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Probabilidade

Aleatoriedade

Vamos lidar com fenômenos não determińısticos, probabiĺısticos,
aleatórios.

O modelo matemático para qualquer fenômeno probabiĺıstico é o
espaço de probabilidade.

Espaço de probabilidade é uma 3-upla constitúıda por três elementos
satisfazendo os três axiomas de Kolmogorov (1903-1987).
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Probabilidade

Espaço de probabilidade

(a) Um espaço amostral Ω
Ω é um conjunto com todos os resultados posśıveis do
fenômeno.

(b) Uma σ-álgebra A de sub-conjuntos de Ω, os sub-conjuntos
aos quais vamos atribuir probabilidades.

(c) Uma função matemática atribuindo probabilidades aos
sub-conjuntos de A

P : A −→ [0, 1]

A −→ P(A)

(d) Esta função P deve satisfazer os três axiomas de Kolmogorov

Vamos ver cada um desses elementos com mais detalhes.
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fenômeno.

(b) Uma σ-álgebra A de sub-conjuntos de Ω, os sub-conjuntos
aos quais vamos atribuir probabilidades.
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Probabilidade

O espaço amostral Ω

Ω = conjunto representando todos os resultados posśıveis do
fenômeno.

Em IA, falamos de todos os posśıveis “estados do mundo”.

Cada resultado posśıvel deve ser completamente especificado e único
em Ω (não pode haver dois elementos em Ω representando o mesmo
resultado posśıvel).

A todo estado do mundo corresponde um, e somente um, elemento ω
∈ Ω.

Ω pode ter mais elementos que estados do mundo (pode ter
elementos que representam resultados IMposśıveis.
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Cada resultado posśıvel deve ser completamente especificado e único
em Ω (não pode haver dois elementos em Ω representando o mesmo
resultado posśıvel).
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Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 4 / 27



Probabilidade

O espaço amostral Ω

Ω = conjunto representando todos os resultados posśıveis do
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Probabilidade

O espaço amostral Ω

Figura: O espaço amostral Ω
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Probabilidade

Exemplos de Ω

Observa-se o lançamento de uma moeda

Ω = {cara, coroa}

ou Ω = {c,c̃}
ou Ω = {0, 1}
ou Ω = {T, F}
Precisamos de um conjunto com pelo menos dois elementos.
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Probabilidade

Exemplos de Ω: moeda

Podeŕıamos também definir
Ω = {c,c̃, reis de paus}
ou
Ω = {c,c̃, céu azul, cárie}

Reis de paus, céu azul, e cárie representam resultados imposśıveis no
mundo que se limita apenas a observar o resultado de lançar uma
moeda.

Podemos “corrigir” este excesso de elementos em Ω atribuindo
probabilidade zero aos elementos em “excesso”.
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Podeŕıamos também definir
Ω = {c,c̃, reis de paus}
ou
Ω = {c,c̃, céu azul, cárie}
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Probabilidade

Mais moedas

Observa-se três lançamentos sucessivos de uma moeda

Ω = {ccc , ccc̃ , cc̃c , ..., c̃ c̃ c̃}

Ω tem 8 elementos

O mundo deste segundo exemplo é mais amplo que aquele do
primeiro observador-exemplo.

Neste mundo podemos calcular a probabilidade do segundo
lançamento da moeda ser cara.

No mundo do primeiro observador não podemos calcular a
probabilidades referentes ao segundo ou terceiro lançamentos da
moeda pois eles não pertencem ao Ω daquele mundo.
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Probabilidade

Espaço de imagens

Imagem com 512× 512 pixels, cada pixel tem um tom de cinza.

Tom de cinza de cada pixel é codificado com um inteiro entre 0 e 255.

8 bits, 28 = 256 tons posśıveis: 0 é preto e 255 é branco.

Ω é o conjunto:

de todas as matrizes M,
de dimensão 512× 512
e com M(i , j) ∈ {0, 1, . . . , 255}.

Ω é um conjunto finito com 2565122
elementos.
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Ω é um conjunto finito com 2565122
elementos.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 9 / 27



Probabilidade

Espaço de imagens

Imagem com 512× 512 pixels, cada pixel tem um tom de cinza.
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Probabilidade

Espaço de imagens

Dois elementos de Ω, duas imagens 512× 512 em tons de cinza.

A imagem da esquerda é uma imagem “estruturada”

A da direita é uma imagem em que cada pixel é um número aleatório
entre 0 e 255: rúıdo puro.

Modelos para imagens podem atribuir probabilidades maiores a
imagens como a da esquerda.
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Modelos para imagens podem atribuir probabilidades maiores a
imagens como a da esquerda.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 10 / 27



Probabilidade

Movimento Browniano

Figura: Movimento errático de um grão de pólen na superf́ıcie da água observado
a cada 1 segundo.
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Probabilidade

Movimento Browniano

Figura: Quatro realizações com pólen partindo da origem (0, 0) no tempo t = 0.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 12 / 27
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Probabilidade

Movimento Browniano

Este exemplo é importante para motivar a abstração e complicação
matemática dos espaços amostrais.

Não veremos este exemplo no resto do curso...

mas ele é um exemplo t́ıpico de processo estocástico, um assunto
crucial em probabilidade mais avançada.

Tem importância histórico: Einstein publicou em 1905 um paper
fundamental explicando o movimento browniano como efeito da
movimentação atômica.

Ω = conjunto de TODAS AS CURVAS no plano da forma (xt , yt)
para t = 1, 2, 3, . . ..

Mostramos apenas 4 dessas curvas na figura anterior.

Ω é um conjunto infinito.
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mas ele é um exemplo t́ıpico de processo estocástico, um assunto
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Probabilidade

{0, 1}∞

Joga-se uma moeda para cima indefinidamente (infinitas vezes).

A probabilidade de sair cara num lançamento vai decaindo.

No primeiro lançamento, a probbilidade de sair cara é p1.

No segundo, ela diminui para um valor p2 < p1.

No terceiro fica menor ainda: p3 < p2 < p1.

E assim por diante, com pn sempre maior que zero mas ...

indo a zero: pn → 0.
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No terceiro fica menor ainda: p3 < p2 < p1.

E assim por diante, com pn sempre maior que zero mas ...

indo a zero: pn → 0.
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Probabilidade

{0, 1}∞

Por exemplo, podemos ter pn = 1/n ou pn = (1/2)n ou ainda
pn = 1/ log(n).

Queremos calcular probabilidades deste tipo:

qual a probabilidade de que, depois de certo n, nunca mais vejamos
uma cara.

Isto é, qual a probabilidade de que o número total de caras seja finito?

Qual a probabilidade de que caras sejam extintas depois de certo
tempo?

O que sua intuição diz?
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Probabilidade

Teorema de Borel-Cantelli

Calcule S =
∑∞

n=1 pn.

Por exemplo, podemos ter S =
∑∞

n=1( 1
2 )n = 2 ou S =

∑∞
n=1

1
n =∞.

Se S <∞, então apenas um número finito de caras vai ocorrer na
sequência de infinitos lançamentos da moeda.

Depois de certo n, elas com certeza vão desaparecer. Se esperarmos
um tempo longo o suficiente, elas somem de vez.

Mas se S =∞, vai aparecer um número infinito de caras.

Por exemplo, se pn = 1
n , veremos caras cada vez mais raramente mas

elas nunca desaparecem completamente.
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Probabilidade

Qual é o Ω?

Joga-se uma moeda para cima independentemente indefinidamente.

Vamos representar por 0 e 1 os dois resultados posśıveis de um
lançamento.

Como não existe um limite para o número de lançamentos da moeda,
o espaço amostral será composto por elementos da forma

ω = (a1, a2, a3, . . .)

onde ai = 0 ou ai = 1.

Isto é, um vetor de comprimento infinito onde cada entrada é 0 ou 1.

O espaço amostral Ω é composto pelos infinitos elementos ω desta
forma: strings infinitos compostos de 0’s e 1’s .

Curiosidade: Ω = [0, 1] pois a expansão de um número real em [0, 1]
na base 2 é um desses ω.
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O espaço amostral Ω é composto pelos infinitos elementos ω desta
forma: strings infinitos compostos de 0’s e 1’s .

Curiosidade: Ω = [0, 1] pois a expansão de um número real em [0, 1]
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Sigma-álgebra

A σ-álgebra A

O 2o elemento do espaço de probabilidade (Ω,A,P) é
a σ-álgebra A.

Queremos atribuir probabilidades P(ω) a elementos ω ∈ Ω.

Mas queremos também atribuir probabilidades a subconjuntos de
elementos de Ω

Se A ⊂ Ω queremos calcular P(A) de alguma forma.

Todo e qualquer evento para qual queremos calcular uma
probabilidade será um sub-conjunto A ⊆ Ω.
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a σ-álgebra A.

Queremos atribuir probabilidades P(ω) a elementos ω ∈ Ω.

Mas queremos também atribuir probabilidades a subconjuntos de
elementos de Ω

Se A ⊂ Ω queremos calcular P(A) de alguma forma.

Todo e qualquer evento para qual queremos calcular uma
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Sigma-álgebra

A σ-álgebra A

Por exemplo, rolar um dado e observar a sua face:
Ω = {1, 2, 3, 4, 5, 6}

Queremos calcular P(Sair um 4) = P({4}) = P(4).
Queremos também calcular:

P(Sair uma face maior que 4) = P({5, 6}).
P(Sair face ı́mpar) = P({1, 3, 5}).

Jargão: dizemos que P(A) é a probabilidade de ocorrer o evento A. O
que isto quer dizer?

Ao observarmos o fenômeno aleatório que estamos modelando,
aparece por acaso um único resultado ω ∈ Ω.

Então P(A) é a probabilidade de que este resultado ω seja um
elemento do conjunto A.

P(A) = P(ω ∈ A)

Ainda não definimos probabilidade!

Se A ⊂ Ω queremos calcular P(A) de alguma forma.
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Jargão: dizemos que P(A) é a probabilidade de ocorrer o evento A. O
que isto quer dizer?
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Sigma-álgebra

A σ-álgebra A

A σ-álgebra A é o conjunto dos sub-conjuntos A de Ω para os quais
podemos calcular P(A).

Os sub-conjuntos A ∈ A são chamados de eventos.

Sub-conjuntos A = {ω}, com um único elemento de Ω são chamados
de eventos atômicos.
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Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 21 / 27



Sigma-álgebra

A σ-álgebra A

Idealmente, queremos calcular P(A) para TODO E QUALQUER
subconjunto A ⊂ Ω.

Infelizmente, em alguns casos, não podemos calcular P(A) para
TODO E QUALQUER subconjunto A ⊂ Ω.

A σ-álgebra A é simplesmente a classe dos sub-conjuntos de Ω para
os quais podemos calcular P(A).

Entretanto, qualquer evento que você conceber e que seja útil na
prática, mesmo que muito complicado, fará parte da σ-álgebra A.

Existe uma discussão um pouquinho mais longa sobre isto nas notas
de aula.
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Função de Probabilidade

A função de probabilidade P

O 3o elemento do espaço de probabilidade (Ω,A,P) é a atribuição de
probabilidades aos eventos A ⊂ Ω.

Já definimos quais são os resultados posśıveis do fenêmeno aleatório:
são os elementos ω ∈ Ω.

Já definimos também quais são os sub-conjuntos A ⊂ Ω para os quais
podemos calcular uma probabilidade P(A): qualquer sub-conjunto de
Ω que pudermos conceber na prática.

Precisamos agora definir P(A) para todo A de forma consistente.

Quais as propriedades que esta atribuição deve ter para que a gente
não chegue a resultados inconsistentes ou contraditórios?

Quais os requisitos ḿınimos que esta atribuição de probabilidades
deve satisfazer?
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Quais os requisitos ḿınimos que esta atribuição de probabilidades
deve satisfazer?
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Já definimos quais são os resultados posśıveis do fenêmeno aleatório:
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Função de Probabilidade

A função de probabilidade P

P é QUALQUER função:

P : A −→ R
A −→ P(A)

que obedeça aos seguintes três axiomas de Kolmogorov:

Axioma 1: P(A) ≥ 0 ∀ A ∈ A
Axioma 2: P(Ω) = 1

Estes dois primeiros axiomas estão apenas fixando uma escala para a
probabilidade:

a probabilidade de um evento é um número maior que zero
a probabilidade de que ocorra algum elemento de Ω é P(Ω) = 1.
Vamos ver que isto implica que P(A) ∈ [0, 1] para qualquer evento A.

O importante mesmo é o terceiro axioma que discutiremos a seguir.
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Função de Probabilidade

O terceiro axioma: um caso particular

Antes de ver o axioma 3 em toda sua generalidade, vamos considerar
um caso particular.

O axioma 3 afirma que a função de probabilidade seja aditiva para
pares eventos disjuntos.

Isto é, se A ∩ B = ∅ então P (A ∪ B) = P(A) + P(B).

Vamos entender o que este axioma está afirmando ignorando casos
extremos:

O evento A ∪ B é maior que o evento A sozinho. Esperamos então
que P (A ∪ B) ≥ P (A).

O mesmo vale para B de modo que esperamos P (A ∪ B) ≥ P (B).

Mas quanto é este acréscimo que devemos dar à P (A) para
chegarmos a P (A ∪ B)?
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Função de Probabilidade

O terceiro axioma: um caso particular

O axioma 3 afirma: basta somar as probabilidades dos dois eventos se
eles forem disjuntos:

P (A ∪ B) = P(A) + P(B)

se A ∩ B = ∅.
Assim, se olhamos o resultado de lançar um dado com 6 faces com
Ω = {1, 2, 3, 4, 5, 6} com

A = face é par = {2, 4, 6} e B = {5}, então

A ∪ B = face é par ou 5 e

P (A ∪ B) = P ( face é par ou 5 )

= P ( face é par ) + P ( face é 5 )

= P(A) + P(B)
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Função de Probabilidade

O terceiro axioma: um caso particular

O terceiro axioma cobre também o caso de mais de um evento
disjunto.

Se A,B,C são três eventos mutuamente exclusivos (todos disjuntos)

então
P (A ∪ B ∪ C ) = P(A) + P(B) + P(C )

Esta é uma condição para que uma função P possa ser chamada de
probabilidade.

O axioma 3 precisa ser um pouco mais geral: ele precisa valer para
qualquer lista enumerável de eventos disjuntos.
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Função de Probabilidade

O terceiro axioma: um caso particular

Isto vale apenas se os eventos A e B forem disjuntos.

Se A = face é par = {2, 4, 6}
mas B = face é menor que 4 = {1, 2, 3},
então A ∩ B 6= ∅ e

P (A ∪ B) 6= P(A) + P(B)
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Função de Probabilidade

O terceiro axioma

Axioma 3:

P (A1 ∪ A2 ∪ A3 ∪ . . .) = P(A1) + P(A2) + P(A3) + . . .

se os eventos A1,A2,A3, . . . forem todos disjuntos (isto é,
mutuamente exclusivos).

Jargão: probabilidade é uma função σ-aditiva.

Se os Ai ’s são disjuntos então

P

( ∞⋃
n=1

An

)
=
∞∑
n=1

P(An)
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Função de Probabilidade

O terceiro axioma

Para entender isto um pouco melhor, vamos considerar o caso em que:

A1 = A, A2 = B, A3 = C

e An = ∅ para n = 4, 5, . . .

Assim,

∞⋃
n=1

An = A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5 ∪ A6 ∪ . . .

= A ∪ B ∪ C ∪ ∅ ∪ ∅ . . .
= A ∪ B ∪ C
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Função de Probabilidade

P(A ∪ B)

Pelo axioma 3, se A ∩ B = ∅ e A ∩ C = ∅ e B ∩ C = ∅ então

P(A ∪ B ∪ C ) = P(A) + P(B) + P(C )

A probabilidade é uma função aditiva sobre a união de eventos (ou
conjuntos) disjuntos.

O Axioma 3 pede que esta propriedade aditiva valha com somas
infinitas (enumeráveis).
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Função de Probabilidade

Consequências

Basta que P satisfaça aos três axiomas de Kolmogorov para que P
seja uma atribuição de probabilidades válida.

TODO o restante do cálculo de propriedades é decorrente destes três
axiomas de Kolmogorov. Por exemplo:

(P1) P(AC ) = 1− P(A)

(P2) 0 ≤ P(A) ≤ 1 para todo evento A ∈ A.

(P3) se A1 ⊂ A2 =⇒ P(A1) ≤ P(A2)

(P4) P (
⋃∞

n=1 Ai ) ≤
∑∞

n=1 P(Ai )

(P5) P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

Esta última propriedade é o caso geral de P(A ∪ B) quando A e B
não são disjuntos.
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axiomas de Kolmogorov. Por exemplo:

(P1) P(AC ) = 1− P(A)

(P2) 0 ≤ P(A) ≤ 1 para todo evento A ∈ A.

(P3) se A1 ⊂ A2 =⇒ P(A1) ≤ P(A2)

(P4) P (
⋃∞

n=1 Ai ) ≤
∑∞

n=1 P(Ai )

(P5) P(A ∪ B) = P(A) + P(B)− P(A ∩ B)
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Função de Probabilidade

Provar que P(AC ) = 1− P(A)

Temos P(Ω) = 1 e Ω = A ∪ Ac .

Como A ∩ Ac = ∅, pelo axioma 3 temos

1 = P (A ∪ Ac) = P (A) + P (Ac)

e portanto
P(AC ) = 1− P(A)
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Função de Probabilidade

Provar que se A1 ⊂ A2 =⇒ P(A1) ≤ P(A2)

Como A1 ⊂ A2, podemos escrever A2 = A1 ∪ (A2 − A1).

Como A1 ∩ (A2 − A1) = ∅, pelo axioma 3 temos

P(A2) = P (A1 ∪ (A2 − A1)) = P (A1) + P (A2 − A1) ≥ P (A1)

pois, pelo axioma 1, P (A2 − A1) tem de ser maior ou igual a zero.
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Função de Probabilidade

Como estabelecer uma função P?

OK, QUALQUER função P que satisfaça aos axiomas de Kolmogorov
é válida.

Mas como escolher uma função que satisfaça o axioma 3 e, mais
importante, como escolher uma dessas funções válidas num caso
prático?
Usamos uma combinação de:

conveniência matemática (facilidade de manuseio).
com boa aproximação da realidade.

Existe um trade-off entre estes dois aspectos.

Se focarmos apenas no uso de modelos matematicamente muito
simples vamos acabar com modelos que são muito distantes da
realidade do fenômeno, que não o representam bem.

Se insistirmos em incorporar todoss os aspectos que podem afetar um
fenômeno, teremos um modelo probabiĺıstico inviável do ponto de
vista matemático e computacional.
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Função de Probabilidade

Como estabelecer uma função P?

Para definir a função de probabilidade P devemos considerar três
casos:

Ω é finito: Ω = {ω1, ω2, . . . , ωN}

Ω é infinito enumerável: Ω = {ω1, ω2, . . .}, tal como
Ω = {0, 1, 2, 3, . . .}

Ω é não-enumerável, tal como Ω = (0, 1) ou Ω = R2.

O terceiro caso tem algumas complicações a mais em relação aos
outros dois.
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Função de Probabilidade

P quando Ω é finito

Seja Ω = {ω1, ω2, . . . , ωN} onde os ωi são eventos atômicos distintos,
indiviśıveis.

Notação: P ({ωi}) = P(ωi ).

Atribua valores P(ωi ) ≥ 0 arbitrariamente mas ...

...com a restrição de que sua soma seja igual a 1:

P(ω1) + . . .+ P(ωN) =
N∑
i=1

P(ωi ) = 1

Qualquer função definida assim satisfaz os três axiomas de
Kolmogorov e é válida.
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Função de Probabilidade

Exemplo: micro data mining

Suponha que existam apenas três produtos: A,B, e C .

Ω é composto pelas posśıveis 8 cestas de produtos:

0 (ou nenhum produto),
apenas A, apenas B, apenas C ,
apenas os produtos AB juntos, apenas AC juntos, apenas BC juntos,
os 3 produtos ABC juntos.

Vamos representar Ω = {0,A,B,C ,AB,AC ,BC ,ABC}
Fez-se uma análise estat́ıstica do padrão de compras de vários clientes.

Observou-se, por exemplo, que aproximadamente 17% dos clientes
sáıam com a cesta A e 3% sáıam com a cesta AB.
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Função de Probabilidade

Exemplo: micro data mining

Isto permitiu obter aproximadamente as probabilidades as
possibilidades de cada ω ∈ Ω.

Por exemplo, P(A) ≈ 0.17 e P(AB) ≈ 0.03

Assim, podemos atribuir probabilidades aos elementos atômicos de Ω:

ω 0 A B C AB BC AC ABC soma

P(ω) 0.02 0.17 0.19 0.09 0.03 0.21 0.18 0.11 1.00
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Função de Probabilidade

P quando Ω é finito

Temos Ω = {ω1, ω2, . . . , ωN}.
Como fica a probabilidade P(A) de um evento A = {ωi1 , . . . ωin}?

A é um conjunto finito, sub-conjunto de Ω, com n elementos.

Seja A = {ωi1 , . . . ωin} =
⋃

j{ωij}
A é a união de n eventos atômicos disjuntos.

Para o Axioma 3 ser válido devemos ter

P(A) = P

⋃
j

{ωij}

 =
k∑

j=1

P
(
{ωij}

)
=
∑
ωi∈A

P(ωi )
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A é a união de n eventos atômicos disjuntos.
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Função de Probabilidade

P quando Ω é finito

Repetindo: atribua probabilidades (somando 1) aos eventos atômicos
ω ∈ Ω.

Para qualquer evento A ⊂ Ω:

identifique quais os elementos ωi que pertecem a A
some suas probabilidades P(ωi )

P(A) = P ({ωi1 , . . . ωin}) =
∑
ωi∈A

P(ωi )
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Função de Probabilidade

Exemplo: micro data mining

Produtos A,B, e C . Ω = {0,A,B,C ,AB,AC ,BC ,ABC} com as
probabilidades

ω 0 A B C AB BC AC ABC soma

P(ω) 0.02 0.17 0.19 0.09 0.03 0.21 0.18 0.11 1.00

Alguns eventos compostos e suas probabilidades:
E significa levar o produto A na cesta, ou E = {A,AB,AC ,ABC} e
portanto P(E ) = 0.17 + 0.03 + 0.18 + 0.12 = 0.49.
E = levar o produto A mas não o produto C . Ou seja, E = {A,AB} e
P(E ) = 0.17 + 0.03 = 0.20.
E = uma cesta vazia, ou E = {0} e portanto P(E ) = P(0) = 0.02.
E = uma cesta vazia ou com pelo menos um produto. Então E = Ω e
portanto P(E ) = P(Ω) = 1.
E = cesta com 4 produtos distintos. Ops, não existe. Portanto E = ∅,
o conjunto vazio, com P(∅) = 1− P(∅c) = 1− P(Ω) = 1− 1 = 0.
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Função de Probabilidade

Visão frequentista

Se o fenômeno puder ser repetido:

indefinidademente,

nas mesmas condições
de forma independente (sem que uma repetição afete outra),

então P(ω) ≈ m

N
onde m é o número de vezes que ω ocorreu e N é o

número de repetiçôes.

Podemos tomar P(ω) =
m

N
, ignorando a aproximação amostral

embutida.

Esta é chamada a visão frequentista de probabilidade.
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Esta é chamada a visão frequentista de probabilidade.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 43 / 27



Função de Probabilidade

Visão frequentista
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Esta é chamada a visão frequentista de probabilidade.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 43 / 27



Função de Probabilidade

Visão frequentista
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Função de Probabilidade

Visão frequentista

E P(A) para A = {ωi1 , . . . ωin}?

Temos duas possibilidades.

Tome P(ωij ) =
mij

N
para cada ωij ∈ A e some estas probabilidades:

P(A) =
∑
j

P(ωij ) =
∑
j

mij

N

A outra opção é simplesmente verificar quantas vezes o evento A
ocorreu nas N repetições independentes e tomar

P(A) =
m

N
onde m é o número de vezes que o evento A ocorreu nas N
repetições.

A segunda opção produz o MESMO resultado produzido pela primeira
opção.
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A outra opção é simplesmente verificar quantas vezes o evento A
ocorreu nas N repetições independentes e tomar

P(A) =
m

N
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Função de Probabilidade

Frequentista no micro data mining

No exemplo, temos três produtos: A,B, e C .

Uma análise estat́ıstica permitiu obter aproximadamente as
probabilidades:

ω 0 A B C AB BC AC ABC soma

P(ω) 0.02 0.17 0.19 0.09 0.03 0.21 0.18 0.11 1.00

Como foram obtidas?

Um grande número N de clientes foram observados: são as repetições.

Contou-se o número de vezes m em que a cesta foi BC

Finalmente tivemos P(BC ) = m/N = 0.21 ou 21% dos clientes.
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Função de Probabilidade

Um olhar cŕıtico

Pelo argumento frequentista, para que P(BC ) ≈ m/N = 0.21,
deveŕıamos ter repetições nas mesmas condições.

Talvez isto não seja razoável.

Alguns clientes são velhos, outros são jovens;

Alguns compram no inverno e outros no verão, etc.

As condições em que as repetições estão ocorrendo não parecem ser
idênticas.

Se as condições não são idênticas pode ser que as probabilidades não
se mantenam constantes.
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Função de Probabilidade

Um olhar cŕıtico

Uma outra suposição é que as repetições são independentes.

Vamos formalizar este conceito probabiĺıstico a seguir mas ele
significa que o resultado de uma repetição não afeta nenhuma outra.

Isto também pode ser questionado.

Alguns clientes podem influenciar outros via telefone ou comentários.

Outro motivo é que se os clientes não forem todos distintos, as
compras de um mesmo cliente podem ser muito semelhantes.

Para pensar numa situação limite, imagine que apenas um único
cliente que compra sempre a mesma cesta tenha sido observado.

Estimar as probabilidades baseado nos dados deste único cliente não é
uma boa idéia.
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Uma outra suposição é que as repetições são independentes.

Vamos formalizar este conceito probabiĺıstico a seguir mas ele
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Função de Probabilidade

Um olhar cŕıtico

Outra suposição é que as repetições podem ser feitas
indefinidademente.
Suponha que estejamos interessados em Ω = {TGG , T̃GG} onde
TGG significa a chance de uma terceira grande mundial nos próximos

5 anos e T̃GG a sua não-ocorrência.

Não parece razoável querer estabelecer probabilidades invocando
frequencias em repetições prolongadas nas mesmas condições destes
eventos.
A abordagem bayesiana assume que probabilidades são subjetivas e
podem ser manipuladas com as regras do cálculo de probabilidade
(ver na disciplina PGM: Modelos Gráficos Probabiĺısticos).
Veremos ao longo do curso que existem várias maneiras de adaptar a
versão básica da abordagem frequenstista para situações mais
realistas, com as repetições não precisando ser nas mesmas condições
e também com dependência entre elas.
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Função de Probabilidade

Ω é infinito enumerável

Ω = {ω1, ω2, . . .}: É idêntico ao caso finito: atribua P(ωi ) ≥ 0 tal
que some 1.

Para obter P(A) some os valores P(ω) de todos os elementos ω ∈ A.
Por exemplo, uma moeda honesta é lançada repetidamente até
observarmos a primeira coroa c̃ .
Ω = {c̃ , cc̃ , ccc̃ , . . .}
Atribuindo probabilidades de forma intuitiva (e correta)

P(ωi ) =


P(c̃) = 1/2
P(cc̃) = (1/2)(1/2)
P(ccc̃) = (1/2)(1/2)(1/2)
...

Temos ∑
i

P(ωi ) =
∑
i

P(cc . . . cc̃︸ ︷︷ ︸
i terms

) =
∞∑
i=1

(
1

2

)i

= 1
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Função de Probabilidade

Ω é infinito enumerável

Ainda no exemplo, seja A o evento em que a moeda é lançada um
número par de vezes:

A = {cc̃ , cccc̃ , cccccc̃ , . . .}

Temos

P(A) =
∞∑
i=1

(
1

2

)2i

=
∞∑
i=1

(
1

4

)i

=
1

3
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Função de Probabilidade

Ω é infinito não-enumerável

Os conjuntos não-enumeráveis... Os conjuntos infinitos enumeráveis
são infinitinhos.

Os conjuntos infinitos não-enumeráveis são infinitões.
Existem várias dificuldades para lidar rigorosamente com eles.

Daremos apenas um exemplo para estes conjuntos.

Selecione um número completamente ao acaso no intervalo [0,1].

Ω = [0, 1]. Como atribuir probabilidades?

Vamos tentar o mesmo procedimento do caso em que Ω é finito ou
enumerável.

Isto é, atribua um valor P(ω) para cada ω e defina

P(A) =
∑
ωi∈A

P(ωi )
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são infinitinhos.

Os conjuntos infinitos não-enumeráveis são infinitões.
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Função de Probabilidade

Não vai dar certo

Como nenhum ponto é favorecido deveremos fazer P(ω) = ξ > 0 para
todo ω ∈ Ω.

e então P(A) = ??

Suponha que A = {1/2, 1/4, 1/8, 1/16, . . . , ....}.

P(A) =
∑
ωi∈A

P(ωi ) =
∑
ωi∈A

ξ = ξ.∞ =∞

se ξ > 0

Portanto, algo está errado.
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Como nenhum ponto é favorecido deveremos fazer P(ω) = ξ > 0 para
todo ω ∈ Ω.

e então P(A) = ??

Suponha que A = {1/2, 1/4, 1/8, 1/16, . . . , ....}.

P(A) =
∑
ωi∈A

P(ωi ) =
∑
ωi∈A

ξ = ξ.∞ =∞

se ξ > 0

Portanto, algo está errado.
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Função de Probabilidade

Todo ponto em [0, 1] tem probabilidade 0

O erro é assumir P(ω) = ξ > 0.

O correto é assumir que P(ω) = 0 para todo ponto ω ∈ [0, 1].

Mas se todo número em [0, 1] tem probabilidade ZERO, como
poderemos ter P(A) > 0?

Este paradoxo sempre aparece quando representamos a realidade com
os números da reta real.

Por exemplo, em f́ısica, a representação da realidade com números
reais gera paradoxos.
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Função de Probabilidade

Mesmo paradoxo em f́ısica elementar

Suponha que o intervalo [0, 1] represente um segmento de fio com
massa de 1 grama.

Suponha que o fio tem sua massa perfeitamente e regularmente
distribúıda no fio.

Dizemos que ele tem uma densidade de massa constante.

Qual a massa de um ponto x ∈ [0, 1]?

Suponha que o ponto tem uma massa ξ > 0.

Como a densidade é constante, todos os pontos devem ter a mesma
massa ξ > 0.

Como existem infinitos pontos, a massa total deveria ser ξ ×∞ =∞
e não 1 grama.
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Função de Probabilidade

Solução no modelo f́ısico

O modelo que representa o fio por um segmento de reta é incorreto.

O fio possui unidades atômicas que possuem massa.

Sua representação como uma linha cont́ınua leva a paradoxos.

A solução matemática para tornar a representação útil é assumir que:

Todo ponto isolado do fio possui massa ZERO.
A massa associada com um segmento [a, b] é diretamente proporcional
ao seu comprimento.
Como a massa total de [0, 1] é 1 grama, a massa de [a, b] ∈ [0, 1] é
b − a.
Por exemplo, [0, 1/2] tem massa 1/2 grama, [1/2, 3/4] tem massa 1/4
grama, etc.
Note que o ponto x é também o intervalo [x , x ] que possui massa 0
pois tem comprimento 0.
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Todo ponto isolado do fio possui massa ZERO.

A massa associada com um segmento [a, b] é diretamente proporcional
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Função de Probabilidade

A função densidade de massa

Uma maneira um pouco mais complicada é usar uma função
densidade de massa.

Esta função será muito útil quando a massa não estiver distribúıda de
maneira uniforme.

Densidade de massa: uma função f (x) definida para cada x no
segmento [0, 1].

Esta função é tal que a massa no segmento [a, b] é a sua integral:

massa em [a, b] =

∫ b

a
f (x)dx

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 56 / 27



Função de Probabilidade

A função densidade de massa

Uma maneira um pouco mais complicada é usar uma função
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Função de Probabilidade

A função densidade de massa

Se tomarmos f (x) = 1 para todo x ∈ [0, 1] teremos

massa em [a, b] =

∫ b

a
f (x)dx =

∫ b

a
1dx = b − a

Esta é a função densidade f (x) para o fio com massa uniformemente
distribúıda em [0, 1].

A idéia é espalhar a massa total do objeto por meio da função f (x).

A massa de qualquer subconjunto é obtida por integração.
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Função de Probabilidade

A função densidade de massa

A massa pode não ser uniformemente distribúıda.

Por exemplo, o material é uma liga com dois elementos (cobre e
zinco).

Em certas regiões, existe mais cobre que zinco. Em outras, o zinco
domina.

A densidade do fio vai variar de acordo com a proporção de zinco no
local.

Ela pode estar mais concentrada em algumas regiões do fio que em
outras.

Isto fica refletido imediatamente na função densidade f (x).

Nas regiões onde a massa é mais concentrada, f será maior.
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Função de Probabilidade

Exemplos de densidade de massa

Figura: Quatro diferentes funções densidade f (x).
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Função de Probabilidade

Densidade de massa de PROBABILIDADE

Com conjuntos Ω não-enumeráveis tais como Ω ⊆ Rn adotamos o
mesmo procedimento.

Massa total de probabilidade de Ω é 1 pois P(Ω) = 1.

Espalhe em Ω a massa total de probabilidade usando f (x).

A massa de probabilidade de qualquer evento A ⊂ Ω é obtida por
integração:

P(A) =

∫ b

a
f (x)dx
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Função de Probabilidade

Densidade de massa de PROBABILIDADE

Escolhendo um ponto completamente ao acaso em [0, 1].

Tome f (x) = 1 para x ∈ [0, 1].

Evento: A = [a, b], um intervalo.

O experimento escolhe um único ponto em [0, 1], e não intervalos.

Ocorrer o evento A significa que o ponto escolhido pertence ao
intervalo A = [a, b].

P(Intervalo[a,b]) = Comprimento do intervalo [a,b] (1)

Todo ponto isolado do fio possui probabilidade ZERO.

(Opcional:) Em A, todo evento pode ser aproximado com ∪, ∩, e C

de intervalos (número enumerável). Assim P(A) fica estabelecido ∀ A
(Teorema de extensão de Caratheodory)

I jump to fourth slide of next frame
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(Opcional:) Em A, todo evento pode ser aproximado com ∪, ∩, e C

de intervalos (número enumerável). Assim P(A) fica estabelecido ∀ A
(Teorema de extensão de Caratheodory)

I jump to fourth slide of next frame
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Função de Probabilidade

Quando Ω é complicado - OPCIONAL

Definir densidades para Ω complicados pode ser dif́ıcil.

Pior: pode ser imposśıvel!

Não sabemos explicitar uma densidade.

Novamente, os conjuntos INFINITÕES vêm nos
assombrar.

É sempre a dificuldade de lidar matematicamente com o infinito
“excessivo”.

Existem situações práticas que exigem trabalhar com estes conjuntos
Ω e temos de solucionar isto de alguma forma.
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É sempre a dificuldade de lidar matematicamente com o infinito
“excessivo”.
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Função de Probabilidade

Quando Ω é complicado - OPCIONAL

Por exemplo, no caso do movimento browniano: movimento errático
de um grão de pólen na superf́ıcie da água observado a cada 1
segundo.

Figura: Quatro diferentes elementos ω ∈ Ω.
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Função de Probabilidade

Quando Ω é complicado - OPCIONAL

Ω é o conjunto de todas as curvas erráticas do movimento browniano.

Como definir eventos (sub-conjuntos de Ω) aqui?

Queremos calcular, por exemplo, a probabilidade de a trajetória da
part́ıcula não se intersecte nos primeiros 10 minutos.

Este evento corresponde a uma imenso conjunto de curvas de Ω.

Qual a probabilidade de sua ocorrência?

Como atribuir probabilidades de forma consistente a TODOS estes
eventos?
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part́ıcula não se intersecte nos primeiros 10 minutos.

Este evento corresponde a uma imenso conjunto de curvas de Ω.

Qual a probabilidade de sua ocorrência?

Como atribuir probabilidades de forma consistente a TODOS estes
eventos?

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 64 / 27



Função de Probabilidade
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Função de Probabilidade

Quando Ω é complicado - OPCIONAL

O lançamento de uma moeda honesta indefinidamente tem
Ω = {0, 1}∞.

Como definir probabilidades de forma consistente para TODOS os
eventos?

Eventos devem levar em conta os infinitos lançamentos.

Por exempo:

Seja fn a proporção de 1’s nos primeiros n lançamentos.
Monitore fn ao longo de uma sequência ω ∈ Ω tal como
(0, 1, 0, 0, 0, 1, 0, . . .).
O que acontece com fn quando n cresce?
Com base na nossa experiência, esperamos ver fn → 1/2.
Mas isto acontece com certeza? Com probabilidade 1?
Ou existe alguma chance, por ḿınima que seja, de que fn não convirja
para 1/2?
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Quando Ω é complicado - OPCIONAL
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Ou existe alguma chance, por ḿınima que seja, de que fn não convirja
para 1/2?

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 65 / 27



Função de Probabilidade
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O lançamento de uma moeda honesta indefinidamente tem
Ω = {0, 1}∞.

Como definir probabilidades de forma consistente para TODOS os
eventos?

Eventos devem levar em conta os infinitos lançamentos.
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Por exempo:

Seja fn a proporção de 1’s nos primeiros n lançamentos.
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Por exempo:

Seja fn a proporção de 1’s nos primeiros n lançamentos.
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Função de Probabilidade

Quando Ω é complicado - OPCIONAL

Ou, quem sabe, fn não convirja para valor algum, oscilando no
intervalo (0, 1) sem estabilizar-se permanentemente em torno de
nenhum valor.

Afinal, podemos pensar em muitas (infinitas!) sequências ω ∈ Ω tais
que fn 9 1/2.

Por exemplo, ω = (0, 1, 0, 1, 1, 1, 1, 1, 1, 1, . . .)

Ou ω = (1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, . . .)

Qual a probabilidade de ocorra uma dessas infnitas seqências com
fn 9 1/2?

A resposta é ... a probabilidade é igual a ZERO (teorema Lei Forte
dos Grandes Números)

Numa sequência infinita de lançamentos da moeda honesta a
probabilidade de que fn não convirja para 1/2 é zero.

Mas existem infinitas sequências desse tipo não-convergente em Ω...
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Quando Ω é complicado - OPCIONAL

Ou, quem sabe, fn não convirja para valor algum, oscilando no
intervalo (0, 1) sem estabilizar-se permanentemente em torno de
nenhum valor.

Afinal, podemos pensar em muitas (infinitas!) sequências ω ∈ Ω tais
que fn 9 1/2.

Por exemplo, ω = (0, 1, 0, 1, 1, 1, 1, 1, 1, 1, . . .)

Ou ω = (1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, . . .)

Qual a probabilidade de ocorra uma dessas infnitas seqências com
fn 9 1/2?
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Mas existem infinitas sequências desse tipo não-convergente em Ω...

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 66 / 27



Função de Probabilidade
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Mas existem infinitas sequências desse tipo não-convergente em Ω...
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Quando Ω é complicado - OPCIONAL
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Função de Probabilidade

Quando Ω é complicado - OPCIONAL

E se a moeda tiver a probabilidade de cara bem pequena, digamos
θ ≈ 0.

Qual a probabilidade de que fn não convirja para este θ bem próximo
de zero?

Zero.

Está divertido... vamos ver um outro evento...

Pegue o comprimento da mais longa sequência de 1’s ininterruptos na
série infinita de lançamentos da moeda honesta.

Qual a probabilidade de que este comprimento seja pelo menos 2000?

Curioso?

A probabilidade é igual a 1... (uma aplicação do Teorema de
Borel-Cantelli).
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Está divertido... vamos ver um outro evento...

Pegue o comprimento da mais longa sequência de 1’s ininterruptos na
série infinita de lançamentos da moeda honesta.

Qual a probabilidade de que este comprimento seja pelo menos 2000?

Curioso?
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Está divertido... vamos ver um outro evento...

Pegue o comprimento da mais longa sequência de 1’s ininterruptos na
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Está divertido... vamos ver um outro evento...

Pegue o comprimento da mais longa sequência de 1’s ininterruptos na
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Função de Probabilidade

Quando Ω é complicado - OPCIONAL

Se Ω é um conjunto formado por todas as funções cont́ınuas:

O experimento é observar uma curva cont́ınua de temperatura
durante 24 horas.
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Função de Probabilidade

Quando Ω é complicado - OPCIONAL

ω é uma das infinitas curvas posśıveis.

Eventos são sub-conjuntos de curvas deste conjunto Ω.

Como atribuir probabilidades de forma consistente a TODOS os
eventos posśıveis?

Por exemplo, se A e B são dois eventos (dois conjuntos de curvas)
tais que A ⊂ B então devemos ter P(A) ≤ P(B).

O que poderia ser uma densidade de probabilidade neste conjunto Ω
de curvas cont́ınuas?

Como integrar neste conjunto? Precisamos de uma noção de integral
mais complexa que a integral de Riemann.

Isto é assunto de cursos avançados de probabilidade e processos
estocásticos.
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estocásticos.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 69 / 27



Função de Probabilidade
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Função de Probabilidade

Quando Ω é complicado - OPCIONAL

Vamos evitar TODAS estas complicações.

Na prática da análise de dados NÃO trabalhamos diretamente com Ω.

Reduzimos o fenêmeno estocástico a algumas poucas caracteŕısticas
numéricas com as quais descrevemos o experimento aleatório.

Estas caracteŕısticas são chamadas variáveis aleatórias.

Na prática isto vai significar que, no “pior caso”, teremos Ω
equivalente a subconjuntos de Rn, para os quais podemos definir
densidades de probabilidade.
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Função de Probabilidade

Densidade de probabilidade quando Ω é cont́ınuo

Variáveis aleatórias, na prática, fazem com que Ω ⊂ Rn

E este caso é muito fácil.

A densidade f (ω) pode ser QUALQUER função

f : Ω ⊂ Rn −→ R
ω −→ f (ω)

tal que:

f (ω) ≥ 0, (para não obter uma probabilidade negativa).∫
Ω

f (ω) dω = 1
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A densidade f (ω) pode ser QUALQUER função

f : Ω ⊂ Rn −→ R
ω −→ f (ω)

tal que:

f (ω) ≥ 0, (para não obter uma probabilidade negativa).∫
Ω

f (ω) dω = 1

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 71 / 27



Função de Probabilidade

Densidade de probabilidade quando Ω é cont́ınuo
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Função de Probabilidade

Ω = [0, 1]

Figura: Quatro diferentes funções densidade de massa de probabilidade f (x).
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Função de Probabilidade

Observações

Devemos ter f (ω) ≥ 0, um limite inferior.

Mas podemos ter f (ω) > 1: não há um limite superior.

A restrição fundamental é que a integral sobre todo Ω deve ser 1.

Não se exige que o valor f (ω) em cada ω ∈ Ω seja menor que 1.

Para obter a probabilidade de um evento A ⊂ Ω basta integrar f (x)
sobre a região A:

P(A) =

∫
A

f (x)dx

Assim, uma proabilidade P(A) é área (ou volume) sob uma curva (ou
superf́ıcie) de densidade.
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Função de Probabilidade

Exemplo

Suponha que dardos são atirados num alvo circular de raio 1.

Um jogador possui uma habilidadefaz com que a chance de acertar
numa região A próxima do centro é maior que se esta mesma região
estiver próxima da borda.

Esta habilidade está representada pela densidade

f (x , y) = c
(√

x2 + y 2 − 1
)2

para x , y no disco unitário

c é uma constante para garantir que
∫

Ω f (x , y)dxdy = 1.

OBS: Encontra-se que c = 14π/12
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Função de Probabilidade

Exemplo

Seja r =
√

x2 + y 2, a distância de (x , y) até a origem.

Então podemos reescrever a densidade anterior

f (x , y) = c
(√

x2 + y 2 − 1
)2

= c(r − 1)2

Isto torna mais simples a visualização da densidade: mapa de calor ou
curvas de ńıvel.

Para uma região A qualquer dentro do disco, temos

P(A) =

∫
A

f (x , y)dxdy
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Então podemos reescrever a densidade anterior

f (x , y) = c
(√

x2 + y 2 − 1
)2

= c(r − 1)2

Isto torna mais simples a visualização da densidade: mapa de calor ou
curvas de ńıvel.
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Função de Probabilidade

Exemplo

Indiv́ıduos com habilidades diferentes terão sua densidade diferente.

A densidade deverá expressar quais as regiões mais prováveis de serem
atingidas.

Como seria um mapa de calor da densidade f (x , y) de um jogador
”cego´´?

E um jogador extremamente habilidoso?

E um jogador que tem um viés par a direita, que tende a jogar o
dardo deslocado para a direita?
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Função de Probabilidade

Exemplo

Interesse no tempo de espera pelo primeiro comentário após a
postagem de um v́ıdeo do YouTube do canal de Whindersson Nunes.

Espaço amostral Ω?

Ω = (0,∞)

Densidade f (x)?

Várias alternativas para f (x) - ver no gráfico a seguir.
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Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 77 / 27



Função de Probabilidade

Exemplo

Interesse no tempo de espera pelo primeiro comentário após a
postagem de um v́ıdeo do YouTube do canal de Whindersson Nunes.

Espaço amostral Ω?

Ω = (0,∞)

Densidade f (x)?
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Função de Probabilidade

Esperando comentário

Figura: Quatro posśıveis modelos de densidade de probabilidade f (x) para tempo
de espera. VISUALMENTE¡ veja como são diferentes as probabilidades
P(A) = P((2, 4)).
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Probabilidade Condicional

Probabilidade Condicional

Seja B um evento em Ω e P(B) sua probabilidade de ocorrência.

Sem poder ver o resultado do experimento diretamente, somos
informados apenas que outro evento A ocorreu.

Isto muda a probabilidade de B ocorrer?

Por exemplo, dois dados bem equilibrados são lançados em sequência.

Você aposta na ocorrência de B: o primeiro dado vai resultar num 6.

Se você souber que a soma dos dois dados foi menor que 8 (evento
A) e pudesse rever sua aposta, você colocaria mais fichas na
ocorrência de B? Ou menos fichas?
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ocorrência de B? Ou menos fichas?

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 79 / 27



Probabilidade Condicional

Probabilidade Condicional

Seja B um evento em Ω e P(B) sua probabilidade de ocorrência.

Sem poder ver o resultado do experimento diretamente, somos
informados apenas que outro evento A ocorreu.

Isto muda a probabilidade de B ocorrer?

Por exemplo, dois dados bem equilibrados são lançados em sequência.
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Probabilidade Condicional

Probabilidade Condicional

De posse da informação de que certo evento A ocorreu, queremos
recalcular as chances de outros eventos B1,B2, . . .

Chamamos a isto de probabilidade de B condicionada à ocorrência do
evento A,

ou de probabilidade de B dado que A ocorreu,

ou, mais curto ainda, probabilidade de B dado A.

Notação: P(B|A)

A imensa maioria das técnicas de Aprendizagem de Máquina (ou
Machine Learning, ML) são algoritmos para fazer cálculos de
probabilidade condicional.
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Probabilidade Condicional

Probabilidade Condicional e ML

Momento do diagnóstico de um câncer de estômago para um paciente
qualquer.

B é o evento em que o paciente terá pelo menos mais 1 ano de vida.
Suponha que P(B) = 0.70.
Usando a idéia frequentista, dentre todos os pacientes observados em
situação semelhante no passado, 70% deles viveu mais de um ano a
partir do diagnóstico.
Seja A o evento em que um paciente de câncer de estômago tenha
uma biópsia confirmando que o tumor é benigno.
Imaginamos que P(B|A) seja maior que P(B) = 0.70. Como
recalcular a probabilidade da ocorrência de B?
Se tivermos um grande número de pacientes inicialmente
diagnosticados e com biópsia posterior indicando benigno, contamos a
proporção desses indiv́ıduos que sobrevivem mais de um ano. Isto
Será uma boa aproximação para P(B|A).
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diagnosticados e com biópsia posterior indicando benigno, contamos a
proporção desses indiv́ıduos que sobrevivem mais de um ano. Isto
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Suponha que P(B) = 0.70.
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Probabilidade Condicional

Probabilidade Condicional e ML

O problema fica mais complicado se o evento A representar a seguinte
informação:

biópsia indica benigno,

paciente tem 45 anos de idade,
é homem,
sempre morou em Santa Catarina,
é fumante
e sempre come salames e salsichas defumadas.

Não haverá uma amostra muito grande de pacientes nestas condições
exatas.
Talvez apenas 2, 1 ou até zero pessoas tenham sido observadas nestas
condições.
Isto impede usar a simples frequência ocorrida nestes pouqúıssimos
casos para aproximar P(B|A).
Ferramentas de ML calculam estas probabilidades usando vários
truques. Elas procuram extrair o máximo de informação dos dados.
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Ferramentas de ML calculam estas probabilidades usando vários
truques. Elas procuram extrair o máximo de informação dos dados.
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Probabilidade Condicional

Probabilidade Condicional e ML

De maneira geral, dadas as caracteŕısticas representadas por A, como
fica a chance de ocorrer B?

Dado que os sensores do robô dizem que ocorreu A, qual a chance de
que ele esteja na região B?

Dado que o usuário comprou o conjunto A de itens nas últimas
visitas, qual a chance dele comprar o item B agora?

Dado certo comportamento da ação nos últimos 3 anos, qual a
probabilidade de que ela suba 10% ou mais dentro de 30 dias?

Dadas certas caracteŕısticas A de um e-mail, qual a chance dele ser
um spam?
Probabilidade condicional é:

extremamente importante em teoria.
é mais importante ainda na prática de análise de dados.
pode ser dif́ıcil de calcular: é a fonte de quase todos os paradoxos em
probabilidade.
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Probabilidade Condicional

Probabilidade Condicional

Primeira questão: como passar de P(B) para P(B|A)?

Qual a relação entre P(B) e P(B|A)?

Podemos ter P(B) = P(B|A)?

Veremos que, em alguns casos sim. NESTE CASOS, a ocorrência de
A não afeta as chances da ocorrência de B.

Muitas vezes, teremos P(B) 6= P(B|A).

Por exemplo, queremos saber quando teremos P(B) < P(B|A).

Mais do que isto, queremos uma fórmula que nos permita calcular de
maneira exata P(B|A) em qualquer situação.
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Mais do que isto, queremos uma fórmula que nos permita calcular de
maneira exata P(B|A) em qualquer situação.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 84 / 27



Probabilidade Condicional

Probabilidade Condicional

Primeira questão: como passar de P(B) para P(B|A)?

Qual a relação entre P(B) e P(B|A)?

Podemos ter P(B) = P(B|A)?

Veremos que, em alguns casos sim. NESTE CASOS, a ocorrência de
A não afeta as chances da ocorrência de B.

Muitas vezes, teremos P(B) 6= P(B|A).

Por exemplo, queremos saber quando teremos P(B) < P(B|A).

Mais do que isto, queremos uma fórmula que nos permita calcular de
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Probabilidade Condicional

Um caso óbvio

Alguns casos são fáceis de calcular pois eles são casos extremos.

Por exemplo, lançar um dado bem equilibrado e anotar a face:
Ω = {1, 2, . . . , 6}.
Seja B = {4, 5, 6} com P(B) = 3/6.

Vamos considerar um evento A ⊂ B. Por exemplo, A = {5, 6}.
Intuitivamente, o que deveria ser P(B|A)?

Qual a probabilidade de que a face seja 4, 5 ou 6 sabendo que saiu 5
ou 6?

Ao saber que um evento ω ∈ A ocorreu, automaticamente inferimos
que B também ocorreu pois A ⊂ B.

Assim, devemos ter P(B|A) = 1 > P(B) = 3/6.
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Probabilidade Condicional

Outro caso óbvio

Outro caso óbvio: A ∩ B = ∅.

Intuitivamente, o que deveria ser P(B|A)?

Se o evento que ocorreu está em A, ele não pode estar em B (pois A
e B são disjuntos).

Ao saber que um evento ω ∈ A ocorreu, automaticamente inferimos
que B não ocorreu.

Assim, devemos ter P(B|A) = 0 ≤ P(B).
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Probabilidade Condicional

Outro caso óbvio: um exemplo

Exemplo do dado com Ω = {1, 2, . . . , 6}.
Seja B o evento FACE PAR.

Isto é, B = {2, 4, 6} com P(B) = 1
2 .

Seja A = {5}. É claro que A ∩ B = ∅.
Intuitivamente, se ocorreu a face 5, qual a chance de ocorrer uma
face par?

Esta chance é zero.

Ou você apostaria na ocorrência de B neste caso?

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 87 / 27
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face par?

Esta chance é zero.

Ou você apostaria na ocorrência de B neste caso?
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Probabilidade Condicional

Os outros casos

Assim, dois casos intuitivamente óbvios são:

Se A ⊂ B então P(B|A) = 1.
Se A ∩ B = ∅ então P(B|A) = 0.

E o caso geral?

Sejam A e B dois eventos com P(A) > 0 e com A ∩ B 6= ∅.
Como calcular P(B|A)?

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 88 / 27



Probabilidade Condicional

Os outros casos

Assim, dois casos intuitivamente óbvios são:
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Probabilidade Condicional

Definição

Sejam A e B dois eventos com P(A) > 0.

Então, por definição,

P (A|B) =
P(A ∩ B)

P(B)

Assim, para calcular a probabilidade de que A ocorreu DADO QUE B
ocorreu:

Calcule a probabilidade P(A∩B) de que A e B tenham ambos ocorrido
Aumente esta probabilidade multiplicando-a por 1/P(B), que é maior
que 1.
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Probabilidade Condicional

Exemplo

Considere o lançamento de uma moeda honesta 5 vezes seguidas:

Ω = {CCCCC ,CCCC C̃ , . . . , C̃ C̃ C̃ C̃ C̃}
↪→ 32 elementos

Temos P(ω) = 1/32, igualmente prováveis.

Seja B = {ω ∈ Ω ; 1o elemento é C}
Temos P(B) = 1/2. OK?

16 elementos em Ω tem C na 1a posição. Como são igualmente
prováveis, P(B) = 16/32 = 1/2.

É fornecida a seguinte informação: ocorreu
A = { Houve apenas uma coroa nos 5 lançamentos }.
Intuitivamente, P(B|A) > P(B) = 1/2.
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Intuitivamente, P(B|A) > P(B) = 1/2.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 90 / 27



Probabilidade Condicional

Exemplo
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Seja B = {ω ∈ Ω ; 1o elemento é C}
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Intuitivamente, P(B|A) > P(B) = 1/2.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 90 / 27



Probabilidade Condicional

Exemplo
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Probabilidade Condicional

Exemplo: usando a definição

Calculando P(B|A) pela definição:

P(B|A) =
P(A ∩ B)

P(A)
=

4/32

5/32
=

4

5

Assim a probabilidade mudou bastante ao sabermos que A ocorreu:

P(B) =
1

2
 P(B|A) =

4

5

Saber que ocorreu apenas uma coroa em cinco lançamentos torna
altamente provável que a 1a posição seja cara.
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Probabilidade Condicional

ML e Condicional

Este é um dos grandes objetivos gerais de ML:

quando tivermos um sistema complexo, envolvendo vários fatores,
obtemos a um custo baixo algumas informações.

Estas informações são representadas por A.

Usamos estas informaçãões de baixo custo para recalcular as
probabilidades de coisas que não sabemos: P(B|A).

Não sabemos porque estão no futuro ou porque são caras para
observar ou porque são imposśıveis ou é anti-ético conhecer, etc.

Com estas probabilidades recalculadas podemos tomar decisões.
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Usamos estas informaçãões de baixo custo para recalcular as
probabilidades de coisas que não sabemos: P(B|A).

Não sabemos porque estão no futuro ou porque são caras para
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Probabilidade Condicional

Intuição para a definição

Vimos a definição P(B|A) = P(A ∩ B)/P(A).

Por quê a fórmula acima? Por quê esta definição, e não outra tal
como

P(A ∪ B)

P(A)
ou

P(A ∩ B)

P(B)
??

Resposta: para ser consistente com a experiência emṕırica.
Para ver isto, vamos encontrar P(B|A) de duas formas distintas num
caso simples de simular no computador.
Uma das forma será através da contagem do evento B dentre aqueles
casos em que A ocorre.
Esta é a forma natural de estimar probabilidades: pela frequência
relativa.
A segunda forma será pela definição P(B|A) = P(A ∩ B)/P(A).
Veremos que as duas coincidem e portanto que a definição é o que
tem de ser.
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Para ver isto, vamos encontrar P(B|A) de duas formas distintas num
caso simples de simular no computador.
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Esta é a forma natural de estimar probabilidades: pela frequência
relativa.
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A segunda forma será pela definição P(B|A) = P(A ∩ B)/P(A).

Veremos que as duas coincidem e portanto que a definição é o que
tem de ser.
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Probabilidade Condicional

Intuição para a definição

Role um dado duas vezes

Ω = {(1, 1), (1, 2), . . . , (6, 6)} P(ω) =
1

36

Seja B = [1o dado é um 6]

B = {(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)} e P(B) = 6/36 = 1/6.

Seja A = [ Soma das faces é maior que 8 ]

A = {(3, 6), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6), (6, 3), (6, 4), (6, 5), (6, 6)}
e P(A) = 10/36 = 0.28.

Quanto é P(B|A)? Devemos esperar que seja maior ou menor que
P(B)?
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Probabilidade Condicional

Intuição para a definição

B : primeiro dado é um 6. A : soma das faces é maior que 8.

A soma das faces varia de 2 a 12.

Ser > 8 quer dizer que é um valor alto e que podemos esperar que as
duas faces sejam pelo menos moderadas.

De fato, usando a fórmula,

P(B|A) =
P(B ∩ A)

P(A)
=

4/36

10/36
= 0.4 > 1/6 = 0.17 = P(B)

Vamos calcular P(B|A) simulando os dados num computador.

Replique os lançamentos duplos um grande número N de vezes (por
exemplo, N = 100 mil)
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Probabilidade Condicional

Intuição para a definição

B : primeiro dado é um 6. A : soma das faces é maior que 8.

Repetição 1 2 3 4 5 6 7 8 9 10 . . .

Dado 1 2 5 5 2 6 4 2 1 6 6 . . .
Dado 2 1 5 1 3 1 5 3 6 4 3 . . .

B ocorreu? N N N N Y N N N Y Y . . .
A ocorreu? N Y N N N Y N N Y Y . . .

Tabela: Lançamentos duplos de dados

Considere apenas as vezes em que A ocorreu: 13886 vezes

Dentre estas 13886 ocorrências, verifique quantas vezes o evento B
ocorreu: 5623 vezes

É natural esperarmos P(B|A) ≈ 5623/13886 = 0.405. Por quê?
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Probabilidade Condicional

Intuição para a definição

Repetindo: P(B|A) ≈ 5623
13886 = 0.405. Por quê?

Considerando apenas as 13886 vezes em que A ocorreu, verificamos
qual a proporção de vezes que ocorreu B.

Esta é a maneira de estimar empiricamente, apenas com dados, o
valor de P(B|A).

Pela frequência relativa da ocorrência do evento B DADO QUE O
EVENTO A ocorreu.

Vamos agora estimar P(B|A) de outra forma: considerando o
numerador e o denominador da definição.

P(B|A) = P(A ∩ B)/P(A).
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Esta é a maneira de estimar empiricamente, apenas com dados, o
valor de P(B|A).

Pela frequência relativa da ocorrência do evento B DADO QUE O
EVENTO A ocorreu.

Vamos agora estimar P(B|A) de outra forma: considerando o
numerador e o denominador da definição.

P(B|A) = P(A ∩ B)/P(A).

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 97 / 27



Probabilidade Condicional

Intuição para a definição

Repetindo: P(B|A) ≈ 5623
13886 = 0.405. Por quê?
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Probabilidade Condicional

Intuição para a definição

Sabemos que P(A) ≈ no de vezes que A ocorreu
N

⇒ P(A) ≈ 13886

N
ou 13886 ≈ N P(A)

Do mesmo modo, pela interpretação de probabilidade como
frequência em longas repetições,

P(A ∩ B) ≈ no de vezes em que A e B ocorrem

N

Mas A e B ocorrem 5623 vezes em N
(Separamos os 13886 casos em que A ocorreu e depois contamos os
B dentro destes 13886 casos)

Então P(A ∩ B) ≈ 5623
N ⇒ N P(A ∩ B) ≈ 5623
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Probabilidade Condicional

Intuição para a definição

Desse modo,

P(B|A) ≈ 5623

13886
≈ N P(A ∩ B)

N P(A)
=

P(A ∩ B)

P(A)

Nossa conclusão é que:
se quisermos manter intacta nossa idéia de que a probabilidade de um
evento é aproximadamente igual à sua frequência relativa numa longa
série de repetições independentes,

então a definição da probabilidade condicional P(B|A) TEM DE SER
P(A ∩ B)/P(A).

Nenhuma outra definição vai gerar resultados consistentes com os
experimentos que fizemos.
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Probabilidade Condicional

Diagrama de Venn

É comum representar eventos em diagramas de conjuntos de Venn.

&%
'$
��
��

A
B

Ω

Ω é o retângulo maior envolvente. Os eventos são figuras com
tamanhos proporcionais à sua probabilidade.
Qual o valor aproximado de P(A)? USAR CORES NOS EVENTOS

P(A) ≈ 0.90?
P(A) ≈ 1/4?
P(A) ≈ 1/8?
P(A) ≈ 0.01?

Com as mesmas opções, qual o valor aproximado de P(B)?
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Qual o valor aproximado de P(A)? USAR CORES NOS EVENTOS

P(A) ≈ 0.90?
P(A) ≈ 1/4?
P(A) ≈ 1/8?
P(A) ≈ 0.01?

Com as mesmas opções, qual o valor aproximado de P(B)?
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Probabilidade Condicional

Probabilidade condicional no diagrama de Venn

Como enxergar a definição P(B|A) = P(A∩B)/P(A) neste diagrama?

P(B|A) é o tamanho de A ∩ B relativamente ao tamanho de A.
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B

Ω

Qual o valor aproximado de P(B|A)?
P(B|A) ≈ 0.85?
P(B|A) ≈ 1/3?
P(B|A) ≈ 1/8?
P(B|A) ≈ 0.05?

Temos P(B|A) bem maior que P(B) ≈ 1/3.
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P(B|A) é o tamanho de A ∩ B relativamente ao tamanho de A.

&%
'$
&%
'$
A

B

Ω

Qual o valor aproximado de P(B|A)?
P(B|A) ≈ 0.85?
P(B|A) ≈ 1/3?
P(B|A) ≈ 1/8?
P(B|A) ≈ 0.05?

Temos P(B|A) bem maior que P(B) ≈ 1/3.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 101 / 27



Probabilidade Condicional

Probabilidade condicional no diagrama de Venn

Como enxergar a definição P(B|A) = P(A∩B)/P(A) neste diagrama?
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Probabilidade Condicional

Probabilidade condicional no diagrama de Venn
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Probabilidade Condicional

Probabilidade condicional no diagrama de Venn

Em todos os casos abaixo temos P(B) ≈ 1/5.
Obtenha P(B|A) aproximadamente em cada caso:
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Diagrama (1, 1) tem P(B|A) ≈ . . .

0.40.
(1, 2) : P(B|A) . . . = 0 (1, 3) : P(B|A) . . . = 1.0.
Diagrama (2, 1) tem P(B|A) ≈ . . . 0.40, como no diagrama (1, 1).
(2, 2) : P(B|A) . . . 0.85 (2, 3) : P(B|A) . . . 0.9.
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Probabilidade Condicional

Probabilidade condicional no diagrama de Venn
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Probabilidade Condicional

P(B |A) e P(B)

Se A ⊂ B então P(B|A) = 1. A informação de que A ocorreu torna
certa a ocorrência de um resultado ω ∈ B.

Se A ∩ B = ∅ então P(B|A) = 0. A informação de que A ocorreu
torna imposśıvel a ocorrência de qualquer ω ∈ B
Estas são situações extremas: saber que A ocorreu leva a um
conhecimento sem incerteza sobre a ocorrência de B.
Na maioria das vezes, saber que A ocorreu não vai eliminar a
incerteza sobre a ocorrencia de B. Teremos 0 < P(B|A) < 1

s0 1

P(B)
�

�	

P(B|A)
@
@I

�
��

Podemos ter P(B|A) > P(B) ou P(B|A) < P(B).
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Independência

Eventos independentes

Há um outro caso importante:

quando saber que A ocorreu não tem qualquer influência na incerteza
sobre a ocorrência de B.

Isto é, existem casos em que P(B|A) = P(B)

Dizemos que A e B são eventos independentes.
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Independência

Eventos independentes

Independência se, e somente se, P(A ∩ B) = P(A) P(B) pois

P(A∩B)
P(A) = P(B|A) = P(B)

P(A ∩ B) = P(A) ∗ P(B)

@R

Definição de

Probabilidade

Condicional

@R

Se forem

independentes

︸ ︷︷ ︸

︸ ︷︷ ︸
?
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Independência

Como surge independência?

Independência pode surgir de duas formas distintas.

Ela pode surgir porque nós supomos que o eventos são independentes.

Por exemplo, pensando sobre o mecanismo f́ısico envolvido, supomos
que lançamentos sucessivos de uma moeda são independentes: a
moeda não tem memória do que aconteceu.

Assim P( Cara no 2o. | Cara no 1o. ) = P( Cara no 2o. ) = 1/2

A outra forma é quando verificamos matematicamente que
P(A ∩ B) = P(A) P(B) ou que P(B|A) = P(B).

As vezes, não podemos intuir facilmente que A e B são
independentes.

Nestes casos, calculamos P(B|A) e P(B) e, voilá: se as probabilidades
forem iguais, os eventos são independentes.
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A outra forma é quando verificamos matematicamente que
P(A ∩ B) = P(A) P(B) ou que P(B|A) = P(B).

As vezes, não podemos intuir facilmente que A e B são
independentes.

Nestes casos, calculamos P(B|A) e P(B) e, voilá: se as probabilidades
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forem iguais, os eventos são independentes.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 107 / 27



Independência

Como surge independência?

Independência pode surgir de duas formas distintas.

Ela pode surgir porque nós supomos que o eventos são independentes.

Por exemplo, pensando sobre o mecanismo f́ısico envolvido, supomos
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Independência

Exemplos

Alguns exemplos óbvios de independência: em repetições de certos
experimentos.

Rolar um dado duas vezes e anotar o resultado

Eventos relacionados apenas ao primeiro lançamento devem ser
independentes de eventos relacionados apenas ao segundo lançamento
do dado.

Isto é intuitivo a partir de nossa experiência com este tipo de situação.

As probabilidades devem se manter as mesmas: rolar um dado não o
modifica fisicamente a ponto de afetar as probabilidades das 6 faces.

Além disso, o dado não tem memória do que saiu antes de forma que
um lançamento não afeta o seguinte.

Mas podemos verificar matematicamente esta intuição checando a
validade da condição P(A ∩ B) = P(A) P(B).
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independentes de eventos relacionados apenas ao segundo lançamento
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Independência

Exemplos

Ω = {(1, 1), . . . , (6, 6)} com P(ω) = 1/36.

A: primeira rolagem é par.

A = {(2, 1), . . . , (2, 6), (4, 1), . . . , (4, 6), (6, 1), . . . , (6, 6)}
P(A) = 18/36 = 1/2.

B: segunda rolagem é diviśıvel por 3.

B = {(1, 3), . . . , (6, 3), (1, 6), . . . , (6, 6)}.
P(B) = 12/36 = 1/3.

A ∩ B = {(2, 3), (4, 3), (6, 3), (2, 6), (4, 6), (6, 6)}
Como esperado, A e B são independnetes:

P(A ∩ B) = 6/36 = 1/6 = P(A) P(B)
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Independência

Exemplo menos óbvio

Rola-se um dado bem equilibrado uma única vez.

Seja A = {2, 4, 6} e B = {1, 2, 3, 4}.
P(A) = 1/2 e P(B) = 2/3.

A ∩ B = {2, 4}
P(A ∩ B) = 1/3.

Como

P(A ∩ B) =
1

3
=

1

2

2

3
= P(A) P(B) ,

Os eventos A e B são independentes. É muito dif́ıcil alguém
conseguir enxergar isto intuitivamente.
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Independência

Independência no diagrama de Venn

Se A e B são eventos disjuntos num diagrama de Venn, eles não são
independentes.

Se são disjuntos então A ∩ B = ∅ e portanto P(A ∩ B) = 0.
Se P(A) e P(B) são > 0 então 0 = P(A ∩ B) 6= P(A) P(B).

Se A ⊂ B então P(A ∩ B) = P(A) 6= P(A) P(B) e portanto A e B
não são independentes.

Exceto nestes dois casos, é dif́ıcil verificar visualmente se A e B são
independentes num diagrama de Venn.

Teŕıamos de ser capazes de ver que o tamanho de A∩B relativamente
a Ω é igual ao produto das proporções dos tamanhos de A e de B

Mas...se P(B|A) for muito diferente de P(B) poderemos dizer com
segurança que A e B não são independentes.
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Teŕıamos de ser capazes de ver que o tamanho de A∩B relativamente
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Independência

Independência no diagrama de Venn

Por exemplo, sem fazer nenhuma conta podemos dizer que A e B não
são independentes neste caso:

e
&%
'$
B A

Visualmente é óbvio que P(B) ≈ 1/3 mas que P(B|A) ≈ 1.

Portanto, a ocorrência de A aumenta as chances da ocorrência de B.

Explicação: A é um evento raro pois P(A) ≈ 0. Entretanto, a maior
parte de A está em B. Se o raro evento A ocorrer, é altamente
provável que seja um dos ω ∈ A ∩ B.
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Independência

P(A|B) e P(B |A)

P(A|B) e P(B|A) podem ser completamente diferentes.

e&%
'$
B A

P(B|A) ≈ 1 mas P(A|B) ≈ 1/25.

P( ser Drácula | não dorme a noite ) ≈ 0

P( não dorme a noite | ser Drácula ) ≈ 1
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Regra de Bayes

Regra de Bayes

Existe uma relação matemática muito simples entre P(A|B) e P(B|A).

P(B|A) =
P(A ∩ B)

P(A)
⇒ P(A ∩ B) = P(B|A) P(A)

P(A|B) =
P(A ∩ B)

P(B)
⇒ P(A ∩ B) = P(A|B) P(B)

Igualando as duas expressões para P(A ∩ B) temos

P(B|A) P(A) = P(A|B) P(B)

Ou ainda

P(B|A) =
P(A|B) P(B)

P(A)
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Regra de Bayes

Regra de Bayes

O principal uso da regra de Bayes é quando temos uma das
probabilidades condicionais, digamos P(A|B), e queremos calcular a
inversa: P(B|A).

P(B|A) =
P(A|B) P(B)

P(A)

Para isto precisamos também das probabilidades não-condicionais
P(A) e P(B).
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Regra de Bayes

Teste diagnóstico

A população brasileira deve ser rastreada com um teste para detecção
do v́ırus HIV?

Acredita-se que 0.1% são HIV+ ⇒≈ 200 mil dentre 200 milhões.

Teste diagnóstico para testar a presença do v́ırus: não é perfeito.

Tabela de confusão:

Resultado do Teste
V́ırus? T + T−

V + ok erro

V− erro ok
Um paciente recebe o resultados T +. A questão é: ele é V + ou

aconteceu um erro?

O principal problema médico é calcular P(V + |T +).

Como obter isto? Pela regra de Bayes pois temos P(T + |V +)
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Teste diagnóstico para testar a presença do v́ırus: não é perfeito.
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Regra de Bayes

Sensitividade e Especificidade

Aplica-se o teste diagnóstico em dois grandes grupos de indiv́ıduos:

um em que sabidamente todos possuem o v́ırus HIV
outro em que que sabidamente eles não possuem o v́ırus HIV

A probabilidade de qualquer evento A ocorrera no primeiro grupo será
P(A|V +).

No segundo grupo será P(A|V−).

Com base na frequência daqueles que respondem T + em cada grupo
o laboratório que produz o teste estima:

Sensitividade : P(T + |V +) ≈ 0.99%

Especificidade : P(T − |V−) ≈ 0.95%
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Aplica-se o teste diagnóstico em dois grandes grupos de indiv́ıduos:

um em que sabidamente todos possuem o v́ırus HIV
outro em que que sabidamente eles não possuem o v́ırus HIV

A probabilidade de qualquer evento A ocorrera no primeiro grupo será
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P(A|V +).

No segundo grupo será P(A|V−).
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Aplica-se o teste diagnóstico em dois grandes grupos de indiv́ıduos:

um em que sabidamente todos possuem o v́ırus HIV
outro em que que sabidamente eles não possuem o v́ırus HIV

A probabilidade de qualquer evento A ocorrera no primeiro grupo será
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Regra de Bayes

Sensitividade e Especificidade

Repetindo:

Sensitividade : P(T + |V +) ≈ 0.99%

Especificidade : P(T − |V−) ≈ 0.95%

Quanto maior, melhor. Idealmente, gostaŕıamos que fossem iguais a
1. Mas na prática, testes de diagnósticos podem cometer erros.

Motivo para os nomes:

O teste é senśıvel à presença do v́ırus: se o v́ırus estiver presente, o
teste é +?
O teste é espećıfico para o v́ırus HIV: se o paciente tiver qualquer outra
coisa que não seja o v́ırus, o teste não deveria dar positivo.
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Regra de Bayes

Falso positivo e falso negativo

P(T + |V +) = 0.99 (sensibilidade) e P(T − |V−) = 0.95
(especificidade)

As probabilidades complementares estão associadas a erros de
diagnóstico e os médicos usam dois termos para eles:

Falso positivo (FP): T + para um paciente que é V−
Falso negativo (FN): T− para um paciente que é V +

As probabilidades de FP e FN são obtidas diretamente da
sensibilidade e especificidade.

P(FP) = P(T + |V−) = 0.05 = 1− 0.95 = 1− especificidade

P(FN) = P(T − |V +) = 0.01 = 1− 0.99 = 1− sensibilidade
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Regra de Bayes

Falso positivo e falso negativo

A partir das frequências na tabela de confusão, podemos estimar
essas probabilidades:

Resultado do Teste
V́ırus? T + T− Total

V + sens
P(T + |V +) 1.0

V− esp
P(T − |V−) 1.0
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Resultado do Teste
V́ırus? T + T− Total

V + sens 1 - sens
P(T + |V +) P(FN) = P(T − |V +) 1.0
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Regra de Bayes

Probabilidades inversas

Mas não queremos apenas P(FP) = P(T + |V−) e
P(FN) = P(T − |V +)

Mais importante é calcular as probabilidades inversas.

O médico tem em mãos o resultado T + do exame.

Dado que ele tem este resultado T +, qual a probabilidade de que o
paciente tenha o v́ırus?

Isto é, qual o valor de P(V + |T +)?

Do mesmo modo, queremos saber P(V − |T−)

De posse de uma estimativa de P(V +), usamos a regra de Bayes para
obter estas probabilidades inversas.
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Regra de Bayes

Probabilidades inversas

Temos P(V +) = 0.001, uma estimativa grosseira. Esta é a estimativa
da prevalência do v́ırus na população em geral.

Se não soubermos este valor, podemos calcular as probabilidades com
diversos cenários plauśıveis para P(V +) e ver como as probabilidades
se modificam (talvez elas não mudem muito).

Pela regra de Bayes:

P(V + |T +) =
P(T + |V +)P(V +)

P(T +)
=

0.99 ∗ 0.001

P(T +)

Para obter P(T +) usamos um truque muito útil baseado em
interseção de conjuntos.
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interseção de conjuntos.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 123 / 27



Regra de Bayes

Probabilidades inversas

Temos P(V +) = 0.001, uma estimativa grosseira. Esta é a estimativa
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Regra de Bayes

O evento T+

Figura: Evento T + em Ω
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Regra de Bayes

O evento T+ e a decomposição de Ω

Figura: Evento T + e Ω decomposto como Ω = V + ∪V−.
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Regra de Bayes

O evento T+ decomposto

Figura: Decompondo o evento T + = (T + ∩V +)
⋃

(T + ∩V−).
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Regra de Bayes

P(T+)

P(T +) = P(T + ∩ (V + ∪ V−))

= P((T + ∩ V +) ∪ (T + ∩ V−))

= P(T + ∩ V +) + P(T + ∩ V−)

= P(T + |V +) ∗ P(V +) + P(T + |V−) ∗ P(V−)

= 0.99 ∗ 0.001 + 0.05 ∗ 0.999

= 0.05094
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Regra de Bayes

Falso positivo e falso negativo

Finalizando:

P(V + |T +) =
0.99 ∗ 0.001

0.05094
= 0.019

Assim, se tivermos um T +, será muito alta a chance do paciente ser
V− ou não ter o v́ırus.
Apenas 2% dos indiv́ıduos com teste positivo (T +) possuem o v́ırus
de fato.
Idem, calculamos a outra probabilidade inversa:

P(V − |T−) =
P(T − |V−)P(V−)

P(T−)

=
0.95 ∗ (1− 0.001)

1− 0.05094
= 0.9999895

Se o teste for negativo, é praticamente certo que o indiv́ıduo será V−.
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Se o teste for negativo, é praticamente certo que o indiv́ıduo será V−.
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Regra de Bayes

Rastreamento em massa?

Estes cálculos mostram por que não fazemos um rastreamento em
massa na população brasileira.

P(V + |T−) ≈ 0⇒ se teste não detecta, a chance de estar infectado
é baixa (Ok, ótimo!)
Mas P(V − |T +) ≈ 1⇒ quase todos detectados pelo teste não estão
infectados.
Quantas pessoas dariam positivas (falsamente ou corretamente) pelo
teste? Isto é, quantos teriam T +?
Aproximadamente 200 milhões × P(T +) ≈ 10 milhões, um número
enorme.
Destes, 98% (ou 9.8 milhões) não têm HIV: a imensa maioria de um
número enorme de pessoas.
As dificuldades de garantir um teste em todos e o custo envolvido
leva a outra estratégia: fazer uma busca ativa entre pessoas de
grupos de risco (que teriam P(V +) bem maior).
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teste? Isto é, quantos teriam T +?
Aproximadamente 200 milhões × P(T +) ≈ 10 milhões, um número
enorme.
Destes, 98% (ou 9.8 milhões) não têm HIV: a imensa maioria de um
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Quantas pessoas dariam positivas (falsamente ou corretamente) pelo
teste? Isto é, quantos teriam T +?
Aproximadamente 200 milhões × P(T +) ≈ 10 milhões, um número
enorme.
Destes, 98% (ou 9.8 milhões) não têm HIV: a imensa maioria de um
número enorme de pessoas.
As dificuldades de garantir um teste em todos e o custo envolvido
leva a outra estratégia: fazer uma busca ativa entre pessoas de
grupos de risco (que teriam P(V +) bem maior).
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Regra de Bayes

Regra da probabilidade total

Na regra de Bayes, derivamos uma fórmula muito útil, chamada
fórmula da probabilidade total. Vamos ver o caso geral.

Espaço amostral Ω é particionado nos eventos C1,C2, . . . ,Ck .

C1

C2

C3

C4 C5

Ω = C1 ∪ C2 ∪ . . . ∪ Ck

e
Ci ∩ Cj = ∅ se i 6= j
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Regra de Bayes

Regra da probabilidade total

Para qualquer evento A temos

C1

C2

C3

C4

C5

C6C7

A
�

�

�

�A = A ∩ Ω
= A ∩ (C1 ∪ C2 ∪ . . . ∪ Ck )
= (A ∩ C1) ∪ (A ∩ C2) ∪ . . . ∪ (A ∩ Ck )

Temos então

P(A) = P(A ∩ C1) + . . .+ P(A ∩ Ck)

= P(A|C1)P(C1) + . . .+ P(A|Ck)P(Ck)
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Regra de Bayes

Extensão da Regra de Bayes

Espaço amostral Ω é particionado nos eventos C1, . . . ,Ck :

C1

C2

C3

C4

C5

C6C7

A
�

�

�

�
Ω = C1 ∪ . . . ∪ Ck

e
Ci ∩ Cj = ∅
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Regra de Bayes

Regra de Bayes

Temos

P(Ci |A) =
P(A|Ci )P(Ci )

P(A)

=
P(A|Ci )P(Ci )

P(A ∩ C1) + . . .+ P(A ∩ Ck)

=
P(A|Ci )P(Ci )

P(A|C1)P(C1) + . . .+ P(A|Ck)P(Ck)

Isto é,

P(Ci |A) =
P(A|Ci )P(Ci )∑k
j=1 P(A|Cj)P(Cj)

Esta é a forma geral da regra de Bayes.
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Regra de Bayes

Exemplo: Regra de Bayes

Website produz artigos: em três tópicos:

Poĺıtica (P), Esportes (E ), e Cultura (C )

Porcentagens usuais de artigos:

P : 50% E : 40% C : 10%

Assim, P(P) = 0.50, P(E ) = 0.40 e P(C ) = 0.10.

Classificador automático de textos recebe como entrada um artigo e
verifica as palavras presentes.

Objetivo: classificar o texto em uma das 3 categorias.
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Regra de Bayes

Exemplo: Regra de Bayes

A palavra arcabouço aparece em:
50% dos textos de cultura,
em 30% dos textos de poĺıtica
e em somente 5% dos textos de esportes.

Veja que as probabilidades acima não somam 1.
Elas representam as seguintes probabilidades condicionais:

P(arcabouço|C ) = 0.50,
P(arcabouço|P) = 0.30,
P(arcabouço|E ) = 0.05,

A = o evento de que a palavra arcabouço está presente num dado
artigo.

Qual a probabilidade de que este texto com a palavra arcabouço seja
do tópico Cultura?

Isto é, quanto é P(C |A)? Nós temos a probabilidade reversa:
P(A|C ) = 0.50
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Regra de Bayes

Exemplo: Regra de Bayes

Queremos
P(C |A) = P(C |arcabouço)

tendo
P(A|C ) = P(arcabouço|C ) = 0.50

Pela regra de Bayes,

P(C |A) =
P(A|C )P(C )

P(A|C )P(C ) + P(A|E )P(E ) + P(A|P)P(P)

=
0.50 · 0.10

0.50 · 0.10 + 0.30 · 0.50 + 0.05 · 0.40
= 0.23

Parece que a classe C (cultura) não é a mais provável (apenas 0.23 de
probabilidade).
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Regra de Bayes

Exemplo: Regra de Bayes

Vamos calcular a probabilidade do texto pertencer ás outra posśıveis
classes com a regra de Bayes:

P(P|A),P(E |A), sabendo que P(C |A) = 0.23

P(P|A) =
P(A|P)P(P)

P(A|C )P(C ) + P(A|E )P(E ) + P(A|P)P(P)
==

0.30 · 0.50

0.50 · 0.10 + 0.30 · 0.50 + 0.05 · 0.40
= 0.68

P(E |A) =
P(A|P)P(P)

P(A|C )P(C ) + P(A|E )P(E ) + P(A|P)P(P)
==

0.05 · 0.40

0.50 · 0.10 + 0.30 · 0.50 + 0.05 · 0.40
= 0.09
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Regra de Bayes

Exemplo: Regra de Bayes

A classe mais provável desse texto é Poĺıtica.

Veja que a palavra arcabouço é mais comum nos textos de cultura.

A maior presença de textos de poĺıtica na coleção fez a balança
pender para a classe poĺıtica.

Métodos de classificação de textos todas as palavras do dicionário,
não apenas uma delas.

Um desses métodos é o Naive Bayes, que veremos mais à frente.
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Regra de Bayes

Exemplo: Regra de Bayes

Em uma urna, existem 6 bolas de cores desconhecidas.

Três bolas são retiradas sem reposição e são pretas.

Ache a probabilidade de que não restam bolas pretas na urna.

A = 3 bolas pretas são retiradas

Ci = existem i bolas pretas na urna

Urna com 6 bolas → retira-se 3 bolas

Ci = existem i bolas pretas na urna (i = 0, 1, . . . , 6)

A = 3 bolas pretas são retiradas

P(A|Ci ) =?

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 139 / 27



Regra de Bayes

Exemplo: Regra de Bayes

Em uma urna, existem 6 bolas de cores desconhecidas.

Três bolas são retiradas sem reposição e são pretas.

Ache a probabilidade de que não restam bolas pretas na urna.

A = 3 bolas pretas são retiradas

Ci = existem i bolas pretas na urna

Urna com 6 bolas → retira-se 3 bolas

Ci = existem i bolas pretas na urna (i = 0, 1, . . . , 6)

A = 3 bolas pretas são retiradas

P(A|Ci ) =?

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 139 / 27



Regra de Bayes

Exemplo: Regra de Bayes

Em uma urna, existem 6 bolas de cores desconhecidas.

Três bolas são retiradas sem reposição e são pretas.

Ache a probabilidade de que não restam bolas pretas na urna.

A = 3 bolas pretas são retiradas

Ci = existem i bolas pretas na urna

Urna com 6 bolas → retira-se 3 bolas

Ci = existem i bolas pretas na urna (i = 0, 1, . . . , 6)

A = 3 bolas pretas são retiradas

P(A|Ci ) =?

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 139 / 27



Regra de Bayes

Exemplo: Regra de Bayes

Em uma urna, existem 6 bolas de cores desconhecidas.

Três bolas são retiradas sem reposição e são pretas.

Ache a probabilidade de que não restam bolas pretas na urna.

A = 3 bolas pretas são retiradas

Ci = existem i bolas pretas na urna

Urna com 6 bolas → retira-se 3 bolas

Ci = existem i bolas pretas na urna (i = 0, 1, . . . , 6)

A = 3 bolas pretas são retiradas

P(A|Ci ) =?

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 139 / 27



Regra de Bayes

Exemplo: Regra de Bayes

Em uma urna, existem 6 bolas de cores desconhecidas.

Três bolas são retiradas sem reposição e são pretas.

Ache a probabilidade de que não restam bolas pretas na urna.

A = 3 bolas pretas são retiradas

Ci = existem i bolas pretas na urna

Urna com 6 bolas → retira-se 3 bolas

Ci = existem i bolas pretas na urna (i = 0, 1, . . . , 6)

A = 3 bolas pretas são retiradas

P(A|Ci ) =?

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 139 / 27



Regra de Bayes

Exemplo: Regra de Bayes

Em uma urna, existem 6 bolas de cores desconhecidas.

Três bolas são retiradas sem reposição e são pretas.

Ache a probabilidade de que não restam bolas pretas na urna.

A = 3 bolas pretas são retiradas

Ci = existem i bolas pretas na urna

Urna com 6 bolas → retira-se 3 bolas

Ci = existem i bolas pretas na urna (i = 0, 1, . . . , 6)

A = 3 bolas pretas são retiradas

P(A|Ci ) =?

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 139 / 27



Regra de Bayes

Exemplo: Regra de Bayes

Em uma urna, existem 6 bolas de cores desconhecidas.

Três bolas são retiradas sem reposição e são pretas.

Ache a probabilidade de que não restam bolas pretas na urna.

A = 3 bolas pretas são retiradas

Ci = existem i bolas pretas na urna

Urna com 6 bolas → retira-se 3 bolas

Ci = existem i bolas pretas na urna (i = 0, 1, . . . , 6)

A = 3 bolas pretas são retiradas

P(A|Ci ) =?

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 139 / 27



Regra de Bayes

Exemplo: Regra de Bayes

Em uma urna, existem 6 bolas de cores desconhecidas.

Três bolas são retiradas sem reposição e são pretas.

Ache a probabilidade de que não restam bolas pretas na urna.

A = 3 bolas pretas são retiradas

Ci = existem i bolas pretas na urna

Urna com 6 bolas → retira-se 3 bolas

Ci = existem i bolas pretas na urna (i = 0, 1, . . . , 6)

A = 3 bolas pretas são retiradas

P(A|Ci ) =?

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 139 / 27



Regra de Bayes

Exemplo: Regra de Bayes

Em uma urna, existem 6 bolas de cores desconhecidas.

Três bolas são retiradas sem reposição e são pretas.

Ache a probabilidade de que não restam bolas pretas na urna.

A = 3 bolas pretas são retiradas

Ci = existem i bolas pretas na urna

Urna com 6 bolas → retira-se 3 bolas

Ci = existem i bolas pretas na urna (i = 0, 1, . . . , 6)

A = 3 bolas pretas são retiradas

P(A|Ci ) =?

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 139 / 27



Regra de Bayes

Regra de Bayes

P(A|Ci ) =? 

P(A|C0) = P(A∩C0)
P(C0) = 0

P(C0) = 0

P(A|C1) = 0
P(A|C2) = 0
P(A|C3) = 1/20 (Hipergeométrica)

P(A|C4) = 1/5
P(A|C5) = 1/2
P(A|C6) = 1

Queremos calcular P(C3|A)
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Regra de Bayes

Regra de Bayes

Temos

P(C3|A) =
P(A|C3) ∗ P(C3)∑6
j=0 P(A|Cj) ∗ P(Cj)

=
1

20 ∗ P(C3)

0 + 0 + 0 + 1
20P(C3) + 1

5P(C4) + 1
2P(C5) + 1P(C6)

= ??

Precisamos estabelecer o valor de P(Cj), a probabilidade de que
existam j bolas pretas na urna.

Depende do mecanismo que colocou bolas na urna e isto não foi
explicado no problema.
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Regra de Bayes

Regra de Bayes

Vamos mostrar algumas possibilidades para P(Cj).

Qualquer número de bolas pretas entre 0 e 6 tem a mesma
probabilidade. Então P(Cj) = 1

7 para todo j?

Bolas são escolhidas preferencialmente de uma única cor. Então os
valores de P(Cj) para j = 0 e j = 6 seriam os maiores, com o valor
ḿınimo com j = 3.

Por exemplo, P(Cj) = 1
28 (j − 3)2

Outra opção: Existem 10 cores distintas e a cor de cada bola é
escolhida ao acaso.

A chance de colocar uma bola preta na urna é 1/10.

A chance de colocar j bolsas pretas na urna de 6 bolas é

P(Cj) =

(
6

j

)
(0.1)j(0.9)6−j
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escolhida ao acaso.

A chance de colocar uma bola preta na urna é 1/10.

A chance de colocar j bolsas pretas na urna de 6 bolas é

P(Cj) =

(
6

j

)
(0.1)j(0.9)6−j
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ḿınimo com j = 3.

Por exemplo, P(Cj) = 1
28 (j − 3)2

Outra opção: Existem 10 cores distintas e a cor de cada bola é
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Independência mútua

Independência de eventos em geral

Falamos da independência de dois eventos A e B.

Eles são eventos independentes se

P(A ∩ B) = P(A) P(B) ,

ou, equivalentemente,
P(A|B) = P(A)

ou ainda
P(B|A) = P(B)

E quando tivermos vários eventos E1,E2, . . . ,En?

Infelizmente, não basta olhar os pares de eventos e verificar a
definição acima.
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Independência mútua

Independência de eventos em geral

Os eventos E1,E2, . . . ,En são eventos independentes se toda
combinação de eventos satisfazer a regra do produto:

P(Ei1 ∩ Ei2 ∩ . . . ∩ Eim) = P(Ei1) . . .P(Eim)

para toda seleção de ı́ndices i1, i2, . . . , im e para todo m entre 2 e n.

Estes eventos são chamados mutuamente independentes.

Podemos deduzir que se A,B, e C são independentes então C é
também independente de A ∩ B, de A ∩ Bc , de A ∪ B, de Bc etc.
(ver lista de exerćıcios).
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Independência mútua

Independência mútua e independência par a par

Se os eventos são mutuamente independentes então qualquer par de
eventos é independente.

Um resultado curioso é que a conversa não é verdade.

Podemos ter eventos independentes par a par mas que não são
mutuamente independentes.

Por exemplo, podemos ter A e B indep, A e C indep, e B e C indep
mas A,B,C dependentes.

Um uso prático desta distinção aparece numa técnica para
compartilhar senhas em criptografia (ver Davis, 2012, seção 8.9.2:
leitura opcional na página da disciplina).
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Independência mútua e independência par a par

Se os eventos são mutuamente independentes então qualquer par de
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Um uso prático desta distinção aparece numa técnica para
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Um uso prático desta distinção aparece numa técnica para
compartilhar senhas em criptografia (ver Davis, 2012, seção 8.9.2:
leitura opcional na página da disciplina).

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 145 / 27


	Probabilidade
	Sigma-álgebra
	Função de Probabilidade 

