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Introduction

@ It is relatively easy to think about the distribution of data —
heights or weights or blood pressures: we can see these
numbers, summarize them, plot them, etc.

@ It is much harder to think about what the distribution of
estimates would look like if we were to repeat an experiment
over and over, because in reality, the experiment is conducted
only once

o If we were to repeat the experiment over and over, we would
get different estimates each time, depending on the random
sample we drew from the population
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To reflect the fact that its distribution depends on the random
sample, the distribution of an estimate is called a sampling
distribution

These sampling distributions are hypothetical and abstract —
we cannot see them or plot them (unless by simulation, as in
the coin flipping example from our previous lecture)

So why do we study sampling distributions?

The reason we study sampling distributions is to understand
how variable our estimates are and whether future
experiments would be likely to reproduce our findings

This in turn is the key to answering the question: “How
accurate is my generalization to the population likely to be?”
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Introduction

@ The central limit theorem is a very important tool for thinking
about sampling distributions — it tells us the shape (normal)
of the sampling distribution, along with its center (mean) and
spread (standard error)

@ We will go through a number of examples of using the central
limit theorem to learn about sampling distributions, then
apply the central limit theorem to our one-sample categorical
problems from an earlier lecture and see how to calculate
approximate p-value and confidence intervals for those
problems in a much shorter way than using the binomial
distribution
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@ According the National Center for Health Statistics, the
distribution of serum cholesterol levels for 20- to 74-year-old
males living in the United States has mean 211 mg/dl, and a
standard deviation of 46 mg/dI

@ We are planning to collect a sample of 25 individuals and
measure their cholesterol levels

@ What is the probability that our sample average will be above
2307

Patrick Breheny STA 580: Biostatistics |



Applying the

One-sa

Procedure: Probabilities using the central limit theorem

Calculating probabilities using the central limit theorem is quite
similar to calculating them from the normal distribution, with one
extra step:

#1 Calculate the standard error: SE = SD/\/n, where SD is the
population standard deviation

#2 Draw a picture of the normal approximation to the sampling
distribution and shade in the appropriate probability

#3 Convert to standard units: z = (x — u)/SE, where p is the
population mean

#4 Determine the area under the normal curve using a table or
computer
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Example #1: Solution

@ We begin by calculating the standard error:

@ Note that it is smaller than the standard deviation by a factor

of \/n
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o After drawing a picture, we would determine how many
standard errors away from the mean 230 is:

230 — 211

=2.07
9.2

@ What is the probability that a normally distributed random
variable is more than 2.07 standard deviations above the
mean?

e 1-.981 = 1.9%

Patrick Breheny STA 580: Biostatistics |



Applying the

One-sa

Comparison with population

@ Note that this is a very different number than the percent of
the population has a cholesterol level above 230

e That number is 34.0% (230 is .41 standard deviations above
the mean)

@ The mean of a group is much less variable than individuals

@ As Sherlock Holmes says in The Sign of the Four: “"While the
individual man is an insoluble puzzle, in the aggregate he
becomes a mathematical certainty. You can, for example,
never foretell what any one man will do, but you can say with
precision what an average number will be up to. Individuals
vary, but percentages remain constant. So says the
statistician.”
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@ We can also use the central limit theorem to approximate
percentiles of the sampling distribution:

#1
#2

#3
#4

Calculate the standard error: SE = SD/+\/n

Draw a picture of the normal curve and shade in the
appropriate area under the curve

Determine the percentiles of the normal curve corresponding
to the shaded region using a table or computer

Convert from standard units back to the original units:

u+ z(SE)
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Percentiles

@ We can use that procedure to answer the question, “95% of
our sample averages will fall between what two numbers?”

Note that the standard error is the same as it was before: 9.2

What two values of the normal distribution contain 95% of
the data?

The 2.5th percentile of the normal distribution is -1.96

Thus, a normally distributed random variable will lie within
1.96 standard deviations of its mean 95% of the time
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Applying the

One-sample categ

Example #2: Solution

@ Which numbers are 1.96 standard errors away from the
expected value of the sampling distribution?

211 — 1.96(9.2) = 193.0
211 4 1.96(9.2) = 229.0

@ Therefore, 95% of our sample averages will fall between 193
mg/dl and 229 mg/dI
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Example #3

@ What if we had only collected samples of size 107

@ Now, the standard error is

46

V10
=145

SE =

@ Now what is the probability of that our sample average will be
above 2307
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@ Now 230 is only

230 — 211
14.5

=131

standard deviations away from the expected value

@ The probability of being more than 1.31 standard deviations
above the mean is 9.6%

@ This is almost 5 times higher than the 1.9% we calculated
earlier for the larger sample size

Patrick Breheny STA 580: Biostatistics |



One-sample

Example #4

e What about the values that would contain 95% of our sample
averages?

@ The values 1.96 standard errors away from the expected value
are now

211 — 1.96(14.5) = 182.5
211 4 1.96(14.5) = 239.5

@ Note how much wider this interval is than the interval
(193,229) for the larger sample size
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Example #5

@ What if we'd increased the sample size to 507

@ Now the standard error is 6.5, and the values

211 — 1.96(6.5) = 198.2
211 + 1.96(6.5) = 223.8

contain 95% of the sample averages
p g
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Summary

n SE Interval Width of interval
10 145 (182.5,239.5) 57.0
25 9.2 (193.0,229.0) 36.0
50 6.5 (198.2,223.8) 25.6

The width of the interval is going down by what factor?
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Example #6

o Finally, we ask a slightly harder question: How large would the
sample size need to be in order to insure a 95% probability
that the sample average will be within 5 mg/dl of the
population mean?

@ As we saw earlier, 95% of observations fall within 1.96
standard deviations of the mean

@ Thus, we need to get the standard error to satisfy
1.96(SE) =5

5
E=-—"
SE =196
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@ The standard error is equal to the standard deviation over the
square root of n, so

b _ 8D
1.96  n
1.

Jin=SD %
n = 325.1

@ In the real world, we of course cannot sample 325.1 people, so
we would sample 326 to be safe
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Example #7

@ How large would the sample size need to be in order to insure
a 90% probability that the sample average will be within 10
mg/dl of the population mean?

@ There is a 90% probability that a normally distributed random
variable will fall within 1.645 standard deviations of the mean

@ Thus, we want 1.645(SFE) = 10, so

10 46
1.645 /n
n =>57.3

@ Thus, we would sample 58 people
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Introduction

@ We can use the exact same logic to carry out hypothesis tests
for one-sample categorical data

o Consider our cystic fibrosis experiment in which 11 out of 14
people did better on the drug than the placebo

@ Under the null hypothesis, the sampling distribution of the
percentage who did better on one therapy than the other will
(approximately) follow a normal distribution with mean
Po = 0.5
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Hypothesis testing

The standard error

@ What about the standard error?

@ Recall that the standard deviation of an individual outcome
for the binomial distribution is \/po(1 — po)

@ Therefore, under the null hypothesis, the standard deviation is
\/po(l —po) = \/1/4 = 1/2

@ Thus, the standard error is
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Hypothesis testing
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One-sample categorical data

Procedure for a z-test

@ To summarize this line of thinking into a procedure:
#1 Calculate the standard error: SE = \/po(1 — po)/n
#2 Calculate z = (p — po)/SE
#3 Draw a normal curve and shade the area outside +z
#4 Calculate the area under the normal curve outside +z
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Terminology

@ Hypothesis tests revolve around calculating some statistic
from the data that, under the null hypothesis, you know the
distribution of

e This statistic is called a test statistic, since it's a statistic that
the test revolves around

@ In this case, our test statistic is z: we can calculate it from
the data, and under the null hypothesis, it follows a normal
distribution

@ Tests are often named after their test statistics: the testing
procedure we just described is called a z-test
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The z-test for the cystic fibrosis experiment

@ For the cystic fibrosis experiment, pg = 0.5

@ Therefore,

po(1 — po)
n
0.5(0.5)
14

SE =

=.134
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Hypothesis testing
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The z-test for the cystic fibrosis experiment (cont'd)

@ The test statistic is therefore

@ The p-value of this test is therefore 2(1.6%) = 3.2%
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Introduction: confidence intervals

@ To find confidence intervals, the logic is similar, although the
procedure is different

@ Here, we're not assuming that we know where the sampling
distribution is centered — we don’t assume that pg equals
anything

@ Instead, we're trying to find a range of values for py that are
plausible in light of observing p — i.e., values of pg such that if
po were true, it wouldn't be uncommon to see p
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Confidence intervals

Idea behind confidence intervals

Essentially, this consists of sliding pg around until p no longer looks
like it could reasonably have come from that sampling distribution:

Density
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Applying al lin Confidence intervals

The form of confidence intervals

@ Let 2,9 be the value such that +2z,¢ contains the middle 2%
of the normal distribution (i.e., zg50, = 1.96)

@ Then in order to get an % confidence interval with
(100 — 2)% of the errors split equally on both sides, we have
to slide the sampling distribution 2,9 standard errors to the
left of the mean, and then z,¢, standard errors to the right of
the mean

@ This will give us the two endpoints of our confidence interval

Patrick Breheny STA 580: Biostatistics |



Confidence intervals

Procedure for finding confidence intervals

@ Summarizing this line of thought, the central limit theorem
tells us that we can create % confidence intervals by:
#1 Calculate the standard error: SE = /p(1 —p)/n
#2 Determine the values of the normal distribution that contain
the middle 2% of the data; denote these values 2,9
#3 Calculate the confidence interval:

(ﬁ - Z$%SE7]5 + Zm%SE)
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Confidence intervals

Standard error

@ Note that the standard error calculation is different here than
it was for hypothesis tests

@ In hypothesis tests, we specified a value of py, which in turn
determined the standard error:

SE — Po(1 — po)
n

@ For confidence intervals, we don't know pg
@ A reasonable thing to do, then, is to estimate SE based on p:

p(1—p)
n

SE =
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Example: Survival of premature infants

@ Let's return to our example from a few weeks ago involving
the survival rates of premature babies

@ Recall that 31/39 babies who were born at 25 weeks gestation
survived

@ The estimated standard error is therefore

g [-T95(1 — 795)
39

= 0.0647
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One-sample categorical data

Example: Survival of premature infants (cont'd)

@ Suppose we want a 95% confidence interval
@ As we noted earlier, zg50, = 1.96

@ Thus, our confidence interval is:
(79.5 — 1.96(6.47),79.5 + 1.96(6.47)) = (66.8%, 92.2%)

@ Recall that our exact answer from the binomial distribution
was (63.5%,90.7%)
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e Confidence intervals
One-sample categorical data The big picture

Accuracy of the normal approximation

@ Thus, we see that the central limit theorem approach works
reasonably well here

@ The real sampling distribution is binomial, but when n is
reasonably big and p isn’t close to 0 or 1, the binomial
distribution looks a lot like the normal distribution, so the
normal approximation works pretty well

@ Other times, the normal approximation doesn't work very well:
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Applying al lin Confidence intervals
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Example: Survival of premature infants, part Il

@ Recall that the Johns Hopkins researchers also observed 0/29
infants born at 22 weeks gestation to survive

@ What happens when we try to apply our approximate
approach to find a confidence interval for the true percentage
of babies who would survive in the population?

e SE = /p(1 —p)/n =0, so our confidence interval is (0,0)

@ This is an awful confidence interval, not very close at all to
the exact one we calculated earlier: (0%, 12%)
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The big picture

Exact vs. approximate intervals

@ When n is large and p isn't close to 0 or 1, it doesn't really
matter whether you choose the approximate or the exact
approach

@ The advantage of the approximate approach is that it's easy
to do by hand

@ In comparison, finding exact confidence intervals by hand is
quite time-consuming
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@ However, we live in an era with computers, which do the work
of finding confidence intervals instantly

o If we can obtain the exact answer, there is no reason to settle
for the approximate answer

@ That said, in practice, people use and report the approximate
approach all the time

@ Possibly, this is because the analyst knew it wouldn't matter,
but more likely, it's because the analyst learned the
approximate approach in their introductory statistics course
and doesn’t know any other way to calculate a confidence
interval
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