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Simulagdo Monte Carlo

Simulacdao Monte Carlo

@ Simular: Fazer aparecer como real uma coisa que ndo o é; fingir.

e Simulagdo: a imitagdo do comportamento ou das caracteristicas de
um sistema estocastico utilizando um gerador de nlimeros aleatérios
num computador: simulagdo Monte Carlo.

@ Estes nimeros possuem uma distribuicdo de probabilidade de
interesse.

@ Pode ser a distribui¢cdo normal (gausssiana), de Poisson, de Pareto
(power law) ou outra.

@ Os nimeros aleatérios gerados servem para estudar propriedades
complexas de algoritmos ou aspectos do problema que n3o podem ser
deduzidos analiticamente (por férmulas).

Renato Martins Assun¢do (DCC - UFMG) Monte Carlo - Uma varidvel aleatéria 28 de agosto de 2020 2/95



Simulagdo Monte Carlo

Tudo comeca com uma uniforme

@ Existe uma base para gerar niimeros aleatérios.

@ Praticamente todos os métodos conhecidos geram uma variavel
aleatéria U com distribuigdo uniforme no intervalo (0, 1).

@ Isto é, U é um nimero escolhido ao acaso em (0,1) com densidade
uniforme.

@ A probabilidade de selecionar X num intervalo (a, b) é o seu
comprimento: b — a.

@ A seguir, eles transformam U de forma a obter uma varidvel com a
distribuic3o de interesse.

@ Assim, todas as varidveis s3o obtidas a partir da distribuicdo 2/(0, 1).
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Simulagdo Monte Carlo

Aleatdrios mesmo?

@ De fato, os nliemros aleatérios gerados no computador n3o sdo
realmente aleatérios mas sim deterministicos.

@ Muito trabalho de pesquisa ja foi feito para criar bons geradores de
nimeros aleatdrios.

@ S3o procedimentos que geram uma seqiiéncia de valores Uy, Us, . . ..

@ Para todos os efeitos praticos, eles podem ser considerados i.i.d. com
distribuicdo uniforme em (0, 1).

@ Além disso, por causa da representacdo finita nos computadores, nio
conseguimos de fato gerar nimeros reais com precisdo inifinita.
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Simulagdo Monte Carlo

@) que veremos agora...

@ Nao veremos em detalhes os geradores de nlimeros com distribui¢cao
uniforme no intervalo (0,1).

@ Este é um assunto bastante técnico e de pouco uso na pratica da
anélise de dados.

@ Vamos dar apenas um ligeira idéia de como eles funcionam.

@ Vamos ver um dos algoritmos mais simples existentes.
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Geradores de niimeros aleatérios U(0, 1)

Divisao inteira

@ Eles dependem da operagao de divisdo inteira. Resto da divisdo de
um inteiro por outro.

@ Por exemplo, a divisdo inteira de 18 por 7 é 2 com um resto de 4.

@ O resto deve ser um dos inteiros: 0,1,2,...,6.

0 18=2x%7+4.

@ A expressdo é Unica (com resto entre 0 e 6).

@ Mais um exemplo: 20 =274 6
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Geradores de niimeros aleatérios U(0, 1)

Divisao inteira

@ Dado um inteiro p > 0, um inteiro n pode ser escrito de forma Unica
como n=kp+r.

@ kéuminteiroer=20,...,p— 1.
@ O resto é o valor r que vai variarde 0 a p — 1.
@ Por exemplo,
@ 21 =7 x 3+ 0 e a divisao inteira de 21 por 7 deixa resto 0.
0 22=7x3+1eorestoél.
e 27 =7x3+4+6¢€o0restoéb.
e 4=7x0+4 eoresto é 4.
e Finalmente, 0 =7 x 0+ 0 e o resto é 0.
e Notagdo: n=r (mod p).
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Geradores de niimeros aleatérios U(0, 1)

Gerador congruencial misto

Valor inicial inteiro positivo xg arbitrario, chamado de semente (seed).

Recursivamente, calcule x1, xp, ... por meio da férmula:
axi_1+b=x; (mod p)

onde a, b, e p s3o inteiros positivos.

X; € um dos inteiros 0,1,...,p — 1.

A sequéncia
U =xi1/p,up =x2/p,...

é uma aproximac3do para uma sequéncia de valores de varidveis
independentes e com distribui¢do uniforme em (0, 1).

A qualidade desta aproximacdo: testes estatisticos incapazes de
detectar padrdes (n3o aleatdrios) nas sequéncias geradas.
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Geradores de niimeros aleatérios U(0, 1)

Exemplo

@ Gerador dado por
32749x;_1 + 3= x; (mod 32777)

@ Iniciando-se com semente xg = 100, obtenha
32749 x 100 + 3 = 3274903.

@ A seguir, o resto da divisdo inteira por p = 32777: temos
3274903 = 99 x 32777 + 29980

Assim, x; = 29980

Primeiro ndmero aleatdrio entre 0 e 1 é

up = x1/p =29980/32777 = 0.9146658
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Geradores de niimeros aleatérios U(0, 1)

Exemplo

@ O segundo valor x; é obtido de forma andloga.

@ Temos
32749 x 29980 + 3 = 981815023 = 29954 x 32777 + 12765

@ Assim, x» = 12765
e Portanto, uy = 12765/32777 = 0.3894499.

@ E assim por diante: u; = 0.91466577, up, = 0.38944992,
u3 = 0.09549379, uy = 0.32626537, us = 0.86466120,
ug = 0.78957806, u; = 0.89190591, ...
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Geradores de niimeros aleatérios U(0, 1)

N3o sao continuos

@ O gerador do exemplo gera 32777 restos x; distintos: os inteiros
0,1,...,32776.

@ Assim, apenas 32776 nimeros u; do intervalo (0,1) podem ser
gerados por este procedimento:

0/32777,1/32777,2/32777, ..., 3277632777

@ Quanto maior o valor de p, maior o niimero de valores u; distintos
possiveis.
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Geradores de niimeros aleatérios U(0, 1)

S3o pseudo-aleatérios

@ u1, Uy, ... ndo s3o realmente aleatérios
@ Resultam de uma fungdo matematica aplicada de forma recursiva.

@ Usando o mesmo gerador e a mesma semente xp, vamos obter sempre
0S Mesmos numeros.

o Além disso, a sequéncia de nliimeros pseudo-aleatdrios rapidamente se
repetir.

@ Por exemplo, se a=3, b=0, m=30e xg = 1, teremos a sequéncia
{3,9,27,21,3,9,27,21,3,9,27,21,3,9,27,21,3, .. .}.
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Geradores de niimeros aleatérios U(0, 1)

S3o pseudo-aleatérios

@ Com probabilidade 1, depois de certo tempo, obtem-se um valor x;
igual a algum valor x;_ ja obtido anteriormente.

@ A partir dai, teremos a sequéncia repetindo-se com Xji; = Xj_k4;-

@ O nidmero de passos k até obter-se uma repeticio numa sequéncia é
chamado de periodo do gerador.

@ Uma importante biblioteca de subrotinas cientificas, a NAG, utiliza
um gerador congruencial com a =133, b =0 e p = 2%, que possui
um periodo igual a 2% ~ 1.44 x 1017,

@ Bons geradores tem periodos tdo grandes que podem ser ignorados na
pratica.
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Geradores de niimeros aleatérios U(0, 1)
A semente

@ A semente xg costuma ser determinada pelo relégio interno do
computador.

@ Pode também ser pré-especificada pelo usudrio.
@ Isto garante que se repita a mesma sequéncia de nliimeros aleatdrios.

@ De qualquer forma, é um nimero arbitrario para iniciar o processo.
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Geradores de niimeros aleatérios U(0, 1)

Gerador de uniforme em (0, 1)

@ Temos um gerador de nimeros (pseudo)-aleatdrios reais no intervalo
(0,1).
Isto é, geramos U ~ Unif(0,1).

U escolhe um nidmero real completamente ao acaso no intervalo
(0,1).

@ Se (a,b) é um intervalo contido em (0,1). Entdo

P(U € (a, b)) = (b — a) = comprimento do intervalo

O comando runif (1) em R gera um valor U(0,1).

runif (n) gera n valores U(0, 1) independentes.
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Simulagdo de v.a.'s binomiais

Caso mais simples: Bernoulli

o Como gerar

Il

O =
~

Il

P(
P(

~
Il
= D

X ~ Bernoulli(0) : { §

@ Selecione U ao acaso no intervalo (0,1).

bUe(O,H):X:lé Uc(@1) - X=0 !
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Gerando uma Bernoulli(0.35)

@ Suponha 8 = p = 0.35, por exemplo.

@ Podemos usar:

p=0.35

U = runif (1)

if(U<=p) X =1
else X =0

@ Mais simplesem R: X = runif(1) <= p
e Gerando 215 valores i.i.d.: X = runif(215) <= p
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Simulagdo de v.a.'s binomiais

Gerando uma Binomial(m, )

e Para gerar X ~ Bin(m, p), basta repetir o algoritmo Bernoulli m
vezes independentemente.

@ Por exemplo, se m =100 e # = 0.35, entio:

m <- 100
p <- 0.35
X <=0

for(i in 1:m) if(runif(1) < p) X <- X+1

@ Em R, vetorizando fica muito mais simples:
X = sum(runif(m) <= p)
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Simulag3o de v.a.’s binomiais

Gerando Binomial no R

@ Na verdade, o R ja possui um gerador de binomial.

@ Help do R: rbinom(n, size, prob): geramos n valores, cada um
deles de uma Bin(size, prob).

@ WARNING: No HELP do R, o argumento n refere-se a quantos
valores binomiais Bin(size, prob) queremos gerar. Ndo confundir
com a nota¢do usual em que escrevemos Bin(n, #) para umavariavel
binomial.

@ Por exemplo, para gerar n = 10 valores indepedentes de uma
Bin(100,0.17) (isto é, size=100 e prob= § = 0.17), digitamos:
> rbinom(10, 100, 0.17)

[1] 14 20 20 14 8 14 12 13 17 14

Renato Martins Assun¢do (DCC - UFMG) Monte Carlo - Uma varidvel aleatéria 28 de agosto de 2020 19 / 95



Calculando P(X = k)

A fun¢do dbinom(x, size, prob) calcula a P(X = x) quando X é uma
v.a. binomial Bin(size,prob).

Por exemplo, se X ~ Bin(100,0.17) entdo P(X = 13) é

> dbinom(13, 100, 0.17)
[1] 0.06419966

Podemos pedir varios valores de uma tnica vez:

> dbinom(13:17, 100, 0.17)
[1] 0.06419966 0.08171369 0.09595615 0.10441012 0.10566807

Renato Martins Assun¢do (DCC - UFMG) Monte Carlo - Uma varidvel aleatéria 28 de agosto de 2020 20 / 95



Simulagdo de v.a.'s discretas

Gerando v.a. discreta arbitraria

Vamos ver um procedimento geral, que serve para qualquer distribuigcdo dis-
creta, mesmo para aquelas com infinitos valores, como a Poisson, Geométrica

e Pareto.

Distribuicdo de X é dada por:

xi | P(x=x)=pi
X1 P1
X2 P2
X3 P3
Total dYpi=1

Tabela: Distribuicdo da v.a. discreta X com valores possiveis xi, xo, . . .
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Simulagdo de v.a.'s discretas

Gerando v.a. discreta arbitraria

@ Acumulamos as probabilidades obtendo
Fx) = P(X < xi) = X0y pi

@ Por exemplo,
F(x1) = p1
F(x2) = pi1+p
F(x3) = p1+p2+p3 Etc

SeO<U<F(X1):p1 faca X = x1
Sepp<U<pi+pfacaX=x
Sepr+p<U<pr+p2+p3faca X = x3
Etc.
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Simulagdo de v.a.'s discretas

Gerando v.a. discreta arbitraria

@ Em resumo, faga X = g(U):

xp, se U< pg
x1, sepo<U<po+pm
x2, se po+pl < U<po+p1+p2

- .
Xi, ey 1Pk < U <D o Pk
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Simulagdo de v.a.'s discretas

Exemplo

@ Gerar X com a seguinte distribuicdo de probabilidade discreta:

—1, com probabilidade py = 0.25
2, com probabilidade p; = 0.35
7, com probabilidade p, = 0.17

12, com probabilidade p3 = 0.23

-1, se U< 0.25

se 0.25 < U < 0.60
7, se0.60 < U<0.77
12, se 0.77 < U < 1.00

@ Por exemplo, se U = 0.4897 entdo X = 2 pois 0.25 < 0.4897 < 0.60.

Renato Martins Assun¢do (DCC - UFMG) Monte Carlo - Uma varidvel aleatéria 28 de agosto de 2020 24 / 95



Gerando Poisson

Exemplo - Poisson

@ Para o caso de X ~ Poisson(1.61) teriamos:

0 se U < 0.1998876
se 0.1998876 < U < 0.5217067
se 0.5217067 < U < 0.7807710

N =

X =g(U)

i se0.1998876 >/ 1 (1.61) /il < U < 0.1998876 3", _o(1.61)'/i!

@ Algoritmo? E impossivel listar os infinitos possiveis valores de X e sé
ent3o verificar onde o valor de X caiu.
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Gerando Poisson

Algoritmo Poisson

Trabalhar sequencialmente.
Verifique se U cai no primeiro intervalo.

Se sim, pare e retorne X = 0.

Se ndo, calcule o intervalo seguinte e verifique se U cai neste novo
intervalo.

Se sim, pare e retorne X = 1.
E etc.
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Gerando Poisson

Casos especiais

@ Para facilitar o calculo podemos usar uma relagdo de recorréncia entre

as probabilidades sucessivas de uma Poisson com parametro A:

. —_— A "
Pi+1 = s 1[%

e Com A\ =1.61:

lambda = 1.61
x = -1
i = 0; p = exp(-lambda); F = p
while(x == -1){
if (runif(1) < F) x = i
else{
p = lambda*p/(i+1)
F=F+p
i= i+l
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Transformada inversa

X é v.a. continua com distribui¢do acumulada Fx(x).

Por exemplo, se X ~ exp(3) entdo Fx(x) = 1 —exp(—3x) para x > 0.
Gere uma variavel uniforme U ~ U(0,1).

A seguir, transforme usando Y = F)?l(U).

A v.a. Y possui a mesma distribuicao que X.

Isto é, a fungdo distribuicao acumulada de Y no ponto y é
exatamente Fx(y).
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Método da transformada inversa

Exemplo

o Gerar X ~ exp(1). Entdo

| 1 —exp(—x), sex >0
Fx(x) = { 0, caso contrdrio

Se u=1— exp(—x), entdo x = —log(1 — u) = Fx*(u).
Gere U ~ U(0,1) e aplique W = F~1(U) = —log(1 — V).
W ~ exp(1).
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Método da transformada inversa

Intuicao gréfica

e Gere U ~ U(0,1) e coloque-o no eixo vertical.
@ Obtenha a imagem inversa F;l.

e
o0
= U
©
@
=
=}
o
=
imagem inversa de LI
o
2 —
T T T T T T T
-1 0 1 2 3 4 5
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Método da transformada inversa

Exemplo da prova no caso particular da exp(1)

e Gerar X ~ exp(1):

1 — exp(—x), sex >0
0, caso contrario

Fx(x) = {

Se u =1~ exp(—x), entdo x = —log(1 — u) = Fy'(u).
W = F~1(U) = —log(1 — U).

W possui distribuicdo exponencial 1.

De fato, se w > 0, nés temos

P(W<w) = P(—log(l-U)<

P1-U<e™™)
P(U<1—e™")
= 1—-e"

w)
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Método da transformada inversa

Prova no caso geral

o U~ U(0,1)
o Defina av.a. W= F (V).

@ Como uma fung¢do de distribuicdo acumulada é n3o decrescente, se
a < b, entdo Fx(a) < Fx(b).

Assim,

Fw(W) =

Renato Martins Assun¢do (DCC - UFMG)
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Método da transformada inversa

Observacoes

Como U e 1 — U possuem a mesma distribui¢do uniforme U(0, 1).

Entdo X = — log(U) também é exponencial com pardmetro 1.
Se X ~ exp(1) entdo Y = X/ ~ exp().

Assim, pode-se gerar Y ~ exp(f3) usando a transformacao

Y = —1/8 log(V).
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Seguro de vida: idade ao morrer

@ Uma distribuicao muito importante para o mercado de seguros é a
distribuicido de Gompertz.

Ela modela muito bem o tempo de vida a partir dos 22 anos.

A fungdo de de distribuicdo acumulada F(x) é

F(x)=1— exp <_IogB(c)(CX - 1))

ondec>1e B >0.

O parametro ¢ usualmente possui um valor em torno de 1.09.

Um valor tipico para B é 1.02 x 10~
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Transformada inversa de Gomperz

@ Invertendo:
F~!(u) = log (1 — log(c) log(1 — u)/B) / log(c)

Assim um cédigo em R para obter a amostra é o seguinte:

# Amostra de 10 mil valores iid de Gompertz

## fixa as constantes

ce <- 1.09; B <- 0.000102; k <- B/log(ce)
u <- runif(10000) ## gera valores iid U(0,1)
## Gompertz por metodo da transformada inversa
x <= 1/log(ce) * (log( 1- log(1l-u)/k))
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10 mil vidas Gomperz

@ Fazendo um histograma dos 10 mil valores gerados e acrescentando a
densidade Gomperz:
hist(x, prob=T)
eixox <- seq(0,120,by=1)
dens <- B * ce”eixox * exp(-k * (ce”eixox - 1))
lines(x,y)

Histogram of x

0.030
|
)l

0020
I
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0.010
I

0.000
L

0 20 40 60 80 100

X
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Pareto ou power-law em seguros

Perdas monetarias associadas com uma apdlice

Um pardmetro: xg > 0, é o valor mais baixo que uma perda pode ter.
Xo é um valor de franquia ou um valor stop-/oss.

Seguradora sé toma conhecimento de sinistros com valores acima de
X0-

Cobre toda a perda acima do valor xp.

Pareto é costuma se ajustar bem a este tipo de dados.

O 20. parametros, o > 0, controla o peso da cauda superior da
distribuicao em relacdo aos valores préximos de xg.

@ Quanto menor «, maior a chance de observarmos valores extremos.
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Densidade da Pareto

e Pareto com pardmetros (xp, ) é dada por

(%) 0, se x < xp
X\ X) = a (xg\otl

0 (;) , SeX > Xp

o 2 4+ s 5w n

Figura: Densidade da Pareto com xp =1lea =1
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« tipicos

Quais os valores tipicos de « na pratica de seguros e resseguros?

(]

A Swiss Re, a maior companhia européia de resseguros, fez um
estudo.

@ Nos casos de perdas associadas com incéndios, o € (1,2.5).

@ Esta faixa pode ser mais detalhada: para incéndios em instala¢des
industriais de maior porte, temos o ~ 1.2.

@ Para incéndios ocorrendo em pequenos negdcios e servicos temos
a € (1.8,2.5).
@ No caso de perdas associadas com catdastrofes naturais: « = 0.8 para

o caso de perdas decorrentes de terremotos; « ~ 1.3 para furacdes,
tornados e vendavais.
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Gerando Pareto ou power-law

@ Temos Fx(x) =1— (xo/x)" se x > xp
e Entdo
X ~ FH(U) = xo/(1 = U)~ V2

@ Basta digitar x0/ (1-runif (1000))~(1/a) no R.

200 400 600 8OO 1000

. °
. o
i it

T T T T
0 200 400 600 800 1000

0
o

o

? >
o
3
2

Index

Figura: Amostra de 1000 valres i.i.d. de uma Pareto com xg=1lea =1

Renato Martins Assun¢do (DCC - UFMG) Monte Carlo - Uma varidvel aleatéria 28 de agosto de 2020 40 / 95



Amostras de Pareto
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Figura: Amostras de 100 valores Pareto com (xp, &) igual a (1.3,0.25) (canto
superior esquerdo), (1.3,0.5) (canto superior direito), (10,5) (canto inferior
esquerdo) e (10,2) (canto inferior direito).
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Gerando gaussianas N(0, 1)

e Numa gaussiana, F(x) ndo possui uma férmula analitica.
e O uso da técnica de transformagdo F)?l(U) de varidveis uniformes
ndo pode ser usado.
@ Box e Muller propuseram um algoritmo muito simples para gerar
gaussianas.
@ Pode-se mostrar matematicamente que:
o se § ~ U(0,21) e V ~ exp(1/2), duas v.a.’s independentes
e entdo X = v/V cos(d) ~ N(0,1).
@ Como vocé sabe gerar uniformes e exponenciais...cédigo em R para
gerar n valores independentes de uma N(0, 1).
e Em R:

minharnorm = function(n) sqrt(rexp(n, 0.5)) * cos(runif(n, 0, 2 * pi))
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Amostra de gaussiana N(0, 1)

set.seed(123)

minharnorm = function(n){ sqrt(rexp(n, 0.5)) * cos(runif(n, 0, 2 * pi))}
hist (minharnorm(1000), prob=T)

plot(dnorm, -3,3, add=T)

Histogram of minharnorm(1000)

Density
04 02 03 04

00

r T T T T T 1
3 2 A 0 1 2 3

minharnorm(1000)

Figura: Histograma padronizado de 1000 valores N(0, 1) gerados com minhanorm
com a densidade f(x) sobreposta.
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Gaussiana ou normal

Gerando gaussianas N(u, 0?)

e Como gerar uma gaussiana N(u,o): centrada em p e com dispersdo
o em torno de p.

e Propriedade de probabilidade: se Z ~ N(0,1) entdo
X=pu+0oZ~ N(u,o?)

@ Sabemos gerar Z ~ N(0,1).

@ Se quiser X ~ N(10,4) (digamos) basta gerar Z e em seguida tomar
X =10+ V4Z.

e Em R:

minharnorm = function(n) sqrt(rexp(n, 0.5)) * cos(runif(n, 0, 2 * pi))

x = 10 + sqrt4 * minhanorm(100)

e E claro que R ja possui gerador de gaussianas: rnorm(100, mean=0,
sd=1)
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Monte Carlo para estimar integrais

Estimando integrais por Monte Carlo

@ Queremos calcular .
0 :/ g(x) dx
0

@ Podemos ver a integral # como a esperanca de uma v.a.: se
U~ U(0,1) entdo 0 = E[g(U)].
e Se U, Us,..., U, sdoi.id. U(0,1) entdo as v.a.'s
Yi=g(U1), Y2 =g(Us),..., Y, = g(U,) também sdo i.i.d. com
esperanca 6.
Pela Lei dos Grandes Nidmeros, se n — oo,

IS Yi= 2> s(U) - Elg(U)] = 6
i=1 i=1

@ Assim, se n é grande, 0 é aprox. a média aritmética dos valores
simulados g(u;).
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Monte Carlo para estimar integrais

Exemplo

@ Queremos

1
0:/ x2dX:1
0 3

e Uma amostra i.i.d. de 1000 varidveis aleatérias U(0, 1) é gerada:
up = 0.4886415, u, = 0.1605763, u3 = 0.8683941, . .., u1g0o = 0.3357509

@ Calculamos entdo
6 = (B4 +... + uiy) /1000

= ((0.4886415)% + (0.1605763)% + ... + (0.3357509)%) /1000

= 0.33406 ~ 6
o Nova geracdo, com semente diferente, vai produzir 0 ligeiramente

diferente.

@ Outros 1000 valores da uniforme produzem 0 = 0.3246794.
@ Aumentando tamanho da amostra variagdo diminui: escolha do

tamanho da amostra precisa de desigualdades em probabilidade (logo
mais).
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Monte Carlo para estimar integrais

Integrais e probabilidades gaussianas

e Se X ~ N(0,1) entdo
1 2
—x“/2
]P’(Xe(o,l))_/ xp(oX/2) e g
0 V27
@ N3o existe férmula para esta integral, deve ser obtida numericamente.

@ Usando as funcdes nativas em R:
pnorm(1) - pnorm(0) que retorna 0.8413447 — 0.5 = 0.3413447
@ Gere 1000 valores i.i.d. de uma U(0,1) e calcule
(1 + Y2+ ...+ ¥1000)/1000 onde y; = (27)~%5 exp(—u?/2).
@ Por exemplo, se u; = 0.4886 entdo
yi = (27)7%5 exp(—0.48862/2) = 0.3541.
® Em R: mean((2%pi)~(-0.5) * exp(-runif(1000)°2/2))
@ Quatro simulagdes sucessivas (e independentes) com 1000 valores:
0.3425249,0.3413119, 0.3432939 e 0.3400479.
@ Comparando com 6 = 0.3413447, os erros de estimacdo sdo pequenos.
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Monte Carlo para estimar integrais

Limites genéricos

@ Nem sempre a integral terad os limites 0 e 1.

Gszg(x)dx

o Fazer mudanga de varidvel linear: tome x = a+ (b —a)y e
dx = (b— a)dy.

@ Entao
b 1 1
a:/a g(x)dx:/0 g(a+(b—a)y)(b—a)dy:/0 hy) dy

onde h(y) = (b—a)g(a+ (b—a)y).
@ Usamos U(0,1) mesmo quando a integral é num intervalo

(a,b) #(0,1)
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Monte Carlo para estimar integrais

Exemplo
@ Calcule o valor aproximado de
0= /39 log(2 + | sin(x)|)e /%0 dx
e Uma amostra i.i.d. de 1000 U(0,1) é gerada e calcula-se

_ 1
w = ;(Wl+~'-+W1000)

onde

20

@ Trés simulagdes deram: 4.285739, 4.327516, 4.310637.

@ Neste exemplo, ndo sabemos o verdadeiro valor 6 da integral mas as
simula¢bes ddo aproximadamente o mesmo valor.

@ Isto é um sinal de que, ao usar qualquer um deles como estimativa, a
integral deve estar sendo estimada com pequeno erro.
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Método da rejeigdo

Método de aceitacao-rejeicao

Queremos gerar amostra de densidade f(x).

N&o conseguimos obter F(x) analiticamente.

O método da transformada inversa n3o pode ser usado.
Uma alternativa: método de aceitacido-rejeicdo

Idéia basica: gerar de outra distribuicdo que seja facil.

A seguir, retemos alguns dos valores gerados e descartamos os demais.

® 6 6 6 o o o

Isto é feito de tal maneira que a amostra que resta tem exatamente a
densidade f(x).
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Esséncia da ideia
Sabemos gerar com facilidade da densidade g(x) (linha tracejada).

Amostra de g(x) produz o histograma abaixo.
Mas queremos amostra de f(x).

Eliminamos de forma seletiva alguns valores gerados.

fix) e gl
01 02 03 04

00

Figura: Linha continua: densidade f(x) de onde queremos amostrar. Linha
tracejada: densidade g(x) de onde sabemos amostrar. histograma de
amostra de 20000 elementos de f(x).
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Esséncia da ideia
@ Se o processo seletivo for feito de maneira adequada,

@ terminamos com uma amostra que, no fim dos dois processos
(geragdo e aceitacdo-rejeicdo), é gerada de f(x).

fix) e gix)
03 04

02

041

00

Figura: Linha continua: densidade f(x) de onde queremos amostrar. Linha
tracejada: densidade g(x) de onde sabemos amostrar. histograma de
amostra de 20000 elementos de f(x). Histograma dos 3696 elementos da
amostra anterior que restaram apods rejeitar seletivamente 16304 dos
elementos gerados.
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Compatibilizando os suportes
Fixe uma densidade-alvo f(x).

Quais g(x) podemos escolher?
Suporte de g(x) deve ser maior que aquele de f(x).

Isto é, se f(x) pode gerar um valor x entdo g(x) também deveria ser
capaz de gerar este x.

Ou seja, se f(x) > 0 entdo g(x) > 0.
@ g(x) pode gerar valores impossiveis sob f(x)

@ Mas n3o podemos permitir que valores possiveis sob f(x) sejam
impossiveis sob g(x).

@ Isto é bem razodvel: se inicialmente, usando g(x), gerarmos valores
impossiveis sob f(x), podemos rejeitd-los no segundo passo do
algoritmo.

@ Mas se nunca gerarmos valores de certas regides possiveis sob f(x),
nossa amostra final ndo serd uma amostra de f(x).
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Ache M tal que f(x) < Mg(x)

@ Precisamos achar uma constante M > 1 tal que
f(x) < Mg(x)

para todo x.

@ Isto é, multiplicamos a densidade g(x) de onde sabemos amostrar por
uma constante M > 1 implicando em eleva-la.

@ Por exemplo, se M = 2, comparamos o valor de f(x) com 2g(x),
duas vezes a altura da densidade g no ponto x.

e Devemos ter sempre f(x) < Mg(x).
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Método da rejeigdo

Exemplo

Linha continua é a densidade f(x) de onde queremos amostrar
Linha tracejada: densidade g(x) de onde sabemos amostrar.
Direita: grafico de f(x) e de 5.4 % g(x).

Temos f(x) < 5.4g(x) para todo x

0g 10

00 0z 04 08
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Método da rejeigdo

Raz&o r(x)

e Temos f(x) e Mg(x).

@ No ponto x = 6.0 temos a altura f(x) (continua) e a a altura 5.4g(x)

(tracejada).
@ Para todo x, definimos a raz3o entre estas alturas
f(x)
r(x) = —-= <1 para todo x.
Mg(x)

densidade
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_ ¥
r(X) = W(X) <1
Sejam x1, X2, ... 0 elementos da amostra de g(x). Quais reter?
Calcule r(x1), r(x2),. ..

Se r(x;) ~ 0, vamos tipicamente rejeitar x;

Se r(xj) ~ 1, vamos tipicamente reter x;.

densidade

04

02
1
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Método da rejeigdo

r(x) = %)(()X) é a probabilidade de reten¢do

e Para cada elemento x; gerado por g(x), jogamos uma moeda com
probabilidade de cara igual a r(x;).

Se sair cara, retemos x; como um elemento vindo de f(x).

Se sair coroa, eliminamos x; da amostra final.

Se comegarmos com n elementos retirados de g(x), o tamanho final
da amostra é aleatério e geralmente menor que n
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Algoritmo

Y é um valor inicialmente gerado a partir de g(x) e X é um dos valores
finalmente aceitos no final do processo.

Algorithm 1 Método da Rejeic3o.

1. | + True
2: while / do
3: Gere Y ~ g(y)

4 Gere U ~U(0,1)

5 if U<r(Y)=F(Y)/Mg(Y) then
6 X+Y

7: | = False

8 end if

9: end while
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Método da rejeigdo

Exemplo

@ Queremos gerar X ~ Gamma(3,3) com densidade:

0 ,sex <0
0 ={ Gops x5 1)

Sabemos gerar W ~ exp(1) pois basta tomar W = —log (1 — U)
onde U ~ U(0,1).
o A densidade de W é:

0, se x <0
g0 ={ 0. 2X50 @

@ O suporte das duas distribuicGes é o mesmo, o semi-eixo real positivo.
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Exemplo

@ Entao:
f(x) %X26_3X 27 5 o

<=2 = 3
— g(x) ex 2xe 3)

@ Derivando e igualando a zero temos ponto de maximo xp = 1.

e Como fg)) = 211272 = 1.827 < 2, temos f(x) < 2g(x) para todo x.

Figura: Esquerda: Densidade-alvo f(x) (linha tracejada) e densidade g(x) de onde
sabemos gerar (linha continua). Direita: Densidade f(x) e a fungdo 2g(x).
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Script R

set.seed(123); M = 2; nsim = 10000

x = rexp(nsim, 1)

razao = dgamma(x, 3, 3)/(M * dexp(x, 1))

aceita = rbinom(10000, 1, razao)

amostra = x[aceita == 1]

par (mfrow=c(2,1))

xx = seq(0, 4, by=0.1); yy = dgamma(xx, 3, 3)

hist(x, prob=T, breaks=50, xlim=c(0, 8),
main="f (x) e amostra de g(x)")

lines(xx, yy)

hist (amostra, breaks=20, prob=T, xlim=c(0,8),
main="f(x) e amostra de f(x)")

lines(xx, yy)
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Resultado

f(x) e amostra de g(x)

Density
00 06
L1l

f(x) e amostra de f(x)

Density
06
I

0.0

T T 1
0 2 4 5] 8

amostra

Figura: Amostra de 10 mil valores de uma g(x) = exp(1); rejeitando aprox 5000
valores terminamos com amostra de f(x) = Gama(3, 3).
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Método da rejeigdo

Script R mais simples

set.seed(123)

M = 2; nsim = 10000

x = rexp(nsim, 1)

amostra = x[ runif(nsim)<dgamma(x,3,3)/(Mxdexp(x, 1)) ]
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Método da rejeigdo

Pseudo-code

1: | « true

2: while / do

3 Selecione U ~ U(0,1)

4: Selecione U* ~ 1(0,1)

5 Calcule w = —log (1 — V)

6 if U < ;{0 = (27/4)w? exp(—2w) then
7 X < w

8: I = False

9: end if

10: end while
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Os dois teoremas

Theorem

(Aceitacdo-Rejeicdo gera valores de f(x)) A varidvel aleatéria X gerada
pelo método de aceitagdo-rejeicdo possui densidade f(x).

Prova: Leitura opcional, documento disponivel no moodle

Theorem

(Impacto de M) O nimero de iteragGes necessarios até que um valor seja
aceito possui distribuicdo geométrica com valor esperado M.

Prova: Leitura opcional, documento disponivel no moodle
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Impacto de M

Método funciona com qualquer M tal que f(x) < Mg(x).

M, é muito maior que M,, ambos satisfazendo a condic3o.

Se rodarmos o método em paralelo com os dois valores de M, aquele
com o maior valor rejeitaria mais frequentemente que o método com
o M menor.

@ Pelo teorema, devemos selecionar, em média, M valores até que
aceitemos um deles.

Quanto menor M, menos rejeicdo.

N3o é dificil provar que M deve ser maior ou igual a 1.
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Impacto de M

(]

O maximo de eficiéncia é obtido quando M = 1.

@ Mas neste caso, como a drea total debaixo de f(x) e g(x) é igual a 1,
devemos ter f(x) = g(x).

@ Isto é, a densidade de onde geramos é idéntica a densidade-alvo f(x)
e todos os valores s3o aceitos.

@ Se selecionarmos g(x) muito diferente de f(x), especialmente se
tivermos g(x) ~ 0 numa regido em que f(x) ndo é desprezivel, é
possivel que tenhamos de usar um valor de M muito grande para
satisfazer f(x) < Mg(x) para todo x.

o Esta serd uma situagdo em que o método de aceitagdo-rejeicdo serd
pouco eficiente pois muitas amostras devem ser propostas (em média,
M) para que uma delas seja eventualmente aceita).
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Amostragem por importancia: outro método

Amostragem por importancia

@ Método muito importante para a geragcdo de simultanea de vérias
varidveis aleatdrias relacionadas entre si (correlacionadas): sabemos
gerar facilmente de normal multivariada mas n3o de outras
distribuicées multivariadas.

@ No método de aceitacdo-rejeicao:

o selecionamos de uma densidade g(x) de onde sabemos amostrar
e retemos alguns elementos e rejeitamos outros
e os elementos retidos possuem a densidade desejada f(x)

e Na amostragem por importancia, selecionamos de g(x) mas retemos

tudo, n3o rejeitamos nada.

@ Mas ao usar a amostra, damos um peso diferente e apropriado a cada
elemento amostrado.

@ No final, isto corrige a distor¢cdo de ndo termos uma amostra de f(x).
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Amostragem por importancia: outro método

Densidade-alvo: o que queremos

e f(x), a densidade da distribui¢do-alvo, de onde queremos amostrar.

2 4 6 B 10 12

e O "tapete” de pontos embaixo representa uma amostra de f(x)
@ Todos os pontos com pesos iguais. Nao sabemos obter esta amostra.

o OBS: Esta figura e as duas seguintes vém do livro Probabilistic
Robotics
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Amostragem por importancia: outro método

Amostre de g(x) ao invés de f(x)

@ Amostramos de g(x) em vez de amostrar de f(x).

2 4 6 8 10 12

@ Terminamos com a amostra mostrada no “tapete”, todos os pontos
tem pesos iguais.

@ Vamos agora dar pesos diferentes a estes elementos amostrados para
que paregam ter vindo de f(x).

@ Intuitivamente, como fazer? Quem recebe mais peso? E menos peso?
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Amostragem por importancia: outro método

Pesos: mais ou menos importancia

@ Atribuimos pesos w(x) = f(x)/g(x) aos elementos da amostra de
g(x).

2 4 6 8 10 12

@ Esta amostra PONDERADA pode ser usada para fazer inferéncia
sobre a distribuicdo f(x)
@ Como fazer isto exatamente?
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Amostragem por importancia: outro método

O que vocé quer saber sobre f(x)?

@ Queremos uma amostra Monte Carlo para estimar (conhecer
aproximadamente) alguns aspectos de uma v.a. X com
distribui¢do-alvo f(x).

@ Por exemplo, podemos querer saber o seguinte:

E(X) sem precisar fazer a integral (pode ser muito dificil)
V(X) = E(X?) — (E(X))?, a varidncia de X.

P(X > 2), a chance de observar X maior que 2, um valor-limite
importante na aplicac3o.

P(e~ X! > |X|), um calculo probabilistico (uma integral).

P(X € A), onde A é um conjunto complicado.
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Amostragem por importancia: outro método

O truque: escreva como esperanca

@ Cada uma das quantidades de interesse pode ser escrita como o valor
esperado de uma v.a. que é uma fungdo h(X) da v.a. X.

@ Seja 01 = E(X): Tome h(X) = X e entdo 61 = E(h(X)).

o 0y = V(X) = E(X2) — (E(X))? Se h(X) = X2 ent3o
0> = E(h(X)) — 62, se tivermos uma estimativa de 6;
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Amostragem por importancia: outro método

O truque: escreva como esperanca

o 03 =P(X >2) = E(h(X)) onde h(X) = Iix-2), a fungdo indicadora
do evento X > 2.

o 04 = P(e I > |X]) = Ef(h(X)) onde h(X) = ljxca onde
A = {x tais que e X > |x|}.

e 05 =P(X € A) =E(la), onde A é um conjunto complicado.
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Amostragem por importancia: outro método

Estimando esperancas

o Pela idéia frequentista, E(X) é bem aproximada pela média
aritmética de uma grande amostra de valores de X:

1 n
E(X) ~ — Zx,-
i=1
@ Pelo mesmo raciocinio, se quisermos estimar o valor esperado
E(h(X)) de uma transformagdo h(X) de X podemos usar a média
aritmética dos h(X;):
1 n
E(h(X)) ~ — >~ h(X)
i=1
@ Por exemplo, se h(X) = X? temos

1 n
E(X?) ~ - X7
i=1
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Amostragem por importancia: outro método

Estimando esperancas

e Simples: se quiser conhecer o valor esperado de X2, tome uma
amostra de X, aplique a fun¢dao quadratica a cada valor e tome a sua
média aritmética.

@ Para estimar o valor esperado de qualquer fungdo h(X), transforme
cada valor de uma grande amostra de X ~ f(x) e tome sua média
aritmética.

@ Problema: n3o conseguimos gerar X ~ f(x) desejada.
@ Sabemos gerar de OUTRA distribui¢do g(x).

@ Aceitagao-rejeicao joga fora seletivamente vérios elementos da
amostra de modo a terminar com uma maostra de f(x): é como dar
pesos iguais a 0 ou 1 a cada valor.

@ Amostragem por importancia pondera TODOS os valores amostrados
de g(x) com pesos mais flexiveis.
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Esperanca sob QUAL densidade, g ou 7

@ Queremos o valor esperado de h(X) onde X ~ f(x) com suporte S.
e Isto é, queremos 0 = E¢(h(X)).

@ SUB-INDICE f para indicar a distribuicdo de X. A partir de agora, X
pode ter densidade g(x) ou f(x) e queremos distinguir isto na
notacao.

Sabemos gerar apenas de g(x), com suporte maior ou igual a S.

@ Vamos mostrar que § = E¢(h(X)) pode ser visto como a esperanca
de OUTRA funado h*(X) quando X tem densidade g.

@ Isto é, vamos mostrar que

0 = E(h(X)) = 0 = Eg(h*(X))
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Amostragem por importancia: outro método

Por que o algoritmo funciona

@ O truque mais barato da matematica: multiplique e divida por um
memso valor...

0 = B(h(X)) = /R h(x) f(x) dx

onde h*(x) = h(x)f(x)/g(x) = h(x)w(x) é uma nova fungdo.
@ Assim, podemos reconhecer a (ltima expressdo como uma nova
esperanc¢a: o valor esperado de h*(X) quando X segue a densidade
g(x)!
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Amostragem por importancia: outro método

Por que o algoritmo funciona

@ Isto é,

: F(X)
0 = Ef(h(X)) = Eg (h"(X)) = Eg (h(X)g(X)> = Eg (h(X)w(X))
e Note que, na dltima esperancga, a v.a. X possui distribuicdo g(x) e
ndo mais f(x)!!
@ Tudo se resume a multiplicar e dividir por um mesmo valor dentro da
integral e reconhecer que a nova integral é uma esperanca de uma
v.a. h*(X) onde X tem OUTRA distribui¢do g(x).
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O truque

Repetindo

f(X)
(X)
@ A esperanga de h(X) com X ~ f(x) é igual a esperan¢a de
h*(X) = h(X)w(X) onde X ~ g(x).

Como isto pode ser (til?

6 — Er(h(X)) = (h(X) )Eg(h(X)w(X»

e Como sabemos amostrar de X ~ g(x), a ultima esperanca
Eg (h(X)w(X)) pode ser estimada facilmente.
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Amostragem por importancia: outro método

Exemplo
@ Desejamos E¢(X) onde X ~ Gama(3,3). Neste caso, h(X) = X.
@ Geramos 200 valores de uma exp(1)
@ Para cada um dos 200 valores xi, x2, . . . xpg0 calculamos os pesos

f(x; 205273 97
W(X,‘) — (XI.) _ 2 I_X. — 7Xi2€72x,-
g(x;) e Xi 2

o Com estes pesos, estimamos

200
Er(X) = Eg(h(X) w(X)) = Eg(X w(X)) = 305> xiw(x)
i=1

@ Com o script a seguir, obtive uma estimativa igual a 1.102366 quando
o valor exato é igual a 1.
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Script R

set.seed(123)

nsim = 200

x = rexp(nsim, 1)

wx = dgamma(x, 3, 3)/dexp(x, 1)

thetal = mean(x*wx)

par (mfrow=c(1,1))

xx = seq(0, 9.1, by=0.1)

fx = dgamma(xx, 3, 3)

gx = dexp(xx, 1)

plot(xx, gx, type="1", ylim=c(-0.2, 1), ylab="densidade")
lines(xx, fx, lty=2)

abline (h=0)

segments(x, -0.2, x, -0.18+wx/20, lwd=2)
legend("topright",lty=1:2,c("g(x)", "f(x)") )
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Saida do script R

1.0

densidade
04

o~

=

)

=

o | NN .

' T T T T T
0 2 4 6 8

XX
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Amostragem por importancia: outro método

Exemplo

Queremos gerar de uma N(0, 1) sem usar Box-Muller.

Precisamos simular de uma distribuicdo com suporte na reta real.

Sabemos gerar com facilidade uma v.a. Y com distribuigcdo exp(1):
Y = —log(U) onde U ~ U(0,1).

Problema: exp(1) possui suporte (0,00) e normal possui suporte na
reta inteira.

Truque: selecionamos Y exp(1). A seguir, jogue uma moeda com
probabilidade 1/2: se cara, tome Y’; se coroa, tome —Y.

Esta distribuicdo é chamada de exponencial dupla ou distribuicdo de
Laplace.
Ver http://en.wikipedia.org/wiki/Laplace_distribution
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Amostragem por importancia: outro método

Laplace ou exponencial dupla

@ Densidade de Laplace padrdo (u=0e b=1):

1
g(x) = se M
2
< |
gi\ T T T T
4 2 0 2 4
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Amostragem por importancia: outro método

Exemplo

@ Queremos calcular Ef(h(X)) onde X ~ f(x) = N(0,1)
@ Sabemos gerar de Laplace padrio.
@ Queremos estimar:
o 0=10; =E¢(X) onde h(X) =X
o 1=10, = V¢(X) = Er(X2) — (Er(X))*: Se h(X) = X2 entdo
02 = E¢(h(X)) — 62, se tivermos uma estimativa de 6;
0 0.02275 = 03 = P¢(X > 2) = E¢(h(X)) onde h(X) = lx~2, a fungdo
indicadora do evento X > 2.
o 0, =P(e Xl > |X|) = E(h(X)) onde h(X) = Ia(X) onde
A = {x tais que e Xl > |x|}
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Exemplo

@ Simule Xy, Xo, ..., Xg de uma Laplace.
o Calcule os pesos

PR
Togla)  geh

@ Em seguida, estime

~ 1
91 ~ 91:EZXiWi

~ 1 ~\ 2
0> EZX,?W,'— (91>

03

Q
N
I

Q
&
|

1
=5 Z [x;>2)wi = média dos w; em que x; > 2
i

1
0y =~ 0= B Z o115 Wi = média dos w; em que e Ml > x;

1
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Script R

B = 10000

x <= (2%(runif(B) > 0.5)-1) * rexp(B) # gerando de uma exponencial dupla
hist(x)

## estimativa via importance sampling

peso <- dnorm(x)/(exp(-abs(x))/2)

al <- mean(x * peso)

a2 <- mean( (x"2 *peso) ) - al"2

a3 <- mean( (x > 2) * peso )

a4 <- mean( (exp(-abs(x)) > abs(x)) * peso )

c(al, a2, a3, a4) # [1] -0.02186748 1.00444225 0.02259828 0.42595014
## Refazendo com B maior

B = 50000

x <= (2*(runif(B) > 0.5)-1) * rexp(B) # gerando de uma exponencial dupla
peso <- dnorm(x)/(exp(-abs(x))/2)

al <- mean(x * peso); a2 <- mean( (x"2 *peso) ) - al”2;

a3 <- mean( (x > 2) * peso ); a4 <- mean( (exp(-abs(x)) > abs(x)) * peso )
c(al, a2, a3, a4) # [1] 0.0004117619 0.9879179922 0.0222652043 0.4345303436
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Sampling importance resampling (SIR)

Reamostragem da amostragem por importancia

Sampling importance resampling (SIR)
@ Para usar amostragem por importancia, precisamos conhecer as
densiaddes f(x) e g(x), incluindo as suas constantes de integragdo c;
e (.

f(x) = af(x)

g(x) = cgo(x)

O algoritmo SIR dispensa o conhecimento de ¢; e ¢

Isto nd é muito relevante nos casos de v.a. unidimensionais mas se
quisermos gerar VETORES de v.a.’s correlacionadas, este problema
aparece como uma grande dificuldade.
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Algoritmo SIR

@ Simule uma amostra X1, Xp, ..., Xg de g(x)

e Calcule os pesos w; = fo(x;)/go(x;)

o Normalize os pesos w; <— w;/S onde S =", wy

o REAMOSTRE os B dados da amostra original com reposicdo e com
pesos w; gerando X{, X5,..., X}

o Cada XJ* assume um dos valores Xi, X5, ..., Xg com probab
Wi, Wa, ..., WB.
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Sampling importance resampling (SIR)

@ Mostra-se que a distribuicdo de XJ* tem densidade aproximadamente
igual a f(x).

@ SIR comeca gerando de g(x) como importance sampling.

@ Ao invés de reter todos os valores gerados atribuindo um peso...

@ SIR REAMOSTRA os valores gerados com um peso.

e Voltando ao exemplo anterior, queremos estimar 61 = E¢(X),
0y = V¢(X), 03 = Pr(X > 2), 64 = Pr(e X > |X|). onde
X ~ f(x) = N(0,1).

Temos f(x) = (27r)_1/2 e /2 x /2

Vamos SUPOR que n3o conhecemos a constante (27T)_1/2

Amostramos Xi, ... Xg de g(x), uma Laplace padrio.

Renato Martins Assun¢do (DCC - UFMG) Monte Carlo - Uma varidvel aleatéria 28 de agosto de 2020 92 / 95



Sampling importance resampling (SIR)

@ Reamostramos m elementos
@ Reamostra X{, XJ,..., X}

> i.i.d com

X1 com probab wy

X =

Xg com probab wg

@ No final, calculamos uma média aritmética simples de h(X}):

@ Ver script R
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Sampling importance resampling (SIR)
Script R

B:

20000

## amostra de exponencial dupla (ou Laplace)

x <- (2%(runif(B) > 0.5)-1) * rexp(B)

## estimativa via SIR - sampling importance resampling
peso <- exp(-x~2/2)/(exp(-abs(x))/2)

peso <- peso/sum(peso)

xstar
al <-
a2 <-
a3 <-
ad <-
c(al,

<- sample(x, 10000, replace=T, prob=peso)
mean (xstar)

mean(xstar”2) - al”2

mean(xstar > 2)

mean (exp(-abs(xstar)) > abs(xstar))

a2, a3, a4)
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Escolha de g(x)

Nos métodos de aceitacdo-rejeicdo, importance sampling e SIR
geramos de g(x) mas o objetivo é estimar quantidades associadas
com f(x).

Como deve ser escolhida g(x)?

Ela deve ter um suporte maior ou igual a f(x).

Além disso, ela deve ser o mais parecida possivel com f(x).

Uma ma escolha para g(x) pde muita massa de probabilidade numa
regido (de onde amostramos frequentemente) e esta regido tem baixa
probabilidade sob f(x).

Pior: regido onde f(x) pde massa de probabilidade tem pouca chance
de ser selecionada sob g(x)
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