 9.3.7), so we will not prove it yet.

There are many interesting examples of using wishful thinking to break up an un-
conditional expectation into conditional expectations. We begin with two cautionary
tales about the importance of conditioning carefully and not destroying information
without justification.

Example 9.1.6 (Two-envelope paradox). A stranger presents you with two
identical-looking, sealed envelopes, each of which contains a check for some pos-
itive amount of money. You are informed that one of the envelopes contains exactly
twice as much money as the other. You can choose either envelope. Which do you
prefer: the one on the left or the one on the right? (Assume that the expected
amount of money in each envelope is finite—certainly a good assumption in the real
world!)

FIGURE 9.1
Two envelopes, where one contains twice as much money as the other. Either Y =
2X or Y = X/2, with equal probabilities. Which would you prefer?

Solution:

Let X and Y be the amounts in the left and right envelopes, respectively. By
symmetry, there is no reason to prefer one envelope over the other (we are assuming
there is no prior information that the stranger is left-handed and left-handed people
prefer putting more money on the left). Concluding by symmetry that E(X) =
E(Y), it seems that you should not care which envelope you get.

But as you daydream about what’s inside the envelopes, another argument occurs
to you: suppose that the left envelope has $100. Then the right envelope either has
$50 or $200. The average of $50 and $200 is $125, so it seems then that the right
envelope is better. But there was nothing special about $100 here; for any value x
for the left envelope, the average of 2z and z/2 is greater than x, suggesting that
the right envelope is better. This is bizarre though, since not only does it contradict
the symmetry argument, but also the same reasoning could be applied starting with
the right envelope, leading to switching back and forth forever!
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Let us try to formalize this argument to see what’s going on. We have ¥ = 2X or
Y = X/2, with equal probabilities. By Theorem 9.1.5,

E(Y)=E({Y]Y =2X)- % +E(Y]Y = X/2) -

DN |

One might then think that this is

= 2B(X),

E(2X) - % + E(X/2) - 1

N =

suggesting a 25% gain from switching from the left to the right envelope. But there
is a blunder in that calculation: E(Y|Y = 2X) = E(2X|Y = 2X), but there is no
justification for dropping the Y = 2X condition after plugging in 2X for Y.

To put it another way, let I be the indicator of the event Y = 2X, so that E(Y|Y =
2X) = E(2X|I =1). If we know that X is independent of I, then we can drop the
condition I = 1. But in fact we have just proven that X and I can’t be independent:
if they were, we’d have a paradox! Surprisingly, observing X gives information about
whether X is the bigger value or the smaller value. If we learn that X is very large,
we might guess that X is larger than Y, but what is considered very large? Is 102
very large, even though it is tiny compared with 101%9? The two-envelope paradox
says that no matter what the distribution of X is, there are reasonable ways to
define “very large” relative to that distribution.

In Exercise 8 you will look at a related problem, in which the amounts of money
in the two envelopes are i.i.d. random variables. You’ll show that if you are allowed
to look inside one of the envelopes and then decide whether to switch, there is a
strategy that allows you to get the better envelope more than 50% of the time! [

The next example vividly illustrates the importance of conditioning on all the in-
formation. The phenomenon revealed here arises in many real-life decisions about
what to buy and what investments to make.

Example 9.1.7 (Mystery prize). You are approached by another stranger, who
gives you an opportunity to bid on a mystery box containing a mystery prize! The
value of the prize is completely unknown, except that it is worth at least nothing,
and at most a million dollars. So the true value V of the prize is considered to be
Uniform on [0,1] (measured in millions of dollars).

You can choose to bid any amount b (in millions of dollars). You have the chance to
get the prize for considerably less than it is worth, but you could also lose money
if you bid too much. Specifically, if b < 2V/3, then the bid is rejected and nothing
is gained or lost. If b > 2V//3, then the bid is accepted and your net payoff is V' — b
(since you pay b to get a prize worth V). What is your optimal bid b, to maximize
the expected payoft?

Solution:

Your bid b > 0 must be a predetermined constant (not based on V, since V is
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Bid $250,000? If it's rejected, I
lose nothing. If it's accepted, I
get a prize worth $500,000 on

average!

-e,

mystery box

FIGURE 9.2
When bidding on an unknown asset, beware the winner’s curse, and condition on
the relevant information.

unknown!). To find the expected payoff W, condition on whether the bid is accepted.
The payoff is V' — b if the bid is accepted and 0 if the bid is rejected. So
EW)=E(W|b>2V/3)P(b>2V/3)+ E(W|b< 2V/3)P(b < 2V/3)
E(V —blb>2V/3)P(b>2V/3)+0

= (E(V|V <3b/2) —b) P(V < 3b/2).

For b > 2/3, the event V' < 3b/2 has probability 1, so the right-hand side is 1/2 — b,
which is negative. Now assume b < 2/3. Then V' < 3b/2 has probability 3b/2. Given
that V' < 3b/2, the conditional distribution of V' is Uniform on [0, 3b/2]. Therefore,

E(W) = (B(V|V < 3b/2) — b) P(V < 3b/2) = (3b/4 — b) (3b/2) = —3b2/8.

The above expression is negative except at b = 0, so the optimal bid is 0: you
shouldn’t play this game!

Alternatively, condition on which of the following events occurs: A = {V < b/2},
B={b/2<V <3b/2},C ={V > 3b/2}. We have

E(W|A) = E(V — blA) < E(b/2 — b|A) = —b/2 < 0,

E(W|B)=FE <b/2+3b/2

- b|B> =0,
E(W|C) =0,

so we should just set b = 0 and walk away.



Conditional expectation 421

The moral of this story is to condition on all the information. It is crucial in the
above calculation to use E(V|V < 3b/2) rather than E(V) = 1/2; knowing that the
bid was accepted gives information about how much the mystery prize is worth, so
we shouldn’t destroy that information. This problem is related to the so-called win-
ner’s curse, which says that the winner in an auction with incomplete information
tends to profit less than they expect (unless they understand probability!). This is
because in many settings, the expected value of the item that they bid on given
that they won the bid is less than the unconditional expected value they originally
had in mind. For b > 2/3, conditioning on V' < 3b/2 does nothing since we know
in advance that V' < 1, but such a bid is ludicrously high. For any b < 2/3, finding
out that your bid is accepted lowers your expectation:

E(V|V < 3b/2) < E(V). O

The remaining examples use first-step analysis to calculate unconditional expecta-
tions. First, as promised in Chapter 4, we derive the expectation of the Geometric
distribution using first-step analysis.

Example 9.1.8 (Geometric expectation redux). Let X ~ Geom(p). Interpret X as
the number of Tails before the first Heads in a sequence of coin flips with probability
p of Heads. To get E(X), we condition on the outcome of the first toss: if it lands
Heads, then X is 0 and we’re done; if it lands Tails, then we’ve wasted one toss and
are back to where we started, by memorylessness. Therefore,

E(X) = E(X|first toss H) - p + E(X|first toss T') - ¢
=0-p+ 1+ E(X))-q,

which gives E(X) = ¢/p. O

The next example derives expected waiting times for some more complicated pat-
terns, using two steps of conditioning.

Example 9.1.9 (Time until HH vs. HT). You toss a fair coin repeatedly. What
is the expected number of tosses until the pattern HT appears for the first time?
What about the expected number of tosses until HH appears for the first time?

Solution:

Let Wy be the number of tosses until HT appears. As we can see from Figure
9.3, Wgr is the waiting time for the first Heads, which we’ll call W7, plus the
additional waiting time for the first Tails after the first Heads, which we’ll call Ws.
By the story of the First Success distribution, W7 and Wy are i.i.d. FS(1/2), so
E(Wl) = E(Wg) = 2 and E(WHT) =4.

Finding the expected waiting time for HH, E(W ), is more complicated. We can’t
apply the same logic as for E(Wpgr): as shown in Figure 9.4, if the first Heads is
immediately followed by Tails, our progress is destroyed and we must start from
scratch. But this is progress for us in solving the problem, since the fact that the
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TTTHHH HT...

W W

FIGURE 9.3
Waiting time for HT is the waiting time for the first Heads, W7, plus the additional
waiting time for the next Tails, Ws. Durable partial progress is possible!

system can get reset suggests the strategy of first-step analysis. Let’s condition on
the outcome of the first toss:

1 1
EWgp) = E(Wgg|first toss H)§ + E(Wgplfirst toss T)§

FIGURE 9.4
When waiting for HH, partial progress can easily be destroyed.

For the second term, E(Wpgglfirst toss T) = 1 + E(Wgpg) by memorylessness. For
the first term, we compute E(Wg|lst toss H) by further conditioning on the out-
come of the second toss. If the second toss is Heads, we have obtained HH in two
tosses. If the second toss is Tails, we’ve wasted two tosses and have to start all over!
This gives
1 1
E(Wgplfirst toss H) =2 - 3 + 2+ EWgn)) - 7
Therefore,

1 +(1+ E(WHH))%.

2

E(Wnn) = <2 : % + 2+ E(Wgng)) - ;)

Solving for E(Wgg), we get E(Wgp) = 6.

It might seem surprising at first that the expected waiting time for HH is greater
than the expected waiting time for HT. How do we reconcile this with the fact that
in two tosses of the coin, HH and HT both have a 1/4 chance of appearing? Why
aren’t the average waiting times the same by symmetry?
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As we solved this problem, we in fact noticed an important asymmetry. When
waiting for HT, once we get the first Heads, we’ve achieved partial progress that
cannot be destroyed: if the Heads is followed by another Heads, we're in the same
position as before, and if the Heads is followed by a Tails, we’'re done. By contrast,
when waiting for HH, even after getting the first Heads, we could be sent back to
square one if the Heads is followed by a Tails. This suggests the average waiting
time for HH should be longer. Symmetry implies that the average waiting time for
HH is the same as that for T'T, and that for HT is the same as that for TH, but it
does not imply that the average waiting times for HH and HT are the same.

More intuition into what’s going on can be obtained by considering a long string
of coin flips, as in Figure 9.5. We notice right away that appearances of HH can
overlap, while appearances of HT must be disjoint. For example, HHHHHH has 5
occurrences of HH, but HTHTHT has only 3 occurrences of HT. Since there are
the same average number of HHs and HTs, but HHs sometimes clump together,
the average waiting time for HH must be larger than that of HT to compensate.

HHTHHTTHHHATHTHTTHTT
HHTHHTTHHHHTHTATTITT
FIGURE 9.5

Clumping. (a) Appearances of HH can overlap. (b) Appearances of HT must be
disjoint.

Related problems occur in information theory when compressing a message, and in
genetics when looking for recurring patterns (called motifs) in DNA sequences. O

Our final example in this section uses wishful thinking for both probabilities and
expectations to study a question about a random walk.

Example 9.1.10 (Random walk on the integers). An immortal drunk man wanders
around randomly on the integers. He starts at the origin, and at each step he moves
1 unit to the right or 1 unit to the left, with equal probabilities, independently of all
his previous steps. Let b be a googolplex (this is 109, where g = 10'% is a googol).

(a) Find a simple expression for the probability that the immortal drunk visits b
before returning to the origin for the first time.

(b) Find the expected number of times that the immortal drunk visits b before
returning to the origin for the first time.

Solution:

(a) Let B be the event that the drunk man visits b before returning to the origin
for the first time and let L be the event that his first move is to the left. Then
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P(B|L) = 0 since any path from —1 to b must pass through 0. For P(B|L¢), we are
exactly in the setting of the gambler’s ruin problem, where player A starts with $1,
player B starts with $(b— 1), and the rounds are fair. Applying that result, we have

P(B) = P(B|L)P(L) + P(B|L)P(L) = ~ . + = 1

b 2 2b
(b) Let N be the number of visits to b before returning to the origin for the first
time, and let p = 1/(2b) be the probability found in (a). Then

E(N) = E(N|N = 0)P(N = 0) + E(N|N > 1)P(N > 1) = pE(N|N > 1).

The conditional distribution of N given N > 1 is FS(p): given that the man reaches
b, by symmetry there is probability p of returning to the origin before visiting b again
(call this “success”) and probability 1 — p of returning to b again before returning
to the origin (call this “failure”). Note that the trials are independent since the
situation is the same each time he is at b, independent of the past history. Thus
E(N|N >1)=1/p, and

E(N)sz(N]NZl):p'lzl.

3

Surprisingly, the result doesn’t depend on the value of b, and our proof didn’t require
knowing the value of p. O

9.2 Conditional expectation given an r.v.

In this section we introduce conditional expectation given a random variable. That
is, we want to understand what it means to write E(Y|X) for an r.v. X. We will see
that E(Y|X) is a random variable that is, in a certain sense, our best prediction of
Y, assuming we get to know X.

The key to understanding E(Y|X) is first to understand E(Y|X = z). Since X =z
is an event, F(Y|X = z) is just the conditional expectation of Y given this event,
and it can be computed using the conditional distribution of Y given X = .

If Y is discrete, we use the conditional PMF P(Y = y|X = z) in place of the
unconditional PMF P(Y = y):

EY|X =2)= ZyP =yl X =ux).

Analogously, if Y is continuous, we use the conditional PDF fyx(y|z) in place of
the unconditional PDF:

E(YX =a)= [ " yhvix (vle)dy
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Notice that because we sum or integrate over y, E(Y|X = xz) is a function of x
only. We can give this function a name, like g: let g(z) = E(Y|X = z). We define
E(Y|X) as the random variable obtained by finding the form of the function g(x),
then plugging in X for x.

Definition 9.2.1 (Conditional expectation given an r.v.). Let g(x) = E(Y|X = z).
Then the conditional expectation of Y given X, denoted E(Y'|X), is defined to be the
random variable g(X). In other words, if after doing the experiment X crystallizes
into z, then E(Y|X) crystallizes into g(x).

4 9.2.2. The notation in this definition sometimes causes confusion. It does not
say “g(x) = E(Y|X = x), so g(X) = E(Y|X = X), which equals E(Y) because
X = X is always true”. Rather, we should first compute the function g(z), then
plug in X for x. For example, if g(x) = 22, then g(X) = X?2. A similar biohazard is
® 5.3.2, about the meaning of F'(X) in the universality of the Uniform.

£ 9.2.3. By definition, F(Y|X) is a function of X, so it is a random variable. (This
does not mean there are no examples where E(Y|X) is a constant. A constant is
a degenerate r.v., and a constant function of X. For example, if X and Y are
independent then E(Y|X) = E(Y), which is a constant.) Thus it makes sense
to compute quantities like E(E(Y|X)) and Var(E(Y|X)), the mean and variance
of the r.v. E(Y|X). It is easy to be ensnared by category errors when working
with conditional expectation, so it is important to keep in mind that conditional
expectations of the form F(Y|A) are numbers, while those of the form E(Y|X) are
random variables.

Here are some quick examples of how to calculate conditional expectation. In both
examples, we don’t need to do a sum or integral to get E(Y|X = z) because a more
direct approach is available.

Example 9.2.4. A stick of length 1 is broken at a point X chosen uniformly at
random. Given that X = x, we then choose another breakpoint ¥ uniformly on the
interval [0, z]. Find E(Y|X), and its mean and variance.

Solution:

From the description of the experiment, X ~ Unif(0,1) and Y|X = z ~ Unif(0, z).
Then E(Y|X = x) = x/2, so by plugging in X for z, we have

E(Y|X) = X/2.
The expected value of E(Y|X) is
E(EY|X))=FE(X/2)=1/4.

(We will show in the next section that a general property of conditional expectation
is that E(E(Y|X)) = E(Y), so it also follows that F(Y) = 1/4.) The variance of
E(Y|X) is

Var(E(Y]X)) = Var(X/2) = 1/48. O
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Example 9.2.5. For X,V "< Expo()\), find E(max(X,Y)| min(X,Y)).

Solution:

Let M = max(X,Y) and L = min(X,Y’). By the memoryless property, M — L is
independent of L, and M — L ~ Expo()) (see Example 7.3.6). Therefore

1
E(M|L=0)=ELL=0)+EM-LL=0)=1+EM-L) =1+,

and E(M|L) =L+ . O

|
9.3 Properties of conditional expectation

Conditional expectation has some very useful properties.

e Dropping what’s independent: If X and Y are independent, then E(Y|X) = E(Y).

e Taking out what’s known: For any function h, E(h(X)Y|X) = h(X)E(Y|X).

e Linearity: E(Y1 + Y2|X) = E(V1|X) + E(Y2]X), and E(cY|X) = cE(Y|X) for c a
constant (the latter is a special case of taking out what’s known).

e Adam’s law: E(E(Y|X)) = E(Y).

e Projection interpretation: The r.v. Y — E(Y|X), which is called the residual from
using X to predict Y, is uncorrelated with h(X) for any function h.

Let’s discuss each property individually.

Theorem 9.3.1 (Dropping what’s independent). If X and Y are independent, then
E(Y|X)=E(®Y).

This is true because independence implies E(Y|X = z) = E(Y) for all x, hence
E(Y|X) = E(Y). Intuitively, if X provides no information about Y, then our best
guess for Y, even if we get to know X, is still the unconditional mean E(Y"). However,
the converse is false: a counterexample is given in Example 9.3.3 below.

Theorem 9.3.2 (Taking out what’s known). For any function h,

E(h(X)Y|X) = h(X)E(Y|X).

Intuitively, when we take expectations given X, we are treating X as if it has
crystallized into a known constant. Then any function of X, say h(X), also acts like
a known constant while we are conditioning on X. Taking out what’s known is the
conditional version of the unconditional fact that E(cY) = cE(Y"). The difference is
that E(cY) = cE(Y) asserts that two numbers are equal, while taking out what’s
known asserts that two random variables are equal.
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Example 9.3.3. Let Z ~ N(0,1) and Y = Z2. Find E(Y|Z) and E(Z|Y).

Solution: Since Y is a function of Z, E(Y|Z) = E(Z?|Z) = Z? by taking out what’s
known. To get E(Z|Y"), notice that conditional on Y =y, Z equals ,/y or —,/y with

equal probabilities by the symmetry of the standard Normal, so E(Z|Y = y) =0
and E(Z|Y) = 0.

In this case, although Y provides a lot of information about Z, narrowing down the
possible values of Z to just two values, Y only tells us about the magnitude of Z
and not its sign. For this reason, E(Z|Y) = E(Z) despite the dependence between
Z and Y. This example illustrates that the converse of Theorem 9.3.1 is false. [

Theorem 9.3.4 (Linearity). E(Y; + Y2|X) = E(Y1]|X) + E(Y2|X).

This result is the conditional version of the unconditional fact that E(Y; + Y2) =
E(Y1) + E(Y2), and is true since conditional probabilities are probabilities.

£ 9.3.5. It is incorrect to write “E(Y | X1 + X2) = E(Y|X1) + E(Y|X2)”; linearity
applies on the left side of the conditioning bar, not on the right side!

Example 9.3.6. Let X;,..., X, beiid., and S, = X;+---+ X,,. Find E(X1|Sy).
Solution:

By symmetry,
E(X1|Sn) = E(X2|Sy) = -+ = E(Xn|Sh),

and by linearity,
E(X1|Sn) + -+ 4+ E(X,|Sn) = E(Sn|Sn) = Sh.

Therefore,
E(X1|Sn) = Syn/n = X,,

the sample mean of the X;’s. This is an intuitive result: if we have 2i.i.d. r.v.s X7, X»
and learn that X; + X9 = 10, it makes sense to guess that X7 is 5 (accounting for
half of the total). Similarly, if we have n i.i.d. r.v.s and get to know their sum, our
best guess for any one of them is the sample mean. O

The next theorem connects conditional expectation to unconditional expectation.
It goes by many names, including the law of total expectation, the law of iterated
expectation (which has a terrible acronym for something glowing with truth), and
the tower property. We call it Adam’s law because it is used so frequently that it
deserves a pithy name, and since it is often used in conjunction with another law
we’ll encounter soon, which has a complementary name.

Theorem 9.3.7 (Adam’s law). For any r.v.s X and Y,
E(E(Y|X))=E().

Proof. We present the proof in the case where X and Y are both discrete (the
proofs for other cases are analogous). Let E(Y|X) = g(X). We proceed by applying
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LOTUS, expanding the definition of g(z) to get a double sum, and then swapping
the order of summation:

E(g(X)) =) g(x)P(X = 2)

=y (ZyP(Y = y|X = m)) P(X =z)
=> Y yP(X =x)P(Y =y|X =)
=Y y) PX=zY=y

= yP(Y =y) = E(Y). [ |

Adam’s law is a more compact, more general version of the law of total expectation
(Theorem 9.1.5). For X discrete, the statements

E(Y)=) E(Y|X =z)P(X =)

and
E(Y)=E(E(Y|X))

mean the same thing, since if we let E(Y|X = z) = g(x), then

E(E(Y|X)) = E(g(X)) = Y _g(@)P(X =2) =) E(Y|X = 2)P(X = ).

Armed with Adam’s law, we have a powerful strategy for finding an expectation
E(Y), by conditioning on an r.v. X that we wish we knew. First obtain E(Y|X) by
treating X as known, and then take the expectation of E(Y|X). We will see various
examples of this later in the chapter.

Just as there are forms of Bayes’ rule and LOTP with extra conditioning, as dis-
cussed in Chapter 2, there is a version of Adam’s law with extra conditioning.

Theorem 9.3.8 (Adam’s law with extra conditioning). For any r.v.s X, Y, Z,
E(E(Y|X, Z)|Z) = E(Y|Z).

The above equation is Adam’s law, except with extra conditioning on Z inserted
everywhere. It is true because conditional probabilities are probabilities. So we
are free to use Adam’s law to help us find both unconditional expectations and
conditional expectations.

Using Adam’s law, we can also prove the last item on our list of properties of
conditional expectation.
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Theorem 9.3.9 (Projection interpretation). For any function h, the random vari-
able Y — E(Y|X) is uncorrelated with h(X). Equivalently,

E(Y - E(Y|X))h(X)) = 0.
(This is equivalent since E(Y — E(Y|X)) = 0, by linearity and Adam’s law.)
Proof. We have

E((Y — B(Y|X))h(X)) = E(h(X)Y) — E(h(X)E(Y|X))
— E(h(X)Y) - B(E(h(X)Y|X))

by Theorem 9.3.2 (here we're “putting back what’s known” in the inner expecta-
tion). By Adam’s law, the second term is equal to E(h(X)Y). [ |

Yo

)

rY—E(Y1X)

)

3
EY1X)

FIGURE 9.6

The conditional expectation F(Y|X) is the projection of Y onto the space of all
functions of X, shown here as a plane. The residual Y — F(Y|X) is orthogonal to
the plane: it’s perpendicular to (uncorrelated with) any function of X.

From a geometric perspective, we can visualize Theorem 9.3.9 as in Figure 9.6. In a
certain sense (described below), F(Y|X) is the function of X that is closest to Y;
we say that F(Y|X) is the projection of Y into the space of all functions of X. The
“line” from Y to E(Y|X) in the figure is orthogonal (perpendicular) to the “plane”,
since any other route from Y to E(Y|X) would be longer. This orthogonality turns
out to be the geometric interpretation of Theorem 9.3.9.

The details of this perspective are given in the next section, which is starred since
it requires knowledge of linear algebra. But even without delving into the linear
algebra, the projection picture gives some useful intuition. As mentioned earlier, we
can think of E(Y|X) as a prediction for Y based on X. This is an extremely com-
mon problem in statistics: predict or estimate the future observations or unknown
parameters based on data. The projection interpretation of conditional expectation
implies that E(Y|X) is the best predictor of Y based on X, in the sense that it is
the function of X with the lowest mean squared error (expected squared difference
between Y and the prediction of Y).



430 Introduction to Probability

Example 9.3.10 (Linear regression). An extremely widely used method for data
analysis in statistics is linear regression. In its most basic form, the linear regression
model uses a single explanatory variable X to predict a response variable Y, and it
assumes that the conditional expectation of Y is linear in X:

E(Y|X) =a+bX.

(a) Show that an equivalent way to express this is to write
Y =a+bX +¢
where € is an r.v. (called the error) with E(e|X) = 0.

(b) Solve for the constants a and b in terms of E(X), E(Y), Cov(X,Y), and Var(X).
Solution:

(a) Let Y = a + bX + ¢, with E(¢/X) = 0. Then by linearity,
E(Y|X) = E(a|X) + E(bX|X) + E(e|X) = a + bX.
Conversely, suppose that E(Y|X) = a + bX, and define
e=Y — (a+bX).
Then Y = a 4+ bX + €, with

E(e|X) = E(Y|X) — E(a+bX|X) = E(Y|X) — (a+bX) = 0.

(b) First, by Adam’s law, taking the expectation of both sides gives
E(Y)=a+bE(X).
Note that € has mean 0 and X and € are uncorrelated, since
E(e) = E(E(e] X)) = E(0) = 0
and
E(eX)=FE(E(eX|X)) = E(XE(¢/X)) = E(0) =0.
Taking the covariance with X of both sides in Y = a + bX + ¢, we have
Cov(X,Y) = Cov(X,a) + bCov(X, X) + Cov(X,e€) = bVar(X).
Thus,
_ Cov(X,Y)
Var(X) ’

Cov(X,Y)

a=B(Y)-bE(X) = B(Y) - 55

- EB(X). O
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9.4 *Geometric interpretation of conditional expectation

This section explains in more detail the geometric perspective shown in Figure 9.6,
using some concepts from linear algebra. Consider the vector space consisting of all
random variables on a certain probability space, such that the random variables all
have finite variance. Each vector or point in the space is a random variable (here we
are using “vector” in the linear algebra sense, not in the sense of a random vector
from Chapter 7). Define the inner product of two r.v.s U and V' to be

(U,VYy=EUV).
(For this definition to satisfy the axioms for an inner product, we need the convention
that two r.v.s are considered the same if they are equal with probability 1.)

The squared length of an r.v. X is
X7 = (X, X) = BEX?,
and the squared distance between two r.v.s U and V is
U =VI|]?=EU-V)>

The interpretations become especially nice if E(U) = E(V) = 0, since then:

e ||U||? = Var(U), and ||U|| = SD(U).

o (U, V)= Cov(U,V), and the cosine of the “angle” between U and V is Corr(U, V).
e U and V are orthogonal (i.e., (U, V) = 0) if and only if they are uncorrelated.

To interpret E(Y|X) geometrically, consider the space of all random variables (with
finite variance) that can be expressed as functions of X. This is a subspace of the
vector space. In Figure 9.6, the subspace of random variables of the form h(X) is
represented by a plane. To get E(Y|X), we project Y onto the plane. Then the
residual Y — E(Y|X) is orthogonal to h(X) for all functions h, and E(Y|X) is the
function of X that best predicts Y, where “best” here means that the mean squared
error E(Y — g(X))? is minimized by choosing g(X) = E(Y|X).

The projection interpretation is a helpful way to think about many of the properties
of conditional expectation. For example, if Y = h(X) is a function of X, then Y
itself is already in the plane, so it is its own projection; this explains why

E(n(X)[X) = h(X).

We can think of unconditional expectation as a projection too: E(Y') can be thought
of as E(Y'|0), the projection of Y onto the space of all constants (and indeed, E(Y)
is the constant ¢ that minimizes E(Y — ¢)?, as we proved in Theorem 6.1.4).
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We can now also give a geometric interpretation for Adam’s law: E(Y) says to
project Y in one step onto the space of all constants; E(E(Y|X)) says to do it in
two steps, by first projecting onto the plane and then projecting F(Y|X) onto the
space of all constants, which is a line within that plane. Adam’s law says that the
one-step and two-step methods yield the same result.

In the next section we will introduce Fve’s law, which serves the same purpose for
variance as Adam’s law does for expectation. As a preview and to further explore
the geometric interpretation of conditional expectation, let’s look at Var(Y') from
the perspective of this section. Assume that E(Y) =0 (if E(Y) # 0, we can center
Y by subtracting F(Y'); doing so has no effect on the variance of Y).

We can decompose Y into two orthogonal terms, the residual Y — E(Y|X) and the
conditional expectation F(Y|X):

Y = (Y — E(Y|X)) + E(Y|X).

The two terms are orthogonal since Y — E(Y'|X) is uncorrelated with any function
of X, and E(Y|X) is a function of X. So by the Pythagorean theorem,

IYI[2 =Y = E(Y[X)[? + | E(Y |X)] .

That is,
Var(Y) = Var(Y — E(Y|X)) + Var(E(Y|X)).

As we will see in the next section, this identity is a form of Eve’s law. So it turns
out that Eve’s law, which may look cryptic at first glance, can be interpreted as

just being the Pythagorean theorem for a “triangle” whose sides are the vectors
Y- EY|X),E(Y|X),and Y.

9.5 Conditional variance

Once we’ve defined conditional expectation given an r.v., we have a natural way to
define conditional variance given a random variable: replace all instances of E(-) in
the definition of unconditional variance with E(-|X).

Definition 9.5.1 (Conditional variance). The conditional variance of Y given X
is

Var(Y|X) = E((Y — E(Y|X))?|X).

This is equivalent to
Var(Y|X) = E(Y?|X) — (E(Y|X))%

£ 9.5.2. Like E(Y|X), Var(Y|X) is a random variable, and it is a function of X.
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Since conditional variance is defined in terms of conditional expectations, we can
use results about conditional expectation to help us calculate conditional variance.
Here’s an example.

Example 9.5.3. Let Z ~ N(0,1) and Y = Z2. Find Var(Y|Z) and Var(Z|Y).
Solution:

Without any calculations we can see that Var(Y|Z) = 0: conditional on Z, Y is
a known constant, and the variance of a constant is 0. By the same reasoning,
Var(h(Z)|Z) = 0 for any function h.

To get Var(Z|Y'), apply the definition:

Var(Z|Z%) = E(Z*|2°%) — (E(Z|Z%))>.
The first term equals Z2. The second term equals 0 by symmetry, as we found in
Example 9.3.3. Thus Var(Z|Z?%) = Z2%, which we can write as Var(Z]Y) =Y. O

In the next example, we will practice working with conditional expectation and
conditional variance in the context of the Bivariate Normal.

Example 9.5.4 (Conditional expectation and conditional variance in a BVN). Let
(Z,W) be Bivariate Normal, with Corr(Z, W) = p and Z, W marginally N(0,1).
Find E(W|Z) and Var(W|Z2).

Solution: We can assume that (Z, W) has been constructed as in Example 7.5.10,
since E(W|Z) and Var(W|Z) depend only on the joint distribution of (Z, W), not
on the specific method that was used to create (Z, W). So let

Z=X
W =pX ++/1—p?Y,

with X, Y ii.d. M(0,1). We can then solve the problem very neatly, without hav-
ing to resort to messy integrals based on the Bivariate Normal joint PDF. The
conditional expectation is

EW|Z)=EW|X)=pX ++1—-p2EY|X)=pX +/1—p?E(Y) = pZ,
since X and Y are independent. And the conditional variance is
Var(W|Z) = Var(W|X) = Var(y/1 — p2Y|X) = (1 — p?)Var(Y) = 1 — p?,
since pX acts as a constant if we are given X, and Y is independent of X.
Interestingly, the same argument with the roles of Z and W reversed shows that
E(Z|W) = pW, and Var(Z|W) =1 — p°.

One might have guessed that if we should multiply by p to go from an observed value
of Z to a predicted value of W, then we should divide by p to go from an observed
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value of W to a predicted value of Z. But the above results say to multiply by the
same p, regardless of whether using Z to predict W or vice versa! This is closely
related to the fact that correlation is symmetric (Corr(Z, W) = p = Corr(W, Z))
and to an important concept in statistics known as regression toward the mean. [

We learned in the previous section that Adam’s law relates conditional expectation
to unconditional expectation. A companion result for Adam’s law is Eve’s law, which
relates conditional variance to unconditional variance.

Theorem 9.5.5 (Eve’s law). For any r.v.s X and Y,

Var(Y) = E(Var(Y|X)) + Var(E(Y|X)).

The ordering of E’s and Var’s on the right-hand side spells EVVE, whence the
name Eve’s law. Eve’s law is also known as the law of total variance or the variance
decomposition formula.

Proof. Let ¢(X) = E(Y|X). By Adam’s law, E(g(X)) = E(Y). Then
E(Var(Y|X)) = E(E(Y?|X) — g(X)*) = E(Y?) - E(9(X)?),

Var(E(Y]X)) = E(9(X)?) — (Bg(X))* = B(9(X)?) — (EY)*.

Adding these equations, we have Eve’s law. |

To visualize Eve’s law, imagine a population where each person has a value of X
and a value of Y. We can divide this population into subpopulations, one for each
possible value of X. For example, if X represents age and Y represents height, we
can group people based on age. Then there are two sources contributing to the
variation in people’s heights in the overall population. First, within each age group,
people have different heights. The average amount of variation in height within each
age group is the within-group variation, E(Var(Y|X)). Second, across age groups,
the average heights are different. The variance of average heights across age groups
is the between-group variation, Var(E(Y|X)). Eve’s law says that to get the total
variance of Y, we simply add these two sources of variation.

Figure 9.7 illustrates Eve’s law in the simple case where we have three age groups.
The average amount of scatter within each of the groups X = 1, X = 2, and
X = 3 is the within-group variation, E(Var(Y|X)). The variance of the group
means E(Y|X =1), E(Y|X =2), and E(Y|X = 3) is the between-group variation,
Var(E(Y]X)).

Another way to think about Eve’s law is in terms of prediction. If we wanted to
predict someone’s height based on their age alone, the ideal scenario would be if ev-
eryone within an age group had exactly the same height, while different age groups
had different heights. Then, given someone’s age, we would be able to predict their
height perfectly. In other words, the ideal scenario for prediction is no within-group
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FIGURE 9.7
Eve’s law says that total variance is the sum of within-group and between-group
variation.

variation in height, since the within-group variation cannot be explained by age dif-
ferences. For this reason, within-group variation is also called unezxplained variation,
and between-group variation is also called ezxplained variation. Eve’s law says that
the overall variance of Y is the sum of unexplained and explained variation.

We can also write Eve’s law in the form
Var(Y) = Var(Y — E(Y|X)) + Var(E(Y | X)),
since, letting W be the residual Y — E(Y]X),
Var(Y — E(Y|X)) = EW?) = E(E(W? X)) = E(Var(Y|X)).

Again this says that we can decompose variance into within-group variation plus
between-group variation.

% 9.5.6. Let Y be an r.v. and A be an event. It is wrong to say “Var(Y) =
Var(Y|A)P(A) + Var(Y|A¢)P(A€)”, even though this looks analogous to the law of
total expectation. (For a simple counterexample, let Y ~ Bern(1/2) and A be the
event Y = 0. Then Var(Y|A) and Var(Y|A¢) are both 0, but Var(Y') = 1/4.)

Instead, we should use Eve’s law if we want to condition on whether or not A
occurred: letting I be the indicator of A,

Var(Y) = E(Var(Y|I)) 4+ Var(E(Y|I)).
To see how this expression relates to the “wrong expression”, let
p=P(A), ¢g=P(A°), a=E(Y|A), b= E(Y|A°), v=Var(Y|A), w = Var(Y|A°).

Then E(Y|I) is a with probability p and b with probability ¢, and Var(Y|I) is v
with probability p and w with probability ¢. So

E(Var(Y|I)) = vp+wq = Var(Y|A)P(A) + Var(Y|A°) P(A°),
which is exactly the “wrong expression”, and Var(Y') consists of this plus the term
Var(E(Y|I)) = a*p + b%q — (ap + bg)*.

It is crucial to account for both within-group and between-group variation.
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9.6 Adam and Eve examples

We conclude this chapter with several examples showing how Adam’s law and Eve’s
law allow us to find the mean and variance of complicated r.v.s, especially in situ-
ations that involve multiple levels of randomness.

In our first example, the r.v. of interest is a random sum: the sum of a random
number of random variables. There are thus two levels of randomness: first, each
term in the sum is a random variable; second, the number of terms in the sum is
also a random variable.

Example 9.6.1 (Random sum). A store receives N customers in a day, where N
is an r.v. with finite mean and variance. Let X; be the amount spent by the jth
customer at the store. Assume that each X; has mean p and variance o2, and that
N and all the X; are independent of one another. Find the mean and variance of
the random sum X = Zjvzl X, which is the store’s total revenue in a day, in terms
of p, 0%, E(N), and Var(N).

Solution:

Since X is a sum, our first impulse might be to claim “E(X) = Ny by linearity”.
Alas, this would be a category error, since E(X) is a number and Ny is a random
variable. The key is that X is not merely a sum, but a random sum; the number of
terms we are adding up is itself random, whereas linearity applies to sums with a
fized number of terms.

Yet this category error actually suggests the correct strategy: if only we were allowed
to treat IV as a constant, then linearity would apply. So let’s condition on N. By
linearity of conditional expectation,

N N N
E(XIN)=E > X;IN| =) EX;IN)=> E(X;)=Npu.
j=1 J=1

Jj=1

We used the independence of the X; and N to assert E(X;|N) = E(X;) for all
j. Note that the statement “E(X|N) = Np” is not a category error because both
sides of the equality are r.v.s that are functions of N. Finally, by Adam’s law,

E(X) = B(E(X|N)) = E(N) = pE(N).

This is a pleasing result: the average total revenue is the average amount spent per
customer, multiplied by the average number of customers.

For Var(X), we again condition on N to get Var(X|N):

N N N
Var(X|N) = Var [ Y XN | = Var(X;|N) =) Var(X;) = No”.
=1 =1 =1



Conditional expectation 437

Eve’s law then tells us how to obtain the unconditional variance of X:

Var(X) = E(Var(X|N)) + Var(E(X|N))
= E(No?) 4 Var(Np)
= 0?E(N) + p*Var(N). O

In the next example, two levels of randomness arise because our experiment takes
place in two stages. We sample a city from a group of cities, then sample citizens
within the city. This is an example of a multilevel model.

Example 9.6.2 (Random sample from a random city). To study the prevalence
of a disease in several cities of interest within a certain county, we pick a city at
random, then pick a random sample of n people from that city. This is a form of a
widely used survey technique known as cluster sampling.

Let @@ be the proportion of diseased people in the chosen city, and let X be the
number of diseased people in the sample. As illustrated in Figure 9.8 (where white
dots represent healthy individuals and black dots represent diseased individuals),
different cities may have very different prevalences. Since each city has its own
disease prevalence, () is a random variable. Suppose that @) ~ Unif(0,1). Also
assume that conditional on @), each individual in the sample independently has
probability @ of having the disease; this is true if we sample with replacement from
the chosen city, and is approximately true if we sample without replacement but
the population size is large. Find E(X) and Var(X).

FIGURE 9.8

A certain oval-shaped county has 4 cities. Each city has healthy people (represented
as white dots) and diseased people (represented as black dots). A random city is
chosen, and then a random sample of n people is chosen from within that city.
There are two components to the variability in the number of diseased people in
the sample: variation due to different cities having different disease prevalence, and
variation due to the randomness of the sample within the chosen city.

Solution:

With our assumptions, X|Q ~ Bin(n,Q); this notation says that conditional on
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knowing the disease prevalence in the chosen city, we can treat () as a constant,
and each sampled individual is an independent Bernoulli trial with probability ) of
success. Using the mean and variance of the Binomial distribution, E(X|Q) = nQ
and Var(X|Q) = nQ(1 — @). Furthermore, using the moments of the standard
Uniform distribution, E(Q) = 1/2, E(Q?) = 1/3, and Var(Q) = 1/12. Now we can
apply Adam’s law and Eve’s law to get the unconditional mean and variance of X:

B(X) = E(E(X|Q)) = E(nQ) = 3,

Var(X) =

(Var(X|Q)) + Var(E(X|Q))
(nQ(1 - Q)) + Var(nQ)
=nE(Q) — nE(Q?) + n*Var(Q)

n n2

6 12

E
E

Note that the structure of this problem is identical to that in the story of Bayes’
billiards. Therefore, we actually know the distribution of X, not just its mean and
variance: X is Discrete Uniform on {0, 1,2,...,n}. But the Adam-and-Eve approach
can be applied when @ has a more complicated distribution, or with more levels in
the multilevel model, whether or not it is feasible to work out the distribution of
X. For example, we could have people within cities within counties within states
within countries. O

Last but not least, we revisit Story 8.4.5, the Gamma-Poisson problem from the
previous chapter.

Example 9.6.3 (Gamma-Poisson revisited). Recall that Fred decided to find out
about the rate of Blotchville’s Poisson process of buses by waiting at the bus stop
for ¢t hours and counting the number of buses Y. He then used the data to update
his prior distribution A ~ Gamma(rg, bg). Thus, Fred was using the two-level model

A ~ Gamma(ro, bo)
Y|\ ~ Pois(At).

We found that under Fred’s model, the marginal distribution of Y is Negative
Binomial with parameters r = rg and p = bg/(bg + t). In particular,

rq rot
rq  rot(bo + 1)
p 0

Let’s independently verify this with Adam’s law and Eve’s law. Using results
about the Poisson distribution, the conditional mean and variance of Y given A
are E(Y|\) = Var(Y|\) = At. Using results about the Gamma distribution, the
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marginal mean and variance of A are E(\) = 79/bp and Var(\) = rq/b2. For Adam
and Eve, this is all that is required:
rot
=
Var(Y') = E(Var(Y'|\)) + Var(E(Y|\))
= E(\t) + Var(\t)
rot T0t2 ’r‘ot(bo + t)

by B B

E(Y) = E(E(Y|\) = E(\t)

which is consistent with our earlier answers. The difference is that when using Adam
and Eve, we don’t need to know that Y is Negative Binomial! If we had been too
lazy to derive the marginal distribution of Y, or if we weren’t so lucky as to have a

named distribution for Y, Adam and Eve would still deliver the mean and variance
of Y (though not the PMF).

Lastly, let’s compare the mean and variance of Y under the two-level model to
the mean and variance we would get if Fred were absolutely sure of the true value
of A. In other words, suppose we replaced A by its mean, E(\) = ry/by, making
A a constant instead of an r.v. Then the marginal distribution of the number of
buses (which we’ll call Y under the new assumptions) would just be Poisson with
parameter rot/by. Then we would have

~ Tgt

E( ) = Ea

Var(Y) = %t.
0

Notice that E(Y) = E(Y), but Var(Y) < Var(Y): the extra term rgt>/b3 from Eve’s
law is missing. Intuitively, when we fix A at its mean, we are eliminating a level of
uncertainty in the model, and this causes a reduction in the unconditional variance.

Figure 9.9 overlays the plots of two PMFs, that of Y ~ NBin(rg, by/(bp +t)) in gray
and that of Y ~ Pois(rgt/by) in black. The values of the parameters are arbitrarily
chosen to be rg = 5, bg = 1, t = 2. These two PMF's have the same center of mass,
but the PMF of Y is noticeably more dispersed. U

9.7 Recap

To calculate an unconditional expectation, we can divide up the sample space and
use the law of total expectation

E(Y) =3 E(Y|A)P(A),
=1
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FIGURE 9.9 )
PMF of Y ~ NBin(rg,bp/(byp + t)) in gray and Y ~ Pois(rgt/by) in black, where
ro=5byg=1,1t=2.

but we must be careful not to destroy information in subsequent steps (such as by
forgetting in the midst of a long calculation to condition on something that needs to
be conditioned on). In problems with a recursive structure, we can also use first-step
analysis for expectations.

The conditional expectation F(Y|X) and conditional variance Var(Y'|X) are ran-
dom variables that are functions of X; they are obtained by treating X as if it
were a known constant. If X and Y are independent, then E(Y|X) = E(Y) and
Var(Y|X) = Var(Y). Conditional expectation has the properties

E(M(X)Y|X) = h(X)E(Y]X)

E(1 + Y2|X) = E(1]X) + E(Y2|X),
analogous to the properties E(cY) = cE(Y) and E(Y; +Y3) = E(Y1) + E(Y3) for
unconditional expectation. The conditional expectation E(Y|X) is also the random

variable that makes the residual Y — E(Y|X) uncorrelated with any function of X,
which means we can interpret it geometrically as a projection.

Finally, Adam’s law and Eve’s law,
E(Y) = E(E(Y]X))
Var(Y) = E(Var(Y|X)) + Var(E(Y| X)),
often help us calculate E(Y') and Var(Y) in problems that feature multiple forms

or levels of randomness.

Figure 9.10 illustrates how the number E(Y'|X = x) connects with the r.v. E(Y|X),
whose expectation is E(Y') by Adam’s law. Additionally, it shows how the ingredi-
ents in Eve’s law are formed and come together to give a useful decomposition of
Var(Y) in terms of quantities that condition on X.
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FIGURE 9.10

We often observe an r.v. X and want to predict another r.v. Y based on the infor-
mation about X. If we observe that X = z, then we can condition on that event
and use F(Y|X = x) as our prediction. The conditional expectation E(Y|X) is the
r.v. that takes the value E(Y|X = z) when X = z. Adam’s law lets us compute
the unconditional expectation E(Y') by starting with the conditional expectation
E(Y|X). Similarly, Eve’s law lets us compute Var(Y) in terms of quantities that
condition on X.

9.8 R
Mystery prize simulation

We can use simulation to show that in Example 9.1.7, the example of bidding on a
mystery prize with unknown value, any bid will lead to a negative payout on average.
First choose a bid b (we chose 0.6); then simulate a large number of hypothetical
mystery prizes and store them in v:

b <- 0.6
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nsim <- 1075
v <- runif(nsim)

The bid is accepted if b > (2/3)*v. To get the average profit conditional on an
accepted bid, we use square brackets to keep only those values of v satisfying the
condition:

mean(v[b > (2/3)*v]) - b

This value is negative regardless of b, as you can check by experimenting with
different values of b.

Time until HH vs. HT

To verify the results of Example 9.1.9, we can start by generating a long sequence
of fair coin tosses. This is done with the sample command. We use paste with the
collapse="" argument to turn these tosses into a single string of H’s and 1"s:

paste(sample(c("H","T"),100,replace=TRUE),collapse="")

A sequence of length 100 is enough to virtually guarantee that both HH and HT
will have appeared at least once.

To determine how many tosses are required on average to see HH and HT, we
need to generate many sequences of coin tosses. For this, we use our familiar friend
replicate:

r <- replicate(10°3,paste(sample(c("H","T"),100,replace=T),
collapse=""))

Now r contains a thousand sequences of coin tosses, each of length 100. To find
the first appearance of HH in each of these sequences, you can use the str_locate
command from the stringr package. After you’ve installed and loaded the pack-
age,

t <- str_locate(r,"HH")

creates a two-column table t, whose columns contain the starting and ending posi-
tions of the first appearance of HH in each sequence of coin tosses. (Use head (t) to
display the first few rows of the table and get an idea of what your results look like.)
What we want are the ending positions, given by the second column. In particular,
we want the average value of the second column, which is an approximation of the
average waiting time for HH:

mean(t[,2])

Is your answer around 6?7 Trying again with "HT" instead of "HH", is your answer
around 47
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Linear regression

In Example 9.3.10, we derived formulas for the slope and intercept of a linear regres-
sion model, which can be used to predict a response variable using an explanatory
variable. Let’s try to apply these formulas to a simulated dataset:

x <= rnorm(100)
y <= 3 + 5*x + rnorm(100)

The vector x contains 100 realizations of the random variable X ~ A/ (0, 1), and the
vector y contains 100 realizations of the random variable Y = a 4+ X + ¢ where
e ~N(0,1). As we can see, the true values of a and b for this dataset are 3 and 5,
respectively. We can visualize the data as a scatterplot with plot(x,y).

Now let’s see if we can get good estimates of the true a and b, using the formulas
in Example 9.3.10:

b <= cov(x,y) / var(x)
a <- mean(y) - b*mean(x)

Here cov(x,y), var(x), and mean(x) provide the sample covariance, sample vari-
ance, and sample mean, estimating the quantities Cov(X,Y’), Var(X), and E(X),
respectively. (We have discussed sample mean and sample variance in detail in ear-
lier chapters. Sample covariance is defined analogously, and is a natural way to
estimate the true covariance.)

You should find that b is close to 5 and a is close to 3. These estimated values define
the line of best fit. The abline command lets us plot the line of best fit on top of
our scatterplot:

plot(x,y)
abline(a=a,b=b)

The first argument to abline is the intercept of the line, and the second argument
is the slope.

9.9 Exercises

Exercises marked with (8) have detailed solutions at http://stat110.net.

Conditional expectation given an event

1. Fred wants to travel from Blotchville to Blissville, and is deciding between 3 options
(involving different routes or different forms of transportation). The jth option would
take an average of p; hours, with a standard deviation of o; hours. Fred randomly
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chooses between the 3 options, with equal probabilities. Let T" be how long it takes for
him to get from Blotchville to Blissville.

(a) Find E(T). Is it simply (u1 + p2 + ps3)/3, the average of the expectations?

(b) Find Var(T). Is it simply (o} 4+ 03 4+ 03)/3, the average of the variances?

2. While Fred is sleeping one night, X legitimate emails and Y spam emails are sent to
him. Suppose that X and Y are independent, with X ~ Pois(10) and Y ~ Pois(40).
When he wakes up, he observes that he has 30 new emails in his inbox. Given this
information, what is the expected value of how many new legitimate emails he has?

3. A group of 21 women and 14 men are enrolled in a medical study. Each of them has a
certain disease with probability p, independently. It is then found (through extremely
reliable testing) that exactly 5 of the people have the disease. Given this information,
what is the expected number of women who have the disease?

4. A researcher studying crime is interested in how often people have gotten arrested. Let

X ~ Pois(\) be the number of times that a random person got arrested in the last 10
years. However, data from police records are being used for the researcher’s study, and
people who were never arrested in the last 10 years do not appear in the records. In
other words, the police records have a selection bias: they only contain information on
people who have been arrested in the last 10 years.
So averaging the numbers of arrests for people in the police records does not directly es-
timate E'(X); it makes more sense to think of the police records as giving us information
about the conditional distribution of how many times a person was arrest, given that
the person was arrested at least once in the last 10 years. The conditional distribution
of X, given that X > 1, is called a truncated Poisson distribution (see Exercise 14 from
Chapter 3 for another example of this distribution).

(a) Find E(X|X > 1)
(b) Find Var(X|X > 1).

5. A fair 20-sided die is rolled repeatedly, until a gambler decides to stop. The gambler
pays $1 per roll, and receives the amount shown on the die when the gambler stops
(e.g., if the die is rolled 7 times and the gambler decides to stop then, with an 18 as the
value of the last roll, then the net payoff is $18 — $7 = $11). Suppose the gambler uses
the following strategy: keep rolling until a value of m or greater is obtained, and then
stop (where m is a fixed integer between 1 and 20).

(a) What is the expected net payoff?
Hint: The average of consecutive integers a,a + 1,...,a + n is the same as the average
of the first and last of these. See the math appendix for more information about series.
(b) Use R or other software to find the optimal value of m.

6. Let X ~ Expo(A). Find E(X|X < 1) in two different ways:

(a) by calculus, working with the conditional PDF of X given X < 1.

(b) without calculus, by expanding E(X) using the law of total expectation.

7. You are given an opportunity to bid on a mystery box containing a mystery prize! The
value of the prize is completely unknown, except that it is worth at least nothing, and
at most a million dollars. So the true value V' of the prize is considered to be Uniform
on [0,1] (measured in millions of dollars).

You can choose to bid any nonnegative amount b (in millions of dollars). If b < +V/, then
your bid is rejected and nothing is gained or lost. If b > iV, then your bid is accepted
and your net payoff is V' — b (since you pay b to get a prize worth V).
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Find your expected payoff as a function of b (be sure to specify it for all b > 0). Then
find the optimal bid b, to maximize your expected payoff.

8. (® You get to choose between two envelopes, each of which contains a check for some
positive amount of money. Unlike in the two-envelope paradox, it is not given that one
envelope contains twice as much money as the other envelope. Instead, assume that the
two values were generated independently from some distribution on the positive real
numbers, with no information given about what that distribution is.

After picking an envelope, you can open it and see how much money is inside (call this
value ), and then you have the option of switching. As no information has been given
about the distribution, it may seem impossible to have better than a 50% chance of
picking the better envelope. Intuitively, we may want to switch if z is “small” and not
switch if x is “large”, but how do we define “small” and “large” in the grand scheme of
all possible distributions? [The last sentence was a rhetorical question.]

Consider the following strategy for deciding whether to switch. Generate a threshold
T ~ Expo(1), and switch envelopes if and only if the observed value z is less than the
value of T'. Show that this strategy succeeds in picking the envelope with more money
with probability strictly greater than 1/2.

Hint: Let ¢ be the value of T' (generated by a random draw from the Expo(1) distribu-
tion). First explain why the strategy works very well if ¢ happens to be in between the
two envelope values, and does no harm in any case (i.e., there is no case in which the
strategy succeeds with probability strictly less than 1/2).

9. There are two envelopes, each of which has a check for a Unif(0,1) amount of money,
measured in thousands of dollars. The amounts in the two envelopes are independent.
You get to choose an envelope and open it, and then you can either keep that amount
or switch to the other envelope and get whatever amount is in that envelope.

Suppose that you use the following strategy: choose an envelope and open it. If you
observe U, then stick with that envelope with probability U, and switch to the other
envelope with probability 1 — U.

(a) Find the probability that you get the larger of the two amounts.

(b) Find the expected value of what you will receive.

10. Suppose n people are bidding on a mystery prize that is up for auction. The bids are to
be submitted in secret, and the individual who submits the highest bid wins the prize.
The ith bidder receives a signal X;, with Xi,..., X, i.i.d. The value of the prize, V, is
defined to be the sum of the individual bidders’ signals:

V=X + +Xn.

This is known in economics as the wallet game: we can imagine that the n people are
bidding on the total amount of money in their wallets, and each person’s signal is the
amount of money in their own wallet. Of course, the wallet is a metaphor; the game can
also be used to model company takeovers, where each of two companies bids to take over
the other, and a company knows its own value but not the value of the other company.

For this problem, assume the X; are i.i.d. Unif(0, 1).

(a) Before receiving her signal, what is bidder 1’s unconditional expectation for V'?

(b) Conditional on receiving the signal X; = x1, what is bidder 1’s expectation for V?
(c) Suppose each bidder submits a bid equal to their conditional expectation for V, i.e.,
bidder ¢ bids E(V|X; = z;). Conditional on receiving the signal X1 = z1 and winning
the auction, what is bidder 1’s expectation for V7 Explain intuitively why this quantity
is always less than the quantity calculated in (b).
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11.

12.

13.

14.

15.

16.

17.

Introduction to Probability

® A coin with probability p of Heads is flipped repeatedly. For (a) and (b), suppose
that p is a known constant, with 0 < p < 1.

(a) What is the expected number of flips until the pattern HT is observed?
(b) What is the expected number of flips until the pattern HH is observed?

(¢) Now suppose that p is unknown, and that we use a Beta(a,b) prior to reflect our
uncertainty about p (where a and b are known constants and are greater than 2). In
terms of a and b, find the corresponding answers to (a) and (b) in this setting.

A coin with probability p of Heads is flipped repeatedly, where 0 < p < 1. The se-
quence of outcomes can be divided into runs (blocks of H’s or blocks of T’s), e.g.,
HHHTTTTHTTTHH becomes | HHH |TTTT | H|TTT | HH |, which has 5 runs,
with lengths 3,4, 1, 3, 2, respectively. Assume that the coin is flipped at least until the
start of the third run.

(a) Find the expected length of the first run.

(b) Find the expected length of the second run.

A fair 6-sided die is rolled once. Find the expected number of additional rolls needed to
obtain a value at least as large as that of the first roll.

A fair 6-sided die is rolled repeatedly.

(a) Find the expected number of rolls needed to get a 1 followed right away by a 2.

Hint: Start by conditioning on whether or not the first roll is a 1.
(b) Find the expected number of rolls needed to get two consecutive 1’s.

(c) Let an be the expected number of rolls needed to get the same value n times in a
row (i.e., to obtain a streak of n consecutive j’s for some not-specified-in-advance value
of 7). Find a recursive formula for an+1 in terms of an,.

Hint: Divide the time until there are n 4+ 1 consecutive appearances of the same value
into two pieces: the time until there are n consecutive appearances, and the rest.
(d) Find a simple, explicit formula for a, for all n > 1. What is ar (numerically)?

Conditional expectation given a random variable

® Let X1, Xo beiid., andlet X = %(Xl + X2) be the sample mean. In many statistics
problems, it is useful or important to obtain a conditional expectation given X. As an
example of this, find F(w1 X1 +w2X2|X), where w1, w2 are constants with w1 +w2 = 1.

Let X1, Xo,... be ii.d. r.v.s with mean 0, and let S,, = X1 + --- + X,,. As shown in
Example 9.3.6, the expected value of the first term given the sum of the first n terms is

Sn
B(X1|S,) = ==

Generalize this result by finding E(Sk|S») for all positive integers k and n.

® Consider a group of n roommate pairs at a college (so there are 2n students). Each
of these 2n students independently decides randomly whether to take a certain course,
with probability p of success (where “success” is defined as taking the course).

Let N be the number of students among these 2n who take the course, and let X be

the number of roommate pairs where both roommates in the pair take the course. Find
E(X) and E(X|N).
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18.  ® Show that E((Y — E(Y|X))?|X) = E(Y?|X) — (E(Y|X))?, so these two expressions
for Var(Y|X) agree.

Hint for the variance: Adding a constant (or something acting as a constant) does not
affect variance.

19. Let X be the height of a randomly chosen adult man, and Y be his father’s height, where
X and Y have been standardized to have mean 0 and standard deviation 1. Suppose
that (X,Y) is Bivariate Normal, with X,Y ~ AN(0,1) and Corr(X,Y) = p.

(a) Let y = ax + b be the equation of the best line for predicting Y from X (in the
sense of minimizing the mean squared error), e.g., if we were to observe X = 1.3 then
we would predict that Y is 1.3a 4+ b. Now suppose that we want to use Y to predict
X, rather than using X to predict Y. Give and explain an intuitive guess for what the
slope is of the best line for predicting X from Y.

(b) Find a constant ¢ (in terms of p) and an r.v. V such that Y = ¢X + V, with V
independent of X.

Hint: Start by finding ¢ such that Cov(X,Y — c¢X) = 0.

(c) Find a constant d (in terms of p) and an r.v. W such that X = dY + W, with W
independent of Y.

(d) Find E(Y|X) and E(X|Y).

(e) Reconcile (a) and (d), if your intuitive guess in (a) differed from what the results of
(d) implied. Give a clear and correct intuitive explanation of the relationship between
the slope of the best line for predicting Y from X and the slope of the best line for
predicting X from Y.

20. Let X ~ Mults(n, p).
(a) Flnd E(X1|X2) and Var(X1|X2).

21. Let Y be a discrete r.v., A be an event with 0 < P(A) < 1, and I4 be the indicator
r.v. for A.

(a) Explain precisely how the r.v. E(Y|I4) relates to the numbers E(Y|A) and E(Y|A°).

(b) Show that E(Y|A) = E(YIa)/P(A), directly from the definitions of expectation
and conditional expectation.

Hint: Let X = Y14, and then find an expression for the PMF of X.

(c) Use (b) to give a short proof of the fact that E(Y) = E(Y|A)P(A)+ E(Y|A®)P(A°).
22.  Show that the following version of LOTP, which we encountered in Section 7.1, is also
a consequence of Adam’s law: for any event A and continuous r.v. X with PDF fx,

P(A) = /_oo P(A|X = z) fx(x)dx.

Hint: Consider E(I(A)|X = z).

23. (® Let X and Y be random variables with finite variances, and let W =Y — E(Y|X).
This is a residual: the difference between the true value of Y and the predicted value of
Y based on X.

(a) Compute E(W) and E(W|X).

(b) Compute Var(W), for the case that W|X ~ A(0, X?) with X ~ N (0, 1).
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24.  (® One of two identical-looking coins is picked from a hat randomly, where one coin has
probability p1 of Heads and the other has probability p2 of Heads. Let X be the number
of Heads after flipping the chosen coin n times. Find the mean and variance of X.

25. Kelly makes a series of n bets, each of which she has probability p of winning, indepen-
dently. Initially, she has z¢ dollars. Let X; be the amount she has immediately after her
jth bet is settled. Let f be a constant in (0, 1), called the betting fraction. On each bet,
Kelly wagers a fraction f of her wealth, and then she either wins or loses that amount.
For example, if her current wealth is $100 and f = 0.25, then she bets $25 and either
gains or loses that amount. (A famous choice when p > 1/2 is f = 2p — 1, which is
known as the Kelly criterion.) Find E(X,) (in terms of n, p, f, zo).

Hint: First find E(X;41]Xj;).

26. Let N ~ Pois(A1) be the number of movies that will be released next year. Suppose
that for each movie the number of tickets sold is Pois(\2), independent of other movies
and of N. Find the mean and variance of the number of movie tickets that will be sold
next year.

27. A party is being held from 8:00 pm to midnight on a certain night, and N ~ Pois())
people are going to show up. They will all arrive at uniformly random times while the
party is going on, independently of each other and of N.

(a) Find the expected time at which the first person arrives, given that at least one
person shows up. Give both an exact answer in terms of A, measured in minutes after
8:00 pm, and an answer rounded to the nearest minute for A = 20, expressed in time
notation (e.g., 8:20 pm).

(b) Find the expected time at which the last person arrives, given that at least one
person shows up. As in (a), give both an exact answer and an answer rounded to the
nearest minute for A = 20.

28. (8 We wish to estimate an unknown parameter @, based on an r.v. X we will get to
observe. As in the Bayesian perspective, assume that X and 6 have a joint distribution.
Let 6 be the estimator (which is a function of X). Then 6 is said to be unbiased if
E(6|0) = 6, and 0 is said to be the Bayes procedure if E(0|X) = 0.

(a) Let 6 be unbiased. Find E(§ — 6)? (the average squared difference between the
estimator and the true value of #), in terms of marginal moments of ¢ and 6.

Hint: Condition on 6.

(b) Repeat (a), except in this part suppose that 6 is the Bayes procedure rather than
assuming that it is unbiased.

Hint: Condition on X.

(c) Show that it is impossible for 6 to be both the Bayes procedure and unbiased, except
in silly problems where we get to know 6 perfectly by observing X.

Hint: If Y is a nonnegative r.v. with mean 0, then P(Y =0) = 1.
29. Show that if E(Y|X) = c is a constant, then X and Y are uncorrelated.
Hint: Use Adam’s law to find E(Y) and E(XY).

30. Show by example that it is possible to have uncorrelated X and Y such that E(Y|X)
is not a constant.

Hint: Consider a standard Normal and its square.

31. (® Emails arrive one at a time in an inbox. Let T}, be the time at which the nth email
arrives (measured on a continuous scale from some starting point in time). Suppose that
the waiting times between emails are i.i.d. Expo()), i.e., T1,To —T1, T3 —T>, ... are i.i.d.
Expo(}).



Conditional expectation 449

Each email is non-spam with probability p, and spam with probability ¢ = 1 — p (in-
dependently of the other emails and of the waiting times). Let X be the time at which
the first non-spam email arrives (so X is a continuous r.v., with X = T} if the 1st email
is non-spam, X = 75 if the 1st email is spam but the 2nd one isn’t, etc.).

(a) Find the mean and variance of X.

(b) Find the MGF of X. What famous distribution does this imply that X has (be sure
to state its parameter values)?

Hint for both parts: Let N be the number of emails until the first non-spam (including
that one), and write X as a sum of N terms; then condition on N.

32. Customers arrive at a store according to a Poisson process of rate A customers per hour.
Each makes a purchase with probability p, independently. Given that a customer makes
a purchase, the amount spent has mean p (in dollars) and variance o2.

(a) Find the mean and variance of how much a random customer spends (note that the
customer may spend nothing).

(b) Find the mean and variance of the revenue the store obtains in an 8-hour time
interval, using (a) and results from this chapter.

(c) Find the mean and variance of the revenue the store obtains in an 8-hour time
interval, using the chicken-egg story and results from this chapter.

33. Fred’s beloved computer will last an Expo(\) amount of time until it has a malfunction.
When that happens, Fred will try to get it fixed. With probability p, he will be able to
get it fixed. If he is able to get it fixed, the computer is good as new again and will last
an additional, independent Expo(A) amount of time until the next malfunction (when
again he is able to get it fixed with probability p, and so on). If after any malfunction
Fred is unable to get it fixed, he will buy a new computer. Find the expected amount
of time until Fred buys a new computer. (Assume that the time spent on computer
diagnosis, repair, and shopping is negligible.)

34. A green die is rolled until it lands 1 for the first time. An orange die is rolled until it
lands 6 for the first time. The dice are fair, six-sided dice. Let T1 be the sum of the
values of the rolls of the green die (including the 1 at the end) and T be the sum of
the values of the rolls of the orange die (including the 6 at the end). Two students are
debating whether E(T1) = E(Ts) or E(Th) < E(Ts). They kindly gave permission to
quote their arguments here.

Student A: We have E(T1) = E(Ts). By Adam’s law, the expected sum of the rolls of
a die is the expected number of rolls times the expected value of one roll, and each of
these factors is the same for the two dice. In more detail, let N1 be the number of rolls
of the green die and Ng be the number of rolls of the orange die. By Adam’s law and
linearity,

E(Tv) = E(E(T1|N1)) = E(3.5N1) = 3.5E(N1),

and the same method applied to the orange die gives 3.5E(Ns), which equals 3.5E(Ny).

Student B: Actually, E(T1) < E(Ts). I agree that the expected number of rolls is the
same for the two dice, but the key difference is that we know the last roll is a 1 for the
green die and a 6 for the orange die. The expected totals are the same for the two dice
ezcluding the last roll of each, and then including the last roll makes E(T1) < E(Ts).

(a) Discuss in words the extent to which Student A’s argument is convincing and correct.
(b) Discuss in words the extent to which Student B’s argument is convincing and correct.

(c) Give careful derivations of E(T1) and E(Ts).
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35.

36.

37.

38.

39.
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® Judit plays in a total of N ~ Geom(s) chess tournaments in her career. Suppose that
in each tournament she has probability p of winning the tournament, independently.
Let T be the number of tournaments she wins in her career.

(a) Find the mean and variance of T'.

(b) Find the MGF of T'. What is the name of this distribution (with its parameters)?

In Story 8.4.5, we showed (among other things) that if A ~ Gamma(rg,bo) and Y|\ ~
Pois()), then the marginal distribution of Y is NBin(ro, bo/(bo + 1)). Derive this result
using Adam’s law and MGFs.

Hint: Consider the conditional MGF of Y|\.

Let X1,..., X, beii.d.r.v.s with mean p and variance o2, and n > 2. A bootstrap sample
of X1,...,X, is a sample of n r.v.s X7,. .;,XT*L formed from the X; by sampling with
replacement with equal probabilities. Let X ™ denote the sample mean of the bootstrap
sample:

v * 1 * *
X=X+ X)),

(a) Calculate E(X7) and Var(X;) for each j.

(b) Calculate E(X*|X1,...,X,) and Var(X*|X1,..., X»).

Hint: Conditional on X1, ..., X,, the X; are independent, with a PMF that puts proba-
bility 1/n at each of the points X1,..., X,. As a check, your answers should be random
variables that are functions of Xi,..., X,.

(c) Calculate F(X*) and Var(X™).

(d) Explain intuitively why Var(X) < Var(X*).

An insurance company covers disasters in two neighboring regions, R; and R>. Let I;
and I2 be the indicator r.v.s for whether R; and Ro are hit by the insured disaster,
respectively. The indicators I1 and I may be dependent. Let p; = E(I;) for j = 1,2,
and P12 = E(Ilfg).

The company reimburses a total cost of
C=1L T+ T

to these regions, where 7} has mean p; and variance 0'32. Assume that T7; and T are
independent of each other and that (71,7%) is independent of (I1, I2).

(a) Find E(C).
(b) Find Var(C).

(® A certain stock has low volatility on some days and high volatility on other days.
Suppose that the probability of a low volatility day is p and of a high volatility day
is ¢ = 1 — p, and that on low volatility days the percent change in the stock price is
N(0,0%), while on high volatility days the percent change is N (0,03), with o1 < oa.

Let X be the percent change of the stock on a certain day. The distribution is said to
be a mixture of two Normal distributions, and a convenient way to represent X is as
X = I X1+ 12 X2 where I is the indicator r.v. of having a low volatility day, I = 1—1,
X; ~N(0,0%), and I, X1, X> are independent.

(a) Find Var(X) in two ways: using Eve’s law, and by using properties of covariance to
calculate Cov([1 X1 + I2 X2, 1 X1 + [2X32).

(b) Recall from Chapter 6 that the kurtosis of an r.v. Y with mean p and standard

deviation o is defined by
BEY —p?
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Find the kurtosis of X (in terms of p, g, 02,02, fully simplified). The result will show that
even though the kurtosis of any Normal distribution is 0, the kurtosis of X is positive
and in fact can be very large depending on the parameter values.

40. Let X1, X2, and Y be random variables, such that Y has finite variance. Let
A=E(Y|X1) and B = E(Y|X1, X2).

Show that

Var(A) < Var(B).
Also, check that this make sense in the extreme cases where Y is independent of X,
and where Y = h(X3) for some function h.

Hint: Use Eve’s law on B.
41. Show that for any r.v.s X and Y,

E(Y|E(Y|X)) = E(Y|X).

This has a nice intuitive interpretation if we think of E(Y|X) as the prediction we would
make for Y based on X: given the prediction we would use for predicting Y from X,
we no longer need to know X to predict Y—we can just use the prediction we have!
For example, letting E(Y|X) = ¢g(X), if we observe g(X) = 7, then we may or may
not know what X is (since g may not be one-to-one). But even without knowing X, we
know that the prediction for Y based on X is 7.

Hint: Use Adam’s law with extra conditioning.

42. A researcher wishes to know whether a new treatment for the disease conditionitis is
more effective than the standard treatment. It is unfortunately not feasible to do a
randomized experiment, but the researcher does have the medical records of patients
who received the new treatment and those who received the standard treatment. She
is worried, though, that doctors tend to give the new treatment to younger, healthier
patients. If this is the case, then naively comparing the outcomes of patients in the two
groups would be like comparing apples and oranges.

Suppose each patient has background variables X, which might be age, height and
weight, and measurements relating to previous health status. Let Z be the indicator of
receiving the new treatment. The researcher fears that Z is dependent on X, i.e., that
the distribution of X given Z =1 is different from the distribution of X given Z = 0.
In order to compare apples to apples, the researcher wants to match every patient who
received the new treatment to a patient with similar background variables who received
the standard treatment. But X could be a high-dimensional random vector, which often
makes it very difficult to find a match with a similar value of X.

The propensity score reduces the possibly high-dimensional vector of background vari-
ables down to a single number (then it is much easier to match someone to a person
with a similar propensity score than to match someone to a person with a similar value
of X). The propensity score of a person with background characteristics X is defined as

S = B(Z|X).

By the fundamental bridge, a person’s propensity score is their probability of receiving
the treatment, given their background characteristics. Show that conditional on S, the
treatment indicator Z is independent of the background variables X.

Hint: This problem relates to the previous one. Show that P(Z = 1|5,X) = P(Z = 1|9),
which is equivalent to showing E(Z|S,X) = E(Z|S).

43. This exercise develops a useful identity for covariance, similar in spirit to Adam’s law for
expectation and Eve’s law for variance. First define conditional covariance in a manner
analogous to how we defined conditional variance:

Cov(X,Y|Z) = E((X — E(X|2))(Y — E(Y|2))|Z).
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(a) Show that
Cov(X,Y|Z) = E(XY|Z) — E(X|2)E(Y|2).

This should be true since it is the conditional version of the fact that
Cov(X,Y)=E(XY)—- E(X)E(Y)

and conditional probabilities are probabilities, but for this problem you should prove it
directly using properties of expectation and conditional expectation.

(b) ECCE, or the law of total covariance, says that
Cov(X,Y) = E(Cov(X,Y|Z)) + Cov(E(X|Z),E(Y|Z)).

That is, the covariance of X and Y is the expected value of their conditional covari-
ance plus the covariance of their conditional expectations, where all these conditional
quantities are conditional on Z. Prove this identity.

Hint: We can assume without loss of generality that E(X) = E(Y) = 0, since adding
a constant to an r.v. has no effect on its covariance with any r.v. Then expand out the
covariances on the right-hand side of the identity and apply Adam’s law.

Mixed practice

44. A group of n friends often go out for dinner together. At their dinners, they play “credit
card roulette” to decide who pays the bill. This means that at each dinner, one person
is chosen uniformly at random to pay the entire bill (independently of what happens at
the other dinners).

(a) Find the probability that in k dinners, no one will have to pay the bill more than
once (do not simplify for the case k < n, but do simplify fully for the case k > n).

(b) Find the expected number of dinners it takes in order for everyone to have paid at
least once (you can leave your answer as a finite sum of simple-looking terms).

(c) Alice and Bob are two of the friends. Find the covariance between how many times
Alice pays and how many times Bob pays in k dinners.

45.  As in the previous problem, a group of n friends play “credit card roulette” at their
dinners. In this problem, let the number of dinners be a Pois(A) r.v.

(a) Alice is one of the friends. Find the correlation between how many dinners Alice
pays for and how many free dinners Alice gets.

(b) The costs of the dinners are i.i.d. Gamma(a,b) r.v.s, independent of the number of
dinners. Find the mean and variance of the total cost.

46. Joe will read N ~ Pois(A) books next year. Each book has a Pois(u) number of pages,
with book lengths independent of each other and independent of N.

(a) Find the expected number of book pages that Joe will read next year.
(b) Find the variance of the number of book pages Joe will read next year.
(

¢) For each of the N books, Joe likes it with probability p and dislikes it with probability
1 —p, independently. Find the conditional distribution of how many of the N books Joe
likes, given that he dislikes exactly d of the books.

47. Buses arrive at a certain bus stop according to a Poisson process of rate A. Each bus
has n seats and, at the instant when it arrives at the stop, has a Bin(n,p) number of
passengers. Assume that the numbers of passengers on different buses are independent
of each other, and independent of the arrival times of the buses.
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Let N be the number of buses that arrive in the time interval [0, ¢], and X; be the total
number of passengers on the buses that arrive in the time interval [0, ¢].

(a) Find the mean and variance of N;.
(b) Find the mean and variance of X;.

(c) A bus is full if it has exactly n passengers when it arrives at the stop. Find the
probability that exactly a -+ b buses arrive in [0, ¢], of which a are full and b are not full.

48. Paul and n other runners compete in a marathon. Their times are independent contin-
uous r.v.s with CDF F.

(a) For j =1,2,...,n, let A; be the event that anonymous runner j completes the race
faster than Paul. Explain whether the events A; are independent, and whether they are
conditionally independent given Paul’s time to finish the race.

(b) For the rest of this problem, let N be the number of runners who finish faster than
Paul. Find E(N). (Your answer should depend only on n, since Paul’s time is an r.v.)

(c) Find the conditional distribution of N, given that Paul’s time to finish the marathon
is t.

(d) Find Var(N). (Your answer should depend only on n, since Paul’s time is an r.v.)

Hint: Let T be Paul’s time, and use Eve’s law to condition on 7. Alternatively, use
indicator r.v.s.

49. Emails arrive in an inbox according to a Poisson process of rate A emails per hour.

(a) Find the name and parameters of the conditional distribution of the number of
emails that arrive in the first 2 hours of an 8-hour time period, given that exactly n
emails arrive in that time period.

(b) Each email is legitimate with probability p and spam with probability ¢ = 1 — p,
independently. Find the name and parameters of the conditional distribution of the
number of legitimate emails that arrive in an 8-hour time period, given that exactly s
spams arrived in that time period.

(c¢) Reading an email takes a random amount of time, with mean p hours and standard
deviation o hours. These reading times are i.i.d. and independent of the email arrival
process. Find the (unconditional) mean and variance of the total time it takes to read
all the emails that arrive in an 8-hour time period.

50. An actuary wishes to estimate various quantities related to the number of insurance
claims and the dollar amounts of those claims for someone named Fred. Suppose that
Fred will make N claims next year, where N|A ~ Pois(A). But A is unknown, so the ac-
tuary, taking a Bayesian approach, gives A a prior distribution based on past experience.
Specifically, the prior is A ~ Expo(1). The dollar amount of a claim is Log-Normal with
parameters p and o2 (here p and o? are the mean and variance of the underlying Nor-
mal), with  and o known. The dollar amounts of the claims are i.i.d. and independent
of N.

(a) Find E(N) and Var(N) using properties of conditional expectation (your answers
should not depend on A, since A is unknown and being treated as an r.v.!).

(b) Find the mean and variance of the total dollar amount of all the claims.

(c¢) Find the distribution of N. If it is a named distribution we have studied, give its
name and parameters.

(d) Find the posterior distribution of A, given that it is observed that Fred makes
N = n claims next year. If it is a named distribution we have studied, give its name
and parameters.
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51. (® Let X1, X2, X3 be independent with X; ~ Expo(\;) (so with possibly different rates).
Recall from Chapter 7 that

A

(a) Find E(Xl + X5 +X3|X1 >1,X2 >2, X3 > 3) in terms of )\1,)\2,)\3.

(b) Find P (X; = min(X1, X2, X3)), the probability that the first of the three Exponen-
tials is the smallest.

Hint: Restate this in terms of X7 and min(X2, X3).

(c) For the case A1 = A2 = A3 = 1, find the PDF of max (X1, X2, X3). Is this one of the
important distributions we have studied?

52.  (® A task is randomly assigned to one of two people (with probability 1/2 for each
person). If assigned to the first person, the task takes an Expo(Ai) length of time
to complete (measured in hours), while if assigned to the second person it takes an
Expo(A2) length of time to complete (independent of how long the first person would
have taken). Let T" be the time taken to complete the task.

(a) Find the mean and variance of T'.

(b) Suppose instead that the task is assigned to both people, and let X be the time
taken to complete it (by whoever completes it first, with the two people working in-
dependently). It is observed that after 24 hours, the task has not yet been completed.
Conditional on this information, what is the expected value of X7

53. Suppose for this problem that “true IQ” is a meaningful concept rather than a reified
social construct. Suppose that in the U.S. population, the distribution of true IQs is
Normal with mean 100 and SD 15. A person is chosen at random from this population
to take an I1Q test. The test is a noisy measure of true ability: it’s correct on average
but has a Normal measurement error with SD 5.

Let p be the person’s true 1Q, viewed as a random variable, and let Y be her score on
the IQ test. Then we have

Y{u~ N(n,5%)
w~ N(100,15%).

(a) Find the unconditional mean and variance of Y.
(b) Find the marginal distribution of Y. One way is via the MGF.
(c) Find Cov(p,Y).

54. (8 A certain genetic characteristic is of interest. It can be measured numerically. Let X
and X»> be the values of the genetic characteristic for two twin boys. Given that they
are identical twins, X; = X and X; has mean 0 and variance o; given that they are
fraternal twins, X; and X have mean 0, variance o2, and correlation p. The probability
that the twins are identical is 1/2. Find Cov(X1, X>) in terms of p, o>.

55.  (® The Mass Cash lottery randomly chooses 5 of the numbers from 1,2, ...,35 each day
(without repetitions within the choice of 5 numbers). Suppose that we want to know
how long it will take until all numbers have been chosen. Let a; be the average number
of additional days needed if we are missing j numbers (so ap = 0 and ass is the average
number of days needed to collect all 35 numbers). Find a recursive formula for the a;.

56. Two chess players, Vishy and Magnus, play a series of games. Given p, the game results
are i.i.d. with probability p of Vishy winning, and probability ¢ = 1 — p of Magnus
winning (assume that each game ends in a win for one of the two players). But p is
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unknown, so we will treat it as an r.v. To reflect our uncertainty about p, we use the
prior p ~ Beta(a, b), where a and b are known positive integers and a > 2.

(a) Find the expected number of games needed in order for Vishy to win a game (in-
cluding the win). Simplify fully; your final answer should not use factorials or T'.

(b) Explain in terms of independence vs. conditional independence the direction of the
inequality between the answer to (a) and 1 + E(G) for G ~ Geom(-%=).

a-+b
(c) Find the conditional distribution of p given that Vishy wins exactly 7 out of the first
10 games.
57.  Laplace’s law of succession says that if X, Xa,...,X,41 are conditionally indepen-

dent Bern(p) r.v.s given p, but p is given a Unif(0, 1) prior to reflect ignorance about its
value, then

kE+1

n+2

As an example, Laplace discussed the problem of predicting whether the sun will rise
tomorrow, given that the sun did rise every time for all n days of recorded history; the
above formula then gives (n + 1)/(n + 2) as the probability of the sun rising tomorrow
(of course, assuming independent trials with p unchanging over time may be a very
unreasonable model for the sunrise problem).

P(Xn-ﬁ—l:l‘Xl‘i“"Xn:k):

(a) Find the posterior distribution of p given X1 = 21, X2 = z2,..., Xn = @, and show
that it only depends on the sum of the x; (so we only need the one-dimensional quantity
1+ x2 + - - - + x,, to obtain the posterior distribution, rather than needing all n data
points).

(b) Prove Laplace’s law of succession, using a form of the law of total probability to
find P(Xpn4+1 =1|X1 4+ -+ X, = k) by conditioning on p. (The next exercise, which is
closely related, involves an equivalent Adam’s law proof.)

58. Two basketball teams, A and B, play an n game match. Let X; be the indicator of team
A winning the jth game. Given p, the r.v.s X1,..., X, are i.i.d. with X;|p ~ Bern(p).
But p is unknown, so we will treat it as an r.v. Let the prior distribution be p ~ Unif(0, 1),
and let X be the number of wins for team A.

(a) Find E(X) and Var(X).

(b) Use Adam’s law to find the probability that team A will win game j + 1, given that
they win exactly a of the first j games. (The previous exercise, which is closely related,
involves an equivalent LOTP proof.)

Hint: Letting C' be the event that team A wins exactly a of the first j games,
P(Xj41 =1]C) = BE(X;11|C) = E(E(X;11]C,p)|C) = E(p|C).

(c) Find the PMF of X. (There are various ways to do this, including a very fast way
to see it based on results from earlier chapters.)

(d) The Putnam exam from 2002 posed the following problem:

Shanille O’Keal shoots free throws on a basketball court. She hits the first and misses
the second, and thereafter the [conditional] probability that she hits the next shot is equal
to the proportion of shots she has hit so far. What is the probability she hits exactly 50
of her first 100 shots?

Solve this Putnam problem by applying the result of Part (c). Be sure to explain why
it is valid to apply that result, despite the fact that the Putnam problem does not seem
to be using the same model, e.g., it does not mention a prior distribution, let alone
mention a Unif(0, 1) prior.
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59.

60.

Introduction to Probability

Let X|p ~ Bin(n,p), with p ~ Beta(a,b). So X has a Beta-Binomial distribution, as
mentioned in Story 8.3.3 and Example 8.5.3. Find E(X) and Var(X).

An election is being held. There are two candidates, A and B, and there are n voters.
The probability of voting for Candidate A varies by city. There are m cities, labeled
1,2,...,m. The jth city has n; voters, so n1 +nz+---+n, = n. Let X; be the number
of people in the jth city who vote for Candidate A, with X;|p; ~ Bin(n;, p;). To reflect
our uncertainty about the probability of voting in each city, we treat p1,...,pm asr.v.s,
with prior distribution asserting that they are i.i.d. Unif(0,1). Assume that Xi,..., X,
are independent, both unconditionally and conditional on p1, ..., pm. Let X be the total
number of votes for Candidate A.

(a) Find the marginal distribution of X; and the posterior distribution of p1|(X1 = k1).

(b) Find E(X) and Var(X) in terms of n and s, where s = n} +n3 + --- + n2,.
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