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Simulação Monte Carlo

Simulação Monte Carlo

Simular: Fazer aparecer como real uma coisa que não o é; fingir.

Simulação: a imitação do comportamento ou das caracteŕısticas de
um sistema estocástico utilizando um gerador de números aleatórios
num computador: simulação Monte Carlo.

Estes números possuem uma distribuição de probabilidade de
interesse.

Pode ser a distribuição normal (gausssiana), de Poisson, de Pareto
(power law) ou outra.

Os números aleatórios gerados servem para estudar propriedades
complexas de algoritmos ou aspectos do problema que não podem ser
deduzidos analiticamente (por fórmulas).
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Simulação Monte Carlo

Tudo começa com uma uniforme

Existe uma base para gerar números aleatórios.

Praticamente todos os métodos conhecidos geram uma variável
aleatória U com distribuição uniforme no intervalo (0, 1).

Isto é, U é um número escolhido ao acaso em (0, 1) com densidade
uniforme.

A probabilidade de selecionar X num intervalo (a, b) é o seu
comprimento: b − a.

A seguir, eles transformam U de forma a obter uma variável com a
distribuição de interesse.

Assim, todas as variáveis são obtidas a partir da distribuição U(0, 1).
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Simulação Monte Carlo

Aleatórios mesmo?

De fato, os núemros aleatórios gerados no computador não são
realmente aleatórios mas sim determińısticos.

Muito trabalho de pesquisa já foi feito para criar bons geradores de
números aleatórios.

São procedimentos que geram uma seqüência de valores U1,U2, . . ..

Para todos os efeitos práticos, eles podem ser considerados i.i.d. com
distribuição uniforme em (0, 1).

Além disso, por causa da representação finita nos computadores, não
conseguimos de fato gerar números reais com precisão inifinita.
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Simulação Monte Carlo

O que veremos agora...

Não veremos em detalhes os geradores de números com distribuição
uniforme no intervalo (0, 1).

Este é um assunto bastante técnico e de pouco uso na prática da
análise de dados.

Vamos dar apenas um ligeira idéia de como eles funcionam.

Vamos ver um dos algoritmos mais simples existentes.
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Geradores de números aleatórios U(0, 1)

Divisão inteira

Eles dependem da operação de divisão inteira. Resto da divisão de
um inteiro por outro.

Por exemplo, a divisão inteira de 18 por 7 é 2 com um resto de 4.

O resto deve ser um dos inteiros: 0, 1, 2, . . . , 6.

18 = 2 ∗ 7 + 4.

A expressão é única (com resto entre 0 e 6).

Mais um exemplo: 20 = 2 ∗ 7 + 6
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Geradores de números aleatórios U(0, 1)

Divisão inteira

Dado um inteiro p > 0, um inteiro n pode ser escrito de forma única
como n = kp + r .

k é um inteiro e r = 0, . . . , p − 1.

O resto é o valor r que vai variar de 0 a p − 1.

Por exemplo,

21 = 7× 3 + 0 e a divisão inteira de 21 por 7 deixa resto 0.
22 = 7× 3 + 1 e o resto é 1.
27 = 7× 3 + 6 e o resto é 6.
4 = 7× 0 + 4 e o resto é 4.
Finalmente, 0 = 7× 0 + 0 e o resto é 0.

Notação: n ≡ r (mod p).
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Geradores de números aleatórios U(0, 1)

Gerador congruencial misto

Valor inicial inteiro positivo x0 arbitrário, chamado de semente (seed).

Recursivamente, calcule x1, x2, . . . por meio da fórmula:

axi−1 + b ≡ xi (mod p)

onde a, b, e p são inteiros positivos.

xi é um dos inteiros 0, 1, . . . , p − 1.

A sequência
u1 = x1/p, u2 = x2/p, . . .

é uma aproximação para uma sequência de valores de variáveis
independentes e com distribuição uniforme em (0, 1).

A qualidade desta aproximação: testes estat́ısticos incapazes de
detectar padrões (não aleatórios) nas sequências geradas.
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Geradores de números aleatórios U(0, 1)

Exemplo

Gerador dado por

32749xi−1 + 3 ≡ xi (mod 32777)

Iniciando-se com semente x0 = 100, obtenha
32749× 100 + 3 = 3274903.

A seguir, o resto da divisão inteira por p = 32777: temos
3274903 = 99× 32777 + 29980

Assim, x1 = 29980

Primeiro número aleatório entre 0 e 1 é

u1 = x1/p = 29980/32777 = 0.9146658

.
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Geradores de números aleatórios U(0, 1)

Exemplo

O segundo valor x2 é obtido de forma análoga.

Temos

32749× 29980 + 3 = 981815023 = 29954× 32777 + 12765

Assim, x2 = 12765

Portanto, u2 = 12765/32777 = 0.3894499.

E assim por diante: u1 = 0.91466577, u2 = 0.38944992,
u3 = 0.09549379, u4 = 0.32626537, u5 = 0.86466120,
u6 = 0.78957806, u7 = 0.89190591, . . .
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Geradores de números aleatórios U(0, 1)

Não são cont́ınuos

O gerador do exemplo gera 32777 restos xi distintos: os inteiros
0, 1, . . . , 32776.

Assim, apenas 32776 números ui do intervalo (0, 1) podem ser
gerados por este procedimento:

0/32777, 1/32777, 2/32777, . . . , 32776/32777

Quanto maior o valor de p, maior o número de valores ui distintos
posśıveis.
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Geradores de números aleatórios U(0, 1)

São pseudo-aleatórios

u1, u2, . . . não são realmente aleatórios

Resultam de uma função matemática aplicada de forma recursiva.

Usando o mesmo gerador e a mesma semente x0, vamos obter sempre
os mesmos números.

Além disso, a sequência de números pseudo-aleatórios rapidamente se
repetir.

Por exemplo, se a = 3, b = 0, m = 30 e x0 = 1, teremos a sequência
{3, 9, 27, 21, 3, 9, 27, 21, 3, 9, 27, 21, 3, 9, 27, 21, 3, . . .}.
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Geradores de números aleatórios U(0, 1)

São pseudo-aleatórios

Com probabilidade 1, depois de certo tempo, obtem-se um valor xi
igual a algum valor xi−k já obtido anteriormente.

A partir dáı, teremos a sequência repetindo-se com xi+j = xi−k+j .

O número de passos k até obter-se uma repetição numa sequência é
chamado de peŕıodo do gerador.

Uma importante biblioteca de subrotinas cient́ıficas, a NAG, utiliza
um gerador congruencial com a = 1313, b = 0 e p = 259, que possui
um peŕıodo igual a 257 ≈ 1.44× 1017.

Bons geradores tem peŕıodos tão grandes que podem ser ignorados na
prática.
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Geradores de números aleatórios U(0, 1)

A semente

A semente x0 costuma ser determinada pelo relógio interno do
computador.

Pode também ser pré-especificada pelo usuário.

Isto garante que se repita a mesma sequência de números aleatórios.

De qualquer forma, é um número arbitrário para iniciar o processo.
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Geradores de números aleatórios U(0, 1)

Gerador de uniforme em (0, 1)

Temos um gerador de números (pseudo)-aleatórios reais no intervalo
(0, 1).

Isto é, geramos U ∼ Unif (0, 1).

U escolhe um número real completamente ao acaso no intervalo
(0, 1).

Se (a, b) é um intervalo contido em (0, 1). Então

P(U ∈ (a, b)) = (b − a) = comprimento do intervalo

O comando runif(1) em R gera um valor U(0, 1).

runif(n) gera n valores U(0, 1) independentes.
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Simulação de v.a.’s binomiais

Caso mais simples: Bernoulli

Como gerar

X ∼ Bernoulli(θ) :

{
P(X = 1) = θ
P(X = 0) = 1− θ

Selecione U ao acaso no intervalo (0, 1).

0 1θ︷ ︸︸ ︷
U ∈ (0, θ) : X = 1

︷ ︸︸ ︷
U ∈ (θ, 1) : X = 0
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Simulação de v.a.’s binomiais

Gerando uma Bernoulli(0.35)

Suponha θ = p = 0.35, por exemplo.

Podemos usar:

p = 0.35

U = runif(1)

if(U <= p) X = 1

else X = 0

Mais simples em R: X = runif(1) <= p

Gerando 215 valores i.i.d.: X = runif(215) <= p
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Simulação de v.a.’s binomiais

Gerando uma Binomial(m, θ)

Para gerar X ∼ Bin(m, p), basta repetir o algoritmo Bernoulli m
vezes independentemente.

Por exemplo, se m = 100 e θ = 0.35, então:

m <- 100

p <- 0.35

X <- 0

for(i in 1:m) if(runif(1) < p) X <- X+1

Em R, vetorizando fica muito mais simples:
X = sum(runif(m) <= p)
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Simulação de v.a.’s binomiais

Gerando Binomial no R

Na verdade, o R já possui um gerador de binomial.

Help do R: rbinom(n, size, prob): geramos n valores, cada um
deles de uma Bin(size, prob).

WARNING: No HELP do R, o argumento n refere-se a quantos
valores binomiais Bin(size, prob) queremos gerar. Não confundir
com a notação usual em que escrevemos Bin(n, θ) para umavariável
binomial.

Por exemplo, para gerar n = 10 valores indepedentes de uma
Bin(100, 0.17) (isto é, size=100 e prob= θ = 0.17), digitamos:

> rbinom(10, 100, 0.17)

[1] 14 20 20 14 8 14 12 13 17 14
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Simulação de v.a.’s binomiais

Calculando P(X = k)

A função dbinom(x, size, prob) calcula a P(X = x) quando X é uma
v.a. binomial Bin(size,prob).

Por exemplo, se X ∼ Bin(100, 0.17) então P(X = 13) é

> dbinom(13, 100, 0.17)

[1] 0.06419966

Podemos pedir vários valores de uma única vez:

> dbinom(13:17, 100, 0.17)

[1] 0.06419966 0.08171369 0.09595615 0.10441012 0.10566807
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Simulação de v.a.’s discretas

Gerando v.a. discreta arbitrária

Vamos ver um procedimento geral, que serve para qualquer distribuição dis-
creta, mesmo para aquelas com infinitos valores, como a Poisson, Geométrica
e Pareto.

Distribuição de X é dada por:

xi P(x = xi ) = pi
x1 p1

x2 p2

x3 p3
...

...

Total
∑

i pi = 1

Tabela: Distribuição da v.a. discreta X com valores posśıveis x1, x2, . . .
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Simulação de v.a.’s discretas

Gerando v.a. discreta arbitrária

Acumulamos as probabilidades obtendo
F (xk) = P(X ≤ xk) =

∑k
i=1 pi .

Por exemplo,

F (x1) = p1

F (x2) = p1 + p2

F (x3) = p1 + p2 + p3 Etc.

Se 0 < U < F (x1) = p1 faça X = x1

Se p1 ≤ U < p1 + p2 faça X = x2

Se p1 + p2 ≤ U < p1 + p2 + p3 faça X = x3

Etc.
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Simulação de v.a.’s discretas

Gerando v.a. discreta arbitrária

Em resumo, faça X = g(U):

X = g(U) =



x0, se U < p0

x1, se p0 ≤ U < p0 + p1

x2, se p0 + p1 ≤ U < p0 + p1 + p2

. . . . . .

xi , se
∑i−1

k=1 pk ≤ U <
∑i

k=0 pk
. . . . . .
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Simulação de v.a.’s discretas

Exemplo

Gerar X com a seguinte distribuição de probabilidade discreta:

X =


−1, com probabilidade p0 = 0.25

2, com probabilidade p1 = 0.35
7, com probabilidade p2 = 0.17

12, com probabilidade p3 = 0.23

Gere U ∼ U(0, 1) e faça

g(U) = X =


−1, se U < 0.25

2, se 0.25 ≤ U < 0.60
7, se 0.60 ≤ U < 0.77

12, se 0.77 ≤ U < 1.00

Por exemplo, se U = 0.4897 então X = 2 pois 0.25 ≤ 0.4897 < 0.60.
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Gerando Poisson

Exemplo - Poisson

Para o caso de X ∼ Poisson(1.61) teŕıamos:

X = g(U) =



0 se U < 0.1998876
1 se 0.1998876 ≤ U < 0.5217067
2 se 0.5217067 ≤ U < 0.7807710
. . . . . .

i se 0.1998876
∑i−1

k=1(1.61)i/i! ≤ U < 0.1998876
∑i

k=0(1.61)i/i!
. . . . . .

Algoritmo? É imposśıvel listar os infinitos posśıveis valores de X e só
então verificar onde o valor de X caiu.
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Gerando Poisson

Algoritmo Poisson

Trabalhar sequencialmente.

Verifique se U cai no primeiro intervalo.

Se sim, pare e retorne X = 0.

Se não, calcule o intervalo seguinte e verifique se U cai neste novo
intervalo.

Se sim, pare e retorne X = 1.

E etc.
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Gerando Poisson

Casos especiais

Para facilitar o cálculo podemos usar uma relação de recorrência entre
as probabilidades sucessivas de uma Poisson com parâmetro λ:

pi+1 =
λ

i + 1
pi

Com λ = 1.61:
lambda = 1.61

x = -1

i = 0; p = exp(-lambda); F = p

while(x == -1){

if(runif(1) < F) x = i

else{

p = lambda*p/(i+1)

F = F + p

i = i+1

}

}
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Método da transformada inversa

Transformada inversa

X é v.a. cont́ınua com distribuição acumulada FX (x).

Por exemplo, se X ∼ exp(3) então FX (x) = 1− exp(−3x) para x ≥ 0.

Gere uma variável uniforme U ∼ U(0, 1).

A seguir, transforme usando Y = F−1
X (U).

A v.a. Y possui a mesma distribuição que X .

Isto é, a função distribuição acumulada de Y no ponto y é
exatamente FX (y).
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Método da transformada inversa

Exemplo

Gerar X ∼ exp(1). Então

FX (x) =

{
1− exp(−x), se x > 0

0, caso contrário

Se u = 1− exp(−x), então x = − log(1− u) = F−1
X (u).

Gere U ∼ U(0, 1) e aplique W = F−1(U) = − log(1− U).

W ∼ exp(1).
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Método da transformada inversa

Intuição gráfica

Gere U ∼ U(0, 1) e coloque-o no eixo vertical.

Obtenha a imagem inversa F−1
X .
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Método da transformada inversa

Exemplo da prova no caso particular da exp(1)

Gerar X ∼ exp(1):

FX (x) =

{
1− exp(−x), se x > 0

0, caso contrário

Se u = 1− exp(−x), então x = − log(1− u) = F−1
X (u).

W = F−1(U) = − log(1− U).

W possui distribuição exponencial 1.

De fato, se w > 0, nós temos

P(W ≤ w) = P(− log(1− U) ≤ w)

= P(1− U ≤ e−w )

= P(U ≤ 1− e−w )

= 1− e−w
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Método da transformada inversa

Prova no caso geral

U ∼ U(0, 1)

Defina a v.a. W = F−1
X (U).

Como uma função de distribuição acumulada é não decrescente, se
a ≤ b, então FX (a) ≤ FX (b).

Além disso, P(U ≤ a) = a se a ∈ [0, 1].

Assim,

FW (w) = P(W ≤ w)

= P(F−1
X (U) ≤ w)

= P(FX (F−1
X (U)) ≤ FX (w))

= P(U ≤ FX (w))

= FX (w)

Renato Martins Assunção (DCC - UFMG) Monte Carlo - Uma variável aleatória 28 de agosto de 2020 32 / 95



Método da transformada inversa

Observações

Como U e 1− U possuem a mesma distribuição uniforme U(0, 1).

Então X = − log(U) também é exponencial com parâmetro 1.

Se X ∼ exp(1) então Y = X/β ∼ exp(β).

Assim, pode-se gerar Y ∼ exp(β) usando a transformação
Y = −1/β log(U).
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Gomperz

Seguro de vida: idade ao morrer

Uma distribuição muito importante para o mercado de seguros é a
distribuição de Gompertz.

Ela modela muito bem o tempo de vida a partir dos 22 anos.

A função de de distribuição acumulada F (x) é

F (x) = 1− exp

(
− B

log(c)
(cx − 1)

)
onde c > 1 e B > 0.

O parâmetro c usualmente possui um valor em torno de 1.09.

Um valor t́ıpico para B é 1.02× 10−4.
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Gomperz

Transformada inversa de Gomperz

Invertendo:

F−1(u) = log (1− log(c) log(1− u)/B) / log(c)

Assim um código em R para obter a amostra é o seguinte:

# Amostra de 10 mil valores iid de Gompertz

## fixa as constantes

ce <- 1.09; B <- 0.000102; k <- B/log(ce)

u <- runif(10000) ## gera valores iid U(0,1)

## Gompertz por metodo da transformada inversa

x <- 1/log(ce) * (log( 1- log(1-u)/k))
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Gomperz

10 mil vidas Gomperz

Fazendo um histograma dos 10 mil valores gerados e acrescentando a
densidade Gomperz:

hist(x, prob=T)

eixox <- seq(0,120,by=1)

dens <- B * ce^eixox * exp(-k * (ce^eixox - 1))

lines(x,y)
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Pareto

Pareto ou power-law em seguros

Perdas monetárias associadas com uma apólice

Um parâmetro: x0 > 0, é o valor mais baixo que uma perda pode ter.

x0 é um valor de franquia ou um valor stop-loss.

Seguradora só toma conhecimento de sinistros com valores acima de
x0.

Cobre toda a perda acima do valor x0.

Pareto é costuma se ajustar bem a este tipo de dados.

O 2o. parâmetros, α > 0, controla o peso da cauda superior da
distribuição em relação aos valores próximos de x0.

Quanto menor α, maior a chance de observarmos valores extremos.
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Pareto

Densidade da Pareto

Pareto com parâmetros (x0, α) é dada por

fX (x) =

{
0, se x ≤ x0
α
x0

(
x0
x

)α+1
, se x > x0

Figura: Densidade da Pareto com x0 = 1 e α = 1
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Pareto

α t́ıpicos

Quais os valores t́ıpicos de α na prática de seguros e resseguros?

A Swiss Re, a maior companhia européia de resseguros, fez um
estudo.

Nos casos de perdas associadas com incêndios, α ∈ (1, 2.5).

Esta faixa pode ser mais detalhada: para incêndios em instalações
industriais de maior porte, temos α ≈ 1.2.

Para incêndios ocorrendo em pequenos negócios e serviços temos
α ∈ (1.8, 2.5).

No caso de perdas associadas com catástrofes naturais: α ≈ 0.8 para
o caso de perdas decorrentes de terremotos; α ≈ 1.3 para furacões,
tornados e vendavais.
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Pareto

Gerando Pareto ou power-law

Temos FX (x) = 1− (x0/x)α se x > x0

Então
X ∼ F−1

X (U) = x0/(1− U)−1/α

Basta digitar x0/(1-runif(1000))^(1/a) no R.

Figura: Amostra de 1000 valres i.i.d. de uma Pareto com x0 = 1 e α = 1
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Pareto

Amostras de Pareto

Figura: Amostras de 100 valores Pareto com (x0, α) igual a (1.3, 0.25) (canto
superior esquerdo), (1.3, 0.5) (canto superior direito), (10, 5) (canto inferior
esquerdo) e (10, 2) (canto inferior direito).
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Gaussiana ou normal

Gerando gaussianas N(0, 1)

Numa gaussiana, F (x) não possui uma fórmula anaĺıtica.

O uso da técnica de transformação F−1
X (U) de variáveis uniformes

não pode ser usado.

Box e Muller propuseram um algoritmo muito simples para gerar
gaussianas.

Pode-se mostrar matematicamente que:

se θ ∼ U(0, 2π) e V ∼ exp(1/2), duas v.a.’s independentes
então X =

√
V cos(θ) ∼ N(0, 1).

Como você sabe gerar uniformes e exponenciais...código em R para
gerar n valores independentes de uma N(0, 1).

Em R:
minharnorm = function(n) sqrt(rexp(n, 0.5)) * cos(runif(n, 0, 2 * pi))
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Gaussiana ou normal

Amostra de gaussiana N(0, 1)

set.seed(123)

minharnorm = function(n){ sqrt(rexp(n, 0.5)) * cos(runif(n, 0, 2 * pi))}

hist(minharnorm(1000), prob=T)

plot(dnorm, -3,3, add=T)

Figura: Histograma padronizado de 1000 valores N(0, 1) gerados com minhanorm

com a densidade f (x) sobreposta.
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Gaussiana ou normal

Gerando gaussianas N(µ, σ2)

Como gerar uma gaussiana N(µ, σ): centrada em µ e com dispersão
σ em torno de µ.

Propriedade de probabilidade: se Z ∼ N(0, 1) então
X = µ+ σZ ∼ N(µ, σ2)

Sabemos gerar Z ∼ N(0, 1).

Se quiser X ∼ N(10, 4) (digamos) basta gerar Z e em seguida tomar
X = 10 +

√
4Z .

Em R:
minharnorm = function(n) sqrt(rexp(n, 0.5)) * cos(runif(n, 0, 2 * pi))

x = 10 + sqrt4 * minhanorm(100)

É claro que R já possui gerador de gaussianas: rnorm(100, mean=0,

sd=1)
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Monte Carlo para estimar integrais

Estimando integrais por Monte Carlo

Queremos calcular

θ =

∫ 1

0
g(x) dx

Podemos ver a integral θ como a esperança de uma v.a.: se
U ∼ U(0, 1) então θ = E [g(U)].

Se U1,U2, . . . ,Un são i.i.d. U(0, 1) então as v.a.’s
Y1 = g(U1),Y2 = g(U2), . . . ,Yn = g(Un) também são i.i.d. com
esperança θ.

Pela Lei dos Grandes Números, se n→∞,

1

n

n∑
i=1

Yi =
1

n

n∑
i=1

g(Ui )→ E [g(U)] = θ

Assim, se n é grande, θ é aprox. a média aritmética dos valores
simulados g(ui ).
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Monte Carlo para estimar integrais

Exemplo

Queremos

θ =

∫ 1

0
x2 dx =

1

3

Uma amostra i.i.d. de 1000 variáveis aleatórias U(0, 1) é gerada:

u1 = 0.4886415, u2 = 0.1605763, u3 = 0.8683941, . . . , u1000 = 0.3357509

Calculamos então

θ̂ =
(
u2

1 + u2
2 + . . .+ u2

1000

)
/1000

=
(
(0.4886415)2 + (0.1605763)2 + . . .+ (0.3357509)2

)
/1000

= 0.33406 ≈ θ

Nova geração, com semente diferente, vai produzir θ̂ ligeiramente
diferente.
Outros 1000 valores da uniforme produzem θ̂ = 0.3246794.
Aumentando tamanho da amostra variação diminui: escolha do
tamanho da amostra precisa de desigualdades em probabilidade (logo
mais).
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Monte Carlo para estimar integrais

Integrais e probabilidades gaussianas

Se X ∼ N(0, 1) então

P(X ∈ (0, 1)) =

∫ 1

0

exp(−x2/2)√
2π

dx = θ

Não existe fórmula para esta integral, deve ser obtida numericamente.

Usando as funções nativas em R:
pnorm(1) - pnorm(0) que retorna 0.8413447− 0.5 = 0.3413447

Gere 1000 valores i.i.d. de uma U(0, 1) e calcule
(y1 + y2 + . . .+ y1000)/1000 onde yi = (2π)−0.5 exp(−u2

i /2).

Por exemplo, se ui = 0.4886 então
yi = (2π)−0.5 exp(−0.48862/2) = 0.3541.

Em R: mean((2*pi)^(-0.5) * exp(-runif(1000)^2/2))

Quatro simulações sucessivas (e independentes) com 1000 valores:
0.3425249, 0.3413119, 0.3432939 e 0.3400479.

Comparando com θ = 0.3413447, os erros de estimação são pequenos.
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Monte Carlo para estimar integrais

Limites genéricos

Nem sempre a integral terá os limites 0 e 1.

θ =

∫ b

a
g(x) dx

Fazer mudança de variável linear: tome x = a + (b − a)y e
dx = (b − a)dy .

Então

θ =

∫ b

a
g(x) dx =

∫ 1

0
g (a + (b − a)y) (b − a) dy =

∫ 1

0
h(y) dy

onde h(y) = (b − a)g(a + (b − a)y).

Usamos U(0, 1) mesmo quando a integral é num intervalo
(a, b) 6= (0, 1)
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Monte Carlo para estimar integrais

Exemplo

Calcule o valor aproximado de

θ =

∫ 9

3
log(2 + | sin(x)|)e−x/20 dx

Uma amostra i.i.d. de 1000 U(0, 1) é gerada e calcula-se

w̄ =
1

n
(w1 + . . .+ w1000)

onde

wi = h(ui ) = 6 log (2 + | sin(3 + 6ui )) exp

(
−3 + 6ui

20

)
Três simulações deram: 4.285739, 4.327516, 4.310637.

Neste exemplo, não sabemos o verdadeiro valor θ da integral mas as
simulações dão aproximadamente o mesmo valor.

Isto é um sinal de que, ao usar qualquer um deles como estimativa, a
integral deve estar sendo estimada com pequeno erro.
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Método da rejeição

Método de aceitação-rejeição

Queremos gerar amostra de densidade f (x).

Não conseguimos obter F (x) analiticamente.

O método da transformada inversa não pode ser usado.

Uma alternativa: método de aceitação-rejeição

Idéia básica: gerar de outra distribuição que seja fácil.

A seguir, retemos alguns dos valores gerados e descartamos os demais.

Isto é feito de tal maneira que a amostra que resta tem exatamente a
densidade f (x).
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Método da rejeição

Essência da ideia

Sabemos gerar com facilidade da densidade g(x) (linha tracejada).

Amostra de g(x) produz o histograma abaixo.

Mas queremos amostra de f (x).

Eliminamos de forma seletiva alguns valores gerados.

Figura: Linha cont́ınua: densidade f (x) de onde queremos amostrar. Linha
tracejada: densidade g(x) de onde sabemos amostrar. histograma de
amostra de 20000 elementos de f (x).
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Método da rejeição

Essência da ideia

Se o processo seletivo for feito de maneira adequada,
terminamos com uma amostra que, no fim dos dois processos
(geração e aceitação-rejeição), é gerada de f (x).

Figura: Linha cont́ınua: densidade f (x) de onde queremos amostrar. Linha
tracejada: densidade g(x) de onde sabemos amostrar. histograma de
amostra de 20000 elementos de f (x). Histograma dos 3696 elementos da
amostra anterior que restaram após rejeitar seletivamente 16304 dos
elementos gerados.
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Método da rejeição

Compatibilizando os suportes

Fixe uma densidade-alvo f (x).

Quais g(x) podemos escolher?

Suporte de g(x) deve ser maior que aquele de f (x).

Isto é, se f (x) pode gerar um valor x então g(x) também deveria ser
capaz de gerar este x .

Ou seja, se f (x) > 0 então g(x) > 0.

g(x) pode gerar valores imposśıveis sob f (x)

Mas não podemos permitir que valores posśıveis sob f (x) sejam
imposśıveis sob g(x).

Isto é bem razoável: se inicialmente, usando g(x), gerarmos valores
imposśıveis sob f (x), podemos rejeitá-los no segundo passo do
algoritmo.

Mas se nunca gerarmos valores de certas regiões posśıveis sob f (x),
nossa amostra final não será uma amostra de f (x).
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Método da rejeição

Ache M tal que f (x) ≤ Mg(x)

Precisamos achar uma constante M > 1 tal que

f (x) ≤ Mg(x)

para todo x .

Isto é, multiplicamos a densidade g(x) de onde sabemos amostrar por
uma constante M > 1 implicando em elevá-la.

Por exemplo, se M = 2, comparamos o valor de f (x) com 2g(x),
duas vezes a altura da densidade g no ponto x .

Devemos ter sempre f (x) ≤ Mg(x).
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Método da rejeição

Exemplo

Linha cont́ınua é a densidade f (x) de onde queremos amostrar

Linha tracejada: densidade g(x) de onde sabemos amostrar.

Direita: gráfico de f (x) e de 5.4 ∗ g(x).

Temos f (x) ≤ 5.4g(x) para todo x
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Método da rejeição

Razão r(x)

Temos f (x) e Mg(x).
No ponto x = 6.0 temos a altura f (x) (cont́ınua) e a a altura 5.4g(x)
(tracejada).
Para todo x , definimos a razão entre estas alturas

r(x) =
f (x)

Mg(x)
< 1 para todo x .
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Método da rejeição

r(x) = f (x)
Mg(x) < 1

Sejam x1, x2, . . . o elementos da amostra de g(x). Quais reter?

Calcule r(x1), r(x2), . . .

Se r(xi ) ≈ 0, vamos tipicamente rejeitar xi

Se r(xi ) ≈ 1, vamos tipicamente reter xi .
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Método da rejeição

r(x) = f (x)
Mg(x) é a probabilidade de retenção

Para cada elemento xi gerado por g(x), jogamos uma moeda com
probabilidade de cara igual a r(xi ).

Se sair cara, retemos xi como um elemento vindo de f (x).

Se sair coroa, eliminamos xi da amostra final.

Se começarmos com n elementos retirados de g(x), o tamanho final
da amostra é aleatório e geralmente menor que n
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Método da rejeição

Algoritmo

Y é um valor inicialmente gerado a partir de g(x) e X é um dos valores
finalmente aceitos no final do processo.

Algorithm 1 Método da Rejeição.

1: I ← True

2: while I do
3: Gere Y ∼ g(y)
4: Gere U ∼ U(0, 1)
5: if U ≤ r(Y ) = f (Y )/Mg(Y ) then
6: X ← Y
7: I = False

8: end if
9: end while
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Método da rejeição

Exemplo

Queremos gerar X ∼ Gamma(3, 3) com densidade:

f (x) =

{
0 , se x ≤ 0
27
2 x2e−3x , se x ≥ 0

(1)

Sabemos gerar W ∼ exp(1) pois basta tomar W = − log (1− U)
onde U ∼ U(0, 1).

A densidade de W é:

g(x) =

{
0, se x < 0
e−x , se x ≥ 0

(2)

O suporte das duas distribuições é o mesmo, o semi-eixo real positivo.
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Método da rejeição

Exemplo

Então:

0 ≤
f (x)

g(x)
=

27
2
x2e−3x

e−x
=

27

2
x2e−2x (3)

Derivando e igualando a zero temos ponto de máximo x0 = 1.
Como f (1)

g(1) = 27
2 12e−2 = 1.827 < 2, temos f (x) < 2g(x) para todo x .

Figura: Esquerda: Densidade-alvo f (x) (linha tracejada) e densidade g(x) de onde

sabemos gerar (linha cont́ınua). Direita: Densidade f (x) e a função 2g(x).
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Método da rejeição

Script R

set.seed(123); M = 2; nsim = 10000

x = rexp(nsim, 1)

razao = dgamma(x, 3, 3)/(M * dexp(x, 1))

aceita = rbinom(10000, 1, razao)

amostra = x[aceita == 1]

par(mfrow=c(2,1))

xx = seq(0, 4, by=0.1); yy = dgamma(xx, 3, 3)

hist(x, prob=T, breaks=50, xlim=c(0, 8),

main="f(x) e amostra de g(x)")

lines(xx, yy)

hist(amostra, breaks=20, prob=T, xlim=c(0,8),

main="f(x) e amostra de f(x)")

lines(xx, yy)
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Método da rejeição

Resultado

Figura: Amostra de 10 mil valores de uma g(x) = exp(1); rejeitando aprox 5000
valores terminamos com amostra de f (x) = Gama(3, 3).
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Método da rejeição

Script R mais simples

set.seed(123)

M = 2; nsim = 10000

x = rexp(nsim, 1)

amostra = x[ runif(nsim)<dgamma(x,3,3)/(M*dexp(x, 1)) ]
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Método da rejeição

Pseudo-code

1: I ← true
2: while I do
3: Selecione U ∼ U(0, 1)
4: Selecione U∗ ∼ U(0, 1)
5: Calcule ω = − log (1− U)

6: if U∗ ≤ f (ω)
2g(ω) = (27/4)ω2 exp(−2ω) then

7: x ← ω
8: I = False
9: end if

10: end while
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Método da rejeição

Os dois teoremas

Theorem

(Aceitação-Rejeição gera valores de f (x)) A variável aleatória X gerada
pelo método de aceitação-rejeição possui densidade f (x).

Prova: Leitura opcional, documento dispońıvel no moodle

Theorem

(Impacto de M) O número de iterações necessários até que um valor seja
aceito possui distribuição geométrica com valor esperado M.

Prova: Leitura opcional, documento dispońıvel no moodle
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Método da rejeição

Impacto de M

Método funciona com qualquer M tal que f (x) ≤ Mg(x).

M1 é muito maior que M2, ambos satisfazendo a condição.

Se rodarmos o método em paralelo com os dois valores de M, aquele
com o maior valor rejeitaria mais frequentemente que o método com
o M menor.

Pelo teorema, devemos selecionar, em média, M valores até que
aceitemos um deles.

Quanto menor M, menos rejeição.

Não é dif́ıcil provar que M deve ser maior ou igual a 1.
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Método da rejeição

Impacto de M

O máximo de eficiência é obtido quando M = 1.

Mas neste caso, como a área total debaixo de f (x) e g(x) é igual a 1,
devemos ter f (x) = g(x).

Isto é, a densidade de onde geramos é idêntica à densidade-alvo f (x)
e todos os valores são aceitos.

Se selecionarmos g(x) muito diferente de f (x), especialmente se
tivermos g(x) ≈ 0 numa região em que f (x) não é despreźıvel, é
posśıvel que tenhamos de usar um valor de M muito grande para
satisfazer f (x) ≤ Mg(x) para todo x .

Esta será uma situação em que o método de aceitação-rejeição será
pouco eficiente pois muitas amostras devem ser propostas (em média,
M) para que uma delas seja eventualmente aceita).

Renato Martins Assunção (DCC - UFMG) Monte Carlo - Uma variável aleatória 28 de agosto de 2020 68 / 95



Amostragem por importância: outro método

Amostragem por importância

Método muito importante para a geração de simultânea de várias
variáveis aleatórias relacionadas entre si (correlacionadas): sabemos
gerar facilmente de normal multivariada mas não de outras
distribuições multivariadas.

No método de aceitação-rejeição:

selecionamos de uma densidade g(x) de onde sabemos amostrar
retemos alguns elementos e rejeitamos outros
os elementos retidos possuem a densidade desejada f (x)

Na amostragem por importância, selecionamos de g(x) mas retemos
tudo, não rejeitamos nada.

Mas ao usar a amostra, damos um peso diferente e apropriado a cada
elemento amostrado.

No final, isto corrige a distorção de não termos uma amostra de f (x).
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Amostragem por importância: outro método

Densidade-alvo: o que queremos

f (x), a densidade da distribuição-alvo, de onde queremos amostrar.

O “tapete” de pontos embaixo representa uma amostra de f (x)

Todos os pontos com pesos iguais. Não sabemos obter esta amostra.

OBS: Esta figura e as duas seguintes vêm do livro Probabilistic
Robotics
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Amostragem por importância: outro método

Amostre de g(x) ao invés de f (x)

Amostramos de g(x) em vez de amostrar de f (x).

Terminamos com a amostra mostrada no “tapete”, todos os pontos
tem pesos iguais.
Vamos agora dar pesos diferentes a estes elementos amostrados para
que pareçam ter vindo de f (x).
Intuitivamente, como fazer? Quem recebe mais peso? E menos peso?
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Amostragem por importância: outro método

Pesos: mais ou menos importância

Atribúımos pesos w(x) = f (x)/g(x) aos elementos da amostra de
g(x).

Esta amostra PONDERADA pode ser usada para fazer inferência
sobre a distribuição f (x)

Como fazer isto exatamente?
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Amostragem por importância: outro método

O que você quer saber sobre f (x)?

Queremos uma amostra Monte Carlo para estimar (conhecer
aproximadamente) alguns aspectos de uma v.a. X com
distribuição-alvo f (x).

Por exemplo, podemos querer saber o seguinte:

E(X ) sem precisar fazer a integral (pode ser muito dif́ıcil)

V(X ) = E(X 2)− (E(X ))2, a variância de X .
P(X > 2), a chance de observar X maior que 2, um valor-limite
importante na aplicação.
P(e−|X | > |X |), um cálculo probabiĺıstico (uma integral).
P(X ∈ A), onde A é um conjunto complicado.
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Amostragem por importância: outro método

O truque: escreva como esperança

Cada uma das quantidades de interesse pode ser escrita como o valor
esperado de uma v.a. que é uma função h(X ) da v.a. X .

Seja θ1 = E(X ): Tome h(X ) = X e então θ1 = E(h(X )).

θ2 = V(X ) = E(X 2)− (E(X ))2: Se h(X ) = X 2 então
θ2 = E(h(X ))− θ2

1, se tivermos uma estimativa de θ1
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Amostragem por importância: outro método

O truque: escreva como esperança

θ3 = P(X > 2) = E (h(X )) onde h(X ) = I[X>2], a função indicadora
do evento X > 2.

θ4 = P(e−|X | > |X |) = Ef (h(X )) onde h(X ) = I[X∈A] onde

A = {x tais que e−|x | > |x |}.

θ5 = P(X ∈ A) = E(IA), onde A é um conjunto complicado.
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Amostragem por importância: outro método

Estimando esperanças

Pela idéia frequentista, E(X ) é bem aproximada pela média
aritmética de uma grande amostra de valores de X :

E(X ) ≈ 1

n

n∑
i=1

Xi

Pelo mesmo racioćınio, se quisermos estimar o valor esperado
E(h(X )) de uma transformação h(X ) de X podemos usar a média
aritmética dos h(Xi ):

E(h(X )) ≈ 1

n

n∑
i=1

h(Xi )

Por exemplo, se h(X ) = X 2 temos

E(X 2) ≈ 1

n

n∑
i=1

X 2
i
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Amostragem por importância: outro método

Estimando esperanças

Simples: se quiser conhecer o valor esperado de X 2, tome uma
amostra de X , aplique a função quadrática a cada valor e tome a sua
média aritmética.

Para estimar o valor esperado de qualquer função h(X ), transforme
cada valor de uma grande amostra de X ∼ f (x) e tome sua média
aritmética.

Problema: não conseguimos gerar X ∼ f (x) desejada.

Sabemos gerar de OUTRA distribuição g(x).

Aceitação-rejeição joga fora seletivamente vérios elementos da
amostra de modo a terminar com uma maostra de f (x): é como dar
pesos iguais a 0 ou 1 a cada valor.

Amostragem por importância pondera TODOS os valores amostrados
de g(x) com pesos mais flex́ıveis.
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Amostragem por importância: outro método

Esperança sob QUAL densidade, g ou f ?

Queremos o valor esperado de h(X ) onde X ∼ f (x) com suporte S.

Isto é, queremos θ = Ef (h(X )).

SUB-INDICE f para indicar a distribuição de X . A partir de agora,X
pode ter densidade g(x) ou f (x) e queremos distinguir isto na
notação.

Sabemos gerar apenas de g(x), com suporte maior ou igual a S.

Vamos mostrar que θ = Ef (h(X )) pode ser visto como a esperança
de OUTRA funa̧ão h∗(X ) quando X tem densidade g .

Isto é, vamos mostrar que

θ = Ef (h(X )) = θ = Eg (h∗(X ))
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Amostragem por importância: outro método

Por que o algoritmo funciona

O truque mais barato da matemática: multiplique e divida por um
memso valor...

θ = Ef (h(X )) =

∫
R
h(x) f (x) dx

=

∫
R

(
h(x)

f (x)

g(x)

)
g(x)dx

=

∫
R
h∗(x) g(x)dx

onde h∗(x) = h(x)f (x)/g(x) = h(x)w(x) é uma nova função.

Assim, podemos reconhecer a última expressão como uma nova
esperança: o valor esperado de h∗(X ) quando X segue a densidade
g(x)!!
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Amostragem por importância: outro método

Por que o algoritmo funciona

Isto é,

θ = Ef (h(X )) = Eg (h∗(X )) = Eg

(
h(X )

f (X )

g(X )

)
= Eg (h(X )w(X ))

Note que, na última esperança, a v.a. X possui distribuição g(x) e
não mais f (x)!!

Tudo se resume a multiplicar e dividir por um mesmo valor dentro da
integral e reconhecer que a nova integral é uma esperança de uma
v.a. h∗(X ) onde X tem OUTRA distribuição g(x).
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Amostragem por importância: outro método

O truque

Repetindo

θ = Ef (h(X )) = Eg

(
h(X )

f (X )

g(X )

)
= Eg (h(X )w(X ))

A esperança de h(X ) com X ∼ f (x) é igual à esperança de
h∗(X ) = h(X )w(X ) onde X ∼ g(x).

Como isto pode ser útil?

Como sabemos amostrar de X ∼ g(x), a última esperança
Eg (h(X )w(X )) pode ser estimada facilmente.
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Amostragem por importância: outro método

Exemplo

Desejamos Ef (X ) onde X ∼ Gama(3, 3). Neste caso, h(X ) = X .

Geramos 200 valores de uma exp(1)

Para cada um dos 200 valores x1, x2, . . . x200 calculamos os pesos

w(xi ) =
f (xi )

g(xi )
=

27
2 x2

i e
−3xi

e−xi
=

27

2
x2
i e
−2xi

Com estes pesos, estimamos

Ef (X ) = Eg (h(X ) w(X )) = Eg (X w(X )) ≈ 1

200

200∑
i=1

xiw(xi )

Com o script a seguir, obtive uma estimativa igual a 1.102366 quando
o valor exato é igual a 1.

Renato Martins Assunção (DCC - UFMG) Monte Carlo - Uma variável aleatória 28 de agosto de 2020 82 / 95



Amostragem por importância: outro método

Script R

set.seed(123)

nsim = 200

x = rexp(nsim, 1)

wx = dgamma(x, 3, 3)/dexp(x, 1)

theta1 = mean(x*wx)

par(mfrow=c(1,1))

xx = seq(0, 9.1, by=0.1)

fx = dgamma(xx, 3, 3)

gx = dexp(xx, 1)

plot(xx, gx, type="l", ylim=c(-0.2, 1), ylab="densidade")

lines(xx, fx, lty=2)

abline(h=0)

segments(x, -0.2, x, -0.18+wx/20, lwd=2)

legend("topright",lty=1:2,c("g(x)", "f(x)") )
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Amostragem por importância: outro método

Sáıda do script R
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Amostragem por importância: outro método

Exemplo

Queremos gerar de uma N(0, 1) sem usar Box-Muller.

Precisamos simular de uma distribuição com suporte na reta real.

Sabemos gerar com facilidade uma v.a. Y com distribuição exp(1):
Y = − log(U) onde U ∼ U(0, 1).

Problema: exp(1) possui suporte (0,∞) e normal possui suporte na
reta inteira.

Truque: selecionamos Y exp(1). A seguir, jogue uma moeda com
probabilidade 1/2: se cara, tome Y ; se coroa, tome −Y .

Esta distribuição é chamada de exponencial dupla ou distribuição de
Laplace.

Ver http://en.wikipedia.org/wiki/Laplace_distribution
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Amostragem por importância: outro método

Laplace ou exponencial dupla

Densidade de Laplace padrão (µ = 0 e b = 1):

g(x) =
1

2
e−|x |
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Amostragem por importância: outro método

Exemplo

Queremos calcular Ef (h(X )) onde X ∼ f (x) = N(0, 1)

Sabemos gerar de Laplace padrão.

Queremos estimar:

0 = θ1 = Ef (X ) onde h(X ) = X

1 = θ2 = Vf (X ) = Ef (X 2)− (Ef (X ))2: Se h(X ) = X 2 então
θ2 = Ef (h(X ))− θ2

1, se tivermos uma estimativa de θ1

0.02275 = θ3 = Pf (X > 2) = Ef (h(X )) onde h(X ) = I[X>2], a função
indicadora do evento X > 2.
θ4 = P(e−|X | > |X |) = E (h(X )) onde h(X ) = IA(X ) onde
A = {x tais que e−|x| > |x |}
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Amostragem por importância: outro método

Exemplo

Simule X1,X2, . . . ,XB de uma Laplace.
Calcule os pesos

w(xi ) =
f (xi )

g(xi )
=

1√
2π
e−x

2
i /2

1
2e
−|xi |

Em seguida, estime

θ1 ≈ θ̂1 =
1

B

∑
i

xiwi

θ2 ≈ θ̂2 =
1

B

∑
i

x2
i wi −

(
θ̂1

)2

θ3 ≈ θ̂3 =
1

B

∑
i

I[xi>2]wi = média dos wi em que xi > 2

θ4 ≈ θ̂4 =
1

B

∑
i

I[e−|xi |>xi ]
wi = média dos wi em que e−|xi | > xi
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Amostragem por importância: outro método

Script R

B = 10000

x <- (2*(runif(B) > 0.5)-1) * rexp(B) # gerando de uma exponencial dupla

hist(x)

## estimativa via importance sampling

peso <- dnorm(x)/(exp(-abs(x))/2)

a1 <- mean(x * peso)

a2 <- mean( (x^2 *peso) ) - a1^2

a3 <- mean( (x > 2) * peso )

a4 <- mean( (exp(-abs(x)) > abs(x)) * peso )

c(a1, a2, a3, a4) # [1] -0.02186748 1.00444225 0.02259828 0.42595014

## Refazendo com B maior

B = 50000

x <- (2*(runif(B) > 0.5)-1) * rexp(B) # gerando de uma exponencial dupla

peso <- dnorm(x)/(exp(-abs(x))/2)

a1 <- mean(x * peso); a2 <- mean( (x^2 *peso) ) - a1^2;

a3 <- mean( (x > 2) * peso ); a4 <- mean( (exp(-abs(x)) > abs(x)) * peso )

c(a1, a2, a3, a4) # [1] 0.0004117619 0.9879179922 0.0222652043 0.4345303436
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Sampling importance resampling (SIR)

Reamostragem da amostragem por importância

Sampling importance resampling (SIR)

Para usar amostragem por importância, precisamos conhecer as
densiaddes f (x) e g(x), incluindo as suas constantes de integração c1

e c2:

f (x) = c1f0(x)

g(x) = c2g0(x)

O algoritmo SIR dispensa o conhecimento de c1 e c2

Isto nã é muito relevante nos casos de v.a. unidimensionais mas se
quisermos gerar VETORES de v.a.’s correlacionadas, este problema
aparece como uma grande dificuldade.
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Sampling importance resampling (SIR)

Algoritmo SIR

Simule uma amostra X1,X2, . . . ,XB de g(x)

Calcule os pesos wi = f0(xi )/g0(xi )

Normalize os pesos wi ← wi/S onde S =
∑

k wk

REAMOSTRE os B dados da amostra original com reposição e com
pesos wi gerando X ∗1 ,X

∗
2 , . . . ,X

∗
n

Cada X ∗j assume um dos valores X1,X2, . . . ,XB com probab
w1,w2, . . . ,wB .
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Sampling importance resampling (SIR)

SIR

Mostra-se que a distribuição de X ∗j tem densidade aproximadamente
igual a f (x).

SIR começa gerando de g(x) como importance sampling.

Ao invés de reter todos os valores gerados atribuindo um peso...

SIR REAMOSTRA os valores gerados com um peso.

Voltando ao exemplo anterior, queremos estimar θ1 = Ef (X ),
θ2 = Vf (X ), θ3 = Pf (X > 2), θ4 = Pf (e−|X | > |X |). onde
X ∼ f (x) = N(0, 1).

Temos f (x) = (2π)−1/2 e−x
2/2 ∝ e−x

2/2

Vamos SUPOR que não conhecemos a constante (2π)−1/2

Amostramos X1, . . .XB de g(x), uma Laplace padrão.
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Sampling importance resampling (SIR)

SIR

Reamostramos m elementos

Reamostra X ∗1 ,X
∗
2 , . . . ,X

∗
m i.i.d com

X ∗j =


X1 com probab w1
...
XB com probab wB

No final, calculamos uma média aritmética simples de h(X ∗j ):

θ̂ =
1

m

m∑
j=1

h(X ∗j )

Ver script R
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Sampling importance resampling (SIR)

Script R

B = 20000

## amostra de exponencial dupla (ou Laplace)

x <- (2*(runif(B) > 0.5)-1) * rexp(B)

## estimativa via SIR - sampling importance resampling

peso <- exp(-x^2/2)/(exp(-abs(x))/2)

peso <- peso/sum(peso)

xstar <- sample(x, 10000, replace=T, prob=peso)

a1 <- mean(xstar)

a2 <- mean(xstar^2) - a1^2

a3 <- mean(xstar > 2)

a4 <- mean(exp(-abs(xstar)) > abs(xstar))

c(a1, a2, a3, a4)
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Sampling importance resampling (SIR)

Escolha de g(x)

Nos métodos de aceitação-rejeição, importance sampling e SIR
geramos de g(x) mas o objetivo é estimar quantidades associadas
com f (x).

Como deve ser escolhida g(x)?

Ela deve ter um suporte maior ou igual a f (x).

Além disso, ela deve ser o mais parecida posśıvel com f (x).

Uma má escolha para g(x) põe muita massa de probabilidade numa
região (de onde amostramos frequentemente) e esta região tem baixa
probabilidade sob f (x).

Pior: região onde f (x) põe massa de probabilidade tem pouca chance
de ser selecionada sob g(x)
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