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Analise Fatorial

o X ~ Np(p, X), vetor p_dim

@ Imagine que existem DUAS varidveis F; e F» que NAO SAO
diretamente observaveis.
Dizemos que sdao LATENTES

F1 e F, sdo independentes.

o Cada uma das X; em X é aproximadamente uma combina¢do linear
de F1 € F2.
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Analise Fatorial

@ Isto é,
X1~ p1+ bk + liaF
Xo = pp + lo1F1 + looFp

Xp = pip + Lp1F1 +p2Fo
@ (; = constantes desconhecidas

= carga dos fatores
= factor loading
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Analise Fatorial

o Exemplo:
X = Vetor com notas de um aluno em 15 assuntos

X1 = Gramdtica Xg = Légica

X> = Literatura X10 = Quimica
X3 = Redacdo X11 = Fisica

X4 = Histéria X12 = Biologia
X5 = Geografia X13 = Inglés

X = Filosofia X14 = Sociologia
X7 = Algebra Xi5 = Espanhol

Xg = Geometria
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Analise Fatorial

@ Desempenho individual nestes 15 assuntos é muito variado:
e Alguns vdo bem em todas as disciplinas;
e Alguns vdo bem apenas em algumas e tem um desempenho médio nas
outras;
e Alguns vao muito bem em algumas e muito mal em outras;
e Alguns vdao mal em todas.

@ Como entender essa diversidade?
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Analise Fatorial

@ Psicdélogos se perguntaram se esta variabilidade na capacidade
cognitiva ndo poderia ser explicada pela existéncia de uns poucos
tracos latentes, n3o observados.

@ Por exemplo,
FV = Fator refletindo habilidade verbal
FQ = Fator refletindo habilidade légico-quantitativa

@ Os fatores tem uma escala centrada em zero.
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Analise Fatorial

e Se

F = 0 = Individuo tem habilidade média no fator.

F > 0 = Habilidade acima da média.
F > 0 = Habilidade muito acima da média.
F < 0 = Habilidade abaixo da média.

Figura: Densidade da distribuicdo de um fator na populagio.
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Analise Fatorial

@ Cada insividuo recebe uma “dose” de FV e uma “dose” de FQ.

@ Doses de FV e FQ s3o independentes.
Por exemplo, alguns recebem muito de FV.
Dentre estes,
Metade recebe FQ+
Metade recebe FQ—

@ As notas nos 15 assuntos sao reflexos e combinagdes desses dois
fatores, além de um ruido causado por outros fatores que n3o levamos
em conta.
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Analise Fatorial

Modelo hierarquico para a geracdo das 15 notas de um mesmo
individuo.

Passo 1: Recebe doses independentes de FV e FQ.

FV— FQ+

Passo 2: Estas doses afetam as notas dos 15 assuntos.
)
—
S >N\
Literatura Gramatica { Biologia }{ Algebra }{ Fisica ]

@ Auséncia de aresta = sem influéncia do fator.
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Analise Fatorial

@ Peso ou importancia da aresta representada por grossura da aresta.

[Literatura] [Gramética} [ Algebra ]

@ Peso da aresta é a carga do fator (factor loading).
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Representacao algébrica

e Gramdtica = X1 = Gram + {ov * FV + lgg * FQ
Literatura = Xo = ppje + biv * FV + L1 * FQ

Carga dos fatores.
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Representacao algébrica

o Gramadtica = X1 = [1Gram + Lov * FV +{go * FQ
Literatura = Xo &~ ppjr + Ly * FV + L1 * FQ

Fator verbal do individuo. O mesmo para todos os assuntos.
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Representacao algébrica

@ Mais formal:
X1 :,UGram“‘gGV* FV"‘EGQ* FQ + €Gram
Xo = prie +lv x FV + L1 FQ +epix

X15 = pesp + ey * FV +Leg x FQ 4 €Esp

Erros ou fatores ndo observados.
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e
Representacao algébrica

@ Um exemplo esquematico.
e Assuntos muito associados com FV:
X1 = H1 + (10) * FV + (01) * FQ + &1
Xo = o+ (0.8) « FV + (0.01) * FQ + &

o Nenhuma das duas habilidades é muito relevante:
X3 =p3+ (0.1) % FV — (0.1) * FQ + &3

o Precisa ser bom em FQ e muito ruim em FV. :(

e Bom em FQ e pouco relevante em FV.
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Representacao algébrica

@ Representacdo matricial para um individuo:
X=p+ L-F +¢
~ pXm - px1 px1

L = matriz de carga dos fatores (loading).
F = vetor dos fatores comuns (as p varidveis).
£ = vetor dos erros ou fatores especificos (de cada varidvel).
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Representacao algébrica

@ Vamos imaginar dois individuos com seus dois vetores instanciados:

|+

x\M

XU = ' =
.1
Xj5’
X2

X® = ' =
.2
X2
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Representacao algébrica

@ Vamos imaginar dois individuos com seus dois vetores instanciados:
XMW =+ FO 4 )

XO® =p41-F@ 40

~
~

e L = iguais para todos os individuos.
, (@)
F() = [I;g(i)] = doses dos fatores recebidos pelos individuos.

() = erros do individuo (i)
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Representacao algébrica

@ Vamos imaginar dois individuos com seus dois vetores instanciados:
XD =p+L-FO 4

~

X = 4 L F® 4@

S3o iguais.  Especificos do individuo.
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Representacao algébrica

S6 observamos o vetor X em vdrios individuos.

Queremos entender como X varia.

@ Basta entender como os fatores FV e FQ variam de individuo para
individuo.

@ As notas dos 15 assuntos apenas refletem e combinam estes fatores

através da matriz L.

@ Um pequeno ruido £ para cada disciplina é adicionado para levar em
conta os demais fatores que estamos ignorando.
@ Como podemos inferir L a partir dos dados?
v()
FQW)

E os escores dos fatores [ ] de cada individuo, como obtemos?
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Suposicoes do modelo fatorial

@ Individuo (i) com m = 2 fatores.

%((i) =+ L ‘f(i) +§(i)
px1 p;l PX2 5x1 px1
° e L s3o comuns a todos os individuos, nao aleatdrios.
° f(i) e g(i) variam de individuo para individuo, sdo aleatérios.
, Fv () E(FV(1) 0
(I) pu— . = . = =
» (£ =2 (L) = (egrem) = (6) ¢
[ Var(FV() Cov(FV), FQ("))] _ [1 o}

() — v .
° CovlE™) =1 oy PV FQUY  Var(FQW) 01

2x2
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Suposicoes do modelo fatorial

@ A op¢do de tomar a variancia de cada fator igual a 1 (e portanto,
tomar o DP de cada fator = 1) é baseada no seguinte argumento:
o Cada fator (FV ou FQ) terd a "mesma escala” indo de -2 a +2
aproximadamente ao variar dos menos habilidosos aos mais habilidosos.
o Se o fator F afetar muito uma nota X; isto serd refletido numa carga
¢jx muito positiva (ou muito negativa).
o Mas a escala de todos os fatores é a mesma (em DP’s): vai de -2 a
+2, aproximadamente.

@ A covariancia Cov(FV(i), FQ(i)) = 0 pois estamos supondo fatores
independentes.
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Suposicoes do modelo fatorial

@ Mais suposi¢coes, agora sobre g(’):

i i 0

D\ (EED (o

15x1 (-,) '(,) _
€15 E(eis) 0
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Suposicoes do modelo fatorial

@ Mais suposi¢Oes, agora sobre g( )

Var(e (')) Cov(e (), ()) . Cov(a(l'),egg)_
Cov(eg), ()) Var(e ()) Lo Cov(gg), 5'5))
Cov(e) = . . .
15x15 o .
Cov(egg, ()) Cov(5(15),6§)) . Var(sg'g)
i i
P2

= o = diag(v1, ..., 115) = ¢

15 ]
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Suposicoes do modelo fatorial

o E razoavel deixar que Var(aj(.')) varie.

e Podemos ter 1); # 1)y.

@ A razao é que a nota de redagao, digamos, pode ter muito mais
variabilidade que a nota de matematica devido a fatores nao
relacionados com FV ou FQ.

@ A subjetividade do corretor da redacado, a variagdo da qualidade da
redacao como fruto do conhecimento do aluno sobre o tema, entre
outras causas, pode gerar mais variacao na nota da redac¢do do que a
variacdo induzida pela diversidade de FV e FQ.
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Suposicoes do modelo fatorial

@ A covariancia entre os erros de assuntos distintos, Cov(aj(-'), (55(')),
provavelmente ndo é zero, mas deve ser pequena. Por isto facamos
todas iguais a zero no modelo.

()

O

@ Assim, adotamos Cov(g) = : = diagonal.

O

Y15
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Suposicoes do modelo fatorial

Uma dltima suposicao: F e € sdo independentes.

@ Isso implica que:
Cov(e1, F1) Cov(er, F2) 00
Cov(ea, F1)  Cov(ea, F) 00
Cov(e, F) = - - =

15x2
Cov(eis, F1) Cov(eis, F2) 00

e Note que, como E(¢) =0 e E(F) = 0, temos
15x1 2x1
Cov(g, £) = E(¢F') = 0 e também E(£¢') = 0.

@ Podemos agora obter a estrutura de convaridncia das observagoes X.
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Suposicoes do modelo fatorial

o E(X)=E(p+LF +¢)
= p+E(LE) + E(e)
= p+ LE(F) +E(g)
=p+10+0
— K

@ E isto mesmo, o valor esperado das notas é o vetor u, que representa
a média da populacdo de interesse.

° Ci_:/(lé) =X =E((X —p)(X —p)) =E((LE +&)(LF +¢))
=E((LE)(LE) +e(LE) + (LF)g + &)
=E(LEF'L) + E(e(LF)) + E((LF)E") + E(eg”)
= LE(FF)L'+0+0+7
= L+
= LU+

Isto é, Cov(X) =X =LL'+7
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Suposicoes do modelo fatorial

@ No nosso exemplo com 15 notas e dois fatores:

hi  l12 ()
/¢ /¢ .
s _ S N P 2 N OT + _
15x15 ' ' lip fn . . l152 '
l151 {152 Y15
2y + 03y + 1 lialio + hoho  liilsr + hoko . . f11lis1 + l12l1s 2

O110o1 + l1olay 03; + 035 +ba lorlsy + aolzn . . lorlisy + looliso

5%5,1 + @5,2 + Y15
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Suposicoes do modelo fatorial

@ Outra maneira de pensar sobre ¥ é perceber que, se olharmos a
matriz L como um conjunto de 15 vetores-cargas,

15x2

lin A1 l1

b1 A 0>
L= . . =

l151 f152 15

onde {; = cargas da disciplina j.
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Suposicoes do modelo fatorial

@ Ent3o,

Yy =
15x15
[(01,41) + 1
<£17£2>
@17£3>

(41, 415)
141117 + 1
<§27£1>

(15, 41)

Renato Assun¢do, DCC, UFMG

<€27£1>
(2, L) + 12
(€2, £3)

(€2, l15)
<£2’£1>
142]1% + 12

(15, 42)

(l3, ba)
<g3v£2>
(€3, £3) + 3

(€3, l15)
(15, 41)
(l15L2)

I1151% + 15
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(U5, £1) ]
(l15L2)
(U1543)

(15, l15) + 15 ]
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Suposicoes do modelo fatorial

Assim,

Var(X;) = Zi = |61 + i = 6 + O + 0
14i|I> = comumalidade
w; = variancia especifica
Se os dois fatores latentes ndo possuem impacto na disciplina i (por
exemplo, se a disciplina for educacio fisica), entdo 6,21 + 6,22 ~0e
toda a variancia da nota é devida aos fatores especificos ¢; e
diferentes dos fatores latentes.
Suponhamos que a disciplina X; tenha uma carga grande do fator
verbal (2, > 0), mas uma carga pequena do fator quantitativo
(12 ~ 0). Entdo Var(X;) = (2, + 02, + ; =~ 2, + ;.
Toda a variabilidade das notas entre os alunos é devida as diferencas
do fator verbal.
Alunos apenas com o fator quantitativo FQ muito diferentes n3o
terdo notas muito distintas.
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Interpretando as cargas dos fatores

it {1

lr  Axp 4>
L= . . =

U151 l152 {15

@ Podemos plotar as linhas de L num grafico planar.
@ A primeira coordenada (fator 1) no eixo horizontal e a segunda
coordenada no eixo vertical (fator 2).

32/59
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Interpretando as cargas dos fatores

,r ® Redacéo
® Sociologia
o
Literatura .
@Gramatica
®Fisica

Quimica @Matematica
>

o Esta representacao mostra que as disciplinas
Fisica, Quimica, Matemdtica = possuem cargas altas no Fator 1 e

cargas baixas no Fator 2.
Redac3o, Literatura, Sociologia = pouca carga do Fator 1 e muita

cargado Fator 2.
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Interpretando as cargas dos fatores

@ Isto implica que, nesta disposicdo de colunas da matriz L, a primeira
coluna (ou a primeira coordenada das linhas) representa o fator
quantitativo.

@ A segunda coluna de L representa o fator verbal.

@ Observe que “Gramatica” ficou a meio caminho, com carga mediana
nos dois fatores. Para ter nota alta em “Gramdtica” é preciso ter
“doses” razodveis dos dois fatores OU uma “dose” bem grande de um
dos fatores, qualquer um deles.
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Métodos de estimacao

© Maxima verossimilhanga (veremos mais tarde no curso)
@ Componentes principais
@ Veremos apenas o segundo método.
@ Pelo teorema espectral, ¥ = P A P/, onde P = [v; ... vp| sdo os
A1
autovetores de X e A = ' é matriz diagonal com os
Ap

autovalores.

@ Manipulagdo matricial permite escrever

VAl
=) = [Va o V] |
VAnYp

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 35/59



e
Métodos de estimacao

@ Suponha que os ultimos autovalores sejam = 0.

@ Isto implica que as ultimas colunas de L* sdo aproximadamente nulas
e podem ser ignoradas.

@ Mais formalmente, suponha que a soma dos k primeiros autovalores
seja praticamente igual a soma de todos os p autovalores:

A1+ Ao+ o+ Ak ~1
AMtX+ A A+ A,

@ Ignorando as dltimas colunas da matriz L* ficamos com uma matriz
pxp
L .

pxk ’

/
VALY
Y = LL/ = [\/ All/l Y )‘kl/k]
/
VAKY
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Métodos de estimacao

@ Para completar o modelo fatorial, estimamos a matriz diagonal
1
Y= ' = diag[xX — LL]

Vp
Isto é, i = X — (LL')ji
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Resumo prético

@ Matriz de dados X

nxp
Obtenha S = Cov(X)

Alternativamente, se os s;; forem muito distintos, usamos a matriz
R = cor(x), a matriz de correlag3o.

Obtermos os autovalores ordenados e os autovetores de S.

Calcule a soma acumulada
At Ak — 3
Mt A A F A1 Ap k

@ Se a, ~ 1 com k pequeno, entdo o modelo fatorial pode ser usado
pois vai simplificar a estrutura dos dados.

(]
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Resumo prético

@ Use os primeiro k autovetores (tal que ax ~ 1) para criar a matriz de

cargas
U1
L=[VAv . VAw]ey= ' onde
Up
Vi = Sii — (LL")ii

@ Um bom critério de escolha de k é verificar que a soma das entradas
ao quadrado da matriz (S — (LL'+¢)) < A2, + ...+ A2
Assim, se )\iﬂ + ...+ )\% ~ 0= S~ LL +1 e o modelo fatorial é
um bom ajuste.
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e
Exemplos de Johnson & Wichern

Example 9.3 (Factor analysis of pref data) In a consumer-preference
study, a random sample of customers were asked to rate several attributes of a new
product. The responses, on a 7-point semantic differential scale, were tabulated and
the attribute correlation matrix constructed. The correlation matrix is presented next:

Attribute (Variable) 1 2 3 4 5
Taste 1100 .02 42 .01
Good buy formoney 2| .02 1.00 n
Flavor 3 96 .13 100 .50 .11
Suitableforsnack 4| 42 71 50 100
Provideslotsofenergy 5| .01 .8 .11 .79 1.00

It is clear from the circled entries in the correlation matrix that variables 1 and
3 and variables 2 and 5 form groups. Variable 4 is “closer” to the (2, 5) group than
the (1, 3) group. Given these results and the small number of variables, we might ex-
pect that the apparent linear relationships between the variables can be explained in
terms of, at most, two or three common factors.

The first two eigenvalues, Xl = 2.85 and A, = 1.81, of R are the only eigenval.
ues greater than unity. Moreover, m = 2 common factors will account for a cumula.

tive proportion

Atk 2 .

1 2=2785+181:.93
p 5

of the total (standardized) sample variance. The estimated factor loadings, commy-
nalities, and specific variances, obtained using (9-15), (9-16), and (9-17), are given in
Table 9.1.
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e
Exemplos de Johnson & Wichern

| Table 9.1 ‘
Estimated factor ‘ﬁ
N Ioadxn%s Specific
&= \/A—ié,-,- Communalities variances
Variable F F, h? Wi=1-7
1. Taste .56 82 98 02
2. Good buy
for money .78 —-.53 88 12
3. Flavor .65 75 .98 .02
4. Suitable
for snack 94 -.10 ‘ 89 11
5. Provides
lots of energy .80 —-.54 93 .07
[Eigenvalues 2.85 1.81
Cumulative
proportion
of total
(standardized)

Bmple variance 571 932
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Exemplos de Johnson & Wichern

Now,
56 .82

78 .53
N 56 78 65 94 80
L+ ¥ =) 6 75 [82 ~53 75 ~10 —54]

94 -.10
80 -—.54
020 0 0 o0 100 .01 97 .44 00
0 12 0 0 0 100 11 .79 9
+(0 0 02 0 0 = 1.00 53 11
0O 0 0 110 100 .81
o 0 0 0 .07 1.00

nearly reproduces the correlation matrix R. Thus, on a purely descriptive basis, we
would judge a two-factor model with the factor loadings displayed in Table 9.1 as pro-
viding a goad fit to the data. The communalities (.98, .88, .98, .89, .93) indicate that the
two factors account for a large percentage of the sample variance of each variable.

We shall not interpret the factors at this point. As we noted in Section 9.2, the
factors (and loadings) are unique up to an orthogonal rotation. A rotation of the
factors often reveals a simple structure and aids interpretation.
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Exemplos de Johnson & Wichern

E le 9.4 (Factor analysis of stock-price data) Stock-price data consisting of
n = 103 weekly rates of return on p = 5 stocks were introduced in Example 8.5.
In that example, the first two sample principal components were obtained from R.
Taking m = 1 and m = 2, we can easily obtain principal component solutions to
the orthogonal factor model. Specifically, the estimated factor loadings are the
sample principal component coefficients (eigenvectors of R), scaled by the
square root of the corresponding eigenvalues. The estimated factor loadings,
communalities, specific variances, and proportion of total (standardized) sample
variance explained by each factor for the m = 1 and m = 2 factor solutions are
available in Table 9.2. The communalities are given by (9-17). So, for example, with

m=2 0 =T + T = (7327 + (-437)2 = 73.

Table 9.2
One-factor solution Two-factor solution
Estimated factor Specific Estimated factor Specific
loadings variances loadings variancei
Variable R Ui=1-h F F, v, =1—-h?
1. J P Morgan 732 .46 732 —.437 27
2. Citibank 831 .31 831 —.280 23
3. Wells Fargo 726 47 726 —-.374 .33
4. Royal Dutch Shell 605 63 .605 694 15
5. ExxonMobil .563 .68 .563 719 17
Cumulative
proportion of total
(standardized)
sample variance
explained .487 487 769
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e
Exemplos de Johnson & Wichern

The residual matrix corresponding to the solution for m = 2 factors is

0 —099 —185 —.025 .056
-099 0 —134 014 —.054
R-IL' -¥=|-18 -13¢ o 003 006
~025 014 003 O —.156

056 —-.054 006 —.156 O

The proportion of the total variance explained by the two-factor solution is : appreciably
larger than that for the one-factor solution. However, for m = 2, LL’ produceg
numbers that are, in general, larger than the sample correlations. This is particu]arly
true for ry3.

It seems fairly clear that the first factor, F;, represents general economic cop. -
ditions and might be called a market factor. All of the stocks load highly on this fac.
tor, and the loadings are about equal. The second factor contrasts the banking
stocks with the oil stocks. (The banks have relatively large negative loadings, and’
the oils have large positive loadings, on the factor.) Thus, F, seems to differentiate
stocks in different industries and might be called an industry factor. To summarize,
rates of return appear to be determined by general market conditions and activities
that are unique to the different industries, as well as a residual or firm specific -
factor.
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Métodos de estimacao

@ Existe um problema de identificabilidade na determinacao do modelo
fatorial.

@ O problema é que a matriz de cargas L s6é pode ser conhecida
a menos de uma rotac3o.

@ Seja 2T2 uma matriz ortogonal.
X p—

Isto é, TT' = T'T =1, = identidade = [(1) (1)]

@ De algebra de matrizes, sabemos que matrizes ortogonais
correspondem a uma rotacgao riida dos eixos coordenados.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 45 /59



Métodos de estimacao

@ Isto significa que uma matriz 2T2 tal que TT' = T'T =1 tem de ser
da seguinte forma:

| cos(¢) sin(¢)

 |=sin(¢)  cos(¢)

on T - {cos(qs) —sin(¢)

] = rotacao clockwise

sin(¢)  cos(o)
para ¢ € [0, 27]

@ Estas matrizes correspondem a rotacdes no plano.

} = counter-clockwise
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Métodos de estimacao

e X ) _ [ cos() sin(gb)]
>ej2 2lx/1 L/]ER e2:I<'2 [_Si”(¢) cos(¢)

e Entdo 2T2 17 é um novo ponto no R? obtido rotacionando 17 pelo
X22x1 _—
angulo ¢ na direcdo do relégio:

f

<<y

\'
i<y
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Métodos de estimacao

@ Considerando vetores-linha:

N/ =l C05(¢) _Sin(¢)
(TV) =vT =(xy) [sin(QS) cos(¢)]

A

<1l

>
>

A situacdo geométrica continua a mesma de antes, representar o
vetor como linha ou coluna n3o altera o resultado.

@ Vamos trabalhar com as linhas da matriz L.
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Métodos de estimacao

o Considere a matriz L das cargas

v b1 2
~ b L
L=| | =| . . | e T = matriz ortogonal.
, . .
15 U151 {152
O produto L - T pode ser pensado linha a linha
15x2 2x2
15x2
- -
) 4 ol
Y 1x2
L 05T
L-T=].]|= =L
15x2 2x2
/ y ’
15 | Li5 - T

As linhas de L* s3o as linhas de L rotacionadas de certo angulo ()
associado a matriz T.
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Métodos de estimacao

@ Rodando uma linha de L

A |
i
'5"2 \
LE=geT
~f ~
B
h -
@ Rodando cinco linhas de L
I*
2 h,
s/ .l b
Ja i
A9
/4' ’L;:- /.
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Métodos de estimacao

e OK, o que tudo isto quer dizer?

@ Suponha que o modelo fatorial é correto e que realmente podemos
escrever ou decompor a matriz de covariancia de X como:

_ _ Y. .
Var(X) = 152x5 N 15Lx2 2515 * 151515 = diagonal

@ Seja 2T2 qualquer matriz ortogonal (de rotagdo no plano).
X2 —/——
Entdo podemos escrever

E= LU= LT 44 = (LTY(LTY +v = L* (L) +
2 * 5x2 9415
15x2

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 51/59



Métodos de estimacao

@ Isto significa que, se tivermos apenas 2, teremos

LU 44 =% = [*(L*) + o

onde L* = LT é diferente de L.
@ As linhas de L* s3o as linhas de L rotacionadas de um angulo ().

e Como T é arbitraria (pode ser qualquer T) isto significa que
podemos rodar L a vontade, com qualquer dngulo ), que sempre
teremos uma representacdo de X da forma ¥ = L*(L*)' + .
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Métodos de estimacao

Mas como interpretar os nimeros que aparecem em L7
Qual a L “correta”?

N3o é possivel determinar uma dnica L tal que ¥ = LL' + v
Existem infinitos L com esta propriedade.

Qualquer L* = LT (isto é, L rotacionada) terd a mesma propriedade.

Todas as matrizes de carga L* obtidas a partir de uma matriz L inicial
terdo a_mesma capacidade de reproduzir a matriz de covariancia X.
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Métodos de estimacao

@ Ao invés disso se tornar um problema, transformamos os limdes numa
limonada.

@ Caso uma matriz de cargas L inicialmente obtida por algum método
de estimac3o n3o fornecer uma boa interpretacdo para os fatores, nés
procuramos uma vers3o rotacionada L* = LT tal que as novas cargas
sejam mais interpretdveis.

@ E comum sermos capazes de terminar com uma estrutura mais
simples que a matriz L inicial.

@ Qual é esta estrutura mais simples?
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Métodos de estimacao

@ |dealmente, nds gostariamos de ver um padrao em que cada varidvel
tenha uma carga alta num dos fatores e uma carga =~ 0 nos demais.

@ O objetivo é procurar uma rotacdo dos eixos de forma que as novas
cargas fiquem o mais proximo possivel deste ideal.

@ OBS: Se temos 15 pontos no plano (as cargas ¢;) e rodamos todas
elas de um angulo (), isto é o mesmo que rodar os dois eixos do plano

de —() e deixar os “pontos intactos” .
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Métodos de estimacao

> >

Coordenadas nos novos eixos sdo as mesmas de {*nos eixos antigos.
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e
Métodos de estimacao

@ Se nossas cargas L2 = sdao assim:
X

P

Carga do
fator 2

Carga do
fator 1

procuramos rodar os eixos até que as cargas sejam proximas do ideal

Carga do
fator 2

Novos eixos
A  p Cargado
| fator 1

Nos novos eixos, as cargas sao ~ 0 exceto em um (nico fator.
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N
Procedimento VARIMAX

*

Z

[ ’J —

e Defina E = T 7 € [0, 1] as cargas dos fatores
rotauonados e normallzados.

@ Busque a rotacdo T tal que maximize

m N . 2 . .
o > ;24 (varidncia das (cargas) normalizadas do fator j)

Maximizar V significa espalhar as (cargas)? o maximo possivel, com
valores altos em alguns fatores e valores &~ 0 em outros.

@ Tendo estimado a matriz de cargas, podemos estimar o valor
dos fatores de cada individuo da amostra.
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N
Procedimento VARIMAX

@ Suponha que o i-ésimo individuo tenha o vetor X; e que tenhamos
estimado y (a média das varidveis sobre a amostra) e tenhamos

também a matriz de cargas L (talvez rotacionada).

@ O vetor F; deste individuo é estimado pela minimizagdo da diferenga
entre X; e p+ LF.

Isto é, procuramos um vetor F; tal que ele minimize o comprimento
2
1Xi = — LEi|

o Veja a lista de exercicios (beer example) para um exemplo.
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