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..

Análise Fatorial

∼X ∼ Np(
∼
µ,Σ), vetor p dim

Imagine que existem DUAS variáveis F1 e F2 que NÃO SÃO
diretamente observáveis.

Dizemos que são LATENTES

F1 e F2 são independentes.

Cada uma das Xi em ∼X é aproximadamente uma combinação linear
de F1 e F2.
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Análise Fatorial

Isto é,
X1 ≈ µ1 + `11F1 + `12F2

X2 ≈ µ2 + `21F1 + `22F2

.

.

.
Xp ≈ µp + `p1F1 + `p2F2

`ij = constantes desconhecidas
= carga dos fatores
= factor loading
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Análise Fatorial

Exemplo:

∼X = Vetor com notas de um aluno em 15 assuntos

X1 = Gramática
X2 = Literatura
X3 = Redação
X4 = História
X5 = Geografia
X6 = Filosofia
X7 = Álgebra
X8 = Geometria

X9 = Lógica
X10 = Qúımica
X11 = F́ısica
X12 = Biologia
X13 = Inglês
X14 = Sociologia
X15 = Espanhol
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Análise Fatorial

Desempenho individual nestes 15 assuntos é muito variado:

Alguns vão bem em todas as disciplinas;
Alguns vão bem apenas em algumas e tem um desempenho médio nas
outras;
Alguns vão muito bem em algumas e muito mal em outras;
Alguns vão mal em todas.

Como entender essa diversidade?
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Análise Fatorial

Psicólogos se perguntaram se esta variabilidade na capacidade
cognitiva não poderia ser explicada pela existência de uns poucos
traços latentes, não observados.

Por exemplo,
FV = Fator refletindo habilidade verbal
FQ = Fator refletindo habilidade lógico-quantitativa

Os fatores tem uma escala centrada em zero.
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Análise Fatorial

Se
F = 0⇒ Indiv́ıduo tem habilidade média no fator.
F > 0⇒ Habilidade acima da média.
F � 0⇒ Habilidade muito acima da média.
F < 0⇒ Habilidade abaixo da média.

Figura: Densidade da distribuição de um fator na população.
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Análise Fatorial

Cada insiv́ıduo recebe uma “dose” de FV e uma “dose” de FQ.

Doses de FV e FQ são independentes.

Por exemplo, alguns recebem muito de FV .
Dentre estes,

Metade recebe FQ+
Metade recebe FQ−

As notas nos 15 assuntos são reflexos e combinações desses dois
fatores, além de um rúıdo causado por outros fatores que não levamos
em conta.
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Análise Fatorial

Modelo hierárquico para a geraçáo das 15 notas de um mesmo
indiv́ıduo.

Passo 1: Recebe doses independentes de FV e FQ.
FV− FQ+

Passo 2: Estas doses afetam as notas dos 15 assuntos.

Ausência de aresta ⇒ sem influência do fator.
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Análise Fatorial

Peso ou importância da aresta representada por grossura da aresta.

Peso da aresta é a carga do fator (factor loading).
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Representação algébrica

Gramática = X1 ≈ µGram + `GV ∗ FV + `GQ ∗ FQ
Literatura = X2 ≈ µLit + `LV ∗ FV + `LQ ∗ FQ
.
.
.

Carga dos fatores.
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..

Representação algébrica

Gramática = X1 ≈ µGram + `GV ∗ FV + `GQ ∗ FQ
Literatura = X2 ≈ µLit + `LV ∗ FV + `LQ ∗ FQ
.
.
.

Fator verbal do indiv́ıduo. O mesmo para todos os assuntos.
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Representação algébrica

Mais formal:
X1 = µGram + `GV ∗ FV + `GQ ∗ FQ + εGram
X2 = µLit + `LV ∗ FV + `LQ ∗ FQ + εLit
.
.
.
X15 = µEsp + `EV ∗ FV + `EQ ∗ FQ + εEsp

Erros ou fatores não observados.
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Representação algébrica

Um exemplo esquemático.

Assuntos muito associados com FV :
X1 = µ1 + (1.0) ∗ FV + (0.1) ∗ FQ + ε1

X2 = µ2 + (0.8) ∗ FV + (0.01) ∗ FQ + ε2

Nenhuma das duas habilidades é muito relevante:
X3 = µ3 + (0.1) ∗ FV − (0.1) ∗ FQ + ε3

Precisa ser bom em FQ e muito ruim em FV . :(
X4 = µ4 − (0.3) ∗ FV + (0.9) ∗ FQ + ε4

Bom em FQ e pouco relevante em FV .
X5 = µ5 − (0.1) ∗ FV + (1.2) ∗ FQ + ε5

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 14 / 59



..

Representação algébrica

Representação matricial para um indiv́ıduo:

∼X =
∼
µ+ L

pxm
· ∼F
mx1

+ ∼ε
px1

L = matriz de carga dos fatores (loading).
F = vetor dos fatores comuns (às p variáveis).
ε = vetor dos erros ou fatores espećıficos (de cada variável).
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Representação algébrica

Vamos imaginar dois indiv́ıduos com seus dois vetores instanciados:

∼X
(1) =


X

(1)
1

.

.

X
(1)
15

 =


µ1

.

.
µ15

+


`11 `12

. .

. .
`15,1 `15,2

[FV (1)

FQ(1)

]
+


ε

(1)
1

.

.

ε
(1)
15



∼X
(2) =


X

(2)
1

.

.

X
(2)
15

 =


µ1

.

.
µ15

+


`11 `12

. .

. .
`15,1 `15,2

[FV (2)

FQ(2)

]
+


ε

(2)
1

.

.

ε
(2)
15


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Representação algébrica

Vamos imaginar dois indiv́ıduos com seus dois vetores instanciados:

∼X
(1) =

∼
µ+ L · ∼F

(1) + ∼ε
(1)

∼X
(2) =

∼
µ+ L · ∼F

(2) + ∼ε
(2)

∼
µ e L⇒ iguais para todos os indiv́ıduos.

∼F
(i) =

[
FV (i)

FQ(i)

]
= doses dos fatores recebidos pelos indiv́ıduos.

∼ε
(i) = erros do indiv́ıduo (i)
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Representação algébrica

Vamos imaginar dois indiv́ıduos com seus dois vetores instanciados:

∼X
(1) =

∼
µ+ L · ∼F

(1) + ∼ε
(1)

∼X
(2) =

∼
µ+ L · ∼F

(2) + ∼ε
(2)

São iguais. Espećıficos do indiv́ıduo.
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Representação algébrica

Só observamos o vetor ∼X em vários indiv́ıduos.

Queremos entender como ∼X varia.

Basta entender como os fatores FV e FQ variam de indiv́ıduo para
indiv́ıduo.

As notas dos 15 assuntos apenas refletem e combinam estes fatores
através da matriz L.

Um pequeno rúıdo ε para cada disciplina é adicionado para levar em
conta os demais fatores que estamos ignorando.

Como podemos inferir L a partir dos dados?

E os escores dos fatores

[
FV (i)

FQ(i)

]
de cada indiv́ıduo, como obtemos?
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Suposições do modelo fatorial

Indiv́ıduo (i) com m = 2 fatores.

∼X
(i)

px1

=
∼
µ
px1

+ L
px2
· ∼F

(i)

2x1

+ ∼ε
(i)

px1

∼
µ e L são comuns a todos os indiv́ıduos, não aleatórios.

∼F
(i) e ∼ε

(i) variam de indiv́ıduo para indiv́ıduo, são aleatórios.

E(∼F
(i))

2x1

= E
(
FV (i)

FQ(i)

)
=

(
E(FV (i))

E(FQ(i))

)
=

(
0
0

)
= ∼0

Cov(∼F
(i))

2x2

=

[
Var(FV (i)) Cov(FV (i),FQ(i))

Cov(FV (i),FQ(i)) Var(FQ(i))

]
=

[
1 0
0 1

]
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Suposições do modelo fatorial

A opção de tomar a variância de cada fator igual a 1 (e portanto,
tomar o DP de cada fator = 1) é baseada no seguinte argumento:

Cada fator (FV ou FQ) terá a “mesma escala” indo de -2 a +2
aproximadamente ao variar dos menos habilidosos aos mais habilidosos.
Se o fator Fk afetar muito uma nota Xj isto será refletido numa carga
`jk muito positiva (ou muito negativa).
Mas a escala de todos os fatores é a mesma (em DP’s): vai de -2 a
+2, aproximadamente.

A covariância Cov(FV (i),FQ(i)) = 0 pois estamos supondo fatores
independentes.
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Suposições do modelo fatorial

Mais suposições, agora sobre ∼ε
(i):

E(∼ε
(i))

15x1

= E


ε

(i)
1

.

.

ε
(i)
15

 =


E(ε

(i)
1 )
.
.

E(ε
(i)
15 )

 =


0
0
.
.
0

 = ∼0
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Suposições do modelo fatorial

Mais suposições, agora sobre ∼ε
(i):

Cov(∼ε)
15x15

=


Var(ε

(i)
1 ) Cov(ε

(i)
1 , ε

(i)
2 ) . . Cov(ε

(i)
1 , ε

(i)
15 )

Cov(ε
(i)
2 , ε

(i)
1 ) Var(ε

(i)
2 ) . . Cov(ε

(i)
2 , ε

(i)
15 )

. . . . .

. . . . .

Cov(ε
(i)
15 , ε

(i)
1 ) Cov(ε

(i)
15 , ε

(i)
2 ) . . Var(ε

(i)
15 )



=



ψ1

ψ2

.
.
.
ψ15

 = diag(ψ1, ..., ψ15) = ψ
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Suposições do modelo fatorial

É razoável deixar que Var(ε
(i)
j ) varie.

Podemos ter ψj 6= ψk .

A razão é que a nota de redação, digamos, pode ter muito mais
variabilidade que a nota de matemática devido a fatores não
relacionados com FV ou FQ.

A subjetividade do corretor da redação, a variação da qualidade da
redação como fruto do conhecimento do aluno sobre o tema, entre
outras causas, pode gerar mais variação na nota da redação do que a
variação induzida pela diversidade de FV e FQ.
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Suposições do modelo fatorial

A covariância entre os erros de assuntos distintos, Cov(ε
(i)
j , (ε

(i)
k ),

provavelmente não é zero, mas deve ser pequena. Por isto façamos
todas iguais a zero no modelo.

Assim, adotamos Cov(∼ε) =


ψ1

. ∼0
.

∼0 .
ψ15

 = diagonal.
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Suposições do modelo fatorial

Uma última suposição: ∼F e ∼ε são independentes.

Isso implica que:

Cov(∼ε,∼F )
15x2

=


Cov(ε1,F1) Cov(ε1,F2)
Cov(ε2,F1) Cov(ε2,F2)

. .

. .
Cov(ε15,F1) Cov(ε15,F2)

 =


0 0
0 0
. .
. .
0 0


Note que, como E(∼ε)

15x1

= ∼0 e E(∼F )
2x1

= ∼0, temos

Cov(∼ε,∼F ) = E(∼ε∼F
′) = ∼0 e também E(∼F∼ε

′) = ∼0.

Podemos agora obter a estrutura de convariância das observações ∼X .
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Suposições do modelo fatorial

E(∼X ) = E(
∼
µ+ L∼F + ∼ε)

=
∼
µ+ E(L∼F ) + E(∼ε)

=
∼
µ+ LE(∼F ) + E(∼ε)

=
∼
µ+ L∼0 + ∼0

=
∼
µ

É isto mesmo, o valor esperado das notas é o vetor
∼
µ, que representa

a média da população de interesse.

Cov(∼X )
15x15

= Σ = E((∼X − ∼
µ)(∼X − ∼

µ)′) = E((L∼F + ∼ε)(L∼F + ∼ε)′)

= E((L∼F )(L∼F )′ + ∼ε(L∼F )′ + (L∼F )∼ε
′ + ∼ε∼ε

′)
= E(L∼F∼F

′L′) + E(∼ε(L∼F )′) + E((L∼F )∼ε
′) + E(∼ε∼ε

′)
= LE(∼F∼F

′)L′ + ∼0 + ∼0 + ψ
= LI2L

′ + ψ
= LL′ + ψ
Isto é, Cov(∼X ) = Σ = LL′ + ψ
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Suposições do modelo fatorial

No nosso exemplo com 15 notas e dois fatores:

Σ
15x15

=


l11 `12

`21 `22

. .

. .
`15,1 `15,2


[
l11 `21 . . `15,1

`12 `22 . . `15,2

]
+


ψ1

.
.
.
ψ15

 =


l211 + `2

12 + ψ1 `11`12 + l12l22 `11`31 + l12l32 . . `11`15,1 + `12`15,2

`11`21 + `12`22 `2
21 + `2

22 + ψ2 `21`31 + `22`32 . . `21`15,1 + `22`15,2

. . . . . .

. . . . . .

. . . . . `2
15,1 + `2

15,2 + ψ15


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Suposições do modelo fatorial

Outra maneira de pensar sobre Σ é perceber que, se olharmos a
matriz L

15x2
como um conjunto de 15 vetores-cargas,

L =


`11 `12

`21 `22

. .

. .
`15,1 `15,2

 =


∼̀1

∼̀2

.

.

∼̀15


onde ∼̀j = cargas da disciplina j .
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Suposições do modelo fatorial

Então,

Σ
15x15

=

〈∼̀1,∼̀1〉+ ψ1 〈∼̀2,∼̀1〉 〈∼̀3,∼̀1〉 . . 〈∼̀15,∼̀1〉
〈∼̀1,∼̀2〉 〈∼̀2,∼̀2〉+ ψ2 〈∼̀3,∼̀2〉 . . 〈∼̀15∼̀2〉
〈∼̀1,∼̀3〉 〈∼̀2,∼̀3〉 〈∼̀3,∼̀3〉+ ψ3 . . 〈∼̀15∼̀3〉

. . . . . .

. . . . . .
〈∼̀1,∼̀15〉 〈∼̀2,∼̀15〉 〈∼̀3,∼̀15〉 . . 〈∼̀15,∼̀15〉+ ψ15



=


‖∼̀1‖2 + ψ1 〈∼̀2,∼̀1〉 . . 〈∼̀15,∼̀1〉
〈∼̀2,∼̀1〉 ‖∼̀2‖2 + ψ2 . . 〈∼̀15∼̀2〉

. . . . .

. . . . .
〈∼̀15,∼̀1〉 〈∼̀15,∼̀2〉 . . ‖∼̀15‖2 + ψ15


Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 30 / 59



..

Suposições do modelo fatorial

Assim,
Var(Xi ) = Σii = ‖∼̀i‖

2 + ψi = `2
i1 + `2

i2 + ψi

‖∼̀i‖
2 ⇒ comumalidade

ψi ⇒ variância espećıfica

Se os dois fatores latentes não possuem impacto na disciplina i (por
exemplo, se a disciplina for educação f́ısica), então `2

i1 + `2
i2 ≈ 0 e

toda a variância da nota é devida aos fatores espećıficos εi e
diferentes dos fatores latentes.

Suponhamos que a disciplina Xi tenha uma carga grande do fator
verbal (`2

i1 � 0), mas uma carga pequena do fator quantitativo
(l2i2 ≈ 0). Então Var(Xi ) = `2

i1 + `2
i2 + ψi ≈ `2

i1 + ψi .

Toda a variabilidade das notas entre os alunos é devida às diferenças
do fator verbal.

Alunos apenas com o fator quantitativo FQ muito diferentes não
terão notas muito distintas.
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Interpretando as cargas dos fatores

L =


`11 `12

`21 `22

. .

. .
`15,1 `15,2

 =


∼̀1

∼̀2

.

.

∼̀15


Podemos plotar as linhas de L num gráfico planar.

A primeira coordenada (fator 1) no eixo horizontal e a segunda
coordenada no eixo vertical (fator 2).

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 32 / 59



..

Interpretando as cargas dos fatores

Esta representação mostra que as disciplinas
F́ısica, Qúımica, Matemática ⇒ possuem cargas altas no Fator 1 e
cargas baixas no Fator 2.
Redação, Literatura, Sociologia ⇒ pouca carga do Fator 1 e muita
cargado Fator 2.
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Interpretando as cargas dos fatores

Isto implica que, nesta disposição de colunas da matriz L, a primeira
coluna (ou a primeira coordenada das linhas) representa o fator
quantitativo.

A segunda coluna de L representa o fator verbal.

Observe que “Gramática” ficou a meio caminho, com carga mediana
nos dois fatores. Para ter nota alta em “Gramática” é preciso ter
“doses” razoáveis dos dois fatores OU uma “dose” bem grande de um
dos fatores, qualquer um deles.
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Métodos de estimação

1 Máxima verossimilhança (veremos mais tarde no curso)

2 Componentes principais

Veremos apenas o segundo método.

Pelo teorema espectral, Σ = P ∧ P ′, onde P =
[
∼v1 ... ∼vp

]
são os

autovetores de Σ e ∧ =


λ1

.
.
λp

 é matriz diagonal com os

autovalores.

Manipulação matricial permite escrever

Σ = L∗(L∗)′ =
[√
λ1 ~∼v1 ...

√
λp ~∼vp

] 
√
λ1∼v

′
1

.

.√
λp∼v

′
p


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Métodos de estimação

Suponha que os últimos autovalores sejam ≈ 0.

Isto implica que as últimas colunas de L∗ são aproximadamente nulas
e podem ser ignoradas.

Mais formalmente, suponha que a soma dos k primeiros autovalores
seja praticamente igual à soma de todos os p autovalores:

λ1 + λ2 + ...+ λk
λ1 + λ2 + ...+ λk + λk+1 + ...+ λp

≈ 1

Ignorando as últimas colunas da matriz L∗
pxp

ficamos com uma matriz

L
pxk

:

Σ ≈ LL′ =
[√
λ1∼v1 ...

√
λk∼vk

] 
√
λ1∼v

′
1

.

.√
λk∼v

′
k


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Métodos de estimação

Para completar o modelo fatorial, estimamos a matriz diagonal

ψ =


ψ1

.
.
ψp

 = diag [Σ− LL′]

Isto é, ψi = Σii − (LL′)ii
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Resumo prático

Matriz de dados X
nxp

Obtenha S = Cov(X )

Alternativamente, se os sii forem muito distintos, usamos a matriz
R = cor(x), a matriz de correlação.

Obtermos os autovalores ordenados e os autovetores de S .

Calcule a soma acumulada
λ1+...+λk

λ1+...+λk+λk+1+...+λp
= ak

Se ak ≈ 1 com k pequeno, então o modelo fatorial pode ser usado
pois vai simplificar a estrutura dos dados.
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Resumo prático

Use os primeiro k autovetores (tal que ak ≈ 1) para criar a matriz de
cargas

L =
[√
λ1∼v1 ...

√
λk∼vk

]
e ψ =


ψ1

.
.
ψp

 onde

ψi = Sii − (LL′)ii

Um bom critério de escolha de k é verificar que a soma das entradas
ao quadrado da matriz (S − (LL′ + ψ)) ≤ λ2

k+1 + ...+ λ2
p

Assim, se λ2
k+1 + ...+ λ2

p ≈ 0⇒ S ≈ LL′ + ψ e o modelo fatorial é
um bom ajuste.
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Exemplos de Johnson & Wichern
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Exemplos de Johnson & Wichern
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Métodos de estimação

Existe um problema de identificabilidade na determinação do modelo
fatorial.

O problema é que a matriz de cargas L só pode ser conhecida
a menos de uma rotação.

Seja T
2x2

uma matriz ortogonal.

Isto é, TT ′ = T ′T = I2 = identidade =

[
1 0
0 1

]
De álgebra de matrizes, sabemos que matrizes ortogonais
correspondem a uma rotação ŕıida dos eixos coordenados.
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Métodos de estimação

Isto significa que uma matriz T
2x2

tal que TT ′ = T ′T = I tem de ser

da seguinte forma:

T =

[
cos(φ) sin(φ)
−sin(φ) cos(φ)

]
⇒ rotação clockwise

ou T =

[
cos(φ) −sin(φ)
sin(φ) cos(φ)

]
⇒ counter-clockwise

para φ ∈ [0, 2π]

Estas matrizes correspondem a rotações no plano.
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Métodos de estimação

Seja ~
∼V

2x1

=

[
x
y

]
∈ R2 e T

2x2
=

[
cos(φ) sin(φ)
−sin(φ) cos(φ)

]
Então T

2x2
~
∼V

2x1

é um novo ponto no R2 obtido rotacionando ~
∼V pelo

ângulo φ na direção do relógio:
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Métodos de estimação

Considerando vetores-linha:

(T~v)′ = ~v ′T ′ = (x , y)

[
cos(φ) −sin(φ)
sin(φ) cos(φ)

]

A situação geométrica continua a mesma de antes, representar o
vetor como linha ou coluna não altera o resultado.

Vamos trabalhar com as linhas da matriz L.
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Métodos de estimação

Considere a matriz L das cargas

L =


∼̀
′
1

.

.

∼̀
′
15

 =


`11 `12

`21 `22

. .

. .
`15,1 `15,2

 e T = matriz ortogonal.

O produto L
15x2
· T

2x2
15x2

pode ser pensado linha a linha

L
15x2
· T

2x2
=


∼̀
′
1

∼̀
′
2

.

.

∼̀
′
15

 =


∼̀
′
1

1x2

· T
2x2

∼̀
′
2 · T
.
.

∼̀
′
15 · T

 = L∗

As linhas de L∗ são as linhas de L rotacionadas de certo ângulo ∅
associado à matriz T .
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Métodos de estimação

Rodando uma linha de L

Rodando cinco linhas de L
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Métodos de estimação

OK, o que tudo isto quer dizer?

Suponha que o modelo fatorial é correto e que realmente podemos
escrever ou decompor a matriz de covariância de ∼X como:

Var(∼X ) = Σ
15x5

= L
15x2
· L′

2x15
+ ψ

15x15
⇒ diagonal

Seja T
2x2

qualquer matriz ortogonal (de rotação no plano).

Então podemos escrever

Σ = LL′ + ψ = LTT ′
I2

L′ + ψ = (LT )
L∗

15x2

(LT )′ + ψ = L∗
15x2

(L∗)′

2x15
+ ψ
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Métodos de estimação

Isto significa que, se tivermos apenas Σ, teremos

LL′ + ψ = Σ = L∗(L∗)′ + ψ

onde L∗ = LT é diferente de L.

As linhas de L∗ são as linhas de L rotacionadas de um ângulo ∅.
Como T é arbitrária (pode ser qualquer T ) isto significa que
podemos rodar L à vontade, com qualquer ângulo ∅, que sempre
teremos uma representação de Σ da forma Σ = L∗(L∗)′ + ψ.
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Métodos de estimação

Mas como interpretar os números que aparecem em L?

Qual a L “correta”?

Não é posśıvel determinar uma única L tal que Σ = LL′ + ψ

Existem infinitos L com esta propriedade.

Qualquer L∗ = LT (isto é, L rotacionada) terá a mesma propriedade.

Todas as matrizes de carga L∗ obtidas a partir de uma matriz L inicial
terão a mesma capacidade de reproduzir a matriz de covariância Σ.
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Métodos de estimação

Ao invés disso se tornar um problema, transformamos os limões numa
limonada.

Caso uma matriz de cargas L inicialmente obtida por algum método
de estimação não fornecer uma boa interpretação para os fatores, nós
procuramos uma versão rotacionada L∗ = LT tal que as novas cargas
sejam mais interpretáveis.

É comum sermos capazes de terminar com uma estrutura mais
simples que a matriz L inicial.

Qual é esta estrutura mais simples?
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Métodos de estimação

Idealmente, nós gostaŕıamos de ver um padrão em que cada variável
tenha uma carga alta num dos fatores e uma carga ≈ 0 nos demais.

O objetivo é procurar uma rotação dos eixos de forma que as novas
cargas fiquem o mais pròximo posśıvel deste ideal.

OBS: Se temos 15 pontos no plano (as cargas ∼̀j) e rodamos todas
elas de um ângulo ∅, isto é o mesmo que rodar os dois eixos do plano

de −∅ e deixar os “pontos intactos”.
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Métodos de estimação

Coordenadas nos novos eixos são as mesmas de ∼̀
∗nos eixos antigos.
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Métodos de estimação

Se nossas cargas L
px2

=

. .
. .
. .

 são assim:

procuramos rodar os eixos até que as cargas sejam próximas do ideal

Nos novos eixos, as cargas são ≈ 0 exceto em um único fator.
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Procedimento VARIMAX

Defina ˜̀∗
ij =

`∗ij
hi

=
`∗ij

`∗i1+`∗i2+...+`∗ip
∈ [0, 1] as cargas dos fatores

rotacionados e normalizados.

Busque a rotação T tal que maximize

V =
1

p

m∑
j=1

[

p∑
i=1

˜̀∗
ij

4 −
(
∑p

i=1
˜̀∗
ij

2
)2

p
]

∝
∑m

j=1(variância das (cargas)2 normalizadas do fator j)

Maximizar V significa espalhar as (cargas)2 o máximo posśıvel, com
valores altos em alguns fatores e valores ≈ 0 em outros.

Tendo estimado a matriz de cargas, podemos estimar o valor
dos fatores de cada indiv́ıduo da amostra.
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Procedimento VARIMAX

Suponha que o i-ésimo indiv́ıduo tenha o vetor ∼Xi e que tenhamos
estimado

∼
µ (a média das variáveis sobre a amostra) e tenhamos

também a matriz de cargas L (talvez rotacionada).

O vetor ∼Fi deste indiv́ıduo é estimado pela minimização da diferença
entre ∼Xi e

∼
µ+ L∼F .

Isto é, procuramos um vetor ∼Fi tal que ele minimize o comprimento

‖Xi − µ− L∼Fi‖
2

Veja a lista de exerćıcios (beer example) para um exemplo.
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