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Some Important Continuous Random Variables 

9.1 Introduction 

In this chapter we shall pursue the task we set for ourselves in Chapter 8, and 
study in considerable detail, a number of important continuous random variables 
and their characteristics. As we have pointed out before, in many problems it 
becomes mathematically simpler to consider an "idealized" range space for a 
random variable X, in which all possible real numbers (in some specified interval 
or set of intervals) may be considered as possible outcomes. In this manner we 
are led to continuous random variables. Many of the random variables we shall 
now introduce have important applications and we shall defer until a later chapter 
the discussion of some of these applications. 

9.2 The Normal Distribution 

One of the most important continuous random variables is the following. 

Definition. The random variable X, assuming all real values -oo < x < oo, 
has a normal (or Gaussian) distribution if its pdf is of the form 

f(x) = -- exp - - --=-1!'. , 1 (. 1 [x ]2) 
vti; u  2 u 

-oo < x < oo. (9.1) 

The parameters µ and u must satisfy the conditions -oo < µ < oo, u > 0. 
Since we shall have many occasions to refer to the above distribution we shall 
use the following notation: X has distribution N(µ, u2) if and only if its prob­
ability distribution is given by Eq. (9.1). [We shall frequently use the notation 
exp (t) to represent e1.] 

We shall delay until Chapter 12 discussing the reason for the great importance 
of this distribution. Let us simply state now that the normal distribution serves 
as an excellent approximation to a large class of distributions which have great 
practical importance. Furthermore, this distribution has a number of very desirable 
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mathematical properties which make it possible to derive important theoretical 
results. 

9.3 Properties of the Normal Distribution 

(a) Let us state that f is a legitimate pdf. Obviously f(x) ;::: 0. We must still 
check that f�0000 f(x) dx = I. We observe that by letting t = (x - µ)ju, we may . 5+00 - 5+00 2/2 write _00 f(x) dx as (I/v'27r) _ 00 e-1 dt = I. 

The "trick" used to evaluate this integral (and it is a trick) is to consider, in­
stead of/, the square of this integral, namely /2• Thus 

Let us introduce polar coordinates to evaluate this double integral: 

s = r cos a, t = r sin a. 

Hence the element of area ds dt becomes r dr da. As s and t vary between - oo and 
+ oo, r varies between 0 and oo, while a 
varies between 0 and 27r. Thus f(x) 

12r 
- l -r2/2

joo d - - -e 0· a 
27r 0 

= _!__ da = I. 

12r 

27r 0 

Hence I = I as was to be shown. 

X=µ 

FIGURE 9.1 

(b) Let us consider the appearance of the graph· off It has the well-known 
bell shape indicated in Fig. 9.1. Since f depends on x only through the expression 
(x - µ)2, it is evident that the graph of/will be symmetric with respect to µ. For 
example, if x = µ + 2, (x - µ)2 = (µ + 2 - µ)2 = 4, while for x = µ - 2, 
(x - µ)2 = (µ - 2 - µ)2 = 4 also. 

The parameter <T may also be interpreted geometrically. We note that at x = µ 
the graph off is concave downward. As x - ± oo, f(x) - 0, asymptotically. 
Since/(x) ;::: 0 for all x, this means that for large (positive or negative) values of 
x, the graph off is concave upward. The point at which the concavity changes is 
called a point of inflection, and it is located by solving the equation f"(x) = 0. 

When we do this we find that the points of inflection occur at x = µ ± <T. That 
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is, u units to the right and to the left ofµ the graph off changes concavity. Thus 
ifo is relatively large, the graph of/tends to be "fiat," while ifo is small the graph 
of/tends to be quite "peaked." 

(c) In addition to the geometric interpretation of the parametersµ and u, the 
following important probabilistic meaning may be associated with these quantities. 
Consider 

E(X) = -1 f+"' x exp (- ![�]2) dx. 
y'2; u -oo 2 u 

Letting z = (x -µ)ju and noting that dx = u dz, we obtain 

f+
oo 

E(X) = -1- (uz + µ)e-•212 dz 
. y'2; -oo 

. !+"' !+"' 1 -z2/2 d + 1 -z2/2 d = -= u ze z µ -- e z. 
v2r -oo y'2; -oo 

The first of the above integrals equals zero since the integrand, say g(z), has the 
property that g(z) = -g( -z), and hence g is an odd function. The second in­
tegral (without the factor µ) represents the total area under the normal pdf and 
hence equals unity. Thus E(X) = µ. 

Consider next 

. E(X2) = _1_ f+"' x2 exp (- ![x - µ]2) dx. 
y'2; u -oo 

2 u 

Again letting z = (x -µ)ju, we obtain 

+ 2 I -z212d f+
oo 

µ -- e z. 
y'2; -oo 

The second integral again equals zero by the argument used above. The last in­
tegral (without the factor µ2) equals unity. To evaluate ( l jVh) J�: z2e-•2t2 dz, 
we integrate by parts letting ze-•2!2 = dv and z = u. Hence v = -e-•212 while 

dz = du. We obtain 

1. 
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Therefore, E(X2) = u2 + µ2, and hence V(X) = E(X2) -(E(X)) 2 = u2• Thus 
we find that the two parameters µ and u2 which characterize the normal distribution 
are the expectation and variance of X, respectively. To put it differently, if we 
know that X is normally distributed we know only that its probability distribution 
is of a certain type (or belongs to a certain family.) If in addition, we know E(X) 
and V(X), the distribution of X is com­
pletely specified. As we mentioned above, 
the graph of the pdf of a normally distrib­
uted random variable is symmetric 
about µ. The steepness of the graph is 
determined by u2 in the sense that if X 
has distribution N(µ, u�) and Y has dis­
tribution N(µ, u�). where u� > u�, then 
their pdf's would have the relative shapes 
shown in Fig. 9.2. 

X=µ. 

FIGURE 9.2 

(d) If X has distribution N(O, l )  we say that X has a standardized normal dis­
tribution. That is, the pdf of X may be written as 

( ) 
I -:c212 '{JX =--e . 

y'2; 
(9.2) 

(We shall use the letter 'P exclusively for the pdf of the above random variable X.) 
The importance of the standardized normal distribution is_ due to the fact that it is 
tabulated. Whenever X has distribution N(µ, u2) we can always obtain the stan­
dardized form by simply taking a linear function of X as the following theorem 
indicates. 

Theorem 9.1. If X has the distribution N(µ, u2) and if Y = aX + b, then Y 
has the distribution N(aµ + b, a2u2). 

Proof· The fact that E( Y) = aµ + b and that V( Y) = a2u2 follows imme­
diately from the properties of expectation and variance discussed in Chapter 7. 
To show that in fact Y is normally distributed, we may apply Theorem 5.1, since 
aX + b is either a decreasing or increasing function of X, depending on the sign 
of a. Hence if g is the pdf of Y, we have 

I ( I [y-b ]2)111 
g(y) = -- exp - -2 ---µ -

�u 2u a a 

I ( I ) 
= .  ·_ .exp - �[y- (aµ+ b)]2 ' 

v2r ulal 2u a 

which represents the pdf of a random variable with distribution N(aµ + b, a2u2). 

Corollary. If X has distribution N(µ, u2) and if Y = (X -µ)ju, then Y has 
distribution N(O, I). 
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Proof: It is evident that Y is a linear function of X, and hence Theorem 9.1 
applies. 

Note: The importance of this corollary is that by changing the units in which the 

variable is measured we can obtain the standardized distribution (see d). By doing this 

we obtain a distribution with no unspecified parameters, a most desirable situation from 

the point of view of tabulating the distribution (see the next section). 

9.4 Tabulation of the Normal Distribution 
Suppose that X has distribution N(O, 1). Then 

P(a S X S b) = -1- J b e-"'212 dx. 
Vh a 

This integral cannot be evaluated by ordinary means. (The difficulty stems from 
the fact that we cannot apply the Fundamental Theorem of the Calculus since we 
cannot find a function whose derivative equals e-"'212.) However, methods of 
numerical integration can be used to evaluate integrals of the above form, and in 
fact P(X s s) has been tabulated. 

The cdf of the standardized normal distribution will be consistently denoted by 
<I>. That is, 

<l>(s) = _
l

_ f • e-x
212 dx. 

Vh -00 
(9.3) 

(See Fig. 9.3.) The function <I> has been extensively tabulated, and an excerpt of 
such a table is given in the Appendix. We 
may now use the tabulation of the func- <t>(x) 
tion <I> in order to evaluate P(a s X s b), 
where X has the standardized N(O, 1) 
distribution since 

P(a S X S b) = <I>(b) - <l>(a). 
The particular usefulness of the above 
tabulation is due to the fact that if X has 
any normal distribution N(µ, u2), the 
tabulated function <I> may be used to 
evaluate probabilities associated with X. 

FIGURE 9.3 

X=S 

We simply use Theorem 9. l to note that if X has distribution N(µ, u2), then 
Y = (X - µ)/u has distribution N(O, l). Hence 

P(a S X S b) = P (a � µ s Y s b � µ) 

(9.4) 
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It is also evident from the definition of <I> (see Fig. 9.3) that 

<I>( - x) = l - <I>(x). (9.5) 

This relationship is particularly useful since in most tables the function <I> is tabu­
lated only for positive values of x. 

Finally let us compute P(µ - ku :::; X :::; µ + ku), where X has distribution 
N(µ, u2). The above probability may be expressed in terms of the function <I> by 
writing 

( X- µ ) 
P(µ - ku :::; X :::; µ + ku) = P -k :::; -

u
- :::; k 

= <I>(k) -<I>(-k). 

Using Eq. (9.5), we have for k > 0, 

P(µ - ku :::; X :::; µ + ku) = 2<I>(k) - l. (9.6) 

Note that the above probability is independent of µ and u. In words: The prob­
ability that a random variable with distribution N(µ, u2) takes values within k 
standard deviations of the expected value depends only on k and is given by 
Eq. (9.6). 

- . 

Note: We shall have many occasions to refer to "tabulated functions." In a sense when 
an expression can be written in terms of tabulated functions, the problem is "solved." 
(With the availability of modern computing facilities, many functions which are not 
tabulated may be readily evaluated. Although we do not expect that everyone has easy 
access to a computer, it does not seem too unreasonable to suppose that certain common 
tables are available.) Thus we should feel as much at ease with the function <I>(x) = 

(l/v211") f:_,,, e-•212 ds as with the function f(x) = v'x. Both these functions are tab­
ulated, and in either case we might experience some difficulty in evaluating the function 
directly for x = 0.43, for example. In the Appendix various tables are listed of some 
of the most important functions we shall encounter in our work. Occasional references 
will be given to other tables not listed in this text. 

EXAMPLE 9.1. Suppose that X has distribution N(3, 4). We want to find a num­
ber c such that 

P(X > c) = 2P(X :::; c). 

We note that (X - 3)/2 has distribution N(O, l). Hence 

Also, 

(x - 3 c - 3) 
P(X > c) = P 

2 > -

2 
- = 

P( X :::; c) = p ( X � 3 
:::; 

c ; 3) 

(c - 3) 
-<I> -2- . 
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The above condition may therefore be written as 1 - .P[(c - 3)/2] = 

2.P[(c - 3)/2]. This becomes .P[(c - 3)/2] = !. Hence (from the tables of the 
normal distribution) we find that (c - 3)/2 = -0.43, yielding c = 2.14. 

EXAMPLE 9.2. Suppose that the breaking strength of cotton fabric (in pounds), 
say X, is normally distributed with E(X) = 165 and V(X) = 9. Assume further­
more that a sample of this fabric is considered to be defective if X < 162. What 
is the probability that a fabric chosen at random will be defective? 

We must compute P(X < 162). However 

P(X < 162) = p ( X -; 165 
< 

162 � 165) 
= .P(-1) = 1 - .P(l) = 0.159. 

Note: An immediate objection to the use of the normal distribution may be raised 
here. For it is· obvious that X, the strength of cotton fabric, cannot assume negative 
values, while a normally distributed random variable may assume all positive and nega­
tive values. However, the above model (apparently not valid in view of the objection 
just raised) assigns negligible probability to the event {X < O}. That is, 

P(X < O) = p (X -; 165 < 0 -/65) = <l>(-55)� O. 

The point raised here will occur frequently: A certain random variable X which we know 
cannot assume negative values (say) will be assumed to have a normal distribution, thus 
taking on (theoretically, at least) both positive and negative values. So long as the 
parametersµ. and u2 are chosen so that P(X < 0) is essentially zero, such a representation 
is perfectly valid. 

The problem of finding the pdf of a function of a random variable, say Y = 

H(X), ils discussed in Chapter 5, occurs in the present context in which the random 
variable X is normally distributed. 

EXAMPLE 9.3. Suppose that the radius R of a ball bearing is normally distributed 
with expected value 1 and variance 0.04. Find the pdf of the volume of the ball 
bearing. 

The pdf of the random variable R is given by 

1 · ( 1 [' - 1]2) f(r) = exp - - -- · 

Vh (0.2) 2 0.2 

Since Vis a monotonically increasing function of R, we may directly apply Theo­
rem 5.1 for the pdf of V = !7rR 3, and obtain g(v) = f(r)(dr/dv), where r is 
everywhere expresse.P in terms of v. From the ab<fve relationship, we obtain 
r = V"3v/47r. Hence dr/dv = (1/47r)(3v/47rr213. By substituting these expres­
sions into the above equation, we obtain the desired pdf of V..: 



9.4 Tabulation of the Normal Distribution 189 

EXAMPLE 9.4. Suppose that X, the inside diameter (millimeters) of a nozzle, is 
a normally distributed random variable with expectation µ and variance I. If X 

does not meet certain specifications, a loss is assessed to the manufacturer. Specifi­
cally, suppose that the profit T (per nozzle) is the following function of X: 

T = C1 (dollars) if 10 :'.S: X :'.S: 12, 

-C2 if X < 10, 

-Ca if X > 12. 

Hence the expected profit (per nozzle) may be written as 

E(T) = C 1[<1>(12 - µ) - <1>(10 - µ.)] 

- C2[<I>(l0 - µ.)] - C3[1 - <1>(12 - µ.)] 

(C1 + Ca)<l>(l2 - µ) - (C1 + C2)<1>(l0 - µ) - Ca. 

Suppose that the manufacturing process can be adjusted so that different values 
ofµ may be achieved. For what value ofµ is the expected profit maximum? We 
must compute dE(T)/(dµ) and set it equal to zero. Denoting, as usual, the pdf of 
the N(O, I) distribution by cp, we have 

d��n = (C1 + Ca)[-cp(l2 - µ.)] - (C1 + C2)[-cp(l0 - µ)]. 

Hence 

-(C1 + Ca) -
1
- exp (-!(12 - µ)2) 

Vh 

+ (C1 + C2) -
1
- exp (-!(10 - µ)2) = 0. 

Vh 
Or 

Thus 

[It is an easy matter for the reader to check that the above yields a maximum 
value for E(T).] 

· 

Notes: (a) If C2 = Ca, that is, if too la rge o r  too small a diameter X is an equally 

serious defect, then the value of µ for which the maximum value of E(T) is attained is 

µ = 11. IfC2 > Ca,thevalueofµis <ll,whileifC2 < C3,thevalueofµis > 11. As 

µ---+ +oo, E(T)---+ -Ca, while ifµ---+ -oo, E(T)---+ -C2. 

(b) Consi der the following cost values: C1 = $10, C2 = $3, an d Ca = $2. Hence 

the value ofµ for which E(T) is maximized equalsµ = 11 - f In £1 �] = $11.04. Thus 

the maximum value.attained by E(T) equals $6.04 per nozzle. 
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9.5 The Exponential Distribution 

9.6 

Definition. A continuous random variable X assuming all nonnegative values 

is said to have an exponential distribution with parameter a > 0 if its pdf is 

given by 

x>O 
0, elsewhere. (9.7) 

(See Fig. 9.4.) [A straightforward inte­

gration reveals that 

Jo"' f(x) dx = 1 

and hence Eq. (9.7) does represent a pdf.] 

f(x) 

FIGURE 9.4 

The exponential distribution plays an important role in describing a large class 

of phenomena, particularly in the area of reliability theory. We shall devote 

Chapter 11 to some of these applications. For the moment, let us simply investi­

gate some of the properties of the exponential distribution. 

9.6 Properties of the Exponential Distribution 

(a) The cdf F of the exponential distribution is given by 

F(x) = P(X � x) = j0"' ae-at dt = 1 - e-a"', x 2".: 0 (9.8) 
= 0, elsewhere. 

[Hence P(X > x) = e-ax.] 

(b) The expected value of X is obtained as follows: 

E(X) = fo"' xae-ax dx. 

Integrating by parts and letting ae-ax dx = dv, x = u, we obtain v = -e-ax, 
du = dx. Thus, 

E(X) = [- xe-a"']I� + {"' e-ax dx = _!_ • (9.9) Jo a 

Thus the expected value equals the reciprocal of the parameter a. [By simply re­

labeling the parameter a = l/{3, we could have written the pdf of X as f(x) = 

(l/f3)e-xlfi. In this form, the parameter {3 equals the expected value of X. How­

ever, we shall continue to use the form of Eq. (9.7). ] 

(c) The variance of X may be obtained by a similar integration. We find that 

E(X2) = 2/a2 and therefore 

V(X) = E(X2) - [E(X)]2 (9.10) 
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(d) The exponential distribution has the following interesting property, analo­
gous to Eq. (8.6) described for the geometric distribution. Consider for any 

s, t > 0, P(X > s + t I X > s). We have 

Hence 

P(X > s + t I X > s) = 
P(X > s + t) = e-a<•+t> 

= e-at 
P(X > s) e-as 

P(X > s + t I X > s) = P(X > t). (9.11) 

Thus we have shown that the exponential distribution also has the property of 
having "no memory" as did the geometric distribution. (See Note following 

Theorem 8.4.) We shall make considerable use of this property in applying the 
exponential distribution to fatigue models in Chapter 11. 

Note: As was true in the case of the geometric distribution, the converse of Property (d) 

also holds. The only continuous random variable X assuming nonnegative values for 

which P(X > s + t I X > s) = P(X > t) for all s, t > 0, is an exponentially dis­

tributed random variable. [Although we shall not prove this here, it might be pointed 

out that the crux of the argument involves the fact that the only continuous function G 

having the property that G(x + y) = G(x)G(y) for all x, y > 0, is G(x) = e-kx. It is 

easily seen that if we define G(x) = 1 - F(x), where Fis the cdf of X, then G will sat­

isfy this condition.] 

ExAMPL� 9.5. Suppose that a fuse has a life length X which may be considered 
as a continuous random variable with an exponential distribution. There are 
two processes by which the fuse may be manufactured. Process I yields an ex­

pected life length of 100 hours (that is, the parameter equals 100-1), while process 
II yields an expected life length of 150 hours (that is, the parameter equals 150-1). 
Suppose that process II is twice as costly (per fuse) as process I, which costs C 
dollars per fuse. Assume, furthermore, that if a fuse lasts less than 200 hours, a 
loss of K dollars is assessed against the manufacturer. Which process should be 

used? Let us compute the expected cost for each process. For process I, we have 

Therefore, 

Cr = cost (per fuse) = C if X > 200 
= C + K if X � 200. 

E(Cr) = CP(X > 200) + (C + K)P(X � 200) 
ce- < l/ 100> 200 + ( c + K)( l _ e- cl/ 100> 200) 

ce-2 + (C + K)(l - e-2) = K(l - e-2) + C. 

By a similar computation we find that 

E(Cri) = K(l - e-413) + 2C. 
Thus 

E(Cn) - E(Cr) = C + K(e-2 - e-413) = C - 0.13K. 
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Hence we prefer process I, provided that C > 0.13K. 

EXAMPLE 9.6. Suppose that X has an 
exponential distribution with parameter 
a. Then E(X) = l /a. Let us compute 
the probability that X exceeds its ex­
pected value (Fig. 9.5). We have 

p ( X > D = e-a(l/a) 

= e-1 < !. 

f(x) 

x=l/a 

9.6 

FIGURE 9.5 

EXAMPLE 9.7. Suppose that T, the time to failure of a component, is exponen­
tially distributed. Hence /(t) = ae-01• If n such components are installed, what is 
the probability that one-half or more of these components are still functioning at 
the end of t hours? The required probability is 

if n is even; 

if n is odd. 

EXAMPLE 9.8. Suppose that the life length in hours, say T, of a certain electronic 
tube is a random variable with exponential distribution with parameter {3. That 

is, the pdf is given by f(t) = {3e-fJ1, t > 0. A machine using this tube costs C 1 
dollars/hour to run. While the machine is functioning, a profit of C2 dollars/hour 

is realized. An operator must be hired for a prearranged number of hours, say 
H, and he gets paid C3 dollars/hour. For what value of H is the expected profit 
greatest? 

Let us first get an expression for the profit, say R. We have 

R = C2H - C1H - C3H 

= C 2T - C 1T - C aH 

if T > H 

if T::; H. 

Note that R is a random variable since it is a function of T. Hence 

E(R) = H(C2 - C1 - Ca)P(T > H) - C3HP(T::; H) 

(H {Jt + (C2 - C1) Jo t{3e- dt 

H(C2 - C1 - Ca)e-fJH - C3H(l - e-fJH) 

+ (C2 - C1)[{r
1 - e-fJH({3-l + H)] 

(C2 - C1X.He-fJH + {3-1 - e-fJH({3-1 + H)] - C3H. 
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To obtain the maximum value of E(R) we differentiate it with respect to H and 
set the derivative equal to zero. We have 

dE(R) 
= (C2 - C1X.H(-{3)e-f3H + e-f3H - e-f3H + ({3-1 

+ H)({3)e-f3H] - Ca 
dH 

= (C2 - C1)e-f3H - Ca. 

Hence dE(R)/dH = 0 implies that 

H = _ (!) ln [ Ca J . {3 C2 - C1 

[In order for the above solution to be meaningful, we must have H > 0 which 
occurs if and only if 0 < Ca/( C 2 - C 1) < 1, which in turn is equivalent to 
C 2 - C 1 > 0 and C 2 - C 1 - Ca > 0. However, the last condition simply 
requires that the cost figures .be of such a magnitude that a profit may be realized.] 

Suppose in particular that {3 = 0.01, C1 = $3, C2 = $10, and Ca = $4. 
Then H = -100 In [t] = 55.9 hours� 56 hours. Thus, the operator should 
be hired for 56 hours in order to achieve the maximum profit. (For a slight modi­
fication of the above example, see Problem 9.18.) 

9. 7 The Gamma Distribution 

Let us first introduce a function which is most important not only in probability 
theory but in many areas of mathematics. 

Definition. The Gamma/unction, denoted by r, is defined as follows: 

r(p) = fo"" xp-le-x dx, defined for p > 0. (9.12) 

[It can be shown that the above improper integral exists (converges) whenever 
p > O.] If we integrate the above by parts, letting e-x dx = dv and xv-1 

= u, 

we obtain 
r(p) = -e-xxp-llo - fo"" [-e-"'(p - l )xP-2 dx] 

= 0 + (p - 1) /000 e-xxv-2 dx 

= (p - I)r(p - I). (9.13) 

Thus we have shown that the Gamma function obeys an interesting recursion re­
lationship. Suppose that p is a positive integer, say p = n. Then applying Eq. (9.13) 
repeatedly, we obtain 

r(n) = (n - I)r(n - I) 

= (n - l)(n - 2)r(n - 2) = · · · 

= (n - l)(n - 2) · · · r(I). 

However, r(I) = J: e-x dx = 1, and hence we have 

r(n) = (n - I)! (9.14) 
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(if n is a positive integer). (Thus we may consider the Gamma function to be a 
generalization of the factorial function.) It is also easy to verify that 

r(!) == fo"' x-112e-x dx = v;. (9.15) 

(See Problem 9.19.) 

With the aid of the Gamma function we can now introduce the Gamma prob­
ability distribution. 

Definition. Let X be a continuous ran-
dom variable assuming only non- f(x) 
negative values. We say that X has 
a Gamma probability distribution if 
its pdf is given by 

x > 0 

0, elsewhere. (9.16) 
FIGURE 9.6 

This distribution depends on two parameters, r and a, of which we require r > 0, 
a > 0. [Because of the definition of the Gamma function, it is easy to see that 

e: f(x) dx = I.] Figure 9.6 shows graphs of the pdf Eq. (9.16) for various 
values of rand a = I. 

9.8 Properties of the Gamma Distribution 

(a) If r = I, Eq. (9.16) becomes f(x) = ae-a"'. Hence the exponential dis­
tribution is a special case of the Gamma distribution. (If r is a positive integer > I, 
the Gamma distribution is also related to the exponential distribution but in a 
slightly different way. We shall refer to this in Chapter 10.) 

(b) In most of our applications, the parameter r will be a positive integer. In 
this case, an interesting relationship between the cdf of the Gamma distribution 
and the Poisson distribution exists which we shall now develop. 

Consider the integral I = J: (e-vyr /r!) dy, where r is a positive integer and 
a > 0. Then r!/ = J: e-1y dy. Integrating by parts, letting u = yr and 
dv = e-Y dy, will yield du = ryr-l dy and v = -'-e-Y. Hence r!/ = e-aar + 

r J: e-yyr- l dy. The integral in this expression is exactly of the same form as 
the original integral with r replaced by (r - I). Thus continuing to integrate by 
parts we obtain, since r is a positive integer, 

r!I = e-a[ar + rar-l + r(r - l)ar-2 + · · · + r!]. 
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Therefore 

I= e-a[l +a+ a2/2! + · · · + a'/r!] 
T 

= L P( Y = k), 
k=O 

where Y has a Poisson distribution with parameter a. 
We now consider the cdf of the random variable whose pdf is given by Eq. (9 .16). 

Since r is a positive integer, Eq. (9.16) may be written as 

f( ) 
a 

( )r
-

1 -ax x = 
(r 

_ 
1 
)! ax e , o < x 

and consequently the cdf of X becomes 

Letting (as) 

F(x) = 1 - P(X > x) 

ioo a r-1 -as 
= 1 -

"' (r 
_ 

l)! 
(as) e ds, 

u, we find that this becomes 

F(x) = 1 - 1: �:�e�� du, x > 0. 

x > 0. 

This integral is precisely of the form considered above, namely I (with a = ax), 
and thus 

r-1 

F(x) = 1 - L e-ax(axt /k!, x > 0. (9.17) 
k=O 

Hence, the cdf of the Gamma distribution may be expressed in terms of the tabu­
lated cdf of the Poisson distribution. (We recall that this is valid if the parameter r 
is a positive integer.) 

Note: The result stated in Eq. (9.17), relating the cdf of the Poisson distribution to the 

cdf of the Gamma distribution, is not as surprising as it might first appear, as the following 

discussion will indicate. 

First of all, r:ecall the relationship between the binomial and Pascal distributions 

(see Note (b), Section 8.6). A similar relationship exists between the Poisson and Gamma 

distribution except that the latter is a continuous distribution. When we deal with a 

Poisson distribution we are essentially concerned about the number of occurrences of 

some event during a fixed time period. And, as will be indicated, the Gamma distribution 

arises when we ask for distribution of the time required to obtain a specified number of 

occurrences of the event. 

Specifically, suppose X = number of occurrences of the event A during (0, t]. Then, 

under suitable conditions (e.g., satisfying assumptions A 1 through As in Section 8.3) 
X has a Poisson distribution with parameter at, where a is the expected number of occur­

rences of A during a unit time interval. Let T = time required to observe r occurrences 
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of A. We have: 

H(t) = P(T � tJ = 1 - P(T > t) 
= 1 - P(fewer than r occurrences of A occur in (0, tJ) 

= 1 - P(X < r) 

= 1 - E e -at(at)k . 
k=O k! 

Comparing this with Eq. (9.17) establishes the desired relationship. 

(c) If X has a Gamma distribution given by Eq. (9.16), we have 

E(X) = r/a, V(X) = r/a2• 

Proof" See Problem 9.20. 

9.9 The Chi-Square Distribution 

9.9 

(9.18) 

A special, very important, case of the Gamma distribution Eq. (9.16) is ob­
tained if we let a = ! and r = n/2, where n is a positive integer. We obtain a 
one-parameter family of distributions with pdf 

f(z) 

(a) 

f( ) I n/2-1 -z/2 
z = 

2n/2r(n/2) 
z e ' 

f(z) 

FIGURE 9.7 

z > 0. (9.19) 

f(z) 

(c) 

A random variable Z having pdf given by Eq. (9.19) is said to have a chi-square 
distribution with n degrees of freedom (denoted by X�). In Fig. 9.7, the pdf for 

n = I, 2 and n > 2 is shown. It is an immediate consequence of Eq. (9.18) that 
if Z has pdf Eq. (9.19), we have 

E(Z) = n, V(Z) = 2n. 
-

(9.20) 

The chi-square distribution has many important applications in statistical 
inference, some of which we shall refer to later. Because of its importance, the 
chi-square distribution is tabulated for various values of the parameter n. (See 

Appendix.) Thus we may find in the table that value, denoted by x�, satisfying 
P(Z ::::; x�) = a, 0 < a < I (Fig. 9.8). Example 9.9 deals with a special case of 
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f(z) 

FIGURE 9.8 
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a general characterization of the chi-square distribution which we shall study in 
a later chapter. 

EXAMPLE 9.9. Suppose that the velocity V of an object has distribution N(O, 1) 
Let K = mV2 /2 be the kinetic energy of the object. To find the pdf of K, let us 
first find the pdf of S = V2• Applying Theorem 5.2 directly we have 

. 1 
g(s) = - [cp(Vs) + cp(-Vs)] 

20 

-112 1 -•12 = s 
y'h

e . 

If we compare this with Eq. (9.19) and recall that rt!) = y;, we note that S has 
a xi-distribution. Thus we find that the square of a random variable with distri­
bution N(O, 1) has a xi-distribution. (It is this result which we shall generalize 
later.) 

We can now obtain the pdf h of the kinetic energy K. Since K is a monotone 
function of V2 whose pdf is given by g above, we have directly 

h(k) = .?: g (.?: k) = .?: _l_ (.?: k)-112 
e-kfm

, m m m y'2; m 
k > 0. 

In order to evaluate P(K � 5) for example, we need not use the pdf of K but may 
simply use the tabulated chi-square distribution as follows. 

P(K � 5) = P(m/2)V2 � 5) = P(V2 � 10/m). 

This latter probability can be obtained directly from the tables of the chi-square 
distribution (if m is known) since V2 has a xi-distribution. Since E(V2) = 1 
and variance (V2) = 2 [see Eq. (9.20)], we find directly 

E(K) = m/2 and V(K) = m2/2. 
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Note: The tabulation of the chi-square distribution as given in the Appendix only 

tabulates those values for which n, the number of degrees of freedom, is less than or equal 

to 45. The reason for this is that if n is large, we may approximate the chi-square distribu­

tion with the normal distribution, as indicated by the following theorem. 

Theorem 9.2. Suppose that the random variable Y has distribution x�. Then 

for sufficiently large n the random variable V2 Y has approximately the dis­
tribution N(V2n - 1, 1). (The proof is not given here.) 

This theorem may be used as follows. Suppose that we require P( Y ::=; t), 

where Y has distribution x�, and n is so large that the above probability cannot 
be directly obtained from the table of the chi-square distribution. Using Theo­

rem 9.2 we may write, 

P( Y:::; t) = P(VlY:::; v'2i) 

= P(VlY - v� 2n--�I < v'2i - V2n - 1) 

� <1>(v'2i - v2n - l ). 

The value of <I> may be obtained from the tables of the normal distribution. 

9.10 Comparisons among Various Distributions 

We have by now introduced a number of important probability distributions, 
both discrete and continuous: the binomial, Pascal, and Poisson among the discrete 

ones, and the exponential, geometric, and gamma among the continuous ones. 
We shall not restate the various assumptions which led to these distributions. 
Our principal concern here is to point out certain similarities (and differences) 
among the random variables having these distributions. 
1. Assume that independent Bernoulli trials are being performed. 

(a) random variable: number of occurrences of event A in a fixed number of 
trials 
distribution: binomial 

(b) random variable: number of Bernoulli trials required to obtain first occur­
rence of A 

distribution: geometric 

(c) random variable: number of Bernoulli trials required to obtain rth occur­
rence of A 

distribution: Pascal 

2. Assume a Poisson process (see note (c) preceeding Example 8.5). 

(d) random variable: number of occurrences of event A during a fixed time 
interval 
distribution: Poisson 

(e) random variable: time required until first occurrence of A 

distribution: exponential 
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(f) random variable: time required until rth occurrence of A 

distribution: gamma 

Note: Observe the similarity between (a) and (d), (b) and (e), and finally (c) and (f). 

9.11 The Bivariate Normal Distribution 

All the continuous random variables we have discussed have been one-dimen­
sional random variables. As we mentioned in Chapter 6, higher-dimensional 
random variables play an important role in describing experimental outcomes. 
One of the most important continuous two-dimensional random variables, a 
direct generalization of the one-dimensional normal distribution, is defined as 
follows. 

Definition. Let (X, Y) be a two-dimensional, continuous random variable 
assuming all values in the euclidean plane. We say that (X, Y) has a bivariate 
normal distribution if its joint pdf is given by the following expression. 

f(x,y) = 
I 

211"UxUyV1 - p2 

X exp {- 1 [(x - µ,,)2 - 2p 
(x - µ,,)(y - µy) 

+ 
(y - µy)2]} ' 2(1 - p2) Ux UxUy Uy 

- 00 < x < oo, - 00 < y < oo. (9.21) 

The above pdf depends on 5 parameters. For f to define a legitimate pdf . 
s+oos+oo [that is, f(x, y) � 0, _00 _00 f(x, y) dx dy = l], we must place the follow-

ing restrictions on the parameters: - oo < µ,, < oo ; - oo < µy < oo ; 

u,, > O; Uy > O; -1 < p < 1. The following properties of the bivariate 
normal distribution may easily be checked. 

Theorem 9.3. Suppose that (X, Y) has pdf as given by Eq. (9.21). Then 

(a) the marginal distributions of X and of Y are N(µ,,, u�) and N(µy, u�), 
respectively; 

(b) the parameter p appearing above is the correlation coefficient between 
X and Y; 

(c) the conditional distributions of X (given that Y = y) and of Y (given 
that X = x) are respectively 

N [µ,, + p ;: (y - µy), u;( l  - p2)l N [µy + p ;: (x - µ,,), u�(I - p2)l 
Proof: See Problem 9.21. 

Notes: (a) The converse of (a) of Theorem 9.3 is not true. It is possible to have a 

joint pdf which is not bivariate normal and yet the marginal pdf's of X and of Y are one­

dimensional normal. 
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(b) We observe from Eq. (9.21) that if p = 0, the joint pdf of (X, Y) may be factored 

and hence X and Y are independent. Thus we find that in the case of a bivariate normal 

distribution, zero correlation and independence are equivalent. 
(c) Statement (c) of the above theorem shows that both regression functions of the 

mean are linear. It also shows that the variance of the conditional distribution is reduced 

in the same proportion as (1 - p2). That is, if p is close to zero, the conditional variance 

is essentially the same as the unconditional variance, while if p is close to ± 1, the condi­

tional variance is close to zero. 

The bivariate normal pdf has a number of interesting properties. We shall 
state some of these as a theorem, leaving the proof to the reader. 

Theorem 9.4. Consider the surface z = f(x, y), where f is the bivariate normal 
pdf given by Eq. (9.3). 

(a) z = c (const) cuts the surface in an ellipse. (These are sometimes called 
contours of constant probability density.) 

(b) If p = 0 and u,, = u11, the above ellipse becomes a circle. (What happens 
to the above ellipse as p � ±I?) 

Proof· See Problem 9.22. 

Note: Because of the importance of the bivariate normal distribution, various prob­

abilities associated with it have been tabulated. (See D. B. Owen, Handbook of Statistical 
Tables, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1962.) 

9.12 Truncated Distributions 

EXAMPLE 9.10. Suppose that a certain type of bolt is manufactured and its 
length, say Y, is a random variable with distribution N(2.2, 0.01). From a large 
lot of such bolts a new lot is obtained by discarding all those bolts for which 
Y > 2. Hence if X is the random variable representing the length of the bolts in 
the new lot, and if Fis its cdf we have 

F(x) = P(X � x) 

= P( y � x I y � 2) = 

= P(Y � x)/P(Y � 2) 

(See Fig. 9.9.) Thus/, the pdf of X is given by 

f(x) = F'(x) = 0 if x > 2, 

if x > 2, 
if x � 2. 

v:&\0.1) exp (- � [
x �.1

2.2]2) 

4>(-2) 

0 2 x 

FIGURE 9.9 
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since 

P(Y � 2) = p(y �
1

2.2 
� 

2 �}·2) 
= .P(-2). 

[.P, as usual, is the cdf of the distribution N(O, l).] 
The above is an illustration of a truncated normal distribution (specifically, 

truncated to the right at X = 2). This example may be generalized as follows. 

Definition. We say that the random variable X has a normal distribution 
truncated to the right at X = T if its pdf f is of the form 

f(x) = 0 if X > T, 

= K )i; 
er 

exp ( - � [ x � µ J2) if X � T. (9.22) 

We note that K is determined from the condition f�00
00 f(x) dx = 1 and hence 

K= 
1 

ci>[(T - µ)/er] P(Z � T) 

where Z has distribution N(µ, cr2). Analogously to the above we have the following 
definition. 

Definition. We say that the random variable X has a normal distribution 
truncated to the left at X = 'Y, if its pdf f is of the form 

f(x) = 0 if x < 'Y, 

= _____!S__ exp (-
! [�]2) Vhcr 2 CT 

if x � 'Y. 

Again, K is determined from the condition f�00
00 f(x) dx = 1 and thus 

(9.23) 

The concepts introduced above for the normal distribution may be extended in 
an obvious way to other distributions. For example, an exponentially distributed 
random variable X, truncated to the left at X = 'Y, would have the following pdf: 

f(x) = 0 if x < 'Y, 

= Cae-

ax if X � 'Y. (9.24) 

Again, C is determined from the condition f�: f(x) dx = 1 and hence 

We can consider also a truncated random variable in the discrete case. For 
instance, if a Poisson-distributed random variable X (with parameter X) is trun-
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cated to the right at X = k + I, it means that X has the following distribution: 

P(X = i) = 0 if i � k + I, 

- c Ai -A 
- 1e 

l. 
if i = 0, I, ... , k. (9.25) 

We determine C from the condition L�o P(X = i) = I and find 

Thus 

i = 0, I, ... , k and 0 elsewhere. 

Truncated distributions may arise in many important applications. We shall 
consider a few examples below. 

EXAMPLE 9.11. Suppose that X represents the life length of a component. If 
X is normally distributed with 

E(X) = 4 and V(X) = 4, 
we find that 

P(X < 0) = <I>(-2) = 0.023. 

Thus this model is not very meaningful since it assigns probability 0.023 to an 
event which we know cannot occur. We might consider, instead, the above random 
variable X truncated to the left at X = 0. Hence we shall suppose that the pdf 
of the random variable X is given by 

f(x) = 0 if x � 0, 

l [ l (x - 4)2] I 
= V(2;) (2) 

exp -
2 -2 - <1>(2) 

if x > 0. 

Note: We have indicated that we often use the normal distribution to represent a 

random variable X about which we know that it cannot assume negative values. (For 

instance, time to failure, the length of a rod, etc.) For certain parameter valuesµ = E(X) 

and cr2 = V(X) the value of P(X < 0) will be negligible. However, if this is not the 

case (as in Example 9.11) we should consider using the normal distribution truncated 

to the left at X = 0. 

EXAMPLE 9.12. Suppose that a system is made up of n components which func­
tion independently, each having the same probability p of functioning properly. 
Whenever the system malfunctions, it is inspected in order to discover which and 
how many components are faulty. Let the random variable X be defined as the 
number of components that are found to be faulty in a system which has broken 
down. If we suppose that the system fails if and only if at least one component 
fails, then X has a binomial distribution truncated to the left at X = 0. For the 
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very fact that the system has failed precludes the possibility that X = 0. Specifi­
cally we have 

P(X = k) = (��l -p);p��k · k = 1, 2, ... , n. 
system a1 s 

Since P (system fails) = 1 - pn, we may write 

k = 1, 2, . . . , n. 

EXAMPLE 9.13. Suppose that particles are emitted from a radioactive source 
according to the Poisson distribution with parameter >.. A counting device, re­
cording these emissions only functions if fewer than three particles arrive. (That 
is, if more than three particles arrive during a specified time period, the device 
ceases to function because of some "locking" that takes place.) Hence if Y is 
the number of particles recorded during the specified time interval, Y has possible 
values 0, I, and 2. Thus 

e->- >.k P(Y = k) = kl e->-[l + >. + (;\2j2)] 
= 0, elsewhere. 

k = 0, I, 2, 

Since the truncated normal distribution is particularly important, let us consider 
the following problem associated with this distribution. 

Suppose that X is a normally distributed random variable truncated to the right 
at X = T. Hence the pdf f is of the form 

f(x) = 0 if X 2 T, 

= )i;u 
exp [- � (x 

� 
µYJ<l>[(T �µ)ju] 

if x::; T. 

We therefore have 

f+oo E(X) = _00 x f(x) dx 
I x l x -µ !T [ ( )2] = 

il>[(T _ µ)ju] _,,, �
exp -2 -u-

dx 

1 I _.212 f(T-µ)fu 
= 

il>[(T _ µ)ju] y12; _00 (su + µ)e ds 

1 [ � (T -µ) + 1 f (T-µ)fu -82/2 d
] 

= ......,,.,...------.,-� µ.., -- u -- se s 
il>((T - µ)ju] U y12; -oo 

+ u _1_ e-••12(- I)l<T-µ)/u 
µ 

il>((T -µ)ju] y12; -oo 

µ -il>[(T !:_ µ)ju] )i; exp [ - � (T-�_ µ Yl 
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Note that the expression obtained for E(X) is expressed in terms of tabulated 
functions. The function 4> is of course the usual cdf of the distribution N(O, I), 
while (l/Vk)e-"'2'2 is the ordinate of the pdf of the N(O, I) distribution and is 
also tabulated. In fact the quotient 

(l/Vh)e�x2/2 
4>(x) 

is tabulated. (See D. B. Owen, Handbook of Statistical Tables, Addison-Wesley 
Publishing Company, Inc., Reading, Mass., 1962.) 

Using the above result, we may now ask the following question: For givenµ, 
and <T where should the truncation occur (that is, what should the value of T be) 
so that the expected value after truncation has some preassigned value, say A? 
We can answer this question with the aid of the tabulated normal distribution. 
Suppose thatµ, = 10, <T = I, and we require that A = 9.5. Hence we must solve 

This becomes 

. 
1 1 -(T-10)2/2 9.5 = 10 - 4>(T _ l O) y'2; e · 

1 (l/Vh)e-(T-10)2/2 
2 = 4>(T - 10) 

Using the tables referred to above, we find that T - 10 = 0.52. and hence 

T = 10.52. 

Note: The problem raised above may be solved only for certain values of µ, u, and A. 
That is, for given µ and u, it may not be possible to obtain a specified value of A. Con­

sider the equation which must be solved: 

u 1 [ 1 ( T- µ)2] 
µ - A = 4>[(T - µ)ju] y27r exp - 2 -u

- . 

The right-hand side of this equation is obviously positive. Hence we must have 
(µ - A) > 0 in order for the above problem to have a solution. This condition is not 

very surprising since it says simply that the expected value (after truncation on the right) 
must be less than the original expected value. 

PROBLEMS 

9.1. Suppose that X has distribution N(2, 0.16). Using the table of the normal dis­

tribution, evaluate the following probabilities. 

(a) P(X � 2.3) (b) P(l.8 � X � 2.1) 

9.2. The diameter of an electric cable is normally distributed with mean 0.8 and 

variance 0.0004. What is the probability that the diameter will exceed 0.81 inch? 
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9.3. Suppose that the cable in Problem 9.2 is considered defective if the diameter dif­
fers from its mean by more than 0.025. What is the probability of obtaining a defective 
cable? 

9.4. The errors in a certain length-measuring device are known to be normally dis­
tributed with expected value zero and standard deviation 1 inch. What is the prob­
ability that the error in measurement will be greater than 1 inch? 2 inches? 3 inches? 

9.5. Suppose that the life lengths of two electronic devices, say D1 and D2, have dis­
tributions N(40, 36) and N(45, 9), respectively. If the electronic device is to be used for 
a 45-hour period, which device is to be preferred? If it is to be used for a 48-hour period, 
which device is to be preferred? 

9.6. We may be interested only in the magnitude of X, say Y = IX I . If X has dis­
tribution N(O, 1), determine the pdf of Y, and evaluate E( Y) and V( Y). 

9.7. Suppose that we are measuring the position of an object in the plane. Let X and 
Y be the errors of measurement of the x- and y-coordinates, respectively. Assume that 
X and Y are independently and identically distributed, each with distribution N(O, u2). 

Find the pdf of R = v X2 + Y2. (The distribution of R is known as the Rayleigh 
distribution.) [Hint: Let X = R cos 1" and Y = R sin i/I. Obtain the joint pdf of (R, i/I) 
and then obtain the marginal pdf of R.] 

9.8. Find the pdf of the random variable Q = X/ Y, where X and Y are distributed 
as in Problem 9.7. (The distribution of Q is known as the Cauchy distribution.) Can 
you compute E( Q)? 

9.9. A distribution closely related to the normal distribution is the /ognorma/ dis­
tribution. Suppose that X is normally distributed with mean µ. and variance u2• Let 
Y = ex. Then Y has the lognormal distribution. (That is, Y is lognormal if and only 
if In Y is normal.) Find the pdf of Y. Note: The following random variables may be 
represented by the above distribution: the diameter of small particles after a crushing 
process, the size of an organism subject to a number of small impulses, and the life length 
of certain items. 

9.10. Suppose that X has distribution N(µ., u2). Determine c (as a function of µ. 
and u) such that P(X � c) = 2P(X > c). 

9.11. Suppose that temperature (measured in degrees centigrade) is normally dis­
tributed with expectation 50° and variance 4. What is the probability that the tempera­
tur.e T will be between 48° and 53° centigrade? 

9.12. The outside diameter of a shaft, say D, is specified to bC 4 inches. Consider D 
to be a normally distributed random variable with mean 4 inches and variance 0.01 
inch2• If the actual diameter differs from the specified value by more than 0.05 inch but 
less than 0.08 inch, the loss to the manufacturer is $0.50. If the actual diameter differs 
from the specified diameter by more than 0.08 inch, the loss is $1.00. The loss, L, may 
be considered as a random variable. Find the probability distribution of L and evalu­
ate E(L). 

9.13. Compare the upper bound on the probability P[jX - E(X)j � 2v V(X)] ob­
tained from Chebyshev's inequality with the exact probability in each of the following 
cases. 

(a) X has distribution N(µ., u2). 
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(b) X has Poisson distribution with parameter>... 
(c) X has exponential distribution with parameter a. 

9.14. Suppose that X is a random variable for which E(X) = µ. and V(X) = u2• 
Suppose that Y is uniformly distributed over the interval (a, b). Determine a and b so 
that E(X) = E( Y) and V(X) = V(Y). 

9.15. Suppose that X, the breaking strength of rope (in pounds), has distribution 
N(lOO, 16). Each 100-foot coil of rope brings a profit of $25, provided X > 95. If 
X::::; 95, the rope may be used for a different purpose and a profit of $10 per coil is 
realized. Find the expected profit per coil. 

9.16. Let X1 and X2 be independent random variables each having distribution 
N(µ, u2). Let Z(t) = X 1 cos wt + X 2 sin wt. This random variable is of interest in 
the study of random signals. Let V(t ) = dZ(t)/dt. (w is assumed to be constant.) 

(a) What is the probability distribution of Z(t) and V(t) for any fixed t? 
(b) Show that Z(t) and V(t) are uncorrelated. [Note: One can actually show that 

Z(t) and V(t) are independent but this is somewhat more difficult to do.] 

9.17. A rocket fuel is to contain a certain percent (say X) of a particular compound. 
The specifications call for X to be between 30 and 35 percent. The manufacturer will 
make a net profit on the fuel (per gallon) which is the following function of X: 

T(X) = $0.10 per gallon 

= $0.05 per gallon 

if 30 < x < 35, 

if 35 ::::; X < 40 or 25 < X ::::; 30, 

. = -$0.10 per gallon otherwise. 

(a) If X has distribution N(33, 9), evaluate E(D. 
(b) Suppose that the manufacturer wants to increase his expected profit, E(D, by 50 

percent. He intends to do this by increasing his profit (per gallon) on those batches of 
fuel meeting the specifications, 30 < X < 35. What must his new net profit be? 

9.18. Consider Example 9.8. Suppose that the operator is paid Ca dollars/hour while 
the machine is operating and C4 dollars/hour (C4 < C3) for the remaining time he has 
been hired after the machine has failed. Again determine for what value of H (the num­

ber of hours the operator is being hired), the expected profit is maximized. 

9.19. Show that r(i) = y';-. (See 9.15.) [Hint: Make the change of variable x = 

u2 /2 in the integral r(�) = fo00 x-112e-z dx.] 

9.20. Verify the expressions for E(X) and V(X), where X has a Gamma distribution 
[see Eq. (9.18)]. 

9.21. Prove Theorem 9.3. 1. 

9.22. Prove Theorem 9.4. 

9.23. Suppose that the random variable X has a chi-square distribution with 10 de­
grees of freedom. If we are asked to find two numbers a and b such that P(a < x < b) = 

0.85, say, we should realize that there are many pairs of this kind. 

(a) Find two different sets of values (a, b) satisfying the above condition. 
(b) Suppose that in addition to the above, we require that 

P(X < a) = P(X > b). 

How many sets of values are there? 
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9.24. Suppose that V, the velocity (cm/sec) of an object having a mass of 1 kg, is a 
random variable having distribution N(O, 25). Let K = 1000V2/2 = 500V2 represent 
the kinetic energy (KE) of the object. Evaluate P(K < 200), P(K > 800). 

9.25. Suppose that X has distribution N(µ., u2). Using Theorem 7.7, obtain an ap­
proximation expression for E( Y) and V( Y) if Y = In X. 

9.26. Suppose that X has a normal distribution truncated to the right as given by 
Eq. (9.22). Find an expression for E(X) in terms of tabulated functions. 

9.27. Suppose that X has an exponential distribution truncated to the left as given by 
Eq. (9.24). Obtain E(X). 

9.28. (a) Find the probability distribution of a binomially distributed random vari­
able (based on n repetitions of an experiment) truncated to the right at X = n; that is, 
X = n cannot be observed. 

(b) Find the expected value and variance of the random variable described in (a). 

9.29. Suppose that a normally distributed random variable with expected value µ 

and variance u2 is truncated to the left at X = T and to the right at X = 'Y. Find the 
pdf of this "doubly truncated" random variable. 

9.30. Suppose that X, the length of a rod, has distribution N(lO, 2). Instead of meas­
uring the value of X, it is only specified whether certain requirements are met. Specifi­
cally, each manufactured rod is classified as follows: X < 8, 8 :::; X < 12, and X ;:::: 12. 
If 15 such rods are manufactured, what is the probability that an equal number of rods 
fall into each of the above categories? 

9.31. The annual rainfall at a certain locality is known to be a normally distributed 
random variable with mean value equal to 29.5 inches and standard deviation 2.5 inches. 
How many inches of rain (annually) is exceeded about 5 percent of the time? 

9.32. Suppose that X has distribution N(O, 25). Evaluate P(l < X2 < 4). 

9.33. Let X1 be the number of particles emitted in t hours from a radioactive source 
and suppose that X1 has a Poisson distribution with parameter {31. Let T equal the num­
ber of hours until the first emission. Show that T has an exponential distribution with 
parameter {3. [Hint: Find the equivalent event (in terms of X,) to the event T > t.] 

9.34. Suppose that X1 is defined as in Problem 9.33 with {3 = 30. What is the prob­
ability that the time between successive emissions will be > 5 minutes? > 10 minutes? 
< 30 seconds? 

9.35. In some tables for the normal distribution, H(x) = (1/V211")f�e-1212 dt is 
tabulated for positive values of x (instead of<l>(x) as given in the Appendix). If the random 
variable X has distribution N(l, 4) express each of the following probabilities in terms of 
tabulated values of the function H. 

(a) P[IXJ > 2) (b) P[X < OJ 

9.36. Suppose that a satellite telemetering device receives two kinds of signals which 
may be recorded as real numbers, say X and Y. Assume that X and Y are independent, 
continuous random variables with pdf's f and g, respectively. Suppose that during any 
specified period of time only one of these signals may be received and hence transmitted 
back to earth, namely that signal which arrives first. Assume furthermore that the signal 
giving rise to the value of X arrives first with probability p and hence the signal giving 
rise to Y arrives first with probability 1 - p. Let Z denote the random variable whose 
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value is actually received and transmitted. 

(a) Express the pdf of Z in terms off and g. 

(b) Express E(Z) in terms of E(X) and E(Y). 

(c) Express V(Z) in terms of V(X) and V( Y). 

(d) Suppose that X has distribution N(2, 4) and that Y has distribution N(3, 3). If 
p = i. evaluate P(Z > 2). 

(e) Suppose that X and Y have distributions N(µ.i, u�) and N(µ.2, u�), respectively. 
Show that if µ.i = µ.2, the distribution of Z is "uni-modal," that is, the pdf of Z has a 
unique relative maximum. 

9.37. Assume that the number of accidents in a factory may be represented by a 
Poisson process averaging 2 accidents per week. What is the probability that (a) the 
time from one accident to the next will be more than 3 days, (b) the time from one accident 
to the third accident will be more than a week? [Hint: In (a), let T = time (in days) and 
compute P(T > 3).] 

9.38. On the average a production process produces one defective item among 
every 300 manufactured. What is the probability that the third defective item will appear: 

(a) before 1000 pieces have been produced? 
(b) as the lOOOth piece is produced? 
(c) after the lOOOth piece has been produced? 

[Hint: Assume a Poisson process.] 
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