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Variáveis aleatórias

Probabilidade e dados

Probabilidade é um assunto de matemática.

Estabelece um espaço de probabilidade (Ω,A,P) e faz cálculos
(matemáticos) de probabilidade.

Estat́ıstica, data mining e machine learning são assuntos que lidam
com dados.

Uma tabela cheia de números: linhas são itens, colunas são atributos
medidos nos itens.

Como ligar estes dois assuntos?

O link é fornecido pelo conceito de variável aleatória.
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Variáveis aleatórias

Variáveis aletórias como redução de Ω

O espaço de probabilidade (Ω,A,P) é a base matemática da
probabilidade.

O espaço de probabilidade precisa atribuir probabilidade a todo
evento A ⊂ Ω.

Se Ω for muito complicado, podemos estar interessados apenas em
alguns aspectos espećıficos do experimento aleatório.

Variáveis aleatórias (v.a.) constituem a ferramenta para reduzir o
espaço de probabilidade (Ω,A,P) ao ḿınimo necessário na prática.

Variáves aleatórias são caracteŕısticas numéricas do fenômenos
aleatório.
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Variáveis aleatórias

Variáveis aletórias: formalismo

Formalmente, variável aleatória é uma função matemática
(mensurável) de Ω para R.

X : Ω → R
ω → X (ω)

Isto é, uma variável aleatória é qualquer função matemática X que
vai de Ω para R.

A condição de ser mensurável na definição acima é bastante técnica.

Toda função “prática” é mensurável: toda função envolvendo logs,
exponenciais, polinômios, funções trigonométricas, é mensurável.
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Variáveis aletórias: formalismo

Formalmente, variável aleatória é uma função matemática
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exponenciais, polinômios, funções trigonométricas, é mensurável.
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Variáveis aleatórias

Variáveis aletórias e tabelas de dados

Lembre-se da tabela de dados estat́ısticos:

nas linhas, itens ou indiv́ıduos ou exemplos (tais como diferentes
pacientes com câncer de um hospital, diferentes clientes de um banco).
Cada linha representa uma diferente realização ou instanciação de
elementos ω de Ω.
nas colunas, caracteŕısticas ou atributos dos itens (sexo, idade e estágio
do câncer; saldo médio na conta corrente, tempo como correntista)

Informalmente, variáveis aleatórias (v.a.) são as representações
matemáticas ou probabiĺısticas dessas colunas de atributos na tabela
de dados estat́ısticos.

Como é a conexão entre a tabela de dados e o modelo probabiĺıstico?
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Variáveis aleatórias

Espaço de probabilidade e tabela de dados

Espaço de probabilidade: (Ω,A,P)

Tabela de dados:

spam num char line breaks format number

1 no 21,705 551 html small
2 no 7,011 183 html big
3 yes 631 28 text none
...

...
...

...
...

...
50 no 15,829 242 html small

Tabela: Quatro primeiras linhas da tabela spam. Fonte: OpenIntro Statistics
Project, https://www.openintro.org/stat/textbook.php.
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Variáveis aleatórias

Espaço de probabilidade e tabela de dados

Ω = conjunto de todos os e-mails já recebidos e a receber

Matriz contém aenas uma AMOSTRA dos elementos de Ω

Cada LINHA da tabela corresponde a um elemento distinto de Ω

Cada coluna, representa diferente caracteŕısticas ou medições sobre os
e-mails

EM GERAL, supomos que os diferentes e-mails (diferentes linhas)
representam eventos independentes uns dos outros

Em cada linha, os elementos medem caracteŕısticas diferentes do
MESMO ω

Assim, os elementos dentro de uma mesma linha costumam estar
associados/correlacionados (definição precisa mais tarde).

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 7 / 1



Variáveis aleatórias

Variáveis Aletórias e tabelas de dados

Os elementos numa coluna da tabela de dados é vista como
instãncias de uma v.a.

Toda v.a. pode ser pensada simplesmente como sendo a combinação
de DOIS componentes:

um conjunto de valores posśıveis ∈ R.
probabilidades associadas a estes valores.

As probabilidades vêm de um modelo (Ω,A,P) que muitas vezes não
precisa ser explicitamente apresentado. Isto facilita muito a vida.
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Variáveis aleatórias

Tipos de v.a.’s

As v.a.’s são representadas por letras maiúsculas: X ,Y ,W ,U,Z , . . ..

Temos três tipos básicos de dados estat́ısticos nas tabelas de dados
estat́ısticos:

dados categóricos ou não-numéricos, que podem ser nominais (tais
como sexo ou religião) ou ordinais (por exemplo, a resposta a uma
pergunta como “Você confia muito, pouco ou nada nos membros do
Congresso?”)
dados numéricos discretos: número de filhos,número de requisições nas
últimas duas horas.
dados numéricos cont́ınuos: saldo na conta corrente, temperatura,
ı́ndice de inflação.

Estes dados são representados por dois tipos de variáveis aleatórias:

V.A.s Discretas: Para os dados categóricos ou numéricos discretos.
V.A.s Cont́ınuas: Para os dados numéricos cont́ınuos.
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Variáveis aleatórias Discretas

V.A. Discreta

V.A.s Discretas: Para os dados categóricos ou numéricos discretos.

Composta de duas LISTAS enumeráveis.

Uma lista de valores posśıveis para a v.a.: {x1, x2, . . .}
Uma lista com a probabilidade associada a cada um desses valores:
{p(x1), p(x2), . . .}

Podemos representar as duas listas numa tabela:
Valores posśıveis x1 x2 x3 . . .

Probab assoc p(x1) p(x2) p(x3) . . .

A lista de probabilidades deve ter valores ≥ 0 e eles devem somar 1.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 10 / 1



Variáveis aleatórias Discretas

Gráfico das probabilidades associadas

Figura: Função P(X = xi ) onde xi é um dos valores posśıveis de X . Também
chamada de função massa de probabilidade. X tem valores posśıveis {0, 1, 2, 3}
com probabilidades {0.5, 0.3, 0.1, 0.1}, respectivamente.
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Variáveis aleatórias Discretas

V.A.s discretas - exemplos

Uma coluna da tabela de dados indica o sexo de um indiv́ıduo ω
escolhido de uma população.

Arbitrariamente, associamos o valor 0 a MASC e 1 a FEM.

Isto é, X (ω) = 0 se ω for do sexo masculino e X (ω) = 1 se ω for do
sexo feminino.

Para cada indiv́ıduo ω olhamos apenas seu sexo, representado por
X (ω) ∈ {0, 1}.
Para acabar a especificação dessa v.a. discreta, precisamos especificar
a lista de probabilidades associada.

Digamos, P(X = 0) = p(0) = 0.35 e
P(X = 1) = p(1) = 1− 0.35 = 0.65.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 12 / 1



Variáveis aleatórias Discretas

V.A.s discretas - exemplos

Num posto de gasolina, monitora-se a cada 5 minutos durante as
horas de pico o uso de suas 4 bombas de abastecimento de véıculos.

De 5 em 5 minutos, anota-se o número de bombas em uso.

Os itens ou instâncias são os diferentes instantes de tempo.

Os dados são numéricos discretos e,em cada instante, podem ser 0, 1,
2, 3 ou 4.

Seja ω um dos instantes de tempo.

X (ω) é o número de bombas em uso.

É preciso também especificar as probabilidades de cada valor posśıvel
para X . Por exemplo:

Valores posśıveis 0 1 2 3 4
Probab assoc p(0) = 0.32 p(1) = 0.42 p(2) = 0.21 p(3) = 0.04 p(4) = 0.01
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Variáveis aleatórias Discretas

V.A.s discretas - exemplos

Numa rede social, escolha n usuários-vértices ao acaso e conte o
número de arestas incidentes de cada um deles. (seguidores).

Os itens ou instâncias são os diferentes usuários

Os dados são numéricos discretos e podem ser 0, 1, 2, 3, . . . sem um
limite máximo natural.

Seja ω um dos usuários e X (ω) o seu número de seguidores.

X (ω) ∈ {0, 1, 2, 3, . . .} = N.

Especificando as probabilidades (sem explicar de onde tiramos isto):
Val. pos. k 0 1 2 3 . . . 223 . . .
Probab p(k) 0.001 0.002 0.002 0.04 . . . 0.002 . . .

A lista (infinita) de probabilidades deve ter valores ≥ 0 e eles devem
somar 1. Isto é, 1 =

∑∞
k=0 p(k).
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Variáveis aleatórias Discretas

V.A.s discretas - exemplos

Pergunta-se a uma amostra de indiv́ıduos (as instâncias) qual é a sua
religião: católica, protestante, sem religião, outras religiões cristãs,
esṕırita, outras.

São seis categorias posśıveis para cada resposta, claramente não
numéricas e sem ordenação.

Vamos representar esta coluna de dados com uma variável aleatória
X .

Como X é uma função de Ω para R, arbitrariamente nós vamos
associar um número a cada categoria da resposta.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 15 / 1



Variáveis aleatórias Discretas

V.A.s discretas - exemplos

Seja X (ω) uma variável aleatória que, para cada indiv́ıduo ω da
população, associe um número da seguinte forma:

X (ω) =



1, se ω é católico
2, se ω é protestante
3, se ω não tem religião
4, se ω é de outras religiões cristãs
5, se ω é esṕırita
6, se ω é de alguma outra religião

A associação entre as categorias e os números correspondentes
écompletamente arbitrária.

Qualquer outra associação seria válida.
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Variáveis aleatórias Discretas

V.A.s discretas - exemplos

Por exemplo, podeŕıamos ter definido:

X (ω) =



−2, se ω é católico
−1, se ω é protestante
0, se ω não tem religião
1, se ω é de outras religiões cristãs
5, se ω é esṕırita
999, se ω é de alguma outra religião

Na prática, com estes atributos não-numéricos, os valores da variável
aleatória serão usados apenas como um rótulo (numérico) para a
categoria.
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Variáveis aleatórias Discretas

V.A.s discretas - exemplos

Vamos voltar a especificação anterior,em que X (ω) ∈ {1, . . . , 6}.
Para completar a especificação da v.a., precisamos também declarar
as probabilidades associadas com cada categoria de religião (ou cada
valor posśıvel da v.a.).

Por exemplo, usando os dados do IBGE, na década de 80, ao escolher
um indiv́ıduo ao acaso da população brasileira, temos as seguintes
probabilidades:

Val. pos. k 1 (cat) 2 (pro) 3 (s.rel) 4 (out. cr.) 5 (esp) 6 (out)
Probab p(k) 0.75 0.15 0.07 0.01 0.01 0.01
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Variáveis aleatórias Discretas

V.A. - Ω e R

A atribuição de probabilidade a cada valor posśıvel de uma v.a. X é
consequência das probabilidades definidas no espaço de probabilidade
(Ω,A,P).

Por exemplo, lançe uma moeda 6 vezes, com C = cara e C̃ = coroa.

Ω = {CCCCCC , C̃CCCCC ,CC̃CCCC , . . . , C̃ C̃ C̃ C̃ C̃ C̃}
Ω possui 36 elementos e P(ω) = 1/36.

Se não estivermos interessados na ordem em que os resultados
aparecem, mas apenas no número total de caras, podemos focar
apenas numa versão reduzida do espaço de probabilidade.

Definimos X (ω) como sendo o número de C ’s em ω

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 19 / 1
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Variáveis aleatórias Discretas

V.A. - Ω e R
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Variáveis aleatórias Discretas

V.A. - Ω e R

Formalmente,

X : Ω → R
ω → X (ω) = número de C ’s em ω

Portanto, X (ω) ∈ {0, 1, . . . , 6} ⊂ R.

Estes são os valores posśıveis da v.a. X .

Cada um desses valores posśıveis possui uma probabilidade que é
induzida pelo espaço de probabilidade original (Ω,A,P).
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Variáveis aleatórias Discretas

V.A. - Ω e R

Uma proposição acerca do valor em R de uma v.a. determina um
evento A em Ω. NOTAÇÃO:

[X = 6] = {ω ∈ Ω : X (ω) = 6} = {ω = (CCCCCC)}

[X = 5] = {ω ∈ Ω : X (ω) = 5} = {(C̃CCCCC), (CC̃CCCC), . . . , (CCCCCC̃)}

[X = 1] = {ω ∈ Ω : X (ω) = 1} = {(CC̃C̃ C̃ C̃ C̃), (C̃CC̃ C̃ C̃ C̃), . . . , (C̃ C̃ C̃ C̃ C̃C)}

[X = 0] = {ω ∈ Ω : X (ω) = 0} = {ω = (C̃ C̃ C̃ C̃ C̃ C̃)}

Mais notação:
[X ≥ 5] = {ω ∈ Ω : X (ω) ≥ 5} = {(CCCCCC), (C̃CCCCC), (CC̃CCCC), . . . , (CCCCCC̃)}

ou então
[X ≤ 1] = {ω ∈ Ω : X (ω) ≤ 1} = {(C̃ C̃ C̃ C̃ C̃ C̃), (CC̃C̃ C̃ C̃ C̃), (C̃CC̃ C̃ C̃ C̃), . . . , (C̃ C̃ C̃ C̃ C̃C)}

Eventos podem ser manipulados com união, interseção etc.
[X ≤ 5 AND X > 4] = {ω ∈ Ω : X (ω) ≤ 5}∩{ω ∈ Ω : X (ω) > 4} = {(C̃CCCCC), (CC̃CCCC), . . . , (CCCCCC̃)}
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Variáveis aleatórias Discretas
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Variáveis aleatórias Discretas

V.A. - Ω e R

Uma proposição acerca do valor em R de uma v.a. determina um
evento A em Ω. NOTAÇÃO:
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Função acumulada

Função distribuição acumulada de probabilidade

A função distribuição acumulada de probabilidade da v.a. X é a
função matemática F(x) definida para todo x ∈ R e dada por

F : R → [0, 1]

x → F(x) = P(X ≤ x)

Esta função é simples e não possui NENHUMA informação adicional
alé m daquela representada na lista de probabilidades.

No entanto, ela é muito importante tanto na teoria quanto na prática
de análise de dados.

Por isto, vamos estudá-la com cuidado.

Vamos começar calculando F(x) num caso particular.
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Função acumulada

Exemplo de F(x)

Suponha que temos uma v.a. aleatória discreta X com valores
posśıveis {0, 1, 2, 3} e probabilidades associadas p(k) = P(X = k)
dadas por

Valores posśıveis k 1 2 3 4

Probab assoc p(k) 0.1 0.4 0.2 0.3

Vamos calcular F(x) = P(X ≤ x) para alguns dos valores de x :

F(−1) = P(X ≤ −1) = 0 pois não existe nenhuma chance de X ser
menor ou igual a -1. O menor valor que X pode assumir é 1.
Pela razão acima, para qualquer x < 1, teremos F(x) = P(X ≤ x) = 0.
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Função acumulada

Exemplo de F(x)

Figura: F(x) = P(X ≤ x) para x < 1.
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Função acumulada

Exemplo de F(x)

Exatamente no ponto x = 1, a função F(x) dá um salto.

De fato, o evento [X ≤ 1] é idêntico a evento [X = 1] já que não
existe nenhum ω tal que X (ω) < 1.

Dessa forma, temos

F(1) = P(X ≤ 1) = P(X = 1) = 0.1

Assim, a função F(x) salta de 0 para x < 1 para 0.1 no ponto x = 1.

Para x = 1.5 temos

F(1.5) = P(X ≤ 1.5) = P(X = 1) = 0.1

Na verdade, para qualquer x tal que 1 < x < 2 temos
F(x) = P(X = 1) = 0.1
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Função acumulada

Exemplo de F(x)

Figura: F(x) = P(X ≤ x) para x < 2.
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Função acumulada

Exemplo de F(x)

Exatamente no ponto x = 2, a função F(x) dá mais um salto.

O evento [X ≤ 2] é idêntico a união de dois eventos disjuntos

[X = 1 ou X = 2] = [X = 1] ∪ [X = 2]

Eles são disjuntos pois, pela definição de uma função matemática,
não podemos ter um elemento ω ∈ Ω tal que X (ω) = 1 e, ao mesmo
tempo, X (ω) = 2.

Assim, temos

F(2) = P(X ≤ 2) = P(X = 1)+P(X = 2) = p(1)+p(2) = 0.1+0.4 = 0.5

Veja que a altura do salto é igual a p(2), a probabilidade
p(2) = P(X = 2).

Para qualquer x tal que 2 < x < 3 temos

F(x) = P(X ≤ x) = P(X = 1) + P(X = 2) = p(1) + p(2) = 0.5
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Função acumulada

Exemplo de F(x)

Figura: F(x) = P(X ≤ x) para x < 3.
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Função acumulada

Exemplo de F(x)

Continuando desta forma, vemos que F(x) vai dar saltos em x = 3 e
e x = 4.

A altura do salto em x = k é igual à probabilidade p(k) = P(X = k).

Quando escolhermos um valor x maior que todos os pontos posśıveis
de X teremos F(x) = 1.

Por exemplo, se x = 4.5, claramente teremos

F(4.5) = P(X ≤ 4.5) = 1

pois, com certeza, teremos X ≤ 4.5 já que o maior valor posśıvel de
X é 4.

O gráfico completo de F(x) é mostrado a seguir.
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Função acumulada

Exemplo de F(x)

Figura: F(x) = P(X ≤ x).
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Função acumulada

Caso geral de F(x)

Suponha que temos uma v.a. aleatória discreta X com valores
posśıveis xi e probabilidades associadas p(xi ) = P(X = xi ) dadas por

Valores posśıveis x1 x2 x3 . . .

Probab assoc p(x1) p(x2) p(x3) . . .

A função distribuição acumulada de probabilidade é definida como:

F(x) = P(X ≤ x) =
∑
xi≤x

p(xi )

Isto é, F(x) é o valor acumulado (a soma) das probabilidades p(xi )
dos pontos posśıveis xi que são menores ou iguais a x .
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Valor Esperado

Esperança matemática E(X )

O valor esperado de uma v.a. discreta é uma soma dos seus valores
posśıveis ponderados pelas suas probabilidades respectivas.

Suponha que temos uma v.a. aleatória discreta X com valores
posśıveis xi e probabilidades associadas p(xi ) = P(X = xi ) dadas por

Valores posśıveis x1 x2 x3 . . .

Probab assoc p(x1) p(x2) p(x3) . . .

Então, por definição, temos

E(X ) =
∑
i

xip(xi )
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Valor Esperado

E(X )

E(X ) é um valor teórico, matemático, associado com a distribuição
de probabilidade da v.a X .

Não é necessário nenhum dado estat́ıstico para calcular E(X ).

Bastam as duas listas, a de valores posśıveis e a de probabilidades
associadas.

E(X ) não precisa ser igual a nenhum dos valores posśıveis xi da v.a.
X .

Qual o significado emṕırico deste número E(X )? Como interpretá-lo
na prática?
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Valor Esperado

Interpretando E(X )

Suponha uma v.a. discreta X com valores posśıveis xi e
probabilidades associadas p(xi ) = P(X = xi ).

Temos uma enorme amostra de N instâncias independentes de X .

Nesta amostra, xi apareceu Ni vezes.

Podemos estimar as probabilidades pela frequência relativa da
ocorrência de xi na amostra:

p(xi ) = P(X = xi ) ≈
Ni

N

Assim,

E(X ) =
∑
i

xip(xi ) ≈
∑
i

xi
Ni

N
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Valor Esperado

Interpretando E(X )

Encontramos

E(X ) =
∑
i

xip(xi ) ≈
∑
i

xi
Ni

N

Como xi apareceu Ni vezes na amostra, isto é o mesmo que somar
todos os N valores da amostra e dividir por N.

Isto é, se a amostra é grande, devemos ter o número teórico E(X )
aproximadamante igual à média aritmética dos N elementos da
amostra.
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Valor Esperado

E(X )

Vamos reforçar: E(X ) é um número real, uma constante, associada
com a duas listas (valores posśıveis e probabilidades associadas) que
constituem uma v.a.

E(X ) não é, ela mesma, uma v.a.

E(X ) é apenas um resumo teórico da distribuição de X (ou um
resumo das duas listas).

É aproximadamente igual à média aritmética dos valores de uma
grande amostra de instâncias de X .
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Principais Distribuições Discretas

Distribuições Especiais

Existem infinitas distribuições de probabilidade.

Dado um conjunto de valores posśıveis, qualquer atribuição de
números não-negativos que somem constiuem uma distribuição de
probabilidade.

Entretanto, algumas poucas atribuições recebem nomes especiais.

Estas distribuições aparecem com frequência na análise de dados e
são matematicamente tratáveis.

Podemos pensar no analista de dados abordando um problema prático
com um saco de distribuições de probabilidade bem conhecidas.

Ele gostaria de não precisar inventar uma nova distribuição mas sim,
de usar uma daquelas que já estão no seu embornal.

Vamos ver algumas das mais populares agora.
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Bernoulli

Distribuição de Bernoulli

É a distribuição mais simples: dois resultados posśıveis apenas.

X (ω) só assume dois valores posśıveis: 0 ou 1.

Isto é, X (ω) ∈ {0, 1} para todo ω ∈ Ω

Definimos duas probabilidades

p(0) = P(X = 0) = P(ω ∈ Ω : X (ω) = 0)
p(1) = P(X = 1) = P(ω ∈ Ω : X (ω) = 1)

Temos p(0) + p(1) = 1 o que implica que p(1) = 1− p(0).

É comum escrever p(1) = p e p(0) = q.
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Bernoulli

E(X ) no caso Bernoulli

Se p(1) = p e p(0) = q, temos

E(X ) = 1× p + 0× (1− p) = p

Observe que E(X ) = p não é igual a nenhum valor posśıvel de X , que
são apenas 0 ou 1 e tipicamente 0 < p < 1.

Se tivermos uma grande amostra de instâncias de X , cada uma delas
igual a 0 ou 1, devemos ter E(X ) = p aproximadamente igual a
média aritmética dos valores 0 ou 1 observados.

Mas uma média aritmética deste tipo é apenas a proporção de 1’s na
amostra.

Isto é, como obviamente esperado, devemos ter

E(X ) ≈ p̂ =
1

N

∑
i

xi
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Binomial

Distribuição Binomial

n repetições independentes de um experimento binário (de Bernoulli):
sucesso ou fracasso.

Probabilidade de sucesso é constante e igual a θ ∈ [0, 1].

X conta o número total de sucessos: X ∼ Bin(n, θ)

Lista de valores posśıveis: 0, 1, 2, . . . , n

Lista de probabilidades associadas: (1− θ)n, nθ(1− θ), . . . , θn

Fórmula geral:

P(X = k) =
n!

k!(n − k)!
θk(1− θ)n−k

Temos E(X ) = nθ e DP =
√
V(X ) =

√
nθ(1− θ)

A forma da distribuição binomial depende de θ e de n
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Binomial

Bin(n, θ) depende de n e θ

Distribuição Binomial, θ = 1/2, variando n
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Binomial

Bin(n, θ) depende de n e θ

Distribuição Binomial, θ = 0.1, variando n
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Binomial

Testes de soros ou vacinas

Doença em gado com incidência de 25%.

Testando uma vacina, recentemente descoberta: injetamos em n
animais sadios.

Como avaliar o resultado? Para cada animal, sucesso = sadio com
probab 0.75

Para uma vacina absolutamente inócua, a probab de que k dos n
animais não sejam contaminados é
P(X = k) = n!/(k!(n − k)!)0.75k0.25n−k

Para k = n = 10, essa probab vale P(X = 10) = 0.7510 = 0.056.

Para k = n = 12, ela vale somente P(X = 12) = 0.7512 = 0.032.

Assim,
se num total de 10 ou 12 animais, nenhum é contaminado,
teremos uma forte indicação de que o soro teve algum efeito embora
esse resultado não se constitua em prova conclusiva.
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Binomial

Testes de vacinas

Vimos que, com n = 10, tivemos P(X = 10) = 0.056.

Sem a vacina, a probabilidade de que dentre 17 animais, no máximo
um deles fique infectado é igual a P(X ≤ 1) = P(X = 0) + P(X =
1) = 0.7517 + 17× 0.7516 × 0.25 = 0.0501.

Portanto, a evidência a favor da vacina é mais forte quando há 1
contaminado em 17 do que quando há 0 em 10!

Para n = 23, temos P(X ≤ 2) = 0.0492.

Assim, 2 ou menos infectados em 23 é, outra vez, uma evidência mais
forte em favor da vacina, do que 1 em 17 ou 0 em 10.
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Binomial

Binomial em redes sociais

Modelo de Erdös-Rényi para grafos sociais.

n vértices formando n(n − 1)/2 pares de posśıveis arestas
não-direcionadas.

Para cada PAR de vértices, jogue uma “moeda”: se cara, conecte por
aresta.

P(cara) = θ

Moeda é lançada independentemente

Fixe um vértice qualquer e seja Y o número de conexões.

Então Y ∼ Bin(n − 1, θ).

Veja que E(Y ) = (n − 1)θ ≈ nθ.
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Binomial

Um exemplo de Erdös-Rényi

Um grafo gerado pelo modelo binomial de Erdós and Rényi com
θ = 0.01 e n = 100.
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Binomial

Alguns resultados

Apenas como curiosidade (nosso curso não é sobre redes sociais),
Erdös e Rényi provaram vários resultados matemáticos sobre os grafos
aleatórios supondo que n→∞
Considere nθ ≈ E(Y ), o número esperado de vizinhos de um vértice
qualquer.

Se nθ > 1: o grafo terá um componente gigante da ordem de n e o
segundo maior componente será ≤ O(log(n))

Se nθ < 1: o grafo gerado quase certamente não terá um
componente conectado maior que O(log(n))

Se nθ > (1 + ε) log(n): o grafo quase certamente será completamente
conectado

Se nθ < (1− ε) log(n): o grafo quase certamente terá vértices isolados

Etc, etc, etc...
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Binomial

Grafo segue o modelo de Erdös-Rényi?

Como saber isto?

O que podemos fazer?

Uma maneira óbvia é comparar a distribuição do número de vizinhos
realmente observada no grafo real com a distribuição ESPERADA sob
o modelo de Erdös-Rényi.

Como medir a distância entre o que observamos e o que esperamos?

Temos uma resposta genérica: o teste qui-quadrado (daqui a pouco).
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Multinomial

Distribuição Multinomial

A multinomial é uma generalização da binomial.

A binomial conta o número de sucessos em n repetições de um
experimento binário.

Em cada repetição temos duas categorias para classificar o resultado:
sucesso ou fracasso.

Quando tivermos mais de duas categorias em cada repetição, teremos
a multinomial.

Na multinomial, também repetimos um experimento n
independentemente.

Entretanto, em cada experimento existem k possibilidades e não
apenas duas, como na binomial.

O resultado do experimento é contar quantas vezes cada uma das k
possibilidades apareceu nas n repetições.
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Multinomial

Multinomial: o exemplo canônico

Imagine que um dado desbalanceado é lançado n vezes.

Em cada repetição ocorre uma “categoria”: 1, 2, 3, 4, 5 ou 6.

As probabilidades de cada categoria são: θ1, θ2, . . . , θ6.

Ao fim dos n lançamentos teremos:

N1 = no. lanç. na cat. 1

N2 = no. lanç. na cat. 2
... =

...

N6 = no. lanç. na cat. 6

Resultado é um VETOR aleatório multinomial com 6 posições
contando o número de ocorrência de cada categoria. NOTAÇÃO:

(N1,N2, . . . ,N6) ∼M (n; θ1, . . . , θ6)
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Multinomial

Binomial como Multinomial

A binomial pode ser vista como um caso simples da multinomial.

Seja X ∼ Bin(n, θ), onde X é o número de sucessos em n repetições
de um experimento binário.

De forma bastante redundante, podeŕıamos registrar o fenômeno
aleatório na forma do número de sucesso e do número de fracassos:
(X , n − X ).

Este vetor é uma multinomial com duas categorias.

Na nossa notação:

(X , n − X ) ∼M(n; θ, 1− θ)
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Multinomial

Multinomial: suporte

Voltando ao caso do dado desbalanceado lançado n vezes:

N = (N1,N2, . . . ,N6) ∼M(n; θ1, . . . , θ6)

Qual o suporte deste vetor aleatório N?

Para qualquer sequência de lançamentos, o resultado N será um vetor
(n1, . . . , n6) de inteiros ≥ 0 com n1 + . . . n6 = n.

Assim, existe um número finito (mas bem grande) de valores posśıveis
para N.
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Multinomial

Multinomial: probabilidades associadas

Quais as probabilidades associadas com os elementos do suporte?

Vamos calcular um caso particular antes de dar a fórmula geral.

Usando n = 8 lançmentos do dado, vamos calcular a probabilidade

P(N = (2, 0, 2, 1, 0, 3))

Isto é, a chance de rolar o dado 8 vezes e terminar tendo a face 1
duas vezes, a face 2 nenhuma vez, a face 3 duas vezes, a face 4 uma
vez, a face 5 zero vezes e a face 6 três vezes.

Existem várias sequências ω de 8 lançamentos que levam ao resultado
acima.
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Multinomial

Multinomial: probabilidades associadas

Por exemplo, se os 8 lançamentos forem

ω = (3, 1, 6, 6, 1, 4, 6, 3)

teremos

N(ω) = (N1(ω), . . . ,N6(ω)) = (2, 0, 2, 1, 0, 3)

Esta não a única sequência com estas contagens mas vamos nos
concentrar nela(por hora).

Qual é a probabilidade P(ω) desta sequência de 8 lançamentos?
Como os lançamentos são independentes teremos:

P (ω = (3, 1, 6, 6, 1, 4, 6, 3)) = P (sair 3 no 1o. E sair 1 no 2o. E ... sair 3 no 8o.)

= P (sair 3 no 1o.) P (sair 1 no 2o.) . . . P ( sair 3 no 8o. )

= θ3 θ1 θ6 θ6 θ1 θ4 θ6 θ3

= θ
2
1 θ

0
2 θ

2
3 θ

1
4 θ

0
5 θ

3
6
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Multinomial

Multinomial: probabilidade mais geral

Generalizando, se a sequência ω de n lançamentos tiver

n1 aparições da face 1
n2 aparições da face 2
...
n6 aparições da face 6

teremos
P (ω) = θn1

1 θn2
2 θn3

3 θn4
4 θn5

5 θn6
6
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Multinomial

Multinomial: probabilidade mais geral

Voltando aos n = 8 lançamentos do dado, vamos calcular a
probabilidade

P(N = (2, 0, 2, 1, 0, 3))

Seja A o evento formado portodos os ω (seq. de n = 8 lanc.) tais que
existem 2 1’s, 0 2’s, 2 3’s, 0 4’s, e 3 6’s.

Como calculamos antes, todo ω ∈ A terá a mesma probabilidade

P (ω) = θ2
1 θ0

2 θ2
3 θ1

4 θ0
5 θ3

6

Assim,

P(N = (2, 0, 2, 1, 0, 3)) = P(A) =
∑
ω∈A

P (ω) = C×θ2
1 θ0

2 θ2
3 θ1

4 θ0
5 θ3

6

onde C é o número de sequências de tamanho 8 onde colocamos um
elemento de {1, 2, . . . , 6} em cada posição e em que temos
exatamente 2 1’s, 0 2’s, . . ., 3 6’s.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 56 / 1



Multinomial

Multinomial: probabilidade mais geral

Este número de possibilidades é igual a(
8

2, 0, 2, 1, 0, 3

)
=

8!

2!0!2!1!0!3!
= 1680

É o número de permutações distintas do vetor

ω = (3, 1, 6, 6, 1, 4, 6, 3)

Generalizando para qualquer n e k catgorias, se

N = (N1,N2, . . . ,Nk) ∼M(n; θ1, . . . , θk)

então

P (N = (n1, n2, . . . , nk)) =
n!

n1!n2! . . . nk !
θn1

1 θn2
2 . . . θnkk
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Multinomial

Exemplos de Multinomial

Suponha que uma amostra de n = 22343 indiv́ıduos escolhidos
independentemente da população brasileira e classificados em k = 6
categorias de religião.

Categorias i Católica Protestante Sem Relig Esṕırita Outras Crist. Outras
θi 0.75 0.15 0.07 0.01 0.01 0.01
Ni 16692 3398 1568 241 221 223

As contagens aleatórias do número de pessoas em cada categoria
seguem uma distribuição multinomial

N = (N1,N2, . . . ,N6) ∼M(22343; (0.75, 0.15, 0.07, 0.01, 0.01, 0.01))
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Multinomial

Exemplos de Multinomial

Suponha que uma amostra de n = 538 indiv́ıduos escolhidos
independentemente dentre pacientes com linfoma de Hodgkins (um
tipo de câncer do sistema linfático) são classificados em 12 categorias
de acordo com sua resposta a um certo tratamento e seu tipo
histológico:

Resposta
Tipo Histológico Positiva Parcial Sem Resposta Total
LP 74 18 12 104
NS 68 16 12 96
MC 154 54 58 266
LD 18 10 44 72

Total 314 98 126 538

As contagens aleatórias do número de indiv́ıduos em cada categoria
seguem uma distribuição multinomial

N = (N1,N2, . . . ,N12) ∼M(538; (θ1, . . . , θ12)
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Multinomial e o modelo Bag of Words

Classificação de textos

Imagine uma grande coleção de textos (chamada de corpus), tais
como artigos de jornal, em que cada documento é classificado em um
de 3 tópicos: esporte, poĺıtica ou outros.

Esta coleção é classificada manualmente exigindo uma grande
quantidade de homem-hora de trabalho.

O objetivo agora é criar uma regra de classificação automática em
uma dessas 3 categorias de outros textos não considerados, tais como
textos a serem escritos no futuro.

Uma maneira de fazer isto usa a distibuição multinomial para modelar
os textos.
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Multinomial e o modelo Bag of Words

Textos como sequência de palavras

Considere um dos tópicos. Por exemplo, esporte.

Vamos pensar num modelo generativo de um texto de esporte.

O texto será gerado como uma sequência de palavras escolhidas ao
acaso de uma lista de palavras.

A escolha das palavras é feita independentemente uma das outras.

Ignorando alguns detalhes práticos, vamos chamar uma lista ordenada
de D palavras distintas da ĺıngua portuguesa de vocabulário.

Associamos uma probabilidade θi à palavra i do vocabulário.
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Multinomial e o modelo Bag of Words

Um dado com N faces

Podemos imaginar um “dado” com D faces, cada face representando
uma das palavras distintas do vocabulário.

A chance de escolher a palavra i é a probabilidade θi do “dado”
produzir a face i .

palavra-face 1 2 . . . D Soma
probabilidades θ1 θ2 . . . θD 1

O texto é gerado rolando o “dado” sucessivamente e
independentemente.

Assim, um texto de esportes poderia ser gerado a partir desse modelo
produzindo, por exemplo, gol, Neymar, jogo, gol, cheio, gol, etc.
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Multinomial e o modelo Bag of Words

Modelo não é realista

Obviamente, é muito pequena a chance deste modelo generativo
gerar um texto minimamente similar a um texto real de jornal.

A sequência de palavras a ser gerada dificilmente terá a estrutura
sintática do português ou um sentido semântico.

É surpreendente que seja útil um modelo tão simples e tão
flagrantemente falso como modelo para geração de textos da
realidade.

A lista de probabilidades vai variar de tópico para tópico.

A lista de D palavras distintas (o vocabulário) é a mesma para todos
os tópicos.

Entretanto, cada tópico vai atribuir probabilidades diferentemente.

No tópico esporte, as palavras gol, jogador, rede terão probabilidades
θi maiores que sob os tópicos poĺıtica e outros.
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Multinomial e o modelo Bag of Words

Obtendo as probabilidades de cada tópico

As probabilidades das palavras de cada tópico são obtidas a partir das
frequências simples calculadas na coleção manualmente rotulada.

Tome todos os documentos da coleção que foram classificados como
esporte.

Coloque todas as palavras usadas no texto num saco de palavras
(modelo bag of words).

Se a palavra jogo aparecer 523 vezes ao longo dos textos, 523
palavras gol serão colocadas no saco de palavras.

Conte quantas vezes cada uma das D palavras do vocabulário aparece
no saco de palavras e divida pelo númerototal de palavras dentro do
saco de maneira a obter proporções que somam 1.

Por exemplo, se a palavra gol aparece 1.5% das vezes dentro do saco
esporte então θgol = 0.015.

Isto é repetido para cada tópico criando um saco de palavras diferente
e portanto diferentes probabilidades θi .
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Multinomial e o modelo Bag of Words

Evitando θi = 0

Geralmente, ao fim desse pocesso de estimação de probabilidades,
muitas palavras do vocabulário terão θi = 0.

A razão é que, por exemplo, a palavra inefável pode não ter aparecido
nem uma única vez na coleção esporte.

Isto indicaria que esta palavra nunca poderia aparecer no futuro num
texto de esporte.

Queremos evitar esta impossibilidade futura da palavra aparecer num
texto de esporte.

A impossibilidade é devido a θi = 0 nestas palavras e é criada pela
flutuação estat́ıstica em palavras com probabilidades pequenas.

Uma coleção de textos de esporte, mesmo que bem grande, terá zero
ocorrências de muitas palavras que, embora improváveis num texto de
esporte, não são imposśıveis.
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Uma solução

Uma solução simples é colocar uma cópia de cada uma das D
palavras distintas do dicionário no saco de palavras, além das próprias
palavras vinda da coleção de textos de esporte.

Suponha que existam D palavras distintas e a coleção de textos tem
um total de M palavras.

A palavra i aparece mi vezes na coleção, onde mi pode zer igual a
zero.

Ao invés de estimar θi pela fração mi/M, use o estimador
θ̂i = (mi + 1)/(M + D).

Este estimador é chamado de estimador de Laplace.

Veja que, se mi = 0, teremos θ̂i = 1/(M + D), um valor bem
pequeno mas estritamente maior que zero.
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As probabilidades de cada tópico

Suponha que as probabilidades das D palavras distintas do
vocabulário foram estimadas usando o estimador de Laplace em cada
coleção de textos, de esporte, de poĺıtica, e outros.

O resultado está numa tabela:
palavra 1 2 . . . D Soma

θ1i , esporte θ11 θ12 . . . θ1D 1
θ2i , poĺıtica θ21 θ22 . . . θ2D 1
θ3i , outros θ31 θ32 . . . θ3D 1

Um novo texto aparece e desejamos classificá-lo automaticamente
numa das três categorias.

Usamos a distribuição multinomial para isto.
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Classificando um novo texto

O novo texto tem M palavras ao todo, algumas repetidas várias vezes
ao longo do texto:

Novo texto = (x1, x2, x3, . . . , xM)

one xj é a palavra j do novo texto.

Usando o modelo bag of words, qual a probabilidade deste novo texto
ter sido escrito usando as probabilidades θ1i do tópico esporte?

Seja Ni o número aleatório de vezes que a palavra i do dicionário
vaiaparecer no novo texto.

Se o texto é de esportes e o modelo bag of words for válido, temos
uma multinomial para estas contagens:

N = (N1,N2, . . . ,ND) ∼M (M; (θ1, . . . , θD))
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A probabilidade do texto

Suponha que as contagens efetivamente observadas no novo texto
foram os inteiros n1, n2, etc.

Calculamos agora a probabilidade de observarmos este novo texto
DADO QUE O TÓPICO É ESPORTE:

P
(

N = (n1, n2, . . . , nD)| esporte

)
=

n!

n1!n2! . . . nD !
θn1

11 θn2
12 . . . θ

nD
1D

Fazemos o mesmo cálculo para os outros dois tópicos:

P (N = (n1, n2, . . . , nD)| poĺıtica ) =
n!

n1!n2! . . . nD !
θn1

21 θn2
22 . . . θ

nD
2D

e

P (N = (n1, n2, . . . , nD)| outros ) =
n!

n1!n2! . . . nD !
θn1

31 θn2
32 . . . θ

nD
3D

Observe que a constante multinomial envolvendo os fatoriais é a
mesma nos três casos.
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Evitando calcular a constante

Podemos fixar uma das categorias-tópico como referência e comparar
as probabilidades relativamente a esta categoria-base.

Por exemplo, suponha que fixemos a categoria esporte e calculamos
duas razões.

A primeira delas:

rp.e =
P (N = (n1, n2, . . . , nD)| poĺıtica )

P (N = (n1, n2, . . . , nD)| esporte )

=

(
θ21

θ11

)n1

. . .

(
θ2D

θ1D

)nD

=
D∏
i=1

(
θ2i

θ1i

)ni

Note que a constante desapareceu.

Note também que, se a palavra i não aparecer no novo texto (e
portanto ni = 0), então o fator (θ2i/θ1i )

ni é igual a 1 e não precisa ser
calculado.
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Usando as razões

Calculamos também a segunda razão:

ro.e =

P
(

N = (n1, n2, . . . , nD)| outro

)
P (N = (n1, n2, . . . , nD)| esporte )

Suponha que rp.e seja maior que 1. Por exemplo rp.e = 4.3.

Isto significa que a chance de ter estas contagens n1, n2, etc. (isto é,
ter este novo texto) quando o tópico é poĺıtica é 4.3 vezes maior que
a mesma chance quando o tópico é esporte:

P (N = (n1, n2, . . . , nD)| poĺıtica ) = 4.3 P (N = (n1, n2, . . . , nD)| esporte )

Se rp.e for menor que 1, o racioćınio é o oposto. Por exemplo,
rp.e = 0.1, a probabilidade do texto sob o tópico poĺıtica é 10 vezes
menor que a mesma probabilidade sob o tópico esporte.
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Tomando decisões

Uma regra de decisão então pode ser a seguinte:

Caso max{rp.e , ro.e} < 1, atribua o novo texto à categoria de referência
esporte.
Caso max{rp.e , ro.e} > 1, atribua o novo texto à categoria-numerador
que leva ao máximo das razões.
Caso max{rp.e , ro.e} = 1, não existe evidência suficiente no novo texto
para alocar a uma das categorias. Pode-se escolher ao acaso uma das
categorias que compõem uma razões que é igual a 1.

Esta regra de decisão funciona bem em vários casos mas em algumas
situações ela pode (e deve) ser melhorada.

A questão está relacionada à diferença entre P(A|B) e P(B|A).
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Qual probabilidade queremos?

Nossa regra de decisão é baseada na comparação de probabilidades
como

P (N = (n1, n2, . . . , nD)| esporte )

Mas o que realmente gostaŕıamos de saber é o valor da probabilidade
inversa:

P ( esporte |N = (n1, n2, . . . , nD))

A primeira probabilidade calcula a chance de ter o texto novo DADO
que ele foi escrito na categoria esporte.

A segunda probabilidade calcula a chance de que o texto seja da
categoria esporte DADO que ele possui a configuração de palavras
observada.

Em geral, estas probabilidades não são iguais e, na verdade, podem
ser bem diferentes.
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Calculando a probabilidade inversa

Podemos usar a regra de Bayes para inverter as probabilidades de
interesse.
Por exemplo,

P
(

esporte
∣∣∣N = (n1, n2, . . . , nD)

)
=

P
(

N = (n1, n2, . . . , nD)
∣∣∣ esporte

)
P ( esporte )

P (N = (n1, n2, . . . , nD))

e

P
(

poĺıtica
∣∣∣N = (n1, n2, . . . , nD)

)
=

P (N = (n1, n2, . . . , nD)| poĺıtica ) P ( poĺıtica )

P (N = (n1, n2, . . . , nD))

Observe que os denominadores do lado direito das duas expressões são
idênticos e vão desaparecer se tomarmos as razões das probabilidades:

P ( poĺıtica |N = (n1, n2, . . . , nD))

P ( esporte |N = (n1, n2, . . . , nD))
=

P (N = (n1, n2, . . . , nD)| poĺıtica ) P ( poĺıtica )

P (N = (n1, n2, . . . , nD)| esporte ) P ( esporte )

= rp.e
P ( poĺıtica )

P ( esporte )
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Decisão a priori

Repetindo:

P ( poĺıtica |N = (n1, n2, . . . , nD))

P ( esporte |N = (n1, n2, . . . , nD))
= rp.e

P ( poĺıtica )

P ( esporte )

Conclúımos que a decisão deve ser baseada na razão rp.e calculada
anteriormente MAS corrigida pelo produto da razão
P ( poĺıtica ) /P ( esporte )

Esta razão calcula quão frequente é a aparia̧ão de um texto de
poĺıtica em relação à frequência de um texto de esporte.

Por exemplo, suponha que textos de esporte sejam 100 vezes mais
frequentes que textos de poĺıtica de forma que
P ( poĺıtica ) /P ( esporte ) = 1

100 .
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Atualizando a priori

A priori, sem olhar o novo texto, sabemos que existem muito mais
artigos de esporte que de poĺıtica.

Uma regra de decisão razoável, que decida a priori, sem nem olhar o
texto novo, é alocar qualquer texto que surja à categoria esporte.

De posse do novo texto, olhando a configuração das palavras,
podemos mudar a nossa regra de decisão a priori alocando o texto
novo a poĺıtica.

Mas esporte é tão frequente que vamos fazer isto apenas se a
evidência a favor de poĺıtica no novo texto for bem forte.

Por exemplo, se rp.e = 1.1, há alguma mas não muita evidência
favorável a poĺıtica.

Afinal, isto significa que a chance de ter a configuração de palavras
do texto novo quando o tópico é poĺıtica é apenas 10% maior que a
mesma chance quando o tópico é esporte.
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Atualizando a priori

Com esporte sendo 100 vezes mais frequente que poĺıtica em geral e
com o novo texto tendo rp.e = 1.1 obtemos

P ( poĺıtica |N = (n1, n2, . . . , nD))

P ( esporte |N = (n1, n2, . . . , nD))
= rp.e

P ( poĺıtica )

P ( esporte )
=

1.1

100
= 0.011

Isto é, a chance de ser de poĺıtica continua sendo aprox. 100 vezes
menor que a chance de ser de poĺıtica mesmo sendo rp.e > 1.

Continuamos a atribuir o texto a esporte.
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Um problema numérico

Seja (θ1, . . . , θD) um vetor onde θi é a probabilidade da palavra i do
dicionário ser usada num texto de certo tópico (esportes, digamos).
As probabilidades somam 1.
Um texto espećıfico é analisado e você obtem as contagens
n1, . . . , nD de modo que ni é o número de vezes que a palavra i do
dicionário apareceu neste texto.
Dado que o texto é realmente de esportes, a probabilidade de que ele
tenha estas contagens é dada pelo modelo multinomial:

P
(

N = (n1, n2, . . . , nD)| esporte

)
=

n!

n1!n2! . . . nD !
θn1

1 θn2
2 . . . θnDD

Já vimos que a constante não precisa ser calculada e portanto seu
problema é obter o valor numérico da expressão

θn1
1 θn2

2 . . . θnDD
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Um problema numérico

Queremos

θn1
1 θn2

2 . . . θnDD =
D∏
i=1

θnii

O número D de palavras do vocabulário é muito grande.

A maioria das probabilidades θi são números próximos de zero.

O produto de muitas delas elevadas à potência ni rapidamente leva
ao limite de precisão numérica da máquina.
E o produto é transformado em 0. Um exemplo ilustrativo:
p1 = runif(1000) # mil numeros aleatorios entre 0 e 1

# padronizando para que p1 tenha probabilidades somando 1

p1 = p1/sum(p1)

# gerando 1000 contagens entre 1 e 100 ao acaso

contagens = sample(1:100, 1000, replace=T)

# calculando theta^n

aux = (p1)^contagens

# obtendo o seu produto: retorna 0

prod(aux)

[1] 0
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Tomando logs

O truque para fazer este cálculo é usar logaritmos.
Na escala log, produtos são transformados em somas e, por isto,
costumam ficar muito mais estáveis numericamente.

log P(texto) = log

(
P
(

N = (n1, n2, . . . , nD)| esporte

))
= cte. + log

(
θn1

1

)
+ log

(
θn2

2

)
+ . . .+

(
θ
nD
D

)
= cte. + n1 log (θ1) + n2 log (θ2) + . . .+ nD (θD)

= cte. +
D∑
i=1

ni log (θi )

Na prática, a constante pode ser ignorada (e não precisa ser
calculada) pois ela será a mesma em todos os tópicos (esportes,
poĺıtica, etc). Em R:
lp1 = log(p1)

aux = contagens*lp1

sum(aux)

# sendo mais sintetico em R, em uma unica linha de comando

sum(contagens * log(p1))
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Resolvendo o problema

Em geral, queremos calcular a probabilidade de observar um certo
texto dado que ele é de poĺıtica dividida pela probabilidade de
observar este mesmo texto dado que ele é de esportes.

Esta razão é igual a rp.e :

rp.e =
P (N = (n1, n2, . . . , nD)| poĺıtica )

P (N = (n1, n2, . . . , nD)| esporte )

=

(
θ21

θ11

)n1

. . .

(
θ2D

θ1D

)nD

=
D∏
i=1

(
θ2i

θ1i

)ni

O mesmo truque de tomar logaritmos se aplica aqui.
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Resolvendo o problema

A constante já desapareceu e usando logaritmos, temos

log(rp.e) =
D∑
i=1

ni log

(
θ2i

θ1i

)ni

=
D∑
i=1

ni (log(θ2i )− log(θ1i ))

Se p1 e p2 sao os vetores de probabilidades dos dois tópicos em R,
basta escrever

sum(contagens * (log(p1)-log(p2)))

Este valor está na escala log. Assim, rp.e > 1 implica em log(rp.e) > 0
enquanto que rp.e < 1 implica em log(rp.e) < 0.
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Poisson

Decaimento atômico

Uma massa atômica emite part́ıculas radioativas.

Um contador registra o número de part́ıculas atingindo uma placa
num intervalod de 7.5 segundos

Valores posśıveis para a contagem: 0, 1, 2, . . . ,∞?

Probabilidades associadas: emṕırico ou teórico.

Um modelo teórico para a emissão de part́ıculas
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Um modelo teórico

Hipótese 1: A probabilidade da chegada de k part́ıculas num intervalo
de tempo depende apenas do comprimento do intervalo

Hipótese 2: Os némeros de part́ıculas em intervalos de tempo
disjuntos são v.a.’s independentes

Hipótese 3: As part́ıculas chegam sozinhas e não simultaneamente.

Pode-se provar que um sistema estocástico com estas propriedades
necessariamente terá P(Y = k) = λk

k! e
−λ

para k = 0, 1, 2, . . .

e onde λ é uma constante positiva associada com o massa radioativa.
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Distribuição de Poisson

Temos uma constante λ > 0.

Os valores posśıveis são 0, 1, 2, . . . e as probabilidades associadas são

P(Y = 0) = λ0

0! e
−λ = e−λ

P(Y = 1) = λ1

1! e
−λ = λ e−λ

P(Y = 2) = λ2

2! e
−λ

P(Y = 3) = λ3

3! e
−λ

P(Y = 4) = λ4

4! e
−λ

Etc.

De maneira geral: P(Y = k) = λk

k! e
−λ

Pode-se provar que E(Y ) = λ.
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Um caso particular

Por exemplo, se λ = 3.87, então

P(0 part́ıculas em 7.5 segundos) = P(Y = 0) = e−3.87 = 0.021

P(Y = 1) = 3.87× e−3.87 = 0.081

P(Y = 2) = 3.872/2!× e−3.87 = 0.156

P(Y = 3) = 3.873/3! e−3.87 = 0.201

Etc.

Temos E(Y ) = 3.87.
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A função de probabilidade

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

k

P
(X

=
k)

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ●

Poisson com λ = 3.87
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Poisson: variando λ
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Um pouco de realidade

Esta fórmula matemática bate com a realidade?

Rutherford, Chadwick e Ellis (1920)

“Repetiram” o experimento um grande número de vezes: 2608
intervalos de tempo consecutivos de 7.5 segundos cada um

Sejam y1 = 4, y2 = 3, y3 = 0, . . . , y2608 = 4 a contagem de part́ıculas
emitidas em cada intervalo.

Vamos assumir que eles são os valores instanciados das v.a.’s i.i.d
Y1,Y2, . . . ,Y2608, todas com distribuição Poisson(λ).

Se este modelo Poisson para a emissão de part́ıculas estiver correto o
que podemos esperar nas contagens observadas?

Vamos comparar os valores teóricos P(Y = k) = λk

k! e
−λ com a

frequência observada de intervalos com contagens iguais a k
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Comparando os dados com o modelo Poisson

Vamos calcular P(emitir k part́ıculas em 7.5 segundos) usando o
modelo de Poisson.

Isto é, vamos calcular P(Y = k) = λk

k! e
−λ.

Não usaremos os dados aqui.

A seguir, vamos calcular a proporção dos 2608 intervalos em que
obtivemos k part́ıculas.

Veja que não usamos nenhum modelo aqui, apenas os dados
observados.

Se o modelo estiver correto, estes dois valores devem ser parecidos
para todo k .
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Um último passo

Na verdade, para calcular P(Y = k) = λk

k! e
−λ precisamos de algum

valor para λ.

No caso Poisson, E(Yi ) = λ.

Assim, λ é o valor esperado de Y ou t́ıpico.

Calcule a média aritmética das observções como uma aproximação
para λ:

Use λ̂ = (y1 + y2 + . . . y2608)/2608 = 3.87

Assim, vamos calcular P(Y = k) = 3.87k

k! e−3.87
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A comparação

k P(Y = k) = 3.87k

k! e−3.8 Frequência emṕırica no experimento

0 0.02086 57/2608 = 0.02186
1 0.08072 203/2608 = 0.07784
2 0.15619 0.14686
3 0.20149 0.20130
4 0.19495 0.20399
5 0.15089 0.15644
6 0.09732 0.10968
7 0.05381 0.05329
8 0.02603 0.01725
9 0.01119 0.01035

Tabela: Probabilidades teóricas obtidas através do modelo de Poisson e
frequências emṕıricas obtidas através dos dados.
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Comparação visual
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Distribuição de Poisson

Duas situações em que a distribuição de Poisson aparece:

Quando contamos número de ocorrências sem um limite claro para o
número máximo

número de colisões no tráfego de BH durante o ano.
número de automóveis entrando na UFMG entre 7 e 8 da manhã
número de consultas médicas que um cliente de um plano de saúde faz
durante o ano

Aproximação para uma binomial X ∼ Bin(n, θ) com um núemro
máximo posśıvel n muito grande e θ muito pequeno:

número de mortos por câncer de esôfago durante o ano em BH.
número de apólices de uma carteira com 2 ou mais sinistros durante o
ano.
número de sinistros de uma apólice espećıfica durante um ano.
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Bombas em Londres

WW2: Bombas voadoras V2 atiradas do continente europeu através
do Canal da Mancha em Londres

Segredos militares: os alemães tinham mira?

SE OS ALEMÃES NÃO possuiam mira, o número de bombas num
pequeno quadrado seria uma v.a. com distribuição Poisson(λ),
mesmo λ onde quer que estivesse o quadrado

Por quê?

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 95 / 1



Poisson

Bombas em Londres

Fixe um pequeno quadrado no mapa.

Seja X o úmero de bombas no quadrado.

Um grande número de bombas,

Pequena probabilidade θ de atingir um quadrado espećıfico.

Bombas lançadas independentemente.

Aproximação da binomial pela Poisson com λ = nθ.

SE NÃO TEM MIRA, a probabilidade θ é a MESMA para todo
pequeno quadrado.

n quadradinhos com contagens Y1, . . . ,Yn iid Poisson(λ).

Este modelo teórico ajusta-se aos dados? Se sim, evidência a favor da
hipótese de não mira.
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Poisson

Bombas em Londres

Foram mapeados os locais atingidos por bombas.
Área foi dividida em N = 576 quadradinhos, 0.25km2.
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Poisson

Bombas em Londres

Foram mapeados os locais atingidos por bombas.

Área foi dividida em N = 576 quadradinhos, 0.25km2.

Seja Yi o número de bombas no quadradinho i .

Y1, . . . ,Yn são iid Poisson(λ)???

Vamos calcular as probabilidades P(Y = 0), P(Y = 1), P(Y = 2), etc
usando os modelo de Poisson (não vamos usar os dados aqui).

A seguir, vamos calcular a proporção dos quadradinhos em que
Y = 0, Y = 1, Y = 2, etc usando apenas os dados emṕıricos.

Vamos então comparar as probabilidades teóricas de Poisson com as
frequência baseadas apenas nos dados.

Se forem similares, os dados são compat́ıveis com o modelo.
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Poisson

Bombas em Londres

O número total de bombas em Londres é 537 e existem N = 576
quadradinhos.

O número médio de bombas por quadradinho é
λ̂ = 537/576 = 0.9323.

Seja Yi o número de bombas no quadradinho i .

Y1, . . . ,Yn são iid Poisson(λ) com λ = 0.9323???
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Poisson

Bombas em Londres

k Nk Nk/576 P(Y = k)

0 229 0.398 0.394
1 211 0.366 0.367
2 93 0.161 0.171
3 35 0.061 0.053
4 7 0.012 0.012
≥ 5 1 0.002 0.003

Total 576 1 1

Tabela: k é o número de bombas num quadradinho, Nk é o número de
quadradinhos que foram atingidos por k bombas, Nk/576 é a proporção de
quadradinhos atingidos por k bombas e P(Y = k) = 0.9323k/k!e−0.9323 é a
probabilidade de uma v.a. Poisson(λ = 0.9323) ser igual a k .
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Geométrica

Distribuição geométrica

Y é o número de fracassos em uma sequência de ensaios
independentes de Bernoulli até que o primeiro sucesso seja observado.

Em cada ensaio a probabilidade de sucesso é θ

Y = 0 significa que o primeiro ensaio foi um sucesso

Temos P(Y = 0) = P(S) = θ

Y = 1 significa que o primeiro ensaio foi um fracasso e osegundo foi
um sucesso.

Assim, P(Y = 2) = P(FS) = (1− θ)θ
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Geométrica

Distribuição geométrica

P(Y = k) =??

P(Y = 0) = P(S) = θ

P(Y = 1) = P(FS) = (1− θ)θ

P(Y = 2) = P(FFS) = (1− θ)2θ

P(Y = 3) = P(FFFS) = (1− θ)3θ

De forma geral: P(Y = k) = (1− θ)kθ, para k = 0, 1, 2, . . .

Pode-se mostrar que E(Y ) = 1/θ quando Y é geométrica com
parâmetro de sucesso igual a θ.
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Geométrica

Distribuição geométrica

Figura:
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Zipf ou Pareto

Distribuição de Zipf ou de Pareto

X ∈ {1, 2, 3, . . . ,N}. O valor de N pode ser finito ou infinito.

P(X = k) = C
k1+α com α > 0.

C é uma constante garantindo que as probabilidades somem 1:

1 = P(X = 1) + P(X = 2) + P(X = 3) + . . .

= C

(
1

11+α
+

1

21+α
+

1

31+α
+ . . .

)
= C

N∑
k=1

1

k1+α

o que implica que C = 1∑N
k=1

1
k1+α

.
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Zipf ou Pareto

Distribuição de Zipf ou de Pareto

P(X = k) = C
k1+α com α > 0.

Por exemplo, se α = 1, temos P(X = k) = C
k2 .

O que realmente importa é o seguinte: a probabilidade P(Y = k)
decresce de acordo com uma potência de k.

Ela não cai com uma rapidez exponencial como é o caso de uma
Poisson e uma geométrica.
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Zipf ou Pareto

Gráfico de duas Zipf ou Pareto

Figura: Probabilidades P(Y = k) = c/k1+alpha de uma distribuição Pareto com
α = 1 (esquerda) e de uma Pareto com α = 1/2 (direita). A escala do eixo
vertical é a mesma nos dois casos.
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Zipf ou Pareto

Zipf clássica

P(Y = k) ∝ 1/k com k = 1, 2, . . . ,N e N finito.

Assim, temos

P(Y = 1) ∝ 1
P(Y = 2) ∝ 1/2
P(Y = 3) ∝ 1/3, etc.

Exemplo: frequência de palavras.

Considere um longo texto (ou vários textos num único documento).

Algumas palavras aparecem pouco, são raramente usadas.

Outras aparecem com grande frequência
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Zipf ou Pareto

Frequência de palavras em portugues

Por exemplo, em portugues brasileiro temos:

palavra posto (rank) frequência

de 1 79607
a 2 48238
ser 27 4033
amor 802 174
chuva 2087 70
probabilidade 8901 12
iterativo 14343 6
algoritmo 21531 3

Tabela: Posto (ou rank) de algumas palavras e frequência de sua aparição
por milhão de palavras em textos de português brasileiro

Retirado de www.linguatec.pt.
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Zipf ou Pareto

Experimento

Imagine o seguinte experimento: escolha uma palavra completamente
ao acaso do texto.

Seja Y o posto (ou rank) da palavra escolhida ao acaso.

Por exemplo, se Y = 1, a palavra escolhida é a mais frequente.

Se Y = 2, a palvra escolhida é a 2a. mais frequente.

Se a distribuição de Zipf for um bom modelo devemos ter

P(Y = k) ≈ C

k1+α

com α ≈ 0.
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Zipf ou Pareto

Na escala log

Se tivermos

P(Y = k) ≈ C

k1+α
,

ao tomarmos log dos dois lados teremos:

log (P(Y = k)) ≈ log(C )− (1 + α) log(k)

Assim, um plot de log (P(Y = k)) versus log(k) deveria ser
aproximadamente uma linha reta com intercepto log(C ) e inclinação
(1 + α) ≈ 1.
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Zipf ou Pareto

Verificando...

Pela visão frequentista de probabilidade, sabemos que
nk = 106P(Y = k) é aproximadamente igual á frequência (por
milhão) da palavra de posto k

Então, se o modelo Zipf for adequado,

log(nk) ≈ log(106)+log(P(Y = k)) ≈
(
log(106) + log(C )

)
−(1+α) log(k)
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Zipf ou Pareto

Português brasileiro

Figura: Gráfico do posto k versus a freqência nk para algumas palavras do
português (esquerda). O gráfico da direita mostra os mesmos dados num gráfico
log-log (isto é, os pontos são (log(k), log(nk)). A reta
log(nk) = 11.51− 0.999 log(k)).
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Zipf ou Pareto

Pareto

Zipf é um caso particular da distribuição de Pareto.

Pareto é muito comum em estudos da web.

Uns poucos sites possuem milhões de páginas mas milhões de sites
possuem apenas umas poucas páginas.

Poucos sites contêm milhões de links, enquanto a maioria não possui
mais que uma dezena de links.

Milhões de usuários visitam uns poucos sites dando pouca atenção a
milhões de outros.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 113 / 1



Zipf ou Pareto

Pareto ou power-law

A distribuição de Pareto também é chamada de lei de potência
(power-law) por quê a probabilidade de k é o inverso de uma potência
de k.

Pareto dá uma probabilidade finita e apreciável a números k muito
grandes, muito maiores que a imensa maioria dos valores muito
frequentes.

Nas distribuições binomial, Poisson ou geométrica, némeros muio
maiores que a maioria são muito improvéveis, quase imposśıveis.
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Zipf ou Pareto

Como identificar uma Pareto?

A maneira mais efetiva de checar informalmente se a distribuição de
Paretoé um bom modelo para os dados é olhar para o gráfico de
log(k) versus o log da frequência log(nk).

Se o modelo Pareto for adequado,devemos observar aproximadamente
uma linha reta neste plot.

Entretanto, os valores muito altos e pouco frequentes de k vão gerar
muito rúıdo na extremidade esquerda do gráfico.
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Zipf ou Pareto

Gerei 1000 Pareto(α = 1)

Figura: Esquerda: gráfico dos valores gerados sequencialmente. Direita: Gráfico
de k versus sua frequência, escala log nos dois eixos.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 116 / 1



Zipf ou Pareto

Bins?

Agregando e contando a frequência em pequenos intervalos (bins)
não resolve o problema.

Uma solução parcial ’e calcular bins logaritmicos: (1, 2), (3, 4), (5, 8),
(9, 16), (17, 32), etc.

Falta figura ...
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Zipf ou Pareto

Função P(Y ≥ k)

A melhor maneira de visualizar se a distribuição Pareto é um bom
modelo é plotar a função P(Y ≥ k) versus k, ambas na escala log.

A razão é que, no modelo Pareto,

P(Y ≥ k) = P(Y = k) + P(Y = k + 1) + . . .

=
∞∑
l=k

C

k1+α

≈ C ∗

kα

Assim, tomando log dos dois lados, temos

log(P(Y ≥ k)) ≈ log(C ∗)− α log(k)

O plot de log(P(Y ≥ k)) versus log(k) dará aproximadamente uma
linha reta se o modelo for adequado.
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Zipf ou Pareto

Gráfico

Para cada k estime P(Y ≥ k) pela proproção de elementos da
amostra que são maiores ou iguais a k .

Podemos também simplesmente contar o número absoluto nk de
elementos da amostra que são maiores ou iguais a k .

O plot de log(nk) versus log(k) deveria ser aproximadamente uma
linha reta.
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Zipf ou Pareto

Gerei 1000 Pareto(α = 1)

Figura: eixos.
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Comparação entre as distribuições

Poisson × geométrica × Pareto

Qual a diferença mais relevante?

Todas são distribuições sobre os inteiros positivos

Diferença está no comportamento na cauda:

Poisson tem cauda curta, valores com probabilidades significativas
estão concentrados em uma faixa estreita torno de E(Y ) = λ.
Pareto gera facilmente valores muito grandes, ordens de grandeza
maiores que E(Y ).
Geométrica é um caso intermediário.
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Comparação entre as distribuições

Comparando as três

Poisson:
P(Y = k + 1)

P(Y = k)
=

e−λλk+1/(k + 1)!

e−λλk/k!
=

λ

k + 1
→ 0

se k →∞. Isto é P(Y = k + 1) <<< P(Y = k) se k é grande.

Geométrica:

P(Y = k + 1)

P(Y = k)
=

(1− θ)k+1θ

(1− θ)kθ
= 1− θ < 1 ,

constante em k . Isto é, P(Y = k + 1) = (1− θ)P(Y = k), uma queda
geométrica ou exponencial.

Pareto:
P(Y = k + 1)

P(Y = k)
=

(
k

k + 1

)θ
→ 1

Isto é P(Y = k + 1) ≈ P(Y = k) se k é grande, uma queda muito lenta.
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