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Esperança e Variância

Suponha que você VAI SIMULAR uma distribuição F (y).

Isto é, vamos gerar números pseudo-aleatórios com distribuição F (y).

Como RESUMIR grosseiramente esta longa lista de números ANTES
MESMO DE GERÁ-LOS?

O valor TEÓRICO em torno do qual eles vão variar: a esperança
E(Y ).

As vezes, Y > E(Y ); as vezes, Y < E(Y ). Podemos esperar os
valores gerados de oscilando Y em torno de E(Y ).

Em torno, quanto?? DP = desvio-padrão.

DP é o valor TEÓRICO que mede o quanto os valores oscilam em
torno de E(Y ): σ =

√
Var(Y ).
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E(Y ) no caso discreto

Caso discreto com valores posśıveis {x1, x2, . . .}: Então
E(Y ) =

∑
xi
xiP(Y = xi )

É uma soma ponderada dos valores posśıveis da v.a. Y .

Os pesos são as probabilidades de cada valor.

Os pesos são ≥ 0 e somam 1.

E(Y ) geralmente NÃO É um dos valores posśıveis {x1, x2, . . .}.
É um valor TEÓRICO, não precisa de dados esat́ısticos para ser
calculado.

Renato Martins Assunção (DCC - UFMG) Variância, DP e Desigualdades 2016 3 / 76



Identifique E(Y ) em cada caso

Figura: Sem fazer nenhuma conta, identifique as distribuições com as seguintes
esperanças: 5, 6.67, 0.53, 3.33
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E(Y ): resposta

Figura: p1 = 6.67, p2 = 3.33, p3 = 5, p4 = 0.53.
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E(Y ) no caso cont́ınuo

Caso cont́ınuo: E(Y ) =
∫∞
−∞ yf (y)dy

Podemos raciocionar intuitivamente EXATAMENTE como no caso
discreto.

Quebrar todo eixo real em pequenos bins de comprimento ∆ e
centrados em . . . , y−2, y−1, y0, y1, y2, . . ..

Então, em cada pequeno bin, aproxime a integral:∫
bini

yf (y)dy ≈ yi f (yi )∆

Portanto, E(Y ) =
∫∞
−∞ yf (y)dy é igual a∫ ∞

−∞
yf (y)dy =

∞∑
i=−∞

∫
bini

yf (y)dy ≈
∞∑

i=−∞

yi f (yi )∆ ≈
∞∑

i=−∞

yiP(Y ∈ bini )
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Desenhar

Assim, caso cont́ınuo (esperança como integral) é a versão cont́ınua do caso
discreto.
Desenhar no quadro.

Renato Martins Assunção (DCC - UFMG) Variância, DP e Desigualdades 2016 7 / 76



Identifique E(Y ) em cada caso

Figura: Sem fazer nenhuma conta, identifique as distribuições com as seguintes
esperanças: 1.8, 8, 5, 4
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Propriedades da esperança: linearidade

Seja Y uma v.a. e crie uma nova v.a. Y = a + bX onde a e b são
constantes.

Por exemplo, suponha que medidmos a temperatura aleatória C de
certo ambiente em graus Celsius.

Suponha que o valor esperado de C seja E(C ) = 28 graus.

Seja F a variável aleatória que mede a mesma temperatura em graus
Fahrenheit.

É claro que C e F estão relacionadas. Temos F = 32 + (9/5)C .

Isto é, temos a = 32 e b = 9/5.

E(F ) = E(a + bC ) e E(C ) estão relacionadas:

A esperança da v.a. F pode ser obtida diretamente a partir daquela
de C :

E(F ) = E(32 + (9/5)C ) = 32 + (9/5)E(C ) = 32 + (9/5)× 28
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Propriedades da esperança: linearidade

Caso geral, Y = a + bX onde a e b são constantes.

Então E(X ) e E(Y ) estão relacionadas;

E(X ) = E(a + bY ) = a + bE(Y )
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E(a + bY ) = a + bE(Y )

Prova apenas num caso espećıfico com v.a.’s discretas:

Considere a v.a. X com os valores posśıveis x1, x2, x3, . . . onde

Consider a NOVA v.a. Y = 2 + 3X que tem os valores posśıveis
y1, y2, y3, . . . onde yi = 2 + 3xi .
Além disso, temos

P(Y = yi ) = P(Y = 2 + 3xi ) = P(X = xi )

pois [Y = yi ] se, e somente se, [X = xi ] onde xi = (yi − 2)/3 ou
yi = 2 + 3xi .

Por exemplo, P(Y = 8) = P(Y = 2 + 3× 2) = P(X = 2)

Assim, podemos calcular a esperança de Y = 2 + 3X :

E(Y ) =
∑
i

yiP(Y = yi ) =
∑
i

(2+3xi )P(X = xi ) = 2
∑
i

P(X = xi )+3
∑
i

xiP(X = xi ) = 2×1+3E(X )
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Propriedades da esperança

Uma escolha muito especial para estas constantes é a seguinte:

a = −E(X ) = −µ e b = 1

Neste caso, temos Y = a + bX = X − µ onde E(X ) = µ.

Isto é, estamos olhando para a v.a. Y = X − E(X ), a v.a. X menos
seu próprio valor esperado.

Pela propriedade, temos

E(Y ) = E(X − µ) = E(X )− µ = µ− µ = 0

Dizemos que a v.a. Y é a v.a. centrada (em sua esperança).
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Propriedades da esperança: linearidade

Se X1,X2, . . . ,Xn são v.a.’s e a0, a1, a2, . . . , an são constantes então

E(a0 + a1X1 + a2X2 + . . .+ anXn) = a0 + a1E(X1) + a2E(X2) + . . .+ anE(Xn)

Em particular:
E(X + Y ) = E(X ) + E(Y )
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E(X + Y ) = E(X ) + E(Y )

Prova do caso particular de duas v.a.’s discretas.

A v.a. X possui os valores posśıveis x1, x2, . . .

A v.a. Y possui os valores posśıveis y1, y2, . . .

A v.a. X + Y possui os valores posśıveis xi + yj onde xi e yj varrem
todas as possibilidades para X e Y .
Assim, temos

E(X + Y ) =
∑
i

∑
j

(xi + yj )P(X = xi ,Y = yj )

=
∑
i

∑
j

xiP(X = xi ,Y = yj ) +
∑
j

∑
i

yjP(X = xi ,Y = yj )

=
∑
i

xi
∑
j

P(X = xi ,Y = yj ) +
∑
j

yj
∑
i

P(X = xi ,Y = yj )

Vamos obter as somas destas probabs.
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E(X + Y ) = E(X ) + E(Y )

O evento [X = xi ] é a união dos eventos disjuntos [X = xi ,Y = y1],
[X = xi ,Y = y2], . . . , [X = xi ,Y = ym]:

[X = xi ] = [X = xi ,Y = y1]
⋃

[X = xi ,Y = y2]
⋃
. . .
⋃

[X = xi ,Y = ym]

A probab da união de eventos DISJUNTOS é a soma das probabs:

P(X = xi ) = P(X = xi ,Y = y1) + P(X = xi ,Y = y2) + . . .+ P(X = xi ,Y = yn)

Renato Martins Assunção (DCC - UFMG) Variância, DP e Desigualdades 2016 15 / 76



Propriedades da esperança: linearidade

Assim, temos

E(X + Y ) = . . .

=
∑
i

xi
∑
j

P(X = xi ,Y = yj ) +
∑
j

yj
∑
i

P(X = xi ,Y = yj )

=
∑
i

xiP(X = xi ) +
∑
j

yjP(Y = yj )

= E(X ) + E(Y )
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Propriedades da esperança

Suponha que a v.a. X seja um valor constante.

Isto é, para todo resultado ω do experimento a v.a. assume o valor
X (ω) = c .

Um resultado particular óbvio mas muito útil é que, para esta variável
que é sempre igual a c , o valor que podemos esperar para ela é ... c .

A prova é simples: X é discreta com um único valor posśıvel, c .

Portanto, E(X ) = cP(X = c) = c × 1 = c
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Propriedades da esperança

Se X1,X2, . . . ,Xn são v.a.’s INDEPENDENTES então

E(X1X2 . . .Xn) = E(X1) E(X2) . . . E(Xn)

Em particular, se as duas v.a.’s X e Y são independentes:

E(XY ) = E(X ) E(Y )
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E(XY ) = E(X ) E(Y ), se independentes

Prova no caso particular de duas v.a.’s discretas:

A v.a. XY possui os valores posśıveis xiyj onde xi e yj varrem todas
as possibilidades para X e Y .

Independência implica que

P(X = xi ,Y = yj) = P(X = xi ) P(Y = yj)

pois os eventos [X = xi ] e [Y = yj ] são independentes.
Então

E(XY ) =
∑
i

∑
j

(xiyj )P(X = xi ,Y = yj )

=
∑
i

∑
j

(xiyj )P(X = xi )P(Y = yj )

=

(∑
i

xiP(X = xi )

) ∑
j

yjP(Y = yj )


= E(X ) E(Y )
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X e Y : Qual possui maior variância?

Figura: Densidades de X e Y com mesmo valor esperado: E(X ) = E(Y ) = 10.
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Gerando as amostras

Figura: Histogramas de amostras e densidades de X e Y com mesmo valor
esperado: E(X ) = E(Y ) = 10. Qual das amostras varia mais em torno do seu
valor médio?
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Não precisa ter E(X ) = E(Y )

Figura: Densidades de X e Y com diferentes valores esperados: E(X ) 6= E(Y ).
Qual das amostras varia mais em torno do seu valor médio?
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As densidades e as amostras

Figura: Histogramas de amostras e densidades de X e Y com diferentes valores
esperados: E(X ) 6= E(Y ). Qual das amostras varia mais em torno do seu valor
médio?
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Não precisa ter densidade simétrica

Figura: Densidades ASSIMÉTRICAS de X e Y mas mesmo valor esperado:
E(X ) = E(Y ) = 1.
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Com as amostras de cada distribuição

Figura: Histogramas de amostras e densidades ASSIMÉTRICAS de X e Y com
mesmo valor esperado: E(X ) = E(Y ) = 1. Qual das amostras varia mais em
torno do seu valor médio?
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Assimétricas e com E(X ) 6= E(Y ) = 1

Figura: Densidades de X e Y com 1 = E(X ) 6= E(Y ) = 3. Qual das amostras
varia mais em torno do seu valor médio?
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Assimétricas e com E(X ) 6= E(Y ) = 1

Figura: Histogramas e densidades de X e Y com 1 = E(X ) 6= E(Y ) = 3. Qual
das amostras varia mais em torno do seu valor médio?
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Pode ser discreta

Figura: Funções de probabilidade de duas Poisson com
1.2 = E(X ) 6= E(Y ) = 3.3. Qual das amostras varia mais em torno do seu valor
médio?Renato Martins Assunção (DCC - UFMG) Variância, DP e Desigualdades 2016 28 / 76



Com as amostras de X e Y

Figura: Histogramas e funções de probabilidade de duas Poisson com
1.2 = E(X ) 6= E(Y ) = 3.3. Qual das amostras varia mais em torno do seu valor
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OK, mas como definir Var(Y )?

Falta agora definir matematicamente esta noção intuitiva.

Queremos medir o grau de variação da v.a. X em torno de seu valor
esperado µ = E(Y ).

Podemos olhar para o DESVIO Y − µ
As vezes, Y − µ é positivo, as vezes é negativo.

Queremos ter uma idéia do TAMANHO do desvio e não de seu sinal.

Vamos olhar então para o desvio absoluto |Y − µ|
Mas |Y − µ| é uma variável aleatória!!!
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Visão emṕırica do desvio |Y − µ|

Suponha que Y seja uma v.a. qualquer (discreta ou continua) com
E(Y ) = µ

Simule Y várias vezes por Monte Carlo.

Os valores aleatórios gerados sucessivamente vão variar em torno de µ

As vezes, só um pouco maiores ou menores que µ.

As vezes, MUITO maiores ou MUITO menores que µ.

Queremos ter uma ideia do tamanho do desvio |Y − µ|.
Mas como fazer isto se |Y − µ| é aleatório?
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Variação em torno de E(Y ) = µ

Como caracterizar uma v.a.?

Pela sua densidade de probabilidade...

Mas isto é muita coisa (uma lista de números posśıveis e as
probabilidades associadas).

Não existe uma forma de ter apenas um único número resumindo
TODA a distribuição?

SIM: o valor esperado do desvio absoluto: E (|X − µ|)
E ( |X −µ| ) é o valor esperado do desvio ALEATÓRIO em torno de µ.
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Do desvio absoluto para o desvio quadrático: variância

Queremos E ( |X − µ| ) para representar a variabilidade da v.a. X em
torno de µ.

Mas cálculos com valor absoluto são MUITO dif́ıceis.

Em particular, a função f (x) = |x | tem seu ḿınimo num ponto sem
derivada.

Isto é, seu ḿınimo não pode ser obtido derivando-se f (x) e igualando
a zero

Isto tem consequências de longo alcance em otimização.

Sáıda: Calculamos a variância

σ2 = E ( |X − µ|2 )

que é mais fácil, e a seguir calculamos sua raiz quadrada para voltar à
escala original.
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Variância e DP

Este é o desvio-padrão:

DP = σ =
√
σ2 =

√
E ( |X − µ|2 )

.

σ =
√
E ( |X − µ|2 ) 6= E ( |X − µ| ) mas eles costumam não ser

muito diferentes.

Assim, a interpretação do DP σ como sendo o tamanho esperado do
desvio é aprox correto.

Razão do nome: DP é o padrão para medir desvios (em torno do
valor esperado).

DP: Calcule a variância σ2 = E
(

(Y − µ)2
)

e depois tire a sua raiz
quadrada (obtendo então o desvio-padrão DP σ).
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Identifique o DP em cada caso

Figura: Sem fazer nenhuma conta, identifique as distribuições com os seguintes
DPs: 5, 1/2, 2, 1
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Identifique o DP em cada caso

Figura: Sem fazer nenhuma conta, identifique as distribuições com os seguintes
DPs: 3, 0.70, 0.58, 1.9
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Identifique o DP em cada caso

Figura: Ordem correta: linha de cima: 0.70, 3; linha de baixo: 1.9, 0.58

Renato Martins Assunção (DCC - UFMG) Variância, DP e Desigualdades 2016 37 / 76



Calculando a variância e o DP

DP =
√
V(Y ) onde a variância é

V(X ) = E ( (X − µ)2 )

.

Caso Discreto: como calcular?

Lembre-se E(g(X )) =
∑

i g(xi )P(X = xi )

Tome g(X ) = (X − µ)2. Então

V(X ) = E ( (X − µ)2 ) =
∑
i

(xi − µ)2P(X = xi )

.
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Calculando a variância e o DP

Por exemplo:
xi P(X = xi )

0 0.1
1 0.7
2 0.2

Então µ = E(X ) = 0 ∗ 0.1 + 1 ∗ 0.7 + 2 ∗ 0.2 = 1.1

Variância:

V(X ) = E
(
(X − 1.1)2

)
= (0− 1.1)2 ∗ 0.1 + (1− 1.1)2 ∗ 0.7 + (2− 1.1)2 ∗ 0.2

= 0.29
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Calculando a variância e o DP: cont́ınuo

DP =
√
V(Y ) onde a variância é

V(X ) = E( (X − µ)2 )

.

Caso cont́ınuo:

V(X ) = E( (X − µ)2 ) =

∫
(x − µ)2f (x)dx

.
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Calculando a variância e o DP

Por exemplo, X ∼ exp(3) o que implica na densidade

f (x) =

{
0, se x < 0
3 exp(−3x), se x ≥ 0

Então

µ = E(X ) =

∫ ∞
−∞

xf (x)dx =

∫ ∞
0

x3 exp(−3x)dx =
1

3

e

V(X ) = E
(
(X − 1/3)2

)
=

∫ ∞
−∞

(x − 1/3)2f (x)dx

=

∫ ∞
−∞

(x − 1/3)23 exp(−3x)dx

= 1/32
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Outra fórmula

Pode-se mostrar que

V(X ) = E
(
(X − µ)2

)
= E

(
X 2
)
− (µ)2 = E

(
X 2
)
− (E(X ))2

A prova é muito simples:

V(X ) = E
(
(X − µ)2

)
= E

(
X 2 − 2Xµ+ µ2

)
= E

(
X 2
)
− E (2Xµ) + E

(
µ2
)

= E
(
X 2
)
− 2µE (X ) + µ2

= E
(
X 2
)
− 2µµ+ µ2

= E
(
X 2
)
− µ2
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V(Y ) de Bernoulli

Variância:
V(Y ) = E(Y − µ)2 = E(Y 2)− µ2

Bernoulli:

Y = 0 com probabilidade θ e Y = 1 com probabilidade 1− θ.
Então µ = E(Y ) = 1 ∗ θ + 0 ∗ (1− θ) = θ
E(Y 2) = 12 ∗ θ + 02 ∗ (1− θ) = θ
Assim, V(Y ) = E(Y 2)− µ2 = θ − θ2 = θ(1− θ)
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V(Y ) de Binomial

Binomial: requer alguma manipulação de fórmulas matemáticas

Vamos obter primeiro E(Y ) = µ.

Y ∼ Bin(n, θ).

Valores posśıveis são 0, 1, 2, . . . , n.

Probabilidades associadas:

Então

P(Y = k) =
n!

k!
(n − k)!θk(1− θ)n−k

Queremos

µ = E(Y ) =
n∑

k=0

kP(Y = k) =
n∑

k=0

k
n!

k!
(n − k)!θk(1− θ)n−k
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E(Y ) de Binomial

Temos

µ = E(Y ) =
n∑

k=0

kP(Y = k) =
n∑

k=0

k
n!

k!
(n − k)!θk (1− θ)n−k

=
n∑

k=1

k
n!

k!
(n − k)!θk (1− θ)n−k eliminando k = 0 da soma

= nθ
n∑

k=1

(n − 1)!

(k − 1)!
(n − k)!θk−1(1− θ)n−k com nθ em evidência

= nθ
n∑

k=1

(n − 1)!

(k − 1)!
((n − 1)− (k − 1))!θk−1(1− θ)(n−1)−(k−1) manipulando...

= nθ

n−1∑
j=0

(n − 1)!

j!
((n − 1)− j)!θj (1− θ)(n−1)−j mudança de variáveis

= nθ × 1

A última soma acima é 1 pois a parcela j é a probabilidade P(Z = j) onde

Z ∼ Bin(n − 1, θ) e estamos somando todas estas probabilidades.
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V(Y ) de Binomial

Calculando E(Y 2) no caso binomial:

E(Y 2) =
n∑

k=0

k2P(Y = k) =
n∑

k=0

k2 n!

k!
(n − k)!θk (1− θ)n−k

=
n∑

k=1

k2 n!

k!
(n − k)!θk (1− θ)n−k eliminando k = 0 da soma

Uma série de manipulações algébricas leva ao resultado final

E(Y 2) = n2θ2 + nθ(1− θ)

Para a prova completa, ver https:
//proofwiki.org/wiki/Variance_of_Binomial_Distribution

Assim,
V(Y ) = E(Y 2)− (E(Y ))2 = nθ(1− θ)
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V(Y ) de Uniforme

Calculando E(Y ) no caso Uniforme U(0, 1):

E(Y ) =

∫
R
xf (x)dx

=

∫ 0

−∞
x × 0 dx +

∫ 1

0
x 1 dx +

∫ ∞
0

x × 0 dx

=
x2

2

∣∣1
0

=
1

2

Renato Martins Assunção (DCC - UFMG) Variância, DP e Desigualdades 2016 47 / 76



V(Y ) de Uniforme

Calculando E(Y 2) no caso Uniforme U(0, 1):

E(Y 2) =

∫
R
x2f (x)dx

=

∫ 0

−∞
x2 × 0 dx +

∫ 1

0
x2 1 dx +

∫ ∞
0

x2 × 0 dx

=
x3

3

∣∣1
0

=
1

3

Assim,

V(Y ) = E(Y 2)− (E(Y ))2 =
1

3
− 1

22
=

1

12
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V(Y ) de Uniforme

Assim,

V(Y ) =
1

12
e portanto

DP =
1√
12
≈ 0.289

Note que, como E(Y ) = 1/2 e a distribuição é uniforme você poderia
estar esperando que DP fosse exatamente 1/4 = 0.25, a metade do
intervalo (0, 1/2).

Isto não é estritamente verdade.

A razão é que calculamos o valor esperado do desvio AO
QUADRADO e somente depois tiramos a raiz quadrada.

Isto não é exatamente o mesmo que tirar a média do desvio absoluto.
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Propriedades da variância

Seja X uma v.a. qualquer.

Denote µ = E(X ) e σ2 = V(X ).

Crie uma nova v.a. que seja uma transformação linear de X (como ao
passar de Celsius para Fahrenheit).

Y = a + bX onde a e b são constantes.

Então já sabemos que E(Y ) = a + bE(X )

Como V(Y ) e V(X ) se relacionam?
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Propriedades da variância

Seja X uma v.a. com µx = E(X ) e σ2
x = V(X ).

Se Y = a + bX então µy = E(Y ) = a + bµx e

σ2
y = V(Y ) = V(a + bX ) = b2V(X ) = b2σ2

x

Em termos do DP das v.a.’s:

DPy = |b| DPx

Curioso: a não tem efeito na variância (ou no DP), apenas no valor
esperado.
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V(a + X )

Se Y = a + bX entâo V(Y ) = b2V(X )

Por quê isto é verdade intuitivamente? Primeiro, vamos ver que a não
deve ter efeito.

Suponha que Y = 2 + X . Deslocamos todos os valores de X por duas
unidades.

Deslocamos também seu valor esperado de 2: E(Y ) = 2 + E(X )

Assim os desvios de Y = 2 + X em torno de sua média
E(Y ) = 2 + E(X ) ficarão inalterados pois tanto X quanto E(X ) são
deslocados de 2:

Y − E(Y ) = (2 + X )− (2 + E(X )) = X − E(X )

Assim, a não tem efeito na variância (ou no DP) de Y = a + X ,
apenas no seu valor esperado.
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V(bX )

Se Y = bX entâo V(Y ) = b2V(X ) e portanto

DPy = |b| DPx

Qual a intuição disso?
Se todos os valores de X são multiplicados por b = 2 (digamos)
entâo sua média também é multiplicada por 2.
Isto é,

µy = E(Y ) = E(2X ) = 2E(X ) = 2µx

Mas então os desvios de Y em relaa̧o a sua média também ficarão
multiplicados por 2:

Y − µy = 2X − 2µx = 2(X − µx)

Como olhamos para o desvio ao quadrado, teremos 22 multiplicando
V(X ):

V(Y ) = E((Y − µy )2 = E
(
2(X − µx)2

)
= 22E

(
(X − µx)2

)
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Propriedades da variância

Se X e Y são v.a.’s independentes, temos:

V(X + Y ) = V(X ) + V(Y )

Esta propriedade é quase que a justificativa (sutil) para adotarmos a
variância como medida por excelência de variabilidade em
probabilidade.
Lembre-se que a esperança do desvio absoluto, E(|Y − µ|), é muito
mais intuitiva que DP =

√
V(Y ) =

√
E(|Y − µ|2).

A raz ao para adotarmos a noção muito menos intuitiva da variância
V(Y ) é esta propriedade: a variância de uma soma é decomposta na
soma das variâncias quando as v.a.’s são independentes.
Veremos como este mesmo resultado vai ficar muito mais elaborado
nas técnicas de análise de prediç ao.
Ela vai permitir, por exemplo,decompor a varibilidade de um sinal
(acústico ou elétrico) formado pela soma de vários sinais
independentes na soma de seus componentes. Estudando estes
componentes, poderemos checar quais sâo os mais relevantes para
descrever o sinal. Isto ficará mais claro no futuro.

Renato Martins Assunção (DCC - UFMG) Variância, DP e Desigualdades 2016 54 / 76



V(X + Y ) = V(X ) + V(Y ), se independentes

Se X e Y são v.a.’s independentes, temos:

V(X + Y ) = V(X ) + V(Y )

Prova no caso particular de duas v.a.’s discretas: Como

E(X + Y ) = E(X ) + E(Y ) = µx + µy

Além disso, como X e Y são independentes, então X − µx e Y − µy
também são independentes e portanto

E ((X − µx)(Y − µy )) = E(X − µx) E(Y − µx) = 0 = 0
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E se não forem independentes?

Se X e Y não são v.a.’s independentes, teremos também uma
fórmula.

Esta fórmula vai depender de ρ, o grau de não-independência (ou
CORRELAÇÃO) entre X e Y .

Teremos:

V(X + Y ) = V(X ) + V(Y ) + 2ρ
√
V(X ) + V(Y )

Voltaremos a esta fórmula mais tarde.

Ela vai se tornar mais clara quando estudarmos ρ.
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Propriedades da variância

Caso geral, com mais de duas v.a.’s independentes

Se X1,X2, . . . ,Xn são v.a.’s INDEPENDENTES então

V(X1 + X2 + . . .+ Xn) = V(X1) + . . .+ V(Xn)
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Desigualdade de Tchebyshev

O DP é o padrão universal para medir desvios (em torno do valor
esperado).

Desigualdade de Tchebyshev justifica esta última afirmação.

Seja Y uma v.a. QUALQUER com E(Y ) = µ.

Então
P(|Y − µ| > kσ) ≤ 1/k2

Exemplo: se k = 2 então, para QUALQUER v.a.,

P(|Y − µ| > 2σ) ≤ 1/22 = 0.25
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Desigualdade de Tchebyshev

Tchebyshev:
P(|Y − µ| > kσ) ≤ 1/k2

Para k = 4, a probabilidade se reduz a 0.06:

P(|Y − µ| > 4σ) ≤ 1/42 ≈ 0.06

.

A chance é apenas de 6% de que Y se desvie por mais que 4 DPs do
seu valor esperado E(Y ).

Isto vale PARA TODA E QUALQUER v.a.

o DP serve como uma métrica universal de desvios estat́ısticos:
desviar-se por mais de 4 DPs de sua média pode ser considerado um
tanto raro.
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Um Comentário sobre Tchebyshev

Tchebyshev: P(|Y − µ| > kσ) ≤ 1/k2

Observe que a probabilidade decai com 1/k2.

Nos primeiros inteiros temos uma queda rápida mas depois temos
uma queda lenta:

P(|Y − µ| > 2σ) ≤ 1/22 = 0.25

P(|Y − µ| > 4σ) ≤ 1/42 ≈ 0.06

P(|Y − µ| > 6σ) ≤ 1/62 ≈ 0.03

P(|Y − µ| > 10σ) ≤ 1/102 ≈ 0.01

P(|Y − µ| > 20σ) ≤ 1/202 ≈ 0.003
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Outro comentário sobre Tchebyshev

Tchebyshev: P(|Y − µ| > kσ) ≤ 1/k2

A sua força é a generalidade: vale para toda e qualquer v.a.

Mais ainda: ele é ótimo no seguinte sentido: não é posśıvel obter cota
mais apertada valendo para TODA v.a.

Prova: Existe uma v.a. em que a desigualdade vira igualdade. Então
não podemos ter nada mais apertado que Tchebyshev a não ser que
joguemos fora a distribuição desta v.a. Esta distribuição é a seguinte
v.a. discreta Y :
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Outro comentário sobre Tchebyshev

A v.a. em que Tchebyshev é uma igualdade:

Y =


−1, com probab 1

2k2

0, com probab 1− 1
k2

1, com probab 1
2k2

Ela tem E(Y ) = 0 e DP = σ = 1/k e portanto

P(|Y − µ| ≥ kσ) = Pr(|Y | ≥ 1) =
1

k2

A desigualdade de Tchebyshev atinge a igualdade perfeita para esta
distribuição. Então não podemos teruma cota MENOR que a
fornecida para Tchebyshev se quisermos que ela atenda a TODAS as
v.a.’s
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Finalizando o segundo comentário

A força da desigualdade de Tchebyshev é a sua generalidade: vale
para TODA v.a.

A fraqueza da desigualdade de Tchebyshev é ... a sua generalidade.

Para ser válida para toda e qualquer v.a. a desigualdade não é muito
“apertada”

Isto é, podemos obter cotas muito melhores para a chance de ter um
desvio grande QUANDO CONSIDERAMOS APENAS UMA
DISTRIBUIÇÃO ESPEĆIIFICA.
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Outro comentário sobre Tchebyshev

Por exemplo, se Y ∼ N(µ, σ) e k = 2, então usando a densidade da
normal podemos calcular a probabilidade

P(|Y − µ| ≥ 2σ) = 0.04550026 ≈ 0.05 = 1/20

A desigualdade de Tchebyshev garante apenas que

P(|Y − µ| ≥ 2σ) ≤ 1/4 = 0.25

Veja que a desigualdade de Tchebyshev está correta neste caso mas
longe do valor exato da probabilidade no caso da normal.

Tchebyshev garante que a chance de uma gaussiana X , bem como
QUALQUER outra distribuição, afastar-se de sua esperança µ por
mais de 2σ é menor que 0.25.

O que Tchebyshev não consegue perceber é que, no caso particular da
gaussiana, esta chance é muito menor, não passa de 5%.
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Outro comentário sobre Tchebyshev

A razão é que a cota de 1/4 da Tchebyshev para um desvio de 2σ é
válida para TODA v.a.

A cota de Tchebyshev tem de valer para a normal-gaussiana mas
também para TODA e qualquer outra distribuição.

O preço dessa generalidade é terminar com uma cota que é muito
exagerada em muitos casos particulares, como no caso da gaussiana.

Apesar desse comentário, não se deixe enganar: Tchebyshev é um
grande resultado.

Ele vale SEMPRE e nada melhor pode ser obtido para TODAS as
distribuições.
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OPCIONAL: Prova da desigualdade de Tchebyshev

A demonstraa̧ão não será cobrada nas provas e exerćıcios. Leia se
houver interesse (espero que haja...)

Tchebyshev é importante e sua prova é muito ilustrativa de como
resultados gerais de probabilidade avançada são obtidos.

Vamos assumir que X é uma v.a. cont́ınua com densidade f (x). No
caso discreto, basta trocar a integral por somas.

Seja A um conjunto qualquer da reta real R.

Então

P(X ∈ A) =

∫
A
f (x)dx ,

pois a probabilidade de um conjunto A é a área debaixo da densidade
f (x) em A.
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Prova da desigualdade de Tchebyshev

Seja A = {x ∈ R tais que |x − µ| > kσ}
O evento [|X − µ| > kσ] é idêntico ao evento [X ∈ A] pois estes dois
subconjuntos de Ω são os mesmos:

{ω ∈ Ω tais que |X (ω)− µ| > kσ}

é o mesmo que
{ω ∈ Ω tais que X (ω) ∈ A}

(veja a definição do conjunto A ⊂ R acima)

Então

P(|X − µ| > kσ) = P(X ∈ A) =

∫
{x :|x−µ|>kσ}

f (x)dx
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Prova da desigualdade de Tchebyshev

Por definição, temos

V(X ) = σ2 = E(X − µ)2 =

∫
R

(x − µ)2f (x)dx

A reta pode ser particionada em dois conjuntos disjuntos:
R = A ∪ Ac .

Então

σ2 =

∫
A∪Ac

(x − µ)2f (x)dx

=

∫
A

(x − µ)2f (x)dx +

∫
Ac

(x − µ)2f (x)dx

≥
∫
A

(x − µ)2f (x)dx

pois o segundo termo é sempre positivo (ou zero).
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Prova da desigualdade de Tchebyshev

Resumindo:

σ2 ≥
∫
A

(x − µ)2f (x)dx

onde A = {x : |x − µ| > kσ}.
Mas se x ∈ A temos (x − µ)2 > k2σ2 e portanto

σ2 ≥
∫
A

(x − µ)2f (x)dx

≥
∫
A

(k2σ2)f (x)dx

= (k2σ2)

∫
A
f (x)dx

= (k2σ2) P(X ∈ A)
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Prova da desigualdade de Tchebyshev

Concluindo, encontramos que

σ2 ≥ (k2σ2)P(X ∈ A)

Ou seja

P(X ∈ A) ≤ 1

k2

Mas
P(X ∈ A) = P (|X − µ| ≥ kσ)

Assim, temos a desigualdade de Tchebyshev

P (|X − µ| ≥ kσ) ≤ 1

k2
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Estimando µ e σ com dados

O valor esperado E(Y ) = µ e o DP σ =
√
E (Y − µ)2 são valores

que não dependem dos dados.

Por exemplo, suponha que Y possua distribuição exponencial, cuja
densidade é f (y) = 3exp(−3y). Então E(Y ) = µ = 1/3 e σ = 1/3.

Suponha que temos uma amostra de dados retirados de certa
distribuição com densidade f (y) e que NAO CONHECEMOS f (y).

Portanto, não podemos obter E(Y ) = µ e o DP σ.

No entanto, podemos ESTIMAR E(Y ) = µ e o DP σ com os dados.
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Momentos amostrais e teóricos

A ideia é igualar os momentos teóricos com momentos amostrais
correspondentes.

Momentos:
Momento Teórico Momento Amostral

E(Y ) m1 = Y =
∑n

i=1 Yi/n
E(Y 2) m2 =

∑
i Y

2
i /n

E(Y 3) m3 =
∑

i Y
3
i /n

...
...

Veja que m1 é a média dos dados na amostra.

É comum escrevermos m1 como Y .
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Primeiro Momento Y

Pela lei dos grandes números (teorema que ainda será estudado),

Y =
1

n

∑
i

Yi → E(Y ) = µ

quando n→∞.

Assim, se o tamanho n da amostra não for pequeno demais, podemos
esperar a média amostral Y ≈ E(Y ).

Assim, podemos usar os dados para estimar o valor desconhecido (e
teórico µ).

Note que, a não ser em casos de distribuições muito especiais (e
bizarras), devemos ter µ 6= Y .

Isto é, a média amostral Y não é igual à esperança µ.

Renato Martins Assunção (DCC - UFMG) Variância, DP e Desigualdades 2016 73 / 76



σ e o segundo momento

DP σ é a raiz quadrda da variância.

Variância: σ2 = E(Y − µ)2.

Temos
σ2 = E(Y 2)− (E(Y ))2

Como E(Y ) ≈ Y , podemos esperar então que

σ2 ≈ E(Y 2)−
(
Y
)2

E o primeiro termo? Usamos a Lei dos Grandes Números de novo.

Renato Martins Assunção (DCC - UFMG) Variância, DP e Desigualdades 2016 74 / 76



σ e o segundo momento

Pela mesma lei dos grandes números, mk =
∑

i Y
k
i /n converge para

E(Y k).

Assim, m2 ≈ E(Y 2)

Portanto,

σ2 ≈ 1

n

∑
i

Y 2
i −

(
Y
)2

Podemos mostrar que

1

n

∑
i

Y 2
i −

(
Y
)2

=
1

n

∑
i

(
Yi − Y

)2

Esta é a variância amostral.

O DP pode ser estimado tomando sua raiz quadrada.
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V.A.s limitadas: desigualdade de Hoeffding

Veremos no futuro...
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