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Probabilidade e estatistica

Diferenca entre probabilidade e estatistica

Probabilidade: um ramo da matematica pura.
Ela permite fazer calculos matematicos sobre fenémenos aleatérios.
N3o precisa de dados estatisticos.

Como funciona: estabeleca um modelo probabilistico.

A seguir, calcule probabilidades de eventos de interesse.
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Probabilidade e estatistica

Sequéncia mais longa

@ Jogue moeda para cima 100 vezes

Qual a chance de observar uma sequéncia de 8 ou mais caras em
seguida?

E um célculo matemitico.

N3o precisa realizar o experimento fisico para calcular as chances.
Mas para qué isto?

Hot hand em esportes.

Pontos sucessivos para time A ou B como se fossem cara-coroa de
uma moeda.

Mas probabilidade de A varia ao longo do jogo: as vezes, fica quente.

@ Isto é verdade? Até que ponto esta variacdo pode ocorrer?
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Probabilidade e estatistica

Probabilidade: modelo espacial 1

@ n pontos s3o jogados completamente ao acaso no quadrado de area 1
centrado na origem (0, 0).
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Probabilidade e estatistica

Probabilidade: modelo espacial 1

@ n pontos s3o jogados completamente ao acaso no quadrado de area 1
centrado na origem (0, 0).

@ Veja trés realizacGes independentes deste experimento.
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Probabilidade e estatistica

Probabilidade: modelo espacial 1

@ Qual a probabilidade P1(r) de que n3o exista nenhum ponto num raio
r em torno da origem (0,0)?
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r em torno da origem (0,0)?
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r em torno da origem (0,0)?
@ Se r~ 0, Pi(r) deve ser préxima de 1.
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Probabilidade: modelo espacial 1

@ Qual a probabilidade P1(r) de que n3o exista nenhum ponto num raio
r em torno da origem (0,0)?

@ Se r =~ 0, Py(r) deve ser préxima de 1.

@ Quando r aumenta, P;(r) deve decrescer para zero.

@ Pode-se mostrar que P1(r) é aproximadamente igual a exp(—nmr?).
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Probabilidade e estatistica

Probabilidade: modelo espacial 1

@ Qual a probabilidade P1(r) de que n3o exista nenhum ponto num raio
r em torno da origem (0,0)?

@ Se r =~ 0, Py(r) deve ser préxima de 1.

@ Quando r aumenta, P;(r) deve decrescer para zero.

@ Pode-se mostrar que P1(r) é aproximadamente igual a exp(—nmr?).
Grafico com n = 20.
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Célculo de Probabilidades

Probabilidade: modelo espacial 1

@ A probabilidade P1(r) é calculada SEM DADOS.
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Probabilidade: modelo espacial 1

@ A probabilidade P1(r) é calculada SEM DADOS.

o E um célculo matemético.

@ A figura com trés configuracdes de pontos é apenas ilustrativa. Ela
ndo foi usada no cdlculo de Py(r).
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Probabilidade: modelo espacial 1

@ A probabilidade P1(r) é calculada SEM DADOS.

o E um célculo matemético.

@ A figura com trés configuracdes de pontos é apenas ilustrativa. Ela
ndo foi usada no cdlculo de Py(r).

@ Para este modelo de pontos aleatdrios, varias outras probabilidades
podem ser calculadas.

@ Por exemplo, qual a probabilidade de que existam pelo menos 2
pontos numa certa regidao de area a?

o E aproximadamente

1—e " (1+ na)

@ N3o é preciso coletar nenhum dado para fazer estes calculos.
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Célculo de Probabilidades

Mudando o modelo probabilistico

@ Outro modelo probabilistico para geracdo de pontos no quadrado leva
a resultados bem diferentes no calculo de probabilidade.
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Célculo de Probabilidades

Mudando o modelo probabilistico

@ Outro modelo probabilistico para geracdo de pontos no quadrado leva
a resultados bem diferentes no calculo de probabilidade.

@ Por exemplo, suponha que apenas 5 pontos-pais sdo jogados

completamente ao acaso no quadrado de drea 1 centrado na origem
(0,0).

@ A seguir, cada ponto-pai gera 4 pontos-filhos de forma que temos 20
pontos-filho no final.
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Célculo de Probabilidades

Mudando o modelo probabilistico

Outro modelo probabilistico para geracdo de pontos no quadrado leva
a resultados bem diferentes no calculo de probabilidade.

Por exemplo, suponha que apenas 5 pontos-pais sdo jogados
completamente ao acaso no quadrado de drea 1 centrado na origem
(0,0).

@ A seguir, cada ponto-pai gera 4 pontos-filhos de forma que temos 20
pontos-filho no final.

@ Os filhos espalham-se ao acaso em torno dos pais até uma distancia
maxima de 0.1

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 7/45



Célculo de Probabilidades

Mudando o modelo probabilistico

@ Outro modelo probabilistico para geracdo de pontos no quadrado leva
a resultados bem diferentes no calculo de probabilidade.

@ Por exemplo, suponha que apenas 5 pontos-pais sdo jogados
completamente ao acaso no quadrado de drea 1 centrado na origem
(0,0).

@ A seguir, cada ponto-pai gera 4 pontos-filhos de forma que temos 20
pontos-filho no final.

@ Os filhos espalham-se ao acaso em torno dos pais até uma distancia
maxima de 0.1

@ Considere o padrio espacial dos pontos compostos apenas pelos
filhos.
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Célculo de Probabilidades

Probabilidade: modelo espacial 2
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Modelo 1 (1° linha) e modelo 2 (27 linha)
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Célculo de Probabilidades

Probabilidade: modelo espacial 2

@ No modelo 2, qual a probabilidade Py(r) de que n3o exista nenhum
ponto num raio r em torno da origem (0,0)?
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Célculo de Probabilidades

Probabilidade: modelo espacial 2

@ No modelo 2, qual a probabilidade Py(r) de que n3o exista nenhum
ponto num raio r em torno da origem (0,0)?

e Como no modelo 1, temos P2(r) ~ 1 e diminuindo para zero quando
o raio r aumenta.

@ Mas ela faz isto de forma bem diferente nos dois modelos.
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Estatistica

Estatistica: dados, dados, dados...

o Estatistica: um ramo da matematica aplicada.
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Estatistica

Estatistica: dados, dados, dados...

o Estatistica: um ramo da matematica aplicada.
@ Precisa de dados estatisticos. O que fazemos com esses dados?

@ Procuramos inferir qual foi o modelo probabilistico que gerou os
dados observados.
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Estatistica

Estatistica: dados, dados, dados...

Estatistica: um ramo da matematica aplicada.

Precisa de dados estatisticos. O que fazemos com esses dados?

Procuramos inferir qual foi o modelo probabilistico que gerou os
dados observados.

Qual dos dois modelos gerou cada um dos seis plots a seguir?
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Estatistica

Qual modelo gerou cada plot?
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Usando estatistica

Um teste estatistico para discriminar entre os modelos

@ Para cada ponto, achei a distancia até o seu ponto vizinho mais
préximo.
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Usando estatistica

Um teste estatistico para discriminar entre os modelos

@ Para cada ponto, achei a distancia até o seu ponto vizinho mais
préximo.

@ Para varios raios r, contei a proporcdo de pontos que tiveram
distancia menor que r.

@ Por exemplo, para r = 0.10, obtive a proporcdo G de pontos
observados que tiveram seu vizinho mais préximo a uma distancia
menor que 0.10.

e Entdo:

e Por meio do célculo de probabilidades,
e sem usar dados estatisticos,
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Usando estatistica

Um teste estatistico para discriminar entre os modelos

@ Para cada ponto, achei a distancia até o seu ponto vizinho mais
préximo.

@ Para varios raios r, contei a proporcdo de pontos que tiveram
distancia menor que r.

@ Por exemplo, para r = 0.10, obtive a proporcdo G de pontos
observados que tiveram seu vizinho mais préximo a uma distancia
menor que 0.10.

e Entdo:

e Por meio do célculo de probabilidades,

e sem usar dados estatisticos,
e com matemadtica pura (ou por simulacdo Monte Carlo)
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Usando estatistica

Um teste estatistico para discriminar entre os modelos
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préximo.
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distancia menor que r.

@ Por exemplo, para r = 0.10, obtive a proporcdo G de pontos
observados que tiveram seu vizinho mais préximo a uma distancia
menor que 0.10.

e Entdo:

e Por meio do célculo de probabilidades,

sem usar dados estatisticos,

com matemadtica pura (ou por simulacdo Monte Carlo)
obtive limites (m, M) tais que,

se os dados vierem de fato do modelo 1,
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Usando estatistica

Um teste estatistico para discriminar entre os modelos

@ Para cada ponto, achei a distancia até o seu ponto vizinho mais
préximo.

@ Para varios raios r, contei a proporcdo de pontos que tiveram
distancia menor que r.

@ Por exemplo, para r = 0.10, obtive a proporcdo G de pontos
observados que tiveram seu vizinho mais préximo a uma distancia
menor que 0.10.

e Entdo:

e Por meio do célculo de probabilidades,

sem usar dados estatisticos,

com matemadtica pura (ou por simulacdo Monte Carlo)

obtive limites (m, M) tais que,

se os dados vierem de fato do modelo 1,

o valor de G deveria estar entre m e M com probabilidade muito alta.

Se estiver fora dos limites, o modelo 2 deve ser o correto.
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Usando estatistica

Um teste estatistico para discriminar entre os modelos

Eixo horizontal: raio r.
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Usando estatistica

Um teste estatistico para discriminar entre os modelos

Eixo horizontal: raio r.

Eixo vertical: G(r) = probab da distincia
ao vizinho mais préximo ser menor que r.
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Usando estatistica

Um teste estatistico para discriminar entre os modelos

Renato Assun¢do, DCC, UFMG

Eixo horizontal: raio r.

Eixo vertical: G(r) = probab da distincia
ao vizinho mais préximo ser menor que r.

Linhas tracejadas:
limites para G(r) versus raio r
CASO MODELO 1 SEJA CORRETO.

Estatistica para Ciéncia dos Dados 15 /45



Usando estatistica

Um teste estatistico para discriminar entre os modelos

Linhas tracejadas foram obtidos
com célculo de probabilidades, sem dados.
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Usando estatistica

Um teste estatistico para discriminar entre os modelos

Linhas tracejadas foram obtidos
com célculo de probabilidades, sem dados.

Curva continua: propor¢do G(r)
calculada com os dados estatisticos.
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Usando estatistica

Um teste estatistico para discriminar entre os modelos

Linhas tracejadas foram obtidos
com célculo de probabilidades, sem dados.

Curva continua: propor¢do G(r)
calculada com os dados estatisticos.

Se ficar dentro dos limites,
fique com o modelo 1.

Se sair fora dos limites,
fique com o modelo 2.
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Usando estatistica

Decisdo: poucos erros

Decisdo errada apenas no plot (1,2) cujos dados sdo do modelo 2.

Renato Assun¢do, DCC, UFMG
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Probabilidade e estatistica: resumo

Resumo

o Probabilidade: a partir de um modelo probabilistico, calcula
matematicamente a probabilidade de diversos eventos (ou dados).
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Probabilidade e estatistica: resumo

Estatistica versus probabilidade em imagens

Extraido de http://herdingcats.typepad.com/my_weblog/

Statistics: Given the
information in your
hand, what is in the
pail?

[ e e e e e e e e e e e o o S S o o S e ]

Probability: Given
the information in
the pail, what is in
your hand?
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dentro do prazo.

@ Um modelo de risco de crédito avalia a probabilidade disso ocorrer
DADO que o cliente possui certos atributos.

@ Se a probabilidade for baixa, ele é um risco potencial e o crédito
deveria ser negado.

@ Precisamos de um modelo de probabilidade para fazer estes célculos.
e Existem muitos (infinitos) modelos possiveis.

@ Alguns sdo melhores que outros pois conseguem prever melhor que
cada cliente vai fazer.

@ Quais os dados para identificar um modelo desses?
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Probabilidade e estatistica: resumo

Risco de crédito: dados tipicos

@ Dados de 1000 clientes de um banco que pegaram empréstimo no
passado.

Para cada cliente, anota-se uma resposta binaria Y.
Y =1 se pagou de volta no devido tempo.

Y = 0 case contrario.

Além disso, temos 20 atributos que podem influenciar o
comportamento dos clientes.
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Risco de crédito: dados tipicos

@ Balance of current account

@ For how long has been a client (in months)

Payment of previous credits: no previous credits/paid back all previous
credits; hesitant payment of previous credits; problematic running account.

Purpose of credit: new car; used car, items of furniture; vacation; etc.
Amount of credit.

Value of savings or stocks.

For how has been employed by current employer (in years).
Installment in % of available income

Marital Status

Sex

Age, etc.
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@ Precisamos mesmo de um modelo probabilistico?
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Inferindo diretamente a partir dos dados

Precisamos mesmo de um modelo probabilistico?

@ Nos dias de big data, os dados n3o respondem tudo?

Afinal, podemos fazer célculos diretos e simples a partir dos dados
diretamente.

Por exemplo, qual a probabilidade de um cliente com mais de 60 anos
e saldo médio maior que 5 mil reais nao pagar o crédito?

Separe a sub-amostra de clientes com mais de 60 anos e saldo maior
que 5 mil.

Se esta sub-amostra n3o for muito pequena ... (digamos, maior que
100 individuos) ...

Dentre os individuos dessa sub-amostra, obtenha a propor¢cao dos que
nao pagaram o crédito.

Esta proporcdo é aproximadamente a probabilidade de
nao-pagamento.

Muito simples, apenas contagem no banco de dados.
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Nem sempre é tao simples

@ O cliente tem muitos atributos, n3o apenas idade e saldo médio.
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Nem sempre é tao simples

ente OIS
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O cliente tem muitos atributos, ndo apenas idade e saldo médio.
Para cada cliente, temos mais de 15 atributos.

Se cada atributo possui apenas dois valores possiveis, temos

215 — 32768 configuracdes diferentes de atributos para os clientes.
Em cada uma dessas 32 mil configura¢Ges possiveis, queremos a
probabilidade de ndo pagamento.

Precisamos de pelo menos uns 100 individuos em cada configuracdo
para estimar a probabilidade.

Isto da 3276800, ou mais de 3 milhdes de individuos na base de dados.
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forma para este problema.

Suponha que n3o exista na base de dados NENHUM individuo com
idade x, saldo y, etc.

Ou quem sabe existam apenas 3 individuos com estes atributos.
Como estimar bem a probabilidade de ndo pagamento de um novo

j es atributos?
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Nem sempre é tao simples

@ Perdas financeiras associadas com tufées em Taiwan.
@ Qual a probabilidade de ocorrer um tufdo causando perda maior que 4
milhdes nos préximos 10 anos?

@ Zero?

Loss (in theusands of 2001 NT dollars
g
S

:
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Renato Assun¢do, DCC, UFMG
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Figure 1. Scatter plot of Taiwan typhoon rice loss
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Mais um exemplo

e Dados T1, Tp,..., T,: o tempo de sobrevida de n pacientes
submetidos a um novo tratamento médico.
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Mais um exemplo

e Dados T1, Tp,..., T,: o tempo de sobrevida de n pacientes
submetidos a um novo tratamento médico.

@ Deseja-se estimar o tempo esperado E(T) de sobrevida apds o
tratamento.

@ Simples: tire a média aritmética dos n tempos observados.

@ Suponha que o experimento precisa fornecer uma estimativa um anos
apds o inicio do estudo.

@ Um ano apds o estudo, 50% dos pacientes faleceram (e portanto
sabe-se o valor de T para estes individuos).

@ Mas 50% ainda n3o faleceram e n3o se conhece T para estes outros
individuos.

@ A média dos valores conhecidos vai tender a subestimar o valor
esperado de sobrevida.

@ Como fazer neste caso?
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caracteristicas estatisticas semelhantes a aquelas observadas na
realidade.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 28 /45



Probabilidade e estatistica: resumo

Propriedades desejadas de um modelo probabilistico

@ O modelo probabilistico deve ser capaz de simular dados com
caracteristicas estatisticas semelhantes a aquelas observadas na
realidade.

@ Por exemplo, deve ser capaz de predizer mais ou menos bem eventos
que realmente ocorrem na realidade.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 28 /45



Probabilidade e estatistica: resumo

Propriedades desejadas de um modelo probabilistico

@ O modelo probabilistico deve ser capaz de simular dados com
caracteristicas estatisticas semelhantes a aquelas observadas na
realidade.

@ Por exemplo, deve ser capaz de predizer mais ou menos bem eventos
que realmente ocorrem na realidade.

@ O modelo propde um mecanismo plausivel, que corresponde em
algum sentido ao que realmente acontece na realidade.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 28 /45



Probabilidade e estatistica: resumo

Propriedades desejadas de um modelo probabilistico

@ O modelo probabilistico deve ser capaz de simular dados com
caracteristicas estatisticas semelhantes a aquelas observadas na
realidade.

@ Por exemplo, deve ser capaz de predizer mais ou menos bem eventos
que realmente ocorrem na realidade.

@ O modelo propde um mecanismo plausivel, que corresponde em
algum sentido ao que realmente acontece na realidade.

@ Um mecanismo plausivel pode sugerir interven¢des ou a¢des que
alterem a realidade de alguma maneira desejada (prevenindo doengas
e fraudes, por exemplo).

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 28 /45



Probabilidade e estatistica: resumo

Propriedades desejadas de um modelo probabilistico

@ O modelo probabilistico deve ser capaz de simular dados com
caracteristicas estatisticas semelhantes a aquelas observadas na
realidade.

@ Por exemplo, deve ser capaz de predizer mais ou menos bem eventos
que realmente ocorrem na realidade.

@ O modelo propde um mecanismo plausivel, que corresponde em
algum sentido ao que realmente acontece na realidade.

@ Um mecanismo plausivel pode sugerir interven¢des ou a¢des que
alterem a realidade de alguma maneira desejada (prevenindo doengas
e fraudes, por exemplo).

@ Finalmente, o modelo deve ser facilmente manipulavel
matematicamente e conceitualmente.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 28 /45



Probabilidade e estatistica: resumo

Propriedades desejadas de um modelo probabilistico

@ O modelo probabilistico deve ser capaz de simular dados com
caracteristicas estatisticas semelhantes a aquelas observadas na
realidade.

@ Por exemplo, deve ser capaz de predizer mais ou menos bem eventos
que realmente ocorrem na realidade.

@ O modelo propde um mecanismo plausivel, que corresponde em
algum sentido ao que realmente acontece na realidade.

@ Um mecanismo plausivel pode sugerir interven¢des ou a¢des que
alterem a realidade de alguma maneira desejada (prevenindo doengas
e fraudes, por exemplo).

@ Finalmente, o modelo deve ser facilmente manipulavel
matematicamente e conceitualmente.

@ Precisamos fazer calculos de probabilidade com o modelo. Se ele for
muito complexo, n3o seremos capazes disso.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 28 /45



Probabilidade e estatistica: resumo

Propriedades desejadas de um modelo probabilistico

@ O modelo probabilistico deve ser capaz de simular dados com
caracteristicas estatisticas semelhantes a aquelas observadas na
realidade.

@ Por exemplo, deve ser capaz de predizer mais ou menos bem eventos
que realmente ocorrem na realidade.

@ O modelo propde um mecanismo plausivel, que corresponde em
algum sentido ao que realmente acontece na realidade.

@ Um mecanismo plausivel pode sugerir interven¢des ou a¢des que
alterem a realidade de alguma maneira desejada (prevenindo doengas
e fraudes, por exemplo).

@ Finalmente, o modelo deve ser facilmente manipulavel
matematicamente e conceitualmente.

@ Precisamos fazer calculos de probabilidade com o modelo. Se ele for
muito complexo, n3o seremos capazes disso.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 28 /45



Probabilidade e estatistica: resumo

As propriedades costumam ser conflitantes
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matematicamente.

@ Por isto, pode ser razoavel considerar modelos que reproduzem
apenas algumas das caracteristicas dos dados subjacentes.

@ Queremos reproduzir no modelo as principais caracteristicas em que
estamos mais interessados no momento.

@ O processo de modelagem é geralmente dificil, exige experiéncia, e
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Modelo de Polya-Erdos

@ Suponha que cada par de vértices joga uma moeda para o alto com
probabilidade 6 de sair cara.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 33 /45



Modelo de Polya-Erdos

@ Suponha que cada par de vértices joga uma moeda para o alto com
probabilidade 6 de sair cara.

@ Se der cara, um link é estabelecido entre eles.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 33 /45



Modelo de Polya-Erdos

@ Suponha que cada par de vértices joga uma moeda para o alto com
probabilidade 6 de sair cara.

@ Se der cara, um link é estabelecido entre eles.

@ Se der coroa, eles n3o se ligam.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 33 /45



Modelo de Polya-Erdos

Suponha que cada par de vértices joga uma moeda para o alto com
probabilidade 6 de sair cara.

Se der cara, um link é estabelecido entre eles.

Se der coroa, eles n3o se ligam.

Como veremos mais tarde, o nimero de links de um né num grafo
com n vértices segue uma distribuicdo Binomial Bin(n — 1, 0)

@ Por mero acaso, alguns vértices terdo um nimero de links maior que
outros.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 33 /45



Modelo de Polya-Erdos

Suponha que cada par de vértices joga uma moeda para o alto com
probabilidade 6 de sair cara.

Se der cara, um link é estabelecido entre eles.

Se der coroa, eles n3o se ligam.

Como veremos mais tarde, o nimero de links de um né num grafo
com n vértices segue uma distribuicdo Binomial Bin(n — 1, 0)

@ Por mero acaso, alguns vértices terdo um nimero de links maior que
outros.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 33 /45



Modelo de Polya-Erdos

@ Este modelo de Polya-Erdos ndo é capaz de gerar a caracteristica
power-law vista em grafos reais de redes complexas.
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Modelo de Polya-Erdos

Este modelo de Polya-Erdos ndo é capaz de gerar a caracteristica
power-law vista em grafos reais de redes complexas.

O numero de links de um vértice tem pouca variacdo em torno da
média.

Nunca aparecem os hubs dominantes que vemos nos casos reais.

Este n3o é um bom modelo para as redes complexas da realidade.
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@ O modelo de rede social preferential-attachment de Barabasi-Albert é
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Modelo de preferential attachment

@ Este n3o é um modelo perfeito para as redes complexas reais.
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Modelos para qué?

@ Outro uso de um bom modelo é fazer predices.
@ Um modelo de classificacdo de risco de crédito serve para isto.
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Objetivos da disciplina

@ Estudar os fundamentos dos modelos estatisticos Uteis para andlise de
dados.
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fundamentos.

o Nivel de matemdtica requerido: bésico (a esta altura, vocé ja viu a
lista 01).

o Cilculo de varias variaveis: derivada parcial, gradiente, integral
mdltipla, maximizac3o de f(x, y).

@ Precisamos mais dos conceitos do que da manipulagdo algébrica
exaustiva.

o Algebra de matrizes: importante, quanto mais vocé souber, melhor
para vocg, inclusive a manipulagdo.

@ Espero que vocé ja tenha sido exposto a um curso de probabilidade
anteriormente: vamos revisar muito rapidamente.
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Probabilidade e estatistica: resumo

Livro Texto

@ Vamos seguir dois livros.
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Livro Texto

@ Vamos seguir dois livros.
@ A primeira parte da disciplina (3 semanas) cobre probabilidade.

@ Vou usar os 5 primeiros capitulos de All of Statistics, de Larry
Wasserman, do Depto de Machine Learning de Carnegie Mellon.

All of
Statistics

A Concise Course
in Statistical

Inference

Larry Wasserman
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@ A segunda parte da disciplina vai se basear no livro Machine Learning,
a Probabilistic Approach, de Kevin Murphy.

@ Atualmente, no Google
http://research.google.com/pubs/KevinMurphy.html

Machine Learning

A Probabilistic Persp:

Ken
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Avaliacao

@ Listas de exercicios semanais: 40 pontos ao todo.
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@ Listas de exercicios semanais: 40 pontos ao todo.

@ Teremos 3 provas de 20 pontos cada.
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Avaliacao
@ Listas de exercicios semanais: 40 pontos ao todo.
@ Teremos 3 provas de 20 pontos cada.
@ Prova serA] SEM consulta.
e Site inicial da disciplina (preciso remontar):
http://homepages.dcc.ufmg.br/~assuncao/EstatCC/
@ Site oficial da disciplina: moodle.
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Fundamentos Estatisticos para Ciéncia dos dados

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 45 /45



	Probabilidade e estatística
	Cálculo de Probabilidades
	Estatística
	Usando estatística
	Probabilidade e estatística: resumo

