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Classificação em duas classes

Vamos começar com a situação mais simples: duas classes
Indivíduos são amostrados de uma certa população.
Esta população é particionada em duas classes disjuntas: pop1
(denotada π1) e pop2 (denotada π2)
As duas classes representam uma partição da população:

Todo indivíduo pertence a uma das duas subpopulações.
Nenhum indivíduo pertence a duas classes ao mesmo tempo.
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Exemplos

Risco de Crédito: Empresas tomadoras de crédito em um banco: π1
→ créditos bons; π2 → créditos ruins
Crânios em um sítio arqueológico: π1 → homens; π2 → mulheres
Saúde: Pessoas com úlcera (π1) e pessoas sem úlcera (π2)
Saúde: Mulheres com (π1) ou sem (π2) câncer de mama
Análise de textos de dois participantes do movimento de independência
dos EUA: π1 : James Madison ou π2 : Alexander Hamilton.
Duas espécies da flor Iris: π1: Iris setosa; π2: Iris virginica.
Usuários de um website: π1: clicam num certo anúncio e π2, não
clicam
Alunos de um curso online: π1 : evadem e π2 completam o curso
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Features

Indivíduos que pertencem a uma de duas sub-populações: π1 ou π2.
Em cada indivíduo, medimos um conjunto de p variáveis (ou features):

X = (X1,X2, . . . ,Xp)

Com base nas medições em X, queremos inferir se X ∈ π1 ou se
X ∈ π2.
Queremos descobrir (ou aprender) uma regra matemática g(X) que
prediga se o indivíduo pertence à classe π1 ou a π2.
Esta regra será usada para predizer a classe de novos itens para os
quais sabemos X mas não sabemos a sua classe.
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Para construir uma regra de classificação de novos itens, usamos uma
amostra com as classes conhecidas (amostra rotulada com a classe):

Item Classe ou População Variáveis X1 X2 ... Xp

1 π1 X1,1 X1,2 X1,3 ... X1,p

2 π1 X2,1 X2,2 X2,3 ... X2,p
...

...
...

m1 π1 Xm1,1 Xm1,2 Xm1,3 ... Xm1,p

1 π2 Xm1+1,1 Xm1+1,2 Xm1+1,3 ... Xm1+1,p

2 π2 Xm1+2,1 Xm1+2,2 Xm1+2,3 ... Xm1+2,p
...

...
...

m2 π2 Xm1+m2,1 Xm1+m2,2 Xm1+m2,3 ... Xm1+m2,p

Novo Item ????? X ∗1 X ∗2 X ∗3 ... X ∗p

Novo item: conhecemos X mas não conhecemos a sua classe.
X ∗1 X ∗2 X ∗3 ... X ∗p → valores conhecidos, efetivamente observados.
????? → queremos inferir a classe do novo item
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Exemplos

Populações π1 e π2 Variáveis X1 ... Xp

Risco de Crédito: Empresas
tomadoras de crédito em um banco
π1 → créditos bons
π2 → créditos ruins

- % do empréstimo frente ao faturamento
anual da empresa
- tempo como cliente
- no de empréstimos anteriores pagos a tempo
- saldo mensal

Crânios em um sítio arqueológico
π1 → homens
π2 → mulheres

- Circunferência
- Largura
- Altura

Pessoas com úlcera ou sem úlcera

- Medidas de grau de ansiedade
- Grau de perfeccionismo
- Grau de sentimento de culpa
- Grau de dependência

Textos de James Madison
ou Alexander Hamilton

- Frequências de palavras distintas e
comprimento das sentenças
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Exemplos

Populações π1 e π2 Variáveis X1 ... Xp

Duas espécies de flor

- Comprimento da pétala
- Largura da pétala
- Comprimento da sépala
- Largura da sépala

Usuários que clicam e
não clicam em um anúncio

- Posição do anúncio na página
- Tamanho do anúncio
- Tem imagem?
- Número de palavras

Alunos que evadem e que
completam um curso online

- Nota do exame de entrada no curso
- Medidas de motivação a partir de
questionário na entrada
- Renda familiar
- Idade
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Por que precisamos predizer a classe de um item novo?
Classe pode ser conhecida apenas no futuro.

Ex.: Risco de crédito: No momento em que o crédito é solicitado, não
sabemos se o crédito do Indivíduo é bom ou ruim.

Informação sobre a classe não é conhecida com certeza.
Crânios arqueológicos danificados.

Obter a classe pode implicar em destruir o item.
Ex.: Queremos classificar um paciente chegando ao pronto socorro com
lesão na cabeça como UTI ou não-UTI, com base em algumas medidas
rápidas. Esperar para saber com certeza se deve ir para UTI pode
significar esperar demais.
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Cada uma das populações possui
uma distribuição conjunta para as p
variáveis:
X = (X1,X2, ...,Xp)

População 1
(X| ∈ π1) ∼ f1(x)

População 2
(X | ∈ π2) ∼ f2(x)

µ1

µ2

x2

x1

pop1

pop2

Por exemplo: f1(x) = Np(µ1
px1
,Σ1
pxp

) e f2(x) = Np(µ2
px1
,Σ2
pxp

)

(mas poderia ser qualquer outra distribuição).
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Com base na amostra rotulada (classes conhecidas), podemos obter
estimativas dos valores esperados µ1 e µ2 das distribuições f1(x) e de
f2(x) simplesmente tomando a mé dia aritmética de cada variável
dentro de cada classe.

Item Classe ou População Variáveis X1 X2 ... Xp

1 π1 X1,1 X1,2 X1,3 ... X1,p

2 π1 X2,1 X2,2 X2,3 ... X2,p
...

...
...

m1 π1 Xm1,1 Xm1,2 Xm1,3 ... Xm1,p

Médias das p vars x̄11 x̄12 x̄13 . . .→ vetor x̄1 = µ̂1

1 π2 Xm1+1,1 Xm1+1,2 Xm1+1,3 ... Xm1+1,p

2 π2 Xm1+2,1 Xm1+2,2 Xm1+2,3 ... Xm1+2,p
...

...
...

m2 π2 Xm1+m2,1 Xm1+m2,2 Xm1+m2,3 ... Xm1+m2,p

Médias das p vars x̄21 x̄22 x̄23 . . .→ vetor x̄2 = µ̂2
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Podemos também estimar as matrizes p × p de covariância Σ1 e Σ2
com as amostras rotuladas.
Por exemplo, para a classe 1, estimamos as p variâncias
σ2

11, σ
2
1,2, . . . , σ

2
1,p através das variâncias amostrais s2

11, s
2
1,2, . . . , s

2
1,p

A covariância c12 entre a variável i e a variável j (da classe 1) é
estimada por s1i s1j r1,ij usando os desvios-padrão de cada variável e a
correlação r1,ij

Item Classe ou População Variáveis X1 X2 ... Xp

1 π1 X1,1 X1,2 X1,3 ... X1,p

2 π1 X2,1 X2,2 X2,3 ... X2,p
...

...
...

m1 π1 Xm1,1 Xm1,2 Xm1,3 ... Xm1,p

Variância amostral das p vars s211, s
2
1,2, . . . , s

2
1,p
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Novo item

x2

x1

X

X = (X1, X2) (Supondo apenas p = 2 variaveis)

Nao observamos a classe de X

µ1 = media pop1

µ2 = media pop2

Olhar a distância do novo item X aos vetores µ1 e µ2 ⇒ parece
razoável alocar X à população 1, pois a distância entre X e µ1 é
menor que entre X e µ2.
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Distância Euclidiana de
X à µ1 é menor que sua
distância a µ2.

No entanto, X parece pertencer à população 2!
Precisamos levar em conta as correlações.
Precisamos olhar a distância estatística ou a distância de Mahalanobis
do novo item X a cada um dos centros µ1 e µ2.
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Distância Estatística
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Distância Euclidiana não
é a melhor maneira de
medir distâncias entre
vetores aleatórios.
Os pontos coloridos de
vermelho e azul abaixo
possuem a mesma
distância euclidiana ao
centro da nuvem de
pontos estatísticos.

Centro da nuvem representa o valor médio de cada variável, o perfil
“médio” desta população estatística.
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Distância Estatística
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INTUITIVAMENTE, os
pontos vermelhos estão
ESTATISTICAMENTE
mais distantes do centro
da nuvem que os pontos
azuis.

Como criar uma medida de distância matemática que incorpore esta
intuição?
Distância de Mahalanobis: leva em conta as variâncias de cada
variável.
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Distância de Mahalanobis

Mahalanobis também
leva em conta as
correlações entre as
variáveis.
Pontos na elipse
inclinada estão à mesma
distância do centro da
nuvem.

As correlações entre as variáveis → inclinação da elipse.
Obs: eixos das elipses são os componentes principais!!
Para mais detalhes, ver capítulo 13 do meu livro em:
https://homepages.dcc.ufmg.br/~assuncao/EstatCC/FECD.pdf
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Distância Euclidiana em duas dimensões

Queremos a distância entre um ponto arbitrário x = (x1, x2) e o ponto
µ = (µ1, µ2) que representa os valores esperados das variáveis X1 e
X2.

d2(x ,µ) = (x1 − µ1)2 + (x2 − µ2)2

= (x1 − µ1, x2 − µ2)

[
1 0
0 1

] (
x1 − µ1
x2 − µ2

)
=

(
x1 − µ1
x2 − µ2

)t

I
(

x1 − µ1
x2 − µ2

)
= (x − µ)t I (x − µ)

Esta forma matricial é uma maneira complicada, um tanto pedante,
de escrever a distância.
Entretanto ela é uma representação muito útil: o caso genérico vai
ficar MUITO simples nesta notação matricial.
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Distância Euclidiana em p dimensões

Queremos a distância entre um ponto arbitrário
x = (x1, x2, . . . , xp) ∈ Rp e o ponto µ = (µ1, µ2, . . . , µp) ∈ Rp que
representa os valores esperados das variáveis X1,X2, . . . ,Xp.
Em p dimensões:

d2(x,µ) = (x1 − µ1)
2 + (x2 − µ2)

2 + . . . + (xp − µp)
2

= (x1 − µ1, x2 − µ2, . . . , xp − µp)


1 0 . . . 0 0
0 1 . . . 0 0

. . .
0 0 . . . 0 1




x1 − µ1
x2 − µ2
. . .

xp − µp


= (x − µ)t I (x − µ)
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Distância Euclidiana em p dimensões

A representação matricial com p dimensões é a mesma daquela com
duas dimensões.
A distância estatística (de Mahalanobis) substitui a matriz p × p
identidade I na expressão acima por Σ−1, a inversa da matriz de
covariância, também de dimensão p × p.
Para uma explicação intuitiva e bem detalhada, ver o capítulo 13 do
meu livro em:
https://homepages.dcc.ufmg.br/~assuncao/EstatCC/FECD.pdf
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Mahalanobis

E(X ) = µ
px1

= vetor com os valores esperados de cada uma das p

variáveis
V(X ) = Σ

pxp
= matriz de variâncias e covariâncias do vetor X

d2
Σ(X,µ) = (X− µ)t Σ−1 (X− µ)

d2(X,µ) = . .(X − µ)
t

Σ−1
X
−
µ
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x1

X

µ1

µ2

d2
1 = d2

Σ1
(X,µ1)

= (X−µ1)tΣ−1
1 (X−µ1)

d2
2 = d2

Σ2
(X,µ2)

= (X−µ2)tΣ−1
2 (X−µ2)

Uma Regra de Classificação Inicial
Aloque X à população com a menor distância de Mahalanobis d2.
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Isto é,
Se d2

Σ1
(X,µ1) < d2

Σ2
(X, µ2) ⇒ aloque X à pop1;

Caso contrário, aloque X à pop2.

Espaço Rp é particionado em duas regiões:
R1 =

{
x ∈ Rp | d2

Σ1
(X,µ1) < d2

Σ2
(X, µ2)

}
R2 = Rp − R1 = pontos que serão alocados à pop2.
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x1

µ1

µ2

Quais são essas duas regiões?
A seguir uma visão intuitiva.
Resultado mais rigoroso vem a
seguir.

x1

µ1

µ2

1/2(µ1 + µ2)

Obtenha o perfil médio das duas
populações.
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x1

µ1

µ2

1/2(µ1 + µ2)

Considere a estrutura de correlação
entre as variáveis de cada grupo
(mais a frente, veremos os detalhes
disso)

x1

µ1

µ2

1/2(µ1 + µ2)

R1

R2

⇐ as duas regiões.
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Outra maneira de ver a regra de classificação:{
π1 = pop1
π2 = pop2

f1(x) = densidade do vetor X se ∈ π1

f2(x) = densidade do vetor X se ∈ π2

Vamos supor que, dentro de cada classe, os dados X sigam uma
distribuição gaussiana:

X ∼
{
N(µ1,Σ1), se ∈ π1
N(µ2,Σ2), se ∈ π2
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No caso gaussiano, temos

f1(x) =

[
1

(2π)p/2|Σ1|1/2

]
︸ ︷︷ ︸
c1= constante em x

exp

−1
2

(x− µ1)tΣ−1
1 (x− µ1)︸ ︷︷ ︸

distância de Mahalanobis



f2(x) =

[
1

(2π)p/2|Σ2|1/2

]
︸ ︷︷ ︸
c2= constante em x

exp

−1
2

(x− µ2)tΣ−1
2 (x− µ2)︸ ︷︷ ︸

distância de Mahalanobis


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Tomando a razão das densidades no mesmo ponto x:

f1(x)

f2(x)
=

c1 exp
(
−1

2(x− µ1)tΣ−1
1 (x− µ1)

)
c2 exp

(
−1

2(x− µ2)tΣ−1
2 (x− µ2)

)
= exp

(
−1
2

(d2
Σ1

(x,µ1)− d2
Σ2

(x,µ2)

)
Vamos escolher um threshold M ≥ 1. Veja que:

f1(x)

f2(x)
> M ⇐⇒ d2

Σ1
(x,µ1) < d2

Σ2
(x,µ2) + K︸ ︷︷ ︸

condição para alocar a π1

onde K = log(c1/(Mc2)).

Renato Assunção (DCC-UFMG) Bayes Optimal Classifier 2020 27 / 76



Caso Σ1 = Σ2

Se Σ1 = Σ2, temos c1 = c2. Além disso, tomando M = 1, a regra
fica simplemente

f1(x)

f2(x)
> 1 ⇐⇒ d2

Σ1
(x,µ1) < d2

Σ2
(x,µ2)︸ ︷︷ ︸

condição para alocar a π1

Isto é, no caso gaussiano com covariâncias iguais, o conjunto R1 dos
pontos x ∈ Rp tais que f1(x) > f2(x) é o mesmo conjunto de pontos
em que d2

Σ1
(x,µ1) < d2

Σ2
(x,µ2)

No caso geral, com M = 1, o conjunto R1 dos pontos e que
f1(x) > f2(x) é o mesmo que pedir a distância de Mahalanobis
d2
Σ1

(x,µ1) menor que a distância d2
Σ2

(x,µ2) acrescida da constante
log(c1/c2).
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Saindo do caso gaussiano

Assim, no caso gaussiano, definir a região de classificação à π1 usando
a razão de densidades é matematicamente equivalente a definir usando
as distâncias de Mahalanobis.

f1(x)

f2(x)
> 1 ⇐⇒ d2

Σ1
(x,µ1) < d2

Σ2
(x,µ2) + K︸ ︷︷ ︸

condição para alocar a π1

E quando X não seguir uma gaussiana?
O que devemos usar para definir R1?
Faz diferença?
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Caso não-gaussiano

Conhecemos a densidade de X em cada classe: f1(x) e f2(x).
Método 1: Imitando o que descobrimos no caso gaussiano, podemos
escolher R1 como sendo o seguinte conjunto de pontos do Rp:

R1 = {x ∈ Rp tais que f1(x) > f2(x)}

Método 2: Outra opção, quando as amostras forem grandes:
com as amostras rotuladas, obtemos boas aproximições para os vetores
de valores esperados µ1 e µ2.
Obtemos boas estimativas das matrizes p × p de covariância Σ1 e Σ2.
Para cada pontos x ∈ Rp podemos calcular as duas distâncias de
Mahalanobis: d2

Σ1
(x,µ1) e d2

Σ2
(x,µ2).

Calcule a constante K = log(c1/c2) que envolve os determinantes de
Σ1 e de Σ2.
Escolhemos R1 como sendo o seguinte conjunto de pontos:

R1 = {x ∈ Rp tais que d2
Σ1

(x,µ1) < d2
Σ2

(x,µ2) + K}
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Caso não-gaussiano

Os dois métodos coincidem no caso gaussiano, gerando a mesma
região R1, mas não no caso não-gaussiano.
Qual dos dois métodos é o melhor no caso não-gaussiano?
É melhor usar a razão de densidades ou a distância de Mahalanobis?
Existiria um terceiro método (árvore de classificação, por exemplo)
melhor que estes dois métodos?
Talvez este terceiro método possa ser usado até no caso gaussiano
também.
Existirá um método imbatível, insuperável, o melhor de todos os
possíveis e imagináveis, por mais criativos que sejamos?
De forma surpreendente, podemos responder SIM a esta questão. E
ainda saberemos que método ótimo é este.
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O caso geral para classificação

Na verdade, o problema que vamos resolver é mais geral do que o que
consideramos até agora.
Uma situação mais geral:

Custo de classificação errada pode variar de acordo com a classe.
Uma das populações pode ser muito mais frequente do que a outra
A distribuição pode não ser gaussiana

Exemplo de risco de crédito:
Cliente solicita empréstimo no banco
Queremos saber, no momento do empréstimo, se ele é um bom risco
(pagará no prazo) ou um mau risco.
Nos baseamos em várias características (features) medidas no
momento do empréstimo:

idade, sexo, tempo como cliente, saldo médio,
% do empréstimo em relação ao saldo,
já pegou empréstimo antes?
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Custo de classificação em uma matriz:

classificado em π1 classificado em π2

População
Verdadeira

π1
Bom crédito

custo = 0 c(2| ∈ π1)

π2
Mau crédito

c(1| ∈ π2) custo = 0

c(2| ∈ π1) = custo de classificar como mau crédito um bom pagador;
= custo de perder um bom cliente;
= perder o pequeno ganho a ser obtido por juros do empréstimo.
c(1| ∈ π2) = custo de classificar como bom crédito um mau pagador;
= custo de perder todo $$ emprestado;
= perder todo o valor emprestado
Em geral, nesse problema c(1| ∈ π2) >> c(2| ∈ π1)
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Um outro exemplo típico: um paciente entra no pronto-socorro com
um traumatismo craniano causado por uma queda (comum entre
idosos e crianças), um acidente com moto ou esportes ou uma
agressão física.
Não é uma situação rara: ocorrem 50 casos por 10 mil habitantes nos
EUA por ano, com 2,5 milhões atendimentos em pronto-socorros, 282
mil internações hospitalares e 56 mil mortes.
A decisão mais importante é se devemos levar o paciente
imediatamente para a UTI ou se ele deve ficar sob observação.
As primeiras horas após a lesão ocorrer são decisivas.
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Os custos de uma decisão errada são bem diferentes:
Levar para a UTI imediatamente mas sem necessidade gasta recursos
do hospital que poderiam ser usados de outra forma.
Deixar sob observação um paciente que necessitava de tratamento
intensivo pode significar sua morte.

Os custos muito diferentes têm impacto numa regra de classificação:
se quisermos minimizar o custo esperado de uma decisão ruim,
devemos levar em conta esses custos muito diferentes.
Como fazer isso?
O segundo ponto que queremos considerar é o tamanho
desbalanceado das duas populações

Renato Assunção (DCC-UFMG) Bayes Optimal Classifier 2020 35 / 76



No mercado de risco de crédito, maus pagadores são muito mais raros
do que bons pagadores.

% emprestimo

µruim

µbom

Saldo

em relacao
ao saldo

medio

novo tomador de emprestimo

creditos bons ⇐ 99%
dos casos vem daqui

creditos ruins ⇐ 1%
dos casos vem daqui

E daí?
Aonde você classificaria um novo item se d2

Σ1
(x,µ1) = d2

Σ2
(x,µ2)???
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Suponha que os custos de classificação incorreta sejam iguais:
c(1| ∈ π2) = c(2| ∈ π1)

Se d2
Σ1

(x,µ1) = d2
Σ2

(x,µ2), estamos dizendo que não existe evidência
nas variáveis em x para saber se ∈ π1 ou se ∈ π2

O ponto x está igualmente distante das duas populações.
Resta uma informação a priori, que não está no novo caso x: é que,
com alta probabilidade (0.99), o novo caso x vem de π1.
A chance de um novo casos qualquer vir de π2 é muito pequena (1%
apenas). Então:

se os custos são os mesmos
se o novo caso está igualmente distante de π1 e π2
parece razoável usar a informação adicional de que existem muito mais
casos em π1 do que em π2 e alocar em π1.

Como misturar custos e probabilidades a priori no caso geral?
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Um terceiro ponto a ser considerado:
A distribuição dos dados pode não ser gaussiana.
No caso gaussiano, como

f (x) = cte · exp
(
−1
2

(x− µ1)tΣ−1(x− µ1)

)
,

comparar distâncias de Mahalanobis é equivalente a comparar duas
densidades de probabilidades. Os dois métodos são, na verdade, um
só. Mas não sabemos se existe outro melhor que este.
Vamos considerar o caso de distribuições f1(x) e f2(x) arbitrárias. Não
estaremos restritos a densidades gaussianas nem vamos nos limitar a
olhar apenas as distâncias de Mahalanobis.
E vamos descobrir a melhor regra de classificação: não existe nada
melhor que este novo classificador.
Ele é o classificador ótimo de Bayes (optimal Bayes classifier).
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Expected cost of misclassification (ECM)

Temos duas densidades, f1(x) e f2(x), e uma regra de classificação:
Rp = R1 ∪ R2.

x1

x2

f1(x) = densidade de π1

x1

x2

f2(x) = densidade de π2

x1

x2 Ω = Rp

R1

R2

x ∈ R1 ⇒ classificado em π1

x ∈ R2 ⇒ classificado em π2
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As duas densidades: f1(x) e f2(x).
R1 e R2 são definidas por alguma regra de classificação (regra que não
é necessariamente boa).

x1

x2

f1(x)

f2(x)

R1

R2
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Veja que:
(a) estabelecer uma partição de R1 ∪ R2 = Rp, com

R2 = Rp − R1, implica em criar uma regra de classificação:
Regra: Se x ∈ R1, aloque x a π1. Else, aloque x a π2.

(b) estabelecer uma regra de classificação qualquer implica em
criar uma partição de Rp:
R1 = {x ∈ Rp| a regra aloca x a π1}
R2 = Rp − R1

Assim, estabelecer uma regra de classificação baseada em x ∈ Rp é
equivalente a estabelecer uma partição R1 ∪ R2 = Rp.
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Veja que o classificador (ou regra de classificação é uma função
matemática, determinística.
Por exemplo, seja x = (x1, x2, x3) = (age, sex, income).
Suponha que xi = (37,FEM, 25) = xj , duas pessoas com os mesmos
três atributos.
O classificador não muda de valor (ou de classe) diante desses dois
exemplos, a classe atribuída será para os dois exemplos.
O classificador é uma função matemática

g(x) =

{
π1 if x ∈ R1

π2 if x ∈ R2 = Rp − R1

Dado um certo exemplo x, a regra vai alocá-lo a uma das duas classes.
Se tivermos outro exemplo x∗ cujas variáveis tenham os mesmos
valores, a classe atribuída a x∗ será a mesma da classe atribuída a x.
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Probabilidade condicional de classificar um objeto em π2 quando,
de fato, ele é de π1 é:
P (Class. em π2| ∈ π1) = P (X ∈ R2| ∈ π1) =

∫
R2

f1(x)dx

x1

x2

f1(x)

f2(x)

R1

R2
Volume de f1(x) em R2

Renato Assunção (DCC-UFMG) Bayes Optimal Classifier 2020 43 / 76



Similarmente,
probabilidade de classificar erradamente em π1 dado que ele é de π2:
P (Class. em π1| ∈ π2) = P (X ∈ R1| ∈ π2) =

∫
R1

f2(x)dx
A probabilidade desse segundo erro de classificação é o volume
(integral) sob f2(x) na região R1.
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Caso 1-dim

Vamos ver o caso em que p = 1 (uma única variável)
As densidades f1(x) e f2(x), e R1 e R2:

x

R1 R2

f2(x)

f1(x)
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As duas probabilidades de classificação incorreta:

x

R1 R2

f2(x)

f1(x)

area = P (Class. em π2| ∈ π1) =
∫
R2
f1(x)dx

area = P (Class. em π1| ∈ π2) =
∫
R1
f2(x)dx

Área em vermelho: probab de alocar a π1 um exemplo vindo de f2(x)
(e portanto, vindo de π2).
Área em verde: probab de alocar a π2 um exemplo vindo de f1(x) (e
portanto, vindo de π1).
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Trade-off

x

R1 R2

f2(x)

f1(x)

area = P (Class. em π2| ∈ π1) =
∫
R2
f1(x)dx

area = P (Class. em π1| ∈ π2) =
∫
R1
f2(x)dx

Veja que quando procuramos diminuir P (Class. em π1| ∈ π2) estamos
aumentando P (Class. em π2| ∈ π1).
Existe um trade-off entre essas probabilidades de classificação
incorreta.
Como escolher uma boa partição R1 e R2 do espaco Rp?
Como os dois erros possuem custos diferentes, nós vamos minimizar o
custo esperado de má classificação.
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Temos também as probabilidades a priori de que os objetos venham de
π1 ou π2:

p1 = P(∈ π1)

p2 = P(∈ π2) = 1− P(∈ π1) = 1− p1

Quadro geral:

pop1 pop2

class. em 2 class. em 2class. em 1 class. em 1

custo = 0 ok! custo = 0 ok!
custo =
c(2| ∈ π1)

custo =
c(1| ∈ π2)

Renato Assunção (DCC-UFMG) Bayes Optimal Classifier 2020 48 / 76



prob p1 prob p2

class. em 2 class. em 2class. em 1 class. em 1

custo = 0 custo = 0
custo =
c(2| ∈ π1)

custo =
c(1| ∈ π2)

pop π1 pop π2

prob. P = (class. em 1| ∈ π2)prob. P = (class. em 2| ∈ π1)

Incorre nesse custo com prob.

P (π1)P (X ∈ R1|π2)

TEXTO VERMELHO ERRADO: Deveria ser P(π1)P(X ∈ R2| ∈ π1).
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Casos novos chegam: alguns nós clasificamos corretamente (com
custo zero); outros, classificamos incorretamente (com custo > 0).
Podemos ter c(2| ∈ π1) 6= c(1| ∈ π2)

Nos casos em que erramos, às vezes caímos no custo mais elevado; às
vezes, no custo menor.
É impossível (nos casos realistas) ter uma regra baseada num vetor x
que nunca erre.
Queremos uma regra de classificação que, em geral (ou, em média)
leve a um custo pequeno
⇒ queremos um custo médio (ou esperado) pequeno.
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EMC: Expected misclassification cost

Custo esperado (ou custo médio) de má-classificação:
Custo é variável aleatória e possui três valores possíveis: 0, c(2| ∈ π1)
e c(1| ∈ π2)

Estes custos aleatórios acontecem com certas probabilidades.
Qual seu valor esperado?

EMC = E(cost)
= 0× P(acertar) + cost1 × P(erro 1) + cost2 × P(erro 2)

= c(2| ∈ π1)P(vir de π1 e errar) + c(1| ∈ π2)P(vir de π2 e errar)

= c(2| ∈ π1)P(X ∈ R2| ∈ π1)P(π1) + c(1| ∈ π2)P(X ∈ R1| ∈ π2)P(π2)

EMC → é custo esperado de má classificação. (expected
misclassification cost).
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Queremos achar as regiões R1 e R2 que minimizam o EMC.
Isto é equivalente a encontrar o classificador que torna o EMC o
menor possível.
Solução:

R1 =

x ∈ Rp tais que
f1(x)

f2(x)︸ ︷︷ ︸
(1)

≥ c(1| ∈ π2)

c(2| ∈ π1)︸ ︷︷ ︸
(2)

· p2

p1︸︷︷︸
(3)


(1): razão das densidades das duas classes
(2): razão de custos
(3): razão de probabilidades a priori
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Prova: Queremos R1 e R2 que minimizem EMC:

EMC = c(2| ∈ π1)P(X ∈ R2| ∈ π1)

−−
−−
−→

∫
R2

f1(x) dx

P(π1) + c(1| ∈ π2)P(X ∈ R1| ∈ π2)

−−
−−
−→

∫
R1

f2(x) dx

P(π2)

Como R1 ∪ R2 = Rp então

1 =

∫
Rp

f1(x) dx =

∫
R1

f1(x) dx +

∫
R2

f1(x) dx .

e podemos escrever a primeira integral em EMC (em azul) da seguinte
forma: ∫

R2

f1(x) dx = 1−
∫
R1

f1(x) dx

Vamos agora substituir a integral azul em EMC pela expressão em
vermelho.
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Trabalhando EMC...

Temos

EMC = c(2| ∈ π1)

(
1−

∫
R1

f1(x) dx)

)
P(π1) + c(1| ∈ π2)

∫
R1

f2(x) dx) P(π2)

Agora, as duas integrais possuem a mesma região R1 de integração e
portanto os dois integrandos podem ser colocados sob o mesmo sinal
de integral. Isto implica que

EMC = c(2| ∈ π1)P(π1) +
∫

R1
(c(1| ∈ π2) P(π2) f2(x)− c(2| ∈ π1) P(π1) f1(x)) dx)
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Queremos escolher R1 de forma que EMC seja mínimo.
EMC = c(2| ∈ π1)P(π1) +

∫
R1

(c(1| ∈ π2) P(π2) f2(x)− c(2| ∈ π1) P(π1) f1(x))︸ ︷︷ ︸
h(x)

dx

O 1o termo não envolve R1.
Vamos olhar o 2o termo
Escolher R1 é escolher a região em que vamos integrar (“somar’) h(x).
A expressão h(x) não envolve R1.
Para alguns x, teremos h(x) > 0; para outros pontos x, teremos
h(x) < 0
Para minimizar EMC, devemos tornar a integral o mais negativa
possível.
Conseguimos isto escolhendo R1 = {x ∈ Rp tais que h(x) ≤ 0}.
Isso minimiza EMC!!
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ECM é minimizado se escolhermos

R1 = {x ∈ Rp tais que h(x) ≤ 0}

EMC = c(2| ∈ π1)P(π1) +
∫

R1
(c(1| ∈ π2) P(π2) f2(x)− c(2| ∈ π1) P(π1) f1(x))︸ ︷︷ ︸

h(x)

dx

= c(2| ∈ π1)P(π1) + I onde I =

∫
R1

h(x) dx

onde I =
∫
R1
h(x) dx.

Veja que h(x) ≤ 0 é o mesmo que

c(1| ∈ π2) P(π2) f2(x)− c(2| ∈ π1) P(π1) f1(x) ≤ 0

Passando o segundo termo para o outro lado da desigualdade e as
posições, temos

c(2| ∈ π1) P(π1) f1(x) ≥ c(1| ∈ π2) P(π2) f2(x)

ou ainda, após rearranjar os termos,

f1(x)

f2(x)
≥ c(1| ∈ π2)

c(2| ∈ π1)

P(π2)

P(π1)
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Para ficar em paz com esta afirmação, defina
R1 = {x ∈ Rp tais que h(x) ≤ 0} e seja E1 o valor do ECM com esta
regra de classificação .
Se x 6∈ R1 então h(x) > 0.
Seja R∗1 = A ∪ R1 uma nova regra de classificação (com A ∩ R1 = ∅)
com ECM dado por E ∗1
Veremos que E1 ≤ E ∗1 .
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Temos

E ∗1 = c(2| ∈ π1)P(π1) +

∫
R∗1

h(x) dx

= c(2| ∈ π1)P(π1) +

∫
R1∪A

h(x) dx

= c(2| ∈ π1)P(π1) +

∫
R1

h(x) dx +

∫
A
h(x)︸︷︷︸
>0

dx

≥ c(2| ∈ π1)P(π1) +

∫
R1

h(x) dx = E1

Assim, aumentar a região R1 com qualquer outra região A lnunca será
capaz de fazer o ECM ser menor que aquele de R1.
Um argumento análogo, mostra que definir uma nova região para a
classe 1 subtraindo uma área qualquer de R1 também nunca leva a um
ECM menor (exercício).

Renato Assunção (DCC-UFMG) Bayes Optimal Classifier 2020 58 / 76



Resumo: Optimal Bayes Classifier

Em cada caso, observamos o vetor aleatório X.
Existem duas populações: π1 e π2.
Um novo caso vem da pop π1 com probabilidade p1 e da pop π2 com
probabilidade p2 = 1− p1.
As densidades de x: f1(x) e f2(x).
Existem dois custos de classificação errada: c(2| ∈ π1) e c(1| ∈ π2)

Baseado em x, queremos predizer a sua classe: 1 ou 2.
Cada regra de classificação tem seu ECM = custo esperado de
má-classificação (custo médio se classificarmos vários itens).
Dentre todas as regras possíveis, aquela que torna mínimo o ECM é:
aloque o caso a π1 caso

f1(x)

f2(x)
≥ c(1| ∈ π2)

c(2| ∈ π1)

P(π2)

P(π1)
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Resumo: Optimal Bayes Classifier

Regra ótima de Bayes:

f1(x)

f2(x)
≥ c(1| ∈ π2)

c(2| ∈ π1)

P(π2)

P(π1)︸ ︷︷ ︸
cte. em x

A regra é bem intuitiva, gera um algoritmo muito simples.
Recebemos um novo caso com atributos no vetor x.
Qual sua classe? 1 ou 2?
Calcule f1(x)/f2(x), a razão de densidades no ponto x (aprox, é a
razão das “probabilidades” de observar x em 1 ou 2).
Se esta razão for “grande”, aloque a 1. Razoável, não?
De fato, se f1(x)/f2(x) ≈ 7, então a chance de observar x em 1 é
aprox 7 vezes maior que a mesma chance em 2.
Parece razoável alocar a 1. Mas...
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Resumo: Optimal Bayes Classifier

Por quê não alocar a 1 simplesmente se tivermos f1(x)/f2(x) > 1? Isto
é, se f1(x) > f2(x), devemos alocar a 1?
Nem sempre.
Queremos levar em conta os custos e diferentes frequências das classes
na população total.
Como fazer isto?
Basta calcular: (a) a razão de custos, (b) a razão de probabilidades a
priori, e multiplicá-las.
Este valor não depende de x, é uma constante.
A beleza não é porque a regra é muito simples. Qualquer um pode
bolar uma regra simples.
A beleza é que a regra é muito simples e é a melhor possível e
imaginável. Nada pode ser melhor que ela (para reduzir o ECM).
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Exemplo uni-dimensional

Imagine que π1 é uma classe rara: p1 = 0.02
É muito pior errar quando o item é de π1: c(2| ∈ π1) = 40c(1| ∈ π2).
A regra é então alocar a 1 toda vez que
f1(x)/f2(x) ≥ (1/40)× (0.98/0.02) = 1.22.
Ou seja, se f1(x) ≥ 1.22 f2(x), aloque a 1.
Suponha que as duas densidades sejam como a seguir.
Como encontrar a região de alocação a π1?
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Exemplo uni-dimensional

Na esquerda, temos o plot de f1(x) (preto) e f2(x) (azul).
Na direita, temos f1(x) e 1.22× f2(x).
Aloque a 1 toda vez que a curva preta for maior que a curva azul
neste plot da direita.
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Classificação ótima com duas gaussianas

Densidade de uma Np(µ,Σ) no ponto x ∈ Rp:

f (x) =
[
(2π)−p/2|Σ|−1/2

]
︸ ︷︷ ︸

constante em x

exp

−1
2

(x− µ)t Σ−1 (x− µ)︸ ︷︷ ︸
Mahalanobis


= k exp

(
−1
2
d2
Σ(x,µ)

)
Queremos a razão de duas densidades gaussianas, f1(x) ∼ Np(µ1,Σ1)
e f2(x) ∼ Np(µ2,Σ2), no mesmo ponto x:

f1(x)

f2(x)
=

k1 exp
(
−1

2d
2
Σ1

(x,µ1)
)

k2 exp
(
−1

2d
2
Σ2

(x,µ2)
)

=
k1

k2
exp
(
−1
2

(d2
Σ1

(x,µ1)− d2
Σ2

(x,µ2))

)
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Classificação ótima com duas gaussianas

A regra ótima é: aloque a π1 se

f1(x)

f2(x)
≥ c(1| ∈ π2)

c(2| ∈ π1)

P(π2)

P(π1)

Portanto, aloque a π1 se

k1

k2
exp
(
−1
2

(d2
Σ1

(x,µ1)− d2
Σ2

(x,µ2))

)
≥ c(1| ∈ π2)

c(2| ∈ π1)

P(π2)

P(π1)

Tomando logs dos dois lados e mudando de lado alguns termos, temos
que alocar a π1 se:

d2
Σ1

(x,µ1) ≤ d2
Σ2

(x,µ2) + 2

[
log

(
c(2| ∈ π1)

c(1| ∈ π2)

)
+ log

(
P(π1)

P(π2)

)
+ log

(
k2

k1

)]

Vamos entender um pouco melhor esta fórmula.
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Classificação ótima com duas gaussianas

Repetindo, alocar a π1 se:

d2
Σ1

(x,µ1)

−−
−−
−→

Mahalanobis

≤ d2
Σ2

(x,µ2)

−−
−−
−→

Mahalanobis

+ 2log
(

c(2|∈π1)
c(1|∈π2)

)

−−
−−
−→

custos

+ 2log
( P(π1)

P(π2)

)

−−
−−
−→

prioris

+ 2log
(

k2
k1

)

−−
−−
−→

covariancias

Ideia: aloque a π1 se a distância de Mahalanobis de x a µ1 for menor
que a distância de Mahalanobis a µ2 mais ou menos “alguma coisa”.
O “alguma coisa” leva em conta os custos, prioris e estruturas de
covariância de cada população.
Esta fórmula mostra a melhor maneira de levar estes aspectos em
conta.
Por exemplo, os custos devem ser analisados em função de sua
diferença relativa e numa escala log.
Por exemplo, não é a diferença c(2| ∈ π1)− c(1| ∈ π2) que nos
interessa, mas sim c(2| ∈ π1)/c(1| ∈ π2).
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Classificação ótima com duas gaussianas

Repetindo, alocar a π1 se:

d2
Σ1

(x,µ1)

−−
−−
−→

Mahalanobis

≤ d2
Σ2

(x,µ2)

−−
−−
−→

Mahalanobis

+ 2log
(

c(2|∈π1)
c(1|∈π2)

)

−−
−−
−→

custos

+ 2log
( P(π1)

P(π2)

)

−−
−−
−→

prioris

+ 2log
(

k2
k1

)

−−
−−
−→

covariancias

O termo envolvendo os custos dos dois erros desaparece se eles forem
iguais.
Aquele envolvendo as probabilidades a priori também desaparece se
P(π1) = P(π2).
Do mesmo modo, se Σ1 = Σ2, o último termo desaparece.
Neste caso em que todos estes termos desaparecem, a regra ótima
simplesmente compara as distâncias de Mahalanobis": alocar a π1 se

d2
Σ(x,µ1) ≤ d2

Σ(x,µ2)
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Classificação ótima com duas gaussianas

Vamos começar a introduzir os termos adicionais, um de cada vez,
para entender seu efeito.
Suponha que os custos sejam diferentes e que um deles é 100 vezes
maior que o outro: c(2| ∈ π1) = 100c(1| ∈ π2).
Isto é, é 100 mais pior alocar um caso de π1 erradamente que alocar
errado um caso de π2.
Deveríamos ser menos propensos então a alocar um caso a π2.
De fato, neste caso, a regra ótima é alocar x a π1 se

d2
Σ(x,µ1) ≤ d2

Σ(x,µ2) + 2 log(100)

Agora ficou mais fácil alocar um caso a π1. A distância de
Mahalanobis a π1 nem precisa ser a menor delas agora.
Lembre-se: esta é a regra ótima, a melhor possível.
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Classificação ótima com duas gaussianas

Do mesmo modo, suponha que a classe 1 seja 100 vezes mais
frequente que a classe 2: P(π1) = 100P(π2).
Isto é, quando um caso qualquer aparece, sem considerar o valor de x,
sabemos que é 100 mais provável que ele seja de π1 do que de π2.
Novamente, deveríamos ser menos propensos então a alocar um caso
a π2.
Como antes, a regra ótima é alocar x a π1 se

d2
Σ(x,µ1) ≤ d2

Σ(x,µ2) + 2 log(100)
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Classificação ótima com duas gaussianas

Por último, para ver o efeito do terceiro termo, vamos imaginar que a
variável x é uni-dimensional.
Assim, Σ1 = σ2

1 e Σ2 = σ2
2, as variâncias de X em cada população.

Além disso, a distância de Mahalanobis reduz-se a
d2
Σ(x,µ) = ((x − µ)/σ)2, o desvio padronizado.

Suponha que uma das populações tenha variância muito maior que a
outra: σ2

2 = (10)2σ2
1.

Isto é, pontos de π2 espalham-se em torno de sua média µ2 muito
mais que pontos de π1 em torno de µ1.
A regra ótima é alocar x a π1 se(

x − µ1

σ1

)2

≤
(
x − µ2

σ2

)2

+ log(100)

Assim, penalizamos a população com maior dispersão. Pense assim, se
as duas distâncias padronizadas forem iguais, o melhor é alocar à π1, a
menos dispersa.
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Caso gaussiano com Σ1 = Σ2

Alocar a π1 se:

d2
Σ1

(x,µ1)− d2
Σ2

(x,µ2) ≤ 2 log

(
c(2| ∈ π1)P(π1)

c(1| ∈ π2)P(π2)

)
+ 2 log

(
k2

k1

)

Se Σ1 = Σ2, os seus determinantes também são iguais e k2 = k1.
Vamos denotar a constante (em x) do lado esquerdo, envolvendo as
probabilidades a priori e os custos de K :

K = log
(
c(2| ∈ π1)P(π1)

c(1| ∈ π2)P(π2)

)
A regra ótima no caso gaussiano com covariâncias iguais é alocar a π1
se

d2
Σ1

(x,µ1)− d2
Σ2

(x,µ2) ≤ 2K
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Caso gaussiano com Σ1 = Σ2

Alocar a π1 se d2
Σ1

(x,µ1)− d2
Σ2

(x,µ2) ≤ 2K
Expandimos a expressão da distância:

d2
Σ1

(x,µ1) = (x− µ1)t Σ−1
1 (x− µ1)

= xtΣ−1
1 x + µt

1Σ
−1
1 µ1 − 2xtΣ−1

1 µ1

Do mesmo modo, expandimos a outra distância. Cancelamos o termo
xtΣ−1

1 x encontrando: aloque x a π1 se

0 ≤ xt Σ−1
1 (µ1 − µ2)︸ ︷︷ ︸
p×1, β

+ (µt
2Σ
−1
2 µ2 − µt

1Σ
−1
1 µ1 − K )︸ ︷︷ ︸

1×1, α

= α + βtx

usando que βtx = xtβ.
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Caso gaussiano com Σ1 = Σ2

Vamos escrever λ(x) = α + βtx.
O conjunto de pontos x ∈ Rp tais que λ(x) = 0 constitui a fronteira
de decisão (decision boundary).
No caso em que x ∈ R2, esta fronteira é uma linha reta.
Se x ∈ R3, a fronteira é um plano.
Passar para o notebook python para ilustrar.
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Caso gaussiano com Σ1 6= Σ2

E o caso gaussiano com Σ1 6= Σ2?
Manipulação matricial da regra ótima leva à conclusão de que a
fronteira de decisão é uma parábola, e não mais uma reta.
A fórmula geral do caso gaussiano, como já sabemos, alocar a π1 se:

d2
Σ1

(x,µ1)− d2
Σ2

(x,µ2) ≤ 2 log

(
c(2| ∈ π1)P(π1)

c(1| ∈ π2)P(π2)

)
+ 2 log

(
k2

k1

)

Expandindo as fórmulas quadráticas das distâncias, exatamente como
fizemos antes, leva a uma expressão simples.
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Caso gaussiano com Σ1 6= Σ2

Alocar x a π1 se:
xtAx− 2βtx + α ≤ 0

com A sendo uma matriz p × p, β sendo um vetor coluna p × 1 e α
sendo um escalar (um número real). Mais especificamente,

A = Σ−1
1 −Σ−1

2

β = Σ−1
1 µ1 −Σ−1

2 µ2

A constante α é uma expressão um pouco mais longa:

α =
(
µt

1Σ
−1
1 µ1 − µt

2Σ
−1
2 µ2

)
−2 log

(
c(2| ∈ π1)P(π1)

c(1| ∈ π2)P(π2)

)
−2 log

(
|Σ2|
|Σ1|

)
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Caso gaussiano bi-dimensional, com Σ1 6= Σ2

No caso em que x ∈ R2, a fronteira ótima de Bayes é uma forma
quadrática em x1 e x2.
Isto é, a fronteira de decisão λ(x) = 0 (o conjunto de pontos que
separa as duas classes) será uma expressão do seguinte tipo:

c1x
2
1 + c2x

2
2 + c3x1x2 + c4x1 + c5x2 + c6 = 0

onde as constantes cj são determinadas pelos parâmetros das duas
distribuições, pelos custos e pelas probabilidades a priori.
A fronteira λ(x) = 0 costuma ser uma curva que lembra o formato de
uma parábola (mas não é exatamente uma parábola).
Ver notebook python para exemplos.
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Pros e Cons of Optimal Bayes Classifier

Precisa conhecer a densidades.
Se não conhecer, precisa estimá-las e então terá erro de estimacao
Em principio: estimar via kde (kernel). Entao, a dificuldade será
encontrar a regiao em espacos multi-dimensionais.
Eh otima apenas para ECM. Não otimiza para outras funções objetivo.
Vantagens: otima; simples; intuitiva;
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