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Some Important Continuous Random Variables

9.1 Introduction

In this chapter we shall pursue the task we set for ourselves in Chapter 8, and
study in considerable detail, a number of important continuous random variables
and their characteristics. As we have pointed out before, in many problems it
becomes mathematically simpler to consider an ‘“idealized”” range space for a
random variable X, in which all possible real numbers (in some specified interval
or set of intervals) may be considered as possible outcomes. In this manner we
are led to continuous random variables. Many of the random variables we shall
now introduce have important applications and we shall defer until a later chapter
the discussion of some of these applications.

9.2 The Normal Distribution

One of the most important continuous random variables is the following.

Definition. The random variable X, assuming all real values —0 < x < oo,
has a normal (or Gaussian) distribution if its pdf is of the form

exp(-—%[x_“r)’ —ow < x < oo. 9.1)

1

X) =
I = T
The parameters u and o must satisfy the conditions —o0 < u < 0,0 > 0.
Since we shall have many occasions to refer to the above distribution we shall
use the following notation: X has distribution N(g, o) if and only if its prob-
ability distribution is given by Eq. (9.1). [We shall frequently use the notation
exp (?) to represent e'.]

We shall delay until Chapter 12 discussing the reason for the great importance
of this distribution. Let us simply state now that the normal distribution serves
as an excellent approximation to a large class of distributions which have great
practical importance. Furthermore, this distribution has a number of very desirable
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9.3 Properties of the Normal Distribution 183

mathematical properties which make it possible to derive important theoretical
results.

9.3 Properties of the Normal Distribution

(a) Let us state that fis a legitimate pdf. Obviously f(x) > 0. We must still
check that f f(x)dx = 1. We observe that by letting 1 = (x — p)/o, we may
write [ ® f(x) dx as (1/v/2x) [Teeti2gr = 1.

The “tnck” used to evaluate this integral (and it is a trick) is to consider, in-
stead of 7, the square of this integral, namely /2. Thus

-+ 400
2 * 2
P = e Vi dt/ e =12 gs

27!' —00 —00
1+ pto 2,2
= — / e 2 go gy
27
—0 —

Let us introduce polar coordinates to evaluate this double integral:
§ = rcosa, t = rsina.

Hence the element of area ds df becomes r dr da. As s and ¢ vary between — oo and
+ o0, r varies between 0 and o0, while «

varies between 0 and 2x. Thus ffx)
P = / / re "1 dr d
- ——r2/2
s 21 . |o de
l 2x
= — da = 1. — =X
27r 0 X=pun
Hence I = 1 as was to be shown. FiGure 9.1

(b) Let us consider the appearance of the graph of f. It has the well-known
bell shape indicated in Fig. 9.1. Since f depends on x only through the expression
(x — w)? itis evident that the graph of £ will be symmetric with respect to u. For
example, if x = p + 2, (x — w2 = (0 + 2 — w)? = 4, while for x = p — 2,
(x—w?2= (-2 - pw?=4also.

The parameter o may also be interpreted geometrically. We note that at x =
the graph of f is concave downward. As x — =+, f(x) — 0, asymptotically.
Since f(x) > O for all x, this means. that for large (positive or negative) values of
x, the graph of fis concave upward. The point at which the concavity changes is
called a point of inflection, and it is located by solving the equation f"’(x) = 0.
When we do this we find that the points of inflection occur at x = p + ¢. That
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is, o units to the right and to the left of u the graph of f changes concavity. Thus
if ¢ is relatively large, the graph of ftends to be “flat,”” while if ¢ is small the graph
of f tends to be quite “peaked.”

(c) In addition to the geometric interpretation of the parameters u and o, the
following important probabilistic meaning may be associated with these quantities.

Consider
1 /+°° ( 1[x — ul?
E(X) = X ex ——[ ])dx.
(X) 2o ) p A

Letting z = (x — w)/o and noting that dx = o dz, we obtain

-+
1 —22/2
E(X) = — (0z + wye*'%dz
. Var/—=
1 ' / +e 2 1 te 2
—z22/2 —2°/2
= ——0 ze dz + p—— e dz.
\/ 27 J—o V2r /-
The first of the above integrals equals zero since the .integrand, say g(z), has the
property that g(z) = —g(—z), and hence g is an odd function. The second in-

tegral (without the factor u) represents the total area under the normal pdf and
hence equals unity. Thus E(X) =
Consider next

2 1 i 2 lx—#z
E(X)= .\/i_o./_m X e)(p(- 'z-[T]>dx.

Again letting z = (x — u)/o, we obtain

.

4o
1 2
E(X* = — (6z + p)?e'2dz
V2r
1 +o , 1 +
2,2 —2%/2 —22/2
= —— o°z% dz+2pa'——/ ze dz
V2r == VxS
1 i 2
+ ”2 _r e—z /12 dz.
2z )=
The second integral again equals zero by the argument used above The last in-
tegral (without the factor 12) equals unity. To evaluate (1/7/27) [T 222 dz,
we integrate by parts letting ze™**/2 = dvandz = u. Hence v = — —22/ 2 while
dz = du. We obtain
+ 2 +
1 2 —22/2 —ze~ " 3| 1 / 2
e z%e dz_=— e Tdz=0+1 =
VxS V2w \/
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Therefore, E(X%) = 02 + u? and hence V(X) = E(X?) — (E(X))? = o2 Thus
we find that the two parameters u and 0% which characterize the normal distribution
are the expectation and variance of X, respectively. To put it differently, if we
know that X is normally distributed we know only that its probability distribution
is of a certain type (or belongs to a certain family.) If in addition, we know E(X)
and V(X), the distribution of X is com-
pletely specified. As we mentioned above,
the graph of the pdf of a normally distrib- : N, )
uted random variable is symmetric
about u. The steepness of the graph is
determined by o2 in the sense that if X N, o?)
has distribution N(u,a?) and Y has dis- -
tribution N(u, o), where a > o2, then
their pdf’s would have the relative shapes
shown in Fig. 9.2.

xX=p

FIGURE 9.2

(d) If X has distribution N(0, 1) we say that X has a standardized normal dis-
tribution. That is, the pdf of X may be written as

1 —z2/2

x)=——e€ . 9.2

e(x) Vo 0.2)

(We shall use the letter ¢ exclusively for the pdf of the above random variable X.)

The importance of the standardized normal distribution is due to the fact that it is

tabulated. Whenever X has distribution N(u, %) we can always obtain the stan-

dardized form by simply taking a linear function of X as the following theorem
indicates.

Theorem 9.1. If X has the distribution N(u,0%) and if Y = aX + b, then Y
has the distribution N(au + b, a%s?).

Proof: The fact that E(Y) = au + b and that V(Y) = a%? follows imme-
diately from the properties of expectation and variance discussed in Chapter 7.
To show that in fact Y is normally distributed, we may apply Theorem 5.1, since
aX + b is either a decreasing or increasing function of X, depending on the sign
of a. Hence if g is the pdf of Y, we have

1 1l [y=-b6_ T
\/Q‘;UCXP 202 a L

p (— sz 7 — (au + b)]2> ’

1

a

gby) =

= ———¢€X
V2= gla|

which represents the pdf of a random variable with distribution N(au + b, a’c?).

Corollary. If X has distribution N(u,0?) and if Y = (X — u)/o, then Y has
distribution N(0, 1).
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Proof: Tt is evident that Y is a linear function of X, and hence Theorem 9.1
applies.

Note: The importance of this corollary is that by changing the units in which the
variable is measured we can obtain the standardized distribution (see d). By doing this
we obtain a distribution with no unspecified parameters, a most desirable situation from
the point of view of tabulating the distribution (see the next section).

9.4 Tabulation of the Normal Distribution
Suppose that X has distribution N(0, 1). Then

b
1 2
Pa< X<b) = —/ e "2 dx.
\/21r a

This integral cannot be evaluated by ordinary means. (The difficulty stems from
the fact that we cannot apply the Fundamental Theorem of the Calculus since we
cannot find a function whose derivative equals e~%*2) However, methods of
numerical integration can be used to evaluate integrals of the above form, and in
fact P(X < s) has been tabulated.

The cdf of the standardized normal distribution will be consistently denoted by
®. Thatis,

1 / —z%/2
P(s) = 5 .
(s) vaz ) e dx 9.3)
(See Fig. 9.3.) The function & has been extensively tabulated, and an excerpt of
such a table is given in the Appendix. We
may now use the tabulation of the func- #(x)
tion ® in order to evaluate P(a < X < b),
where X has the standardized N(O, 1)
distribution since
Pla < X < b) = d(b) — ®(a).
The particular usefulness of the above
tabulation is due to the fact that if X has
any normal distribution N(u,02), the
tabulated function & may be used to
evaluate probabilities associated with X.
We simply use Theorem 9.1 to note that if X has distribution N(u,o?2), then
= (X — w)/o has distribution N(0, 1). Hence

FiGuURE 9.3
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It is also evident from the definition of ® (see Fig. 9.3) that
&(—x) = 1 — &(x). 9.5)

This relationship is particularly useful since in most tables the function ® is tabu-
lated only for positive values of x.

Finally let us compute P(u — ko < X < u + ko), where X has distribution
N(u,a?). The above probability may be expressed in terms of the function & by
writing

g
®(k) — (—k).

P(u — ko < X§y+ko)=P(—kSX—ﬂSk>

Using Eq. (9.5), we have for k > 0,
Plu— ko < X < u+ ko) = 20(k) — 1. 9.6)

Note that the above probability is independent of 4 and ¢. In words: The prob-
ability that a random variable with distribution N(u, o2) takes values within k
standard deviations of the expected value depends only on k and is given by

Eq. (9.6).

Note: We shall have many occasions to refer to “tabulated functions.” In a sense when
an expression can be written in terms of tabulated functions, the problem is *“solved.”
(With the availability of modern computing facilities, many functions which are not
tabulated may be readily evaluated. Although we do not expect that everyone has easy
access to a computer, it does not seem too unreasonable to suppose that certain common
tables are available.) Thus we should feel as much at ease with the function ®(x) =
(1/v/2x) %, e=**/2 ds as with the function f(x) = v/x. Both these functions are tab-
ulated, and in either case we might experience some difficulty in evaluating the function
directly for x = 0.43, for example. In the Appendix various tables are listed of some
of the most important functions we shall encounter in our work. QOccasional references
will be given to other tables not listed in this text.

ExaMPLE 9.1. Suppose that X has distribution N(3, 4). We want to find a num-
ber ¢ such that

P(X > ¢) = 2P(X < o).

We note that (X — 3)/2 has distribution N(0, 1). Hence
X—3_c¢c—3 c—3
P(X>c)—P( = > 2>—1—<1><2>-

P(XSC)=P(X2—3SC;3>=¢<C;3)

Also,
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The above condition may therefore be written as 1 — ®[(c — 3)/2] =
28[(c — 3)/2]). This becomes ®[(¢c — 3)/2] = 3. Hence (from the tables of the
normal distribution) we find that (¢ — 3)/2 = —0.43, yielding ¢ = 2.14.

ExAaMPLE 9.2. Suppose that the breaking strength of cotton fabric (in pounds),
say X, is normally distributed with E(X) = 165 and V(X) = 9. Assume further-
more that a sample of this fabric is considered to be defective if X < 162. What
is the probability that a fabric chosen at random will be defective?

We must compute P(X < 162). However

P(X < 162)

I

3 3
=&(—1) = 1 — &) = 0.159.

P(X — 165 < 162 — 165)

Note: An immediate objection to the use of the normal distribution may be raised
here. For it is obvious that X, the strength of cotton fabric, cannot assume negative
values, while a normally distributed random variable may assume all positive and nega-
tive values. However, the above model (apparently not valid in view of the objection
just raised) assigns negligible probability to the event {X < 0}. That is,

0 — 165
3

P(X < 0) =P<X—3165 < ) = ®(—55)~ 0.

The point raised here will occur frequently: A certain random variable X which we know
cannot assume negative values (say) will be assumed to have a normal distribution, thus
taking on (theoretically, at least) both positive and negative values. So long as the
parameters ¢ and o2 are chosen so that P(X < 0) is essentially zero, such a representation
is perfectly valid.

The problem of finding the pdf of a function of a random variable, say Y =
H(X), as discussed in Chapter 5, occurs in the present context in which the random
variable X is normally distributed.

ExAaMPLE 9.3. Suppose that the radius R of a ball bearing is normally distributed
with expected value 1 and variance 0.04. Find the pdf of the volume of the ball
bearing.

The pdf of the random variable R is given by

£y = méxp (— %[%D

Since V is a monotonically increasing function of R, we may directly apply Theo-
rem 5.1 for the pdf of V = 4xR3, and obtain g(v) = f(r)(dr/dv), where r is
everywhere expressed in terms of ». From the above relationship, we obtain
r = ~/3v/4x. Hence dr/dv = (1/4)(3v/4x)"2'3. By substituting these expres-
sions into the above equation, we obtain the desired pdf of V.
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ExAMPLE 9.4. Suppose that X, the inside diameter (millimeters) of a nozzle, is
a normally distributed random variable with expectation p and variance 1. If X
does not meet certain specifications, a loss is assessed to the manufacturer. Specifi-
cally, suppose that the profit T (per nozzle) is the following function of X:

T = C, (dollars) if 10 < X< 12,
= —C, if X <10,

=—C; if X> I2

Il

Hence the expected profit (per nozzle) may be written as

ET) = Ci[2(12 — p) — 2(10 — w)]
— Col®(10 — p)] — C3[1 — 2(12 — )]
= (C1 + C3)2(12 — p) — (C1 + C2)2(10 — p) — Cs.

Suppose that the manufacturing process can be adjusted so that different values
of u may be achieved. For what value of u is the expected profit maximum? We
must compute dE(T)/(dp) and set it equal to zero. Denoting, as usual, the pdf of
the N(O, 1) distribution by ¢, we have

dE
I _ (€ + Col—e12 — )] — (C1 + Col—e(10 — )

Hence
1 2
—(C1 + C3)——exp (—3(12 — p)
. 3)\/2; p (-3 )

1

+ (C, + Cy) > exp (—%(10 — p)2) = 0.
T
Or
22— _ Gt Ca
Ci + G
Thus

C, + C
— 1 1 3).
p=1 2ln<Cl+C2>

[It is an easy matter for the reader to check that the above yields a maximum
value for E(T).]

Notes: (@) If C2 = Cs, that is, if too large or too small a diameter X is an equally
serious defect, then the value of u for which the maximum value of E(T) is attained is
u = 11. If C2 > Cag, the value of u is <11, while if C2 < Cg, the value of uis >11. As
u— 4o, E(T) > —C3, whileify > —, E(T) > —Ca.

(b) Consider the following cost values: C1 = $10, C2 = $3, and C3 = $2. Hence
the value of u for which E(T) is maximized equalsu = 11 — % In 12] = $11.04. Thus
the maximum value attained by E(T) equals $6.04 per nozzle.
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9.5 The Exponential Distribution

Definition. A continuous random variable X assuming all nonnegative values
is said to have an exponential distribution with parameter o > 0 if its pdf is

iven b
g y Sx)

f(x) = ae™**, x>0
=0, elsewhere.  (9.7)

(See Fig. 9.4.) [A straightforward inte-
gration reveals that

[ feydx =1 .
and hence Eq. (9.7) does represent a pdf.] FIGURE 9.4

The exponential distribution plays an important role in describing a large class
of phenomena, particularly in the area of reliability theory. We shall devote
Chapter 11 to some of these applications. For the moment, let us simply investi-
gate some of the properties of the exponential distribution.

9.6 Properties of the Exponential Distribution

(a) The cdf F of the exponential distribution is given by

F(x) = P(X < x) = [0’ aetdi=1—¢ x>0  (98)
= 0, elsewhere.
[Hence P(X > x) = e %%
(b) The expected value of X is obtained as follows:

EX) = /: xae " dx.

Integrating by parts and letting ae™** dx = dv, x = u, we obtain v = —e *%,
du = dx. Thus, -
E(X) = [—xe ™5 + / e dx = é- 9.9)
0

Thus the expected value equals the reciprocal of the parameter «. [By simply re-
labeling the parameter « = 1/8, we could have written the pdf of X as f(x) =
(1/8)e—*8. In this form, the parameter 8 equals the expected value of X. How-
ever, we shall continue to use the form of Eq. (9.7).]

(c) The variance of X may be obtained by a similar integration. We find that
E(X?) = 2/a? and therefore
V(X) = E(X*) — [BOOF = -

a2

(9.10)
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(d) The exponential distribution has the following interesting property, analo-
gous to Eq. (8.6) described for the geometric distribution. Consider for any
51> 0,P(X > s+ t| X > s). Wehave

—a(s4-t)
P(X>s+1t|X>s)= P(zj’((;;j)t) air=—a
Hence
PX>s+t|X>s)=PX>). .11

Thus we have shown that the exponential distribution also has the property of
having ‘“no memory” as did the geometric distribution. (See Note following
Theorem 8.4.) We shall make considerable use of this property in applying the
exponential distribution to fatigue models in Chapter 11.

Note: As was true in the case of the geometric distribution, the converse of Property (d)
also holds. The only continuous random variable X assuming nonnegative values for
which P(X > s+ t| X > s) = P(X > 1) for all 5, > 0, is an exponentially dis-
tributed random variable. [Although we shall not prove this here, it might be pointed
out that the crux of the argument involves the fact that the only continuous function G
having the property that G(x + y) = G(x)G(y) forall x,y > 0, is G(x) = e~*=. Itis
easily seen that if we define G(x) = 1 — F(x), where F is the cdf of X, then G will sat-
isfy this condition.]

ExAMPLE 9.5. Suppose that a fuse has a life length X which may be considered
as a continuous random variable with an exponential distribution. There are
two processes by which the fuse may be manufactured. Process I yields an ex-
pected life length of 100 hours (that is, the parameter equals 100~ 1), while process
11 yields an expected life length of 150 hours (that is, the parameter equals 150~ !).
Suppose that process 11 is twice as costly (per fuse) as process I, which costs C
dollars per fuse. Assume, furthermore, that if a fuse lasts less than 200 hours, a
loss of K dollars is assessed against the manufacturer. Which process should be
used? Let us compute the expected cost for each process. For process I, we have

C1 = cost (per fuse) = C if X > 200
=C+ K if X <200
Therefore,

E(Cy)

CP(X > 200) + (C + K)P(X < 200)
— Ce—(1/100)200 + (C + K)(l _ e—(1/100)200)

=C?4+(C+K1—-—e?)=Kl—-e?H+C.
By a similar computation we find that

E(Cn) = K1 — e™4/3) 4+ 2C.
Thus
E(Cr1) — E(CY) = C+ K2 — e~%3) = C — 0.13K.
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Hence we prefer process I, provided that C > 0.13K.
ExAMPLE 9.6. Suppose that X has an J)
exponential distribution with parameter
a. Then E(X) = 1/a. Let us compute
the probability that X exceeds its ex-
pected value (Fig. 9.5). We have

P(X > 1) = et/

a

x=]"/a
=el< i FIGURE 9.5

ExAMPLE 9.7. Suppose that 7, the time to failure of a component, is exponen-
tially distributed. Hence f(f) = ae™*‘. If n such components are installed, what is
the probability that one-half or more of these components are still functioning at
the end of ¢ hours? The required probability is

n

b (Z) (1 — eyt e™%) if nis even;

k=n/2
2 (Z) (1 — ey e™%) if nis odd.
k=(n+1)/2

ExAMPLE 9.8. Suppose that the life length in hours, say T, of a certain electronic
tube is a random variable with exponential distribution with parameter 8. That
is, the pdf is given by f(£) = Be®, ¢t > 0. A machine using this tube costs C,
dollars/hour to run. While the machine is functioning, a profit of C, dollars/hour
is realized. An operator must be hired for a prearranged number of hours, say
H, and he gets paid C; dollars/hour. For what value of H is the expected profit
greatest?

Let us first get an expression for the profit, say R. We have

R=CH—-CH-C3H if T>H
= Co — CiT — C3H if T<H.

Note that R is a random variable since it is a function of T. Hence

E(R) = H(Cy — C, — C3)P(T > H) — C3HP(T < H)
H
+ (Cy — Cl)/ 18e~** dt
0
H(Cy; — C; — Cg)e™®® — CH(1 — e PH)
+ (Co — CIB™! — e PH(g~ + H)]
(C; — CHe™™ + 7! — e (™! + H)] — C;H.
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To obtain the maximum value of E(R) we differentiate it with respect to H and
set the derivative equal to zero. We have

‘%‘% = (Cs — COIH(=P)e™ + e — P 4 (871 + H)(B)e ] — C3
= (C; — Cy)e P — C;.

Hence dE(R)/dH = 0 implies that

-~ (oler)

[In order for the above solution to be meaningful, we must have H > 0 which
occurs if and only if 0 < C3/(C2 — C;) < 1, which in turn is equivalent to
C; — C;>0and C; — C; — C3 > 0. However, the last condition simply
requires that the cost figures be of such a magnitude that a profit may be realized.]

Suppose in particular that 8 = 0.01, C; = $3, C, = $10, and C; = $4.
Then H = —100In[#] = 55.9 hours ~ 56 hours. Thus, the operator should
be hired for 56 hours in order to achieve the maximum profit. (For a slight modi-
fication of the above example, see Problem 9.18.)

9.7 The Gamma Distribution
Let us first introduce a function which is most important not only in probability

theory but in many areas of mathematics.

Definition. The Gamma function, denoted by T, is defined as follows:

I'(p) = /ow x*"'e™2dx,  defined for p > 0. 9-12)

[It can be shown that the above improper integral exists (converges) whenever
p > 0.] If we integrate the above by parts, letting e *dx = dv and x*~! = u,
we obtain
I(p) = —ex"7'[3 —fo [—e™*(p — )x*"2dx]

=0+ (p—1) /0“’ e *xP2 dx
= (- Dr( - 0. 9.13)

Thus we have shown that the Gamma function obeys an interesting recursion re-
lationship. Suppose that p is a positive integer,say p = n. Then applying Eq. (9.13)
repeatedly, we obtain

'(n) = (n— NI'(n — 1)
=mn—-—1Dn—-2r(n—2)=---
=m-— D@ —2)---TN).

However, I'(1) = f; e *dx = 1, and hence we have

T'(n) = (n — 1) 9.19)
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(if n is a positive integer). (Thus we may consider the Gamma function to be a
generalization of the factorial function.) It is also easy to verify that

r@) =[x dx = /. ©.15)
0
(See Problem 9.19.) ‘

With the aid of the Gamma function we can now introduce the Gamma prob-
ability distribution.

Definition. Let X be a continuous ran-
dom variable assuming only non- flx)

negative values. We say that X has
a Gamma probability distribution if
its pdf is given by i s
” r=4

_ & r—1 —azx
flx) = o) (ax) e, x>0

= 0, elsewhere. (9.16) x

FiGURE 9.6

This distribution depends on two parameters, r and «a, of which we require » > 0,
a > 0. [Because of the definition of the Gamma function, it is easy to see that

’_L:f(x) dx = 1.] Figure 9.6 shows graphs of the pdf Eq. (9.16) for various
values of r and & = 1.

9.8 Properties of the Gamma Distribution

(a) If r = 1, Eq. (9.16) becomes f(x) = ae~**. Hence the exponential dis-
tribution is a special case of the Gamma distribution. (If r is a positive integer > 1,
the Gamma distribution is also related to the exponential distribution but in a
slightly different way. We shall refer to this in Chapter 10.)

(b) In most of our applications, the parameter r will be a positive integer. In
this case, an interesting relationship between the cdf of the Gamma distribution
and the Poisson distribution exists which we shall now develop.

Consider the integral I = f: (e ¥y"/r!) dy, where r is a positive integer and
a>0. Then il = [, e¥y"dy. Integrating by parts, letting u = " and
dv = e ¥dy, will yield du = ry"'dy and v = —e™¥. Hence r'l = e %a" +
rf: e ¥y"~ldy. The integral in this expression is exactly of the same form as
the original integral with r replaced by ( — 1). Thus continuing to integrate by
parts we obtain, since r is a positive integer,

l=ea +ra 1 4+rr—Da2+ -+ rl.
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Therefore
I=¢"l +a+ a?/2l + -+ d'/r]

SRY = k),
k=0

where Y has a Poisson distribution with parameter a.
We now consider the cdf of the random variable whose pdf is given by Eq. (9.16).
Since r is a positive integer, Eq. (9.16) may be written as
a

fx) = (= (ax) " Te™*%, 0<x

and consequently the cdf of X becomes
F(x)=1— P(X > x)

S / (r —a ! (as)" e d, x > 0.

Letting (as) = u, we find that this becomes

°°u—l —u

ar (r—___]'—)!

This integral is precisely of the form considered above, namely 7 (with a = ax),
and thus

Fx)y=1- du, x > 0.

r—1
Fx) = 1 — > e ax)'/kl, x> 0. 9.17)
k=0

Hence, the cdf of the Gamma distribution may be expressed in terms of the tabu-
lated cdf of the Poisson distribution. (We recall that this is valid if the parameter r
is a positive integer.)

Note: The result stated in Eq. (9.17), relating the cdf of the Poisson distribution to the
cdf of the Gamma distribution, is not as surprising as it might first appear, as the following
discussion will indicate.

First of all, recall the relationship between the binomial and Pascal distributions
(see Note (b), Section 8.6). A similar relationship exists between the Poisson and Gamma
distribution except that the latter is a continuous distribution. When we deal with a
Poisson distribution we are essentially concerned about the number of occurrences of
some event during a fixed time period. And, as will be indicated, the Gamma distribution
arises when we ask for distribution of the zime required to obtain a specified number of
occurrences of the event.

Specifically, suppose X = number of occurrences of the event 4 during (0, z7]. Then,
under suitable conditions (e.g., satisfying assumptions 4; through 45 in Section 8.3)
X has a Poisson distribution with parameter az, where « is the expected number of occur-
rences of A during a unit time interval. Let 7 = time required to observe r occurrences
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of A. We have:

H)=PT <ty=1—PT>1)
= 1 — P(fewer than r occurrences of A occur in (0, 7])

=1—-—P(X<r)
r—1 —at k
e (af)
=1 — AN
&

Comparing this with Eq. (9.17) establishes the desired relationship.
(c) If X has a Gamma distribution given by Eq. (9.16), we have

E(X) = r/a, V(X) = r/a’. (9.18)
Proof: See Problem 9.20.

9.9 The Chi-Square Distribution

A special, very important, case of the Gamma distribution Eq. (9.16) is ob-
tained if we let « = % and r = n/2, where n is a positive integer. We obtain a
one-parameter family of distributions with pdf

_ _—1__ n{2—1,—z/2
f@) = T 0. 9.19)
J2) f(42) f(@)
n=1 n=2 n>2
>z -z z
(@) (b) ©
FIGURE 9.7

A random variable Z having pdf given by Eq. (9.19) is said to have a chi-square
distribution with n degrees of freedom (denoted by x2). In Fig. 9.7, the pdf for
n = 1,2 and n > 2is shown. Itis an immediate consequence of Eq. (9.18) that
if Z has pdf Eq. (9.19), we have

E@Z) =n, V(Z)=2n. (9.20)

The chi-square distribution has many important applications in statistical
inference, some of which we shall refer to later. Because of its importance, the
chi-square distribution is tabulated for various values of the parameter n. (See
Appendix.) Thus we may find in the table that value, denoted by X2, satisfying
P(Z <x2) =0a0< a< 1 (Fig. 9.8). Example 9.9 deals with a special case of
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1)

FiGURE 9.8

a general characterization of the chi-square distribution which we shall study in
a later chapter.

ExaMPLE 9.9. Suppose that the velocity ¥ of an object has distribution N(0, 1)
Let K = mV?2/2 be the kinetic energy of the object. To find the pdf of K, let us
first find the pdf of S = V2. Applying Theorem 5.2 directly we have

1
2—\/} [e(Vs) + o(—V's)]
szl ez

V2r

If we compare this with Eq. (9.19) and recall that I'(3) = /=, we note that S has
a x2-distribution. Thus we find that the square of a random variable with distri-
bution N(0, 1) has a x3-distribution. (It is this result which we shall generalize
later.)

We can now obtain the pdf 4 of the kinetic energy K. Since K is a monotone
function of V2 whose pdf is given by g above, we have directly

—1/2
h(k) = %g(lk) =2 L(lk) eHm k>0,

m m /3. \m

g(si

In order to evaluate P(K < 5) for example, we need not use the pdf of K but may
simply use the tabulated chi-square distribution as follows.

P(K < 5) = P(m/2)V2 < 5) = P(V2% < 10/m).
This latter probability can be obtained directly from the tables of the chi-square
distribution (if m is known) since V2 has a xZ-distribution. Since E(V?) = 1

and variance (V'2) = 2 [see Eq. (9.20)], we find directly

E(K) = m/2  and V(K) = m?)/2.
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Note: The tabulation of the chi-square distribution as given in the Appendix only
tabulates those values for which », the number of degrees of freedom, is less than or equal
to 45. The reason for this is that if z is large, we may approximate the chi-square distribu-
tion with the normal distribution, as indicated by the following theorem.

Theorem 9.2. Suppose that the random variable Y has distribution x2. Then
for sufficiently large n the random variable /2Y has approximately the dis-
tribution N(v/2n — 1, 1). (The proof is not given here.)

This theorem may be used as follows. Suppose that we require P(Y < ¥),
where Y has distribution X2, and # is so large that the above probability cannot
be directly obtained from the table of the chi-square distribution. Using Theo-
rem 9.2 we may write,

P(V2Y < Vi)
= P(V2Y —V2n — 1 < V2t —/2n — 1)
~ &(\/2t — \V2n — 1).

The value of ® may be obtained from the tables of the normal distribution.

P(Y <)

9.10 Comparisons among Various Distributions

We have by now introduced a number of important probability distributions,
both discrete and continuous: the binomial, Pascal, and Poisson among the discrete
ones, and the exponential, geometric, and gamma among the continuous ones.
We shall not restate the various assumptions which led to these distributions.
Our principal concern here is to point out certain similarities (and differences)
among the random variables having these distributions.

1. Assume that independent Bernoulli trials are being performed.

(a) random variable: number of occurrences of event A4 in a fixed number of
trials
distribution: binomial

(b) random variable: number of Bernoulli trials required to obtain first occur-
rence of A
distribution: geometric

(c) random variable: number of Bernoulli trials required to obtain rth occur-
rence of A
distribution: Pascal

2. Assume a Poisson process (see note (c) preceeding Example 8.5).

(d) random variable: number of occurrences of event A during a fixed time
interval
distribution: Poisson

(e) random variable: time required until first occurrence of 4
distribution: exponential
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(f) random variable: time required until rth occurrence of A4
distribution: gamma

Note: Observe the similarity between (a) and (d), (b) and (e), and finally (c) and (f).

9.11 The Bivariate Normal Distribution

All the continuous random variables we have discussed have been one-dimen-
sional random variables. As we mentioned in Chapter 6, higher-dimensional
random variables play an important role in describing experimental outcomes.
One of the most important continuous two-dimensional random variables, a
direct generalization of the one-dimensional normal distribution, is defined as
follows.

Definition. Let (X, Y) be a two-dimensional, continuous random variable
assuming all values in the euclidean plane. We say that (X, Y) has a bivariate
normal distribution if its joint pdf is given by the following expression.

1
2ro,0 1 — p?

_ 1 X — pr)’ (x — 1) — 1) y—#yz]]
X“p{ 2<1—p2)[< 7 ) — % oy +< 7y ) ’

—w <x< w, —w<<y< oo 9.21)

fx, ) =

The above pdf depends on 5 parameters. For f to define a legitimate pdf
[that is, f(x,y) > O, f_m f_m f(x,y)dxdy = 1], we must place the follow-
ing restrictions on the parameters: —oo < p, < w; —oo < py < 00;
g, > 0;0, > 0; —1 < p < 1. The following properties of the bivariate
normal distribution may easily be checked.

Theorem 9.3. Suppose that (X, Y) has pdf as given by Eq. (9.21). Then

(a) the marginal distributions of X and of Y are N(u.,02) and N(u,, ai),
respectively;

(b) the parameter p appearing above is the correlation coefficient between
Xand Y;

(c) the conditional distributions of X (given that Y = y) and of Y (given
that X = x) are respectively

Nl:l"z + p?(}’ — ), o2(l — pz)], N[uy . p;—”(x — w2) o1 — p2)]-
Y z
Proof: See Problem 9.21.

Notes: (a) The converse of (a) of Theorem 9.3 is not true. It is possible to have a
joint pdf which is not bivariate normal and yet the marginal pdf’s of X and of Y are one-
dimensional normal.
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(b) We observe from Eq. (9.21) that if p = 0, the joint pdf of (X, Y) may be factored
and hence X and Y are independent. Thus we find that in the case of a bivariate normal
distribution, zero correlation and independence are equivalent.

(c) Statement (c) of the above theorem shows that both regression functions of the
mean are linear. It also shows that the variance of the conditional distribution is reduced
in the same proportion as (1 — p?). That is, if p is close to zero, the conditional variance
is essentially the same as the unconditional variance, while if p is close to +1, the condi-
tional variance is close to zero.

The bivariate normal pdf has a number of interesting properties. We shall
state some of these as a theorem, leaving the proof to the reader.

Theorem 9.4. Consider the surface z = f(x, y), where f is the bivariate normal
pdf given by Eq. (9.3).
(a) z = ¢ (const) cuts the surface in an ellipse. (These are sometimes called
contours of constant probability density.)

(b) If p = Oand o, = 0, the above ellipse becomes a circle. (What happens
to the above ellipse as p — +£1?)

Proof: See Problem 9.22.

Note: Because of the importance of the bivariate normal distribution, various prob-
abilities associated with it have been tabulated. (See D. B. Owen, Handbook of Statistical
Tables, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1962.)

9.12 Truncated Distributions

ExAMPLE 9.10. Suppose that a certain type of bolt is manufactured and its
length, say Y, is a random variable with distribution (2.2, 0.01). From a large
lot of such bolts a new lot is obtained by discarding all those bolts for which
Y > 2. Hence if X is the random variable representing the length of the bolts in
the new lot, and if F is its cdf we have

F(x) = P(X < %)
=P(Y<x|Y<)=1 if x>2
= P(Y < x)/P(Y < 2) if x<2.

(See Fig. 9.9.) Thus f, the pdf of X is given by
fX)=F(x)=0 if x> 2,

L e (_ 1 [x - 2.2]2>
/7m 2| o1

FIGURE 9.9
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since

(Y=23 _2=23
P(Y52)=P( o1 < o1 >=q>(—2).

[®, as usual, is the cdf of the distribution N(0, 1).]
The above is an illustration of a truncated normal distribution (specifically,
truncated to the right at X = 2). This example may be generalized as follows.

Definition. We say that the random variable X has a normal distribution
truncated to the right at X = Tt if its pdf f is of the form

fx)=0 if x>,

| 1[x — ul? .
=K exp (— —[ ]) if x< . (9.22)
Vro 2 o

We note that K is determined from the condition ff: f(x)dx = 1 and hence

_ 1 _ 1
C (T —w/el PZ<T)

where Z has distribution N(z,5%). Analogously to the above we have the following
definition.

K

Definition. We say that the random variable X has a normal distribution
truncated to the left at X = 7, if its pdf fis of the form

fx)=0 if x <,
- \/25 exp (- %[" = "]2) it x> 9.23)
T 0

Again, X is determined from the condition [T f(x)dx = 1 and thus

o[- o (5T

The concepts introduced above for the normal distribution may be extended in
an obvious way to other distributions. For example, an exponentially distributed
random variable X, truncated to the left at X = v, would have the following pdf:

fx)=0 if x<7,
= Cae™** if x> 9.29)

Again, C is determined from the condition fj: f(x)dx = 1 and hence
C = e7,

We can consider also a truncated random variable in the discrete case. For
instance, if a Poisson-distributed random variable X (with parameter A) is trun-
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cated to the right at X = k + 1, it means that X has the following distribution:

P(X=i)=0 if i>k+1,

c%r* it i=0,1,...,k (9.25)

We determine C from the condition 3 ;—y P(X = i) = 1 and find

1
o W/
Thus
HX=0=%%rin,
B Yimo N/1D)
Truncated distributions may arise in many important applications. We shall
consider a few examples below.

i=0,1,...,k and O elsewhere.

ExaMPLE 9.11. Suppose that X represents the life length of a component. If
X is normally distributed with

E(X) =4 and V(X) = 4,
we find that
P(X < 0) = &(—2) = 0.023.

Thus this model is not very meaningful since it assigns probability 0.023 to an
event which we know cannot occur. We might consider, instead, the above random
variable X truncated to the left at X = 0. Hence we shall suppose that the pdf
of the random variable X is given by

f(x)=10 if x<O0,

1 1x—411 :
@ @) expl: 2< 5 ) 32) if x>0.

Note: We have indicated that we often use the normal distribution to represent a
random variable X about which we know that it cannot assume negative values. (For
instance, time to failure, the length of a rod, etc.) For certain parameter values u = E(X)
and ¢2 = V(X) the value of P(X < 0) will be negligible. However, if this is not the
case (as in Example 9.11) we should consider using the normal distribution truncated
to the left at X = 0.

ExaMPLE 9.12. Suppose that a system is made up of n components which func-
tion independently, each having the same probability p of functioning properly.
Whenever the system malfunctions, it is inspected in order to discover which and
how many components are faulty. Let the random variable X be defined as the
number of components that are found to be faulty in a system which has broken
down. If we suppose that the system fails if and only if at least one component
fails, then X has a binomial distribution truncated to the left at X = 0. For the
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very fact that the system has failed precludes the possibility that X = 0. Specifi-
cally we have

B M — pyp* _
P(X = k) = gt iins (S5 i) k=1,2,...,n

Since P (system fails) = 1 — p", we may write

_ kn—k
P(X = k) = @(—11—_”})’"—, k=1,2...,n

ExaMPLE 9.13. Suppose that particles are emitted from a radioactive source
according to the Poisson distribution with parameter \. A counting device, re-
cording these emissions only functions if fewer than three particles arrive. (That
is, if more than three particles arrive during a specified time period, the device
ceases to function because of some “locking” that takes place.) Hence if Y is
the number of particles recorded during the specified time interval, Y has possible
values 0, 1, and 2. Thus

PY -k =2 A . k=0,1,2
k! e N1 + N+ (A%/2)] T

=0, elsewhere.

Since the truncated normal distribution is particularly important, let us consider
the following problem associated with this distribution.

Suppose that X is a normally distributed random variable truncated to the right
at X = 7. Hence the pdf fis of the form

fy=0 if x>,

= 1 exp[—l<x_ )2] L if x<r.
\V2ra 2\ ¢ ®[(r — p)/o] -

We therefore have

[ xsoin = gt [ e~ 5 (552)]
IR L =2 I . =he d B AN B ks

(r—u)lo
_ I .
© ¥ — w/al /2, /_m (so + we ' ds

1 . 1 (1—m)] o
= (b - M) - —82/2 d ]
#Hr — /o] [“ < o )T .

a 1 —32/2 1)|(1—u)/0

t =Wl v
- ¢~ s v 3 () |
BRRE = By = A

E(X)
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Note that the expression obtained for E(X) is expressed in terms of tabulated
functions. The function ® is of course the usual cdf of the distribution N(0, 1),
while (1/4/27)e™**!2 is the ordinate of the pdf of the N(0, 1) distribution and is
also tabulated. In fact the quotient

(/7 2Zx)e 12
®(x)

is tabulated. (See D. B. Owen, Handbook of Statistical Tables, Addison-Wesley
Publishing Company, Inc., Reading, Mass., 1962.)

Using the above result, we may now ask the following question: For given p
and o where should the truncation occur (that is, what should the value of 7 be)
so that the expected value after truncation has some preassigned value, say A?
We can answer this question with the aid of the tabulated normal distribution.
Suppose that u = 10,0 = 1, and we require that A = 9.5. Hence we must solve

Ve _ 10 1 1 1022
R v :
This becomes
L _ (1/V2m)e 10
2 &(r — 10)

Using the tables referred to above, we find that 7 — 10 = 0.52. and hence
7 = 10.52.

Note: The problem raised above may be solved only for certain values of u, o, and A.
That is, for given u and o, it may not be possible to obtain a specified value of 4. Con-
sider the equation which must be solved:

A= S 1 _1 uz].
) A‘«b[(r—n)/al\/ﬁe"p[ 2( v )

The right-hand side of this equation is obviously positive. Hence we must have
(u — A) > 0in order for the above problem to have a solution. This condition is not
very surprising since it says simply that the expected value (after truncation on the right)
must be less than the original expected value.

PROBLEMS

9.1. Suppose that X has distribution N(2, 0.16). Using the table of the normal dis-
tribution, evaluate the following probabilities.

@) P(X > 2.3) ®) PA.8 < X < 21)

9.2. The diameter of an electric cable is normally distributed with mean 0.8 and
variance 0.0004. What is the probability that the diameter will exceed 0.81 inch?
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9.3. Suppose that the cable in Problem 9.2 is considered defective if the diameter dif-
fers from its mean by more than 0.025. What is the probability of obtaining a defective
cable?

9.4. The errors in a certain length-measuring device are known to be normally dis-
tributed with expected value zero and standard deviation 1 inch. What is the prob-
ability that the error in measurement will be greater than 1 inch? 2 inches? 3 inches?

9.5. Suppose that the life lengths of two electronic devices, say D; and D32, have dis-
tributions N(40, 36) and N(45, 9), respectively. If the electronic device is to be used for
a 45-hour period, which device is to be preferred? If it is to be used for a 48-hour period,
which device is to be preferred ?

9.6. We may be interested only in the magnitude of X, say ¥ = |X|. If X has dis-
tribution N(0, 1), determine the pdf of Y, and evaluate E(Y) and ¥(Y).

9.7. Suppose that we are measuring the position of an object in the plane. Let X and
Y be the errors of measurement of the x- and y-coordinates, respectively. Assume that
X and Y are independently and identically distributed, each with distribution N(0, o2).
Find the pdf of R = v/ X2 + Y2. (The distribution of R is known as the Rayleigh
distribution.) [Hint: Let X = Rcosy and Y = Rsiny. Obtain the joint pdf of (R, ¥)
and then obtain the marginal pdf of R.]

9.8. Find the pdf of the random variable Q = X/Y, where X and Y are distributed
as in Problem 9.7. (The distribution of Q is known as the Cauchy distribution.) Can
you compute E(Q)?

9.9. A distribution closely related to the normal distribution is the lognormal dis-
tribution. Suppose that X is normally distributed with mean u and variance o2. Let
Y = eX. Then Y has the lognormal distribution. (That is, Y is lognormal if and only
if In Y is normal.) Find the pdf of Y. Note: The following random variables may be
represented by the above distribution: the diameter of small particles after a crushing
process, the size of an organism subject to a number of small impulses, and the life length
of certain items.

9.10. Suppose that X has distribution N(u,02). Determine ¢ (as a function of u
and o) such that P(X < ¢) = 2P(X > o).

9.11. Suppose that temperature (measured in degrees centigrade) is normally dis-
tributed with expectation 50° and variance 4. What is the probability that the tempera-
ture T will be between 48° and 53° centigrade ?

9.12. The outside diameter of a shaft, say D, is specified to be 4 inches. Consider D
to be a normally distributed random variable with mean 4 inches and variance 0.01
inch2, 1If the actual diameter differs from the specified value by more than 0.05 inch but
less than 0.08 inch, the loss to the manufacturer is $0.50. If the actual diameter differs
from the specified diameter by more than 0.08 inch, the loss is $1.00. The loss, L, may
be considered as a random variable. Find the probability distribution of L and evalu-
ate E(L).

9.13. Compare the upper bound on the probability P[|X — E(X)| > 2v/¥(X)] ob-
tained from Chebyshev’s inequality with the exact probability in each of the following
cases.

(a) X has distribution N(u, 0'2).
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(b) X has Poisson distribution with parameter \.

(c) X has exponential distribution with parameter .

9.14. Suppose that X is a random variable for which E(X) = u and V(X) = ¢2.
Suppose that Y is uniformly distributed over the interval (a, 5). Determine a and b so
that E(X) = E(Y) and V(X) = V(Y).

9.15. Suppose that X, the breaking strength of rope (in pounds), has distribution
N(100, 16). Each 100-foot coil of rope brings a profit of $25, provided X > 95. If
X < 95, the rope may be used for a different purpose and a profit of $10 per coil is
realized. Find the expected profit per coil.

9.16. Let X; and X2 be independent random variables each having distribution
N(u,02). Let Z(f) = X1coswt + Xgsinwt. This random variable is of interest in
the study of random signals. Let V' (r) = dZ(¢)/dt. (w is assumed to be constant.)

(a) What is the probability distribution of Z(r) and V(¢) for any fixed ¢?

(b) Show that Z(r) and V(¢) are uncorrelated. [Note: One can actually show that
Z(?) and V(¢) are independent but this is somewhat more difficult to do.]

9.17. A rocket fuel is to contain a certain percent (say X) of a particular compound.
The specifications call for X to be between 30 and 35 percent. The manufacturer will
make a net profit on the fuel (per gallon) which is the following function of X:

T(X) = $0.10 per gallon if 30 < X <35,
= $0.05 per gallon if 35 < X< 400r25 < X < 30,
= —$0.10 per gallon otherwise.
(a) If X has distribution N(33, 9), evaluate E(T).
(b) Suppose that the manufacturer wants to increase his expected profit, E(T), by 50

percent. He intends to do this by increasing his profit (per gallon) on those batches of
fuel meeting the specifications, 30 < X < 35. What must his new net profit be ?

9.18. Consider Example 9.8. Suppose that the operator is paid C3 dollars/hour while
the machine is operating and C4 dollars/hour (Cs < C3) for the remaining time he has
been hired after the machine has failed. Again determine for what value of H (the num-
ber of hours the operator is being hired), the expected profit is maximized.

9.19. Show that I'(3) = \a/f (See 9.15.) [Hint: Make the change of variable x =
u2/2 in the integral T3) = fo x~V2e~=dx.]

9.20. Verify the expressions for E(X) and V(X), where X has a Gamma distribution
[see Eq. (9.18)].

9.21. Prove Theorem 9.3. .

9.22. Prove Theorem 9.4.

9.23. Suppose that the random variable X has a chi-square distribution with 10 de-
grees of freedom. If we are asked to find two numbers a and b such that P(a < x < b) =
0.85, say, we should realize that there are many pairs of this kind.

(a) Find two different sets of values (a, b) satisfying the above condition.
(b) Suppose that in addition to the above, we require that

P(X < a) = P(X > b).

How many sets of values are there?



Problems 207

9.24. Suppose that V, the velocity (cm/sec) of an object having a mass of 1 kg, is a
random variable having distribution N(0, 25). Let K = 1000¥'2/2 = 500F'2 represent
the kinetic energy (KE) of the object. Evaluate P(K < 200), P(X > 800).

9.25. Suppose that X has distribution N(u, 02). Using Theorem 7.7, obtain an ap-
proximation expression for E(Y) and V(Y)if ¥ = In X.

9.26. Suppose that X has a normal distribution truncated to the right as given by
Eq. (9.22). Find an expression for E(X) in terms of tabulated functions.

9.27. Suppose that X has an exponential distribution truncated to the left as given by
Eq. (9.24). Obtain E(X).

9.28. (a) Find the probability distribution of a binomially distributed random vari-
able (based on n repetitions of an experiment) truncated to the right at X = n; that is,
X = n cannot be observed.

(b) Find the expected value and variance of the random variable described in (a).

9.29. Suppose that a normally distributed random variable with expected value p
and variance o2 is truncated to the left at X = 7 and to the right at X = 7. Find the
pdf of this “doubly truncated”’ random variable.

9.30. Suppose that X, the length of a rod, has distribution N(10, 2). Instead of meas-
uring the value of X, it is only specified whether certain requirements are met. Specifi-
cally, each manufactured rod is classified as follows: X < 8,8 < X < 12,and X > 12,
If 15 such rods are manufactured, what is the probability that an equal number of rods
fall into each of the above categories ?

9.31. The annual rainfall at a certain locality is known to be a normally distributed
random variable with mean value equal to 29.5 inches and standard deviation 2.5 inches.
How many inches of rain (annually) is exceeded about 5 percent of the time?

9.32. Suppose that X has distribution N(0, 25). Evaluate P(1 < X2 < 4).

9.33. Let X, be the number of particles emitted in 7 hours from a radioactive source
and suppose that X, has a Poisson distribution with parameter 8z. Let T equal the num-
ber of hours until the first emission. Show that 7 has an exponential distribution with
parameter 8. [Hint: Find the equivalent event (in terms of X;) to the event T > t.]

9.34. Suppose that X; is defined as in Problem 9.33 with 8 = 30. What is the prob-
ability that the time between successive emissions will be >5 minutes? >10 minutes?
< 30 seconds?

9.35. In some tables for the normal distribution, H(x) = (1/7/2r)fee~*/2dt is
tabulated for positive values of x (instead of ®(x)as given in the Appendix). If the random
variable X has distribution N(1, 4) express each of the following probabilities in terms of
tabulated values of the function H.

@) PllXx| > 2] (b) P[X < 0]

9.36. Suppose that a satellite telemetering device receives two kinds of signals which
may be recorded as real numbers, say X and Y. Assume that X and Y are independent,
continuous random variables with pdf’s fand g, respectively. Suppose that during any
specified period of time only one of these signals may be received and hence transmitted
back to earth, namely that signal which arrives first. Assume furthermore that the signal
giving rise to the value of X arrives first with probability p and hence the signal giving
rise to Y arrives first with probability 1 — p. Let Z denote the random variable whose
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value is actually received and transmitted.

(a) Express the pdf of Z in terms of fand g.

(b) Express E(Z) in terms of E(X) and E(Y).

(c) Express V(Z) in terms of V(X) and V(Y).

(d) Suppose that X has distribution N(2, 4) and that Y has distribution N(3, 3). If
p = %, evaluate P(Z > 2).

(e) Suppose that X and Y have distributions N(z1,67) and N(us, o3), respectively.
Show that if u; = w2, the distribution of Z is “uni-modal,” that is, the pdf of Z has a
unique relative maximum.

9.37. Assume that the number of accidents in a factory may be represented by a
Poisson process averaging 2 accidents per week. What is the probability that (a) the
time from one accident to the next will be more than 3 days, (b) the time from one accident
to the third accident will be more than a week ? [Hint: In (a), let T = time (in days) and
compute P(T > 3).]

9.38. On the average a production process produces one defective item among
every 300 manufactured. What is the probability that the third defective item will appear:
(a) before 1000 pieces have been produced?
(b) as the 1000th piece is produced?
(c) after the 1000th piece has been produced?
[Hint: Assume a Poisson process.]
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