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Independência de V.A.’s

Eventos independentes

Eventos A e B, ambos contidos em Ω

são eventos independentes se

P(A ∩ B) = P(A)P(B)

Equivalentemente: A e B são independentes se, e somente se,

P(A|B) = P(A)

Podemos estender este conceito de independência para v.a.’s ao invés
apenas de eventos.
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Independência de V.A.’s

Independência de V.A.’s

Intuitivamente, duas v.a.’s X e Y são v.a.’s independentes se saber o
valor de uma v.a. não muda as probabilidades associadas com os
posśıveis valores da outra v.a.

v.a.’s são representações matemáticas das colunas da matriz de dados.

Considere k dessas colunas como instâncias das v.a.’s X1,X2, . . . ,Xk .

Estamos interessados nos valores dessas variáveis numa mesma linha
da tabela de dados.

Para ω ∈ Ω, observamos os valores das v.a.’s
X1(ω),X2(ω), . . . ,Xk(ω).

Todos são valores medidos no mesmo resultado ω.
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Independência de V.A.’s

Independência de V.A.’s

Por causa disso, é posśıvel que os valores X1(ω),X2(ω), . . . ,Xk(ω)
estejam associados.

Um valor dando alguma informação sobre os demais.

Na maioria das vezes será de fato assim.

Mas existem situações em que as v.a.’s não estão associadas.
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Independência de V.A.’s

Um exemplo

ω = um indiv́ıduo escolhido ao acaso de certa população humana.

Sejam X1(ω) o seu ńıvel de colesterol LDL (colesterol ruim),

X2(ω) um indicador binário de que o indiv́ıduo é obeso,

X3(ω) um indicador binário de que o indiv́ıduo é fumante,

X4(ω) um indicador binário de que seu primeiro nome começa com
uma das letras A, . . . ,M ou se começa com N, . . . ,Z ,

Intuitivamente, podemos esperar que as variáveis X1, X2 e X3 não
sejam independentes umas das outras.

É dif́ıcil imaginar como X4 pode estar associadas com X1, X2 e X3.
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Independência de V.A.’s

Outro exemplo

n lançamentos de uma moeda.

ω a sequência dos n lançamentos: uma n-upla com C (cara) ou C̃
(coroa)

O resultado ω é uma n-upla com C (cara) ou C̃ (coroa)

Seja Xi (ω) uma v.a. binária indicando se o i-ésimo lançamento foi
cara (Xi (ω) = 1) ou coroa (Xi (ω) = 0).

Os lançamentos não guardam qualquer relação com os resultados
prévios ou futuros.

Intuitivamente, X1,X2, . . . ,Xn seriam v.a.s independentes.
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Independência de V.A.’s

Definição

Sejam X1,X2, . . . ,Xn v.a.’s medidas num mesmo espaço de
probabilidade (Ω,A,P).

As v.a.’s X1,X2, . . . ,Xn são v.a.s independentes se

P(X1 ∈ B1,X2 ∈ B2, . . . ,Xn ∈ Bn) = P(X1 ∈ B1)P(X2 ∈ B2) . . .P(Xn ∈ Bn)
(1)

para todo conjunto Bi da reta real, i = 1, . . . , n.

Se as variáveis não forem independentes, dizemos que elas são
dependentes.
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Independência de V.A.’s

Informalmente...

As v.a.’s X1,X2, . . . ,Xn são independentes se, e somente se,
quaisquer eventos determinados por qualquer grupo de variáveis
distintas formam eventos independentes.

Por exemplo, se as v.a.’s são independentes então:

os eventos [X1 ≤ 2] e [X2 > 4] são eventos independentes;
[X1 > 4] e [X2 > 4] são independentes também, mesmo que o número
4 apareça nos dois eventos;
[X1 ≤ 2], [X2 > 4 e X3 > 7] e [X4 < 0 ou X5 > 10] são eventos
independentes;
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Independência de V.A.’s

Relevância...

Basta sabermos a distribuição de cada v.a. individualmente,
P(Xi ∈ Bi ), para obtermos as probabilidades envolvendo todas as
v.a.’s.

Isto é, ao invés de especificar a distribuição conjunta das v.a.’s

P(X1 ∈ B1,X2 ∈ B2, . . . ,Xn ∈ Bn) , (2)

nós afirmamos que ela é igual ao produto das distribuições individuais
das v.a.’s,

P(X1 ∈ B1)P(X2 ∈ B2) . . .P(Xn ∈ Bn) . (3)
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Independência de V.A.’s

I.I.D.

Sejam as v.a.’s X1,X2, . . . ,Xn medidas num mesmo espaço de
probabilidade (Ω,A,P).

Dizemos que as v.a.’s são independentes e identicamente distribúıdas
quando:

elas forem todas independentes
e tiverem, cada uma delas, a mesma distribuição de probabilidade.

Dizemos que elas são i.i.d.
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Independência de V.A.’s

Amostra aleatória

X1,X2, . . . ,Xn v.a.’s i.i.d.

Elas têm a mesma distribuição de probabilidade de uma v.a. X com
distribuição acumulada F e densidade f (x) (caso cont́ınuo) ou função
de probabilidade P(X = xi ).

Dizemos que o vetor aleatório (X1, . . . ,Xn) é uma amostra aleatória
da v.a. X .

Alternativamente, dizemos que o vetor é uma amostra de F ou de
f (x) ou de P(X = xi ).
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Independência de V.A.’s

Como saber que sâo independentes?

Em prinćıpio verificando a definição.

No caso de X1 e X2, deveŕıamos verificar que

P(X1 ∈ B1,X2 ∈ B2) = P(X1 ∈ B1)P(X2 ∈ B2)

para todo par de conjuntos B1 e B2 da reta real.

Na prática, existem duas maneiras:

Por suposição (ou seja, não “verificamos” coisa nenhuma, assumimos
que são independentes)
Verificando matematicamente
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Independência de V.A.’s

Independência por suposição

Refletindo sobre as condições do problema espećıfico nós assumimos
que as v.a.’s são independentes.

Assumimos que X4 (se o primeiro nome começa com A, . . . ,M ou
não) é independente do ńıvel de colesterol X1.

Obtemos um modelo de distribuição P(Xi ∈ Bi ) para cada
coluna-variável separadamente.

A seguir, afirmamos que
P(X1 ∈ B1,X4 ∈ B4) = P(X1 ∈ B1)P(X4 ∈ B4).

E quando isto não bater com a realidade?

E quando a suposição de independência não for válida?

Existem métodos para testarmos se duas ou mais variáveis são
independentes (MAIS TARDE NO CURSO).
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Independência de V.A.’s

Independência por dedução

Neste caso, a probabilidade conjunta
P(X1 ∈ B1,X2 ∈ B2, . . . ,Xn ∈ Bn) é fornecida.

De alguma forma, temos um modelo para as probabilidades
envolvendo todas as variáveis.

Obtemos cada probabilidade individual P(Xi ∈ Bi ) e então mostramos
que a probabilidade conjunta é igual ao produto
P(X1 ∈ B1)P(X2 ∈ B2) . . .P(Xn ∈ Bn)
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Independência de V.A.’s

Por exemplo,...

Duas moedas lançadas em sequência com resultados X1(ω) e X2(ω).

Suponha que

ω P(ω)

CC θ2

CC̃ θ(1− θ)

C̃C (1− θ)θ

C̃ C̃ (1− θ)2

Total 1

Então obtemos as distribuições individuais (marginais):

P(X1 = 1) = P(X1 = 1 e X2 ∈ {0, 1}) (4)

= P(X1 = 1,X2 = 0) + P(X1 = 1,X2 = 1) (5)

= θ(1− θ) + θθ pela probabilidade conjunta (6)

= θ (1− θ + θ) = θ (7)
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Independência de V.A.’s

Temos P(X1 = 0) = 1− P(X1 = 1) = 1− θ.

Analogamente, P(X2 = x) para x = 0, 1

Descobrimos que X1 ∼ X2 (possuem a mesma distribuição).

Também verificamos que são independentes:

P(X1 = x1,X2 = x2) = P(X1 = x1)P(X2 = x2)

para toda combinação de x1 e x2 em {0, 1}.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 17 / 34



Independência de V.A.’s

Outro caso, dependente

Duas moedas lançadas em sequência com resultados X1(ω) e X2(ω).

Suponha que

ω P(ω)

CC θ
√
θ

CC̃ θ(1−
√
θ)

C̃C θ(1− θ)

C̃ C̃ (1− θ)2

Total 1

Repetindo os cálculos anteriores: P(X1 = 1) = θ e
P(X2 = 1) = θ(1− θ +

√
θ) mas

P(X1 = 1,X2 = 1) = θ
√
θ 6= P(X1 = 1)P(X2 = 1) = θ2(1− θ +

√
θ) .

Não são independentes (basta mostrar que numa configuração
espećıfica o produto não vale).
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Transformação de V.A.s

Transformação de V.A.s

Seja X ∼ U(0, 1), v.a. uniforme em (0,1).

Densidade é f (x) = 1 para x ∈ (0, 1).

Seja Y = X 2, o quadrado com lado aleatório X .

Y também é uma v.a.?

Qual sua distribuição?

Duas coisas...
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Transformação de V.A.s

Descobrindo experimentalmente

Figura: Simule X muitas vezes, obtenha Y = X 2 e faça histograma dos valores de
Y .
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Transformação de V.A.s

Um problema em seguros

Seguro de vida: paga 200 mil reais a beneficiários (esposa e filhos) no
momento de morte de um indiv́ıduo que tem 30 anos.

Suponha um mundo sem inflação.

O indiv́ıduo vai pagar um único valor, chamado prêmio, no instante
de assinatura do contrato.

Quanto deve ser este prêmio? Qual seria um valor just para ele?

Dinheiro tem valor no tempo...o valor do amanhã.
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Transformação de V.A.s

O valor do amanhã

Figura: Eduardo Gianetti
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Transformação de V.A.s

Outro livro altamente recomendado

Figura: Sem relação com nosso assunto: A fascinating exploration of how insights
from computer algorithms can be applied to our everyday lives, helping to solve
common decision-making problems and illuminate the workings of the human
mind.
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Transformação de V.A.s

Valor presente

Seja δ = 0.05 a taxa de juros real (equivalente a 5% ao ano) no
futuro.

O indiv́ıduo vai viver mais T anos a partir da assinaura do contrato.

Daqui a T anos, a seguradora vai desembolsar 100 mil reais (corrigido
por inflação, mas ignore isto)

Cálculo financeiro básico mostra que o valor presente (no instante de
assinar o contrato) do benef́ıcio é

Y = 100 exp(−δT ) = 100 exp(−0.05T ) = 100× 0.9512T

Se ele pagar HOJE esta quantidade Y , a seguradora terá recebido o
que precisa ara pagar de volta o benef́ıcio de 100 mil reais.

Por exemplo, se ele falecer dentro de 20 anos (com T = 20 então),
basta ele pagar HOJE Y = 100exp(0.05× 20) = 36.78.

Se ele falecer dentro de T = 10 anos, a seguradora deveria cobrar
60.65 mil reaispara conseguir agar o benef́ıcio de 100 mil reais.
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Transformação de V.A.s

Valor presente é variável aleatória

Em resumo, cobre Y = 100 exp(−δT ) = 100 exp(−0.05T ) do seu
cliente no momento da assinatura do contrato: o pagamento do
benef́ıcio está coberto.

Quanto mais tempo ele demorar para falecer (maior T ), menor o
valor de Y .

Mas não sabemos o valor de T , ele é aleatório e só vai ser instanciado
em algum momento no futuro.

Se não temos T , não temos Y = 100 exp(−0.05T ).

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 25 / 34



Transformação de V.A.s

Valor presente é variável aleatória

Y = 100 exp(−0.05T ) é uma variável aleatória, função matemática
da v.a. T .

Note que Y = g(T ) onde g(t) = 100 exp(−0.05t)

O que cobrar do cliente?

Solução: cobre o valor esperado E(Y ) = E (100 exp(−0.05T )).

Isto é um número fixo, não uma v.a.

Para alguns indiv́ıduos teremos Y > E(Y ) e para outros teremos
Y < E(Y ).
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Transformação de V.A.s

Valor presente atuarial

Vários indiv́ıduos de 30 anos indexados por i = 1, 2, . . . , n

Os seus tempos de vida futura T1,T2, . . . ,Tn são v.a.’s i.i.d.

Cada um deveria pagar Y1,Y2, . . . ,Yn.

Cobramos o mesmo valor E(Y ) = E (100 exp(−0.05T )) de todos (se
soubermos calculá-lo)

Para alguns teremos Yi > E(Y ) e para outros teremos Yi < E(Y ).

Mas sabemos que (Y1 + Y2, . . .+ Yn)/n ≈ E(Y )
Ou seja:

Eu deveria coletar, (Y1 + Y2, . . .+ Yn), mas isto é imposśıvel ois não
conhecemos Yi na assinatura do contrato
Este valor é aproximadamente igual ao que eu de fato coletei: nE(Y )
(o valor E(Y ) de cada um deles)

Se a carteira de clientes da seguradora for grande, esperamos que os
desequiĺıbrios se cancelem no final.

E(Y ) é chamado de valor presente atuarial.
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Transformação de V.A.s

Distribuição de Y = h(X )

Como obter a distribuição de probabilidade de Y = h(X )
conhecendo-se a distribuição de X?

Vamos supor que X e Y sejam cont́ınuas.

Dois métodos:
1 Inversão de h: obtenha FY (y) e a seguir obtenha a sua derivada

F′
Y (y) = fY (y), que é a densidade de Y .

2 Use o teorema da transformação de v.a.’s.

O método (1) é mais simples e intuitivo mas só serve para casos
univariados, em que Y é função de uma única v.a. X .

O método (2) é matematicamente mais sofisticado mas permite
generalizar para obter a densidade de Y quando ela for da forma
Y = h(X ,Z ), função de duas ou mais v.a.’s.
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Transformação de V.A.s

Método da inversão de h

Considere Y = X 2 onde X ∼ U(0, 1) (área do quadrado de lado
aleatório X ).
Lista de valores posśıveis de Y : intervalo (0, 1).
Considere um dos valores posśıveis: y = 0.37.
Queremos FY (0.37) = P(Y ≤ 0.37).
Temos a igualdade de eventos [Y ≤ 0.37] = [X ≤

√
0.37] pois

[Y ≤ 0.37] = {ω ∈ Ω tais que Y (ω) ≤ 0.37}
= {ω ∈ Ω tais que (X (ω))2 ≤ 0.37}
= {ω ∈ Ω tais que X (ω) ≤

√
0.37}

= [X ≤
√

0.37]

Se [Y ≤ 0.37] e [X ≤
√

0.37] são os mesmos, suas probabilidades
também são iguais:

FY (0.37) = P(Y ≤ 0.37) = P(X ≤
√

0.37) = FX (
√

0.37) =
√

0.37 .
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Transformação de V.A.s

Método da inversão de h

Refazendo para um valor y ∈ (0, 1) qualquer:

FY (y) = P(Y ≤ y) = P(X ≤ √y) = FX (
√
y) =

√
y .

Para obter a densidade fY (y) para y ∈ (0, 1)

fY (y) =
d

dy
FY (y) =

d

dy

√
y =

1

2
√
y
.

Para y /∈ (0, 1), temos fY (y) = 0 pois FY (y) é constante e igual a 0
(para y < 0) ou 1 (para y > 1).

O gráfico da densidade fY (y) é a curva vermelha abaixo.
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Transformação de V.A.s

Caso geral

A função de distribuição acumulada FY (y) de Y = h(X ) é definida
em termos de FX (x) da seguinte forma

FY (y) = P(Y ≤ y) = P(h(X ) ≤ y)

= P (X ∈ {x tal que h(x) ≤ y})
= P

(
X ∈ {x tal que x ≤ h−1(y)}

)
= FX (h−1(y))

Veja mais detalhes, exemplos e discussão nas notas de aula.
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Transformação de V.A.s

Teorema da transformação de v.a.’s.

Seja Y = h(X ). Suponha que no suporte de X a função h seja
inverśıvel com g = h−1 e portanto x = g(y).

Então a densidade de Y no ponto y é dada por

fY (y) = fX (g(y))

∣∣∣∣dg(y)

dy

∣∣∣∣ = fX (g(y))

∣∣∣∣dh−1(y)

dy

∣∣∣∣ (8)

Exemplo: Y = h(X ) = X 2 com X ∼ U(0, 1). Então, x = g(y) =
√
y .

Pelo teorema, fY (y) = fX (
√
y)× | ddy

√
y |.

Temos fX (x) = 1 para tdo x e portanto fX (
√
y) = 1.

Assim, fY (y) = 1× | ddy
√
y | = 1

2
√
y .
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Transformação de V.A.s

Obtendo E(Y )

Muitas vezes, qeremos apenas E(Y ) onde Y = h(X ).

Temos duas formas de obter esta esperança

(1): Obtenha fY (y) por uma dos métodos anteriores e, a seguir,
obtenha

E(Y ) =

∫
yfY (y)dy

(2): simplesmente obtenha

E(Y ) = E(h(X )) =

∫
h(x)fX (x)dx

sem nunca precisar obter fY (y).
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Transformação de V.A.s

Exemplo

Y = X 2 onde X ∼ U(0, 1)

Temos fX (x) = 1 e já obtivemos fY (y) = 1/(2
√
y).

Então, pelo primeiro método:

E(Y ) =

∫ 1

0
yfY (y)dy =

∫ 1

0
y

1

2
√
y
dy =

1

3

Pelo segundo método:

E(Y ) =

∫
h(x)fX (x)dx =

∫ 1

0
x2 1 dx =

1

3
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