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@ Probabilidade é um assunto de matematica.

o Estabelece um espaco de probabilidade (92, .4,P) e faz célculos
(matemdticos) de probabilidade.

o Estatistica, data mining e machine learning s3o assuntos que lidam
com dados.

@ Uma tabela cheia de niimeros: linhas s3o itens, colunas s3o atributos
medidos nos itens.

@ Como ligar estes dois assuntos?
O link é fornecido pelo conceito de varidvel aleatdria.
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Variaveis aleatérias

Variaveis aletérias como reducao de €2

@ O espago de probabilidade (€2,.4,P) é a base matematica da
probabilidade.
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Variaveis aleatérias

Variaveis aletérias: formalismo

@ Formalmente, varidvel aleatéria é uma funcdo matemdtica
(mensuravel) de Q para R.

X:Q2 — R
w = X(w)
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Variaveis aleatérias

Variaveis aletérias: formalismo

@ Formalmente, varidvel aleatéria é uma funcdo matemdtica
(mensuravel) de Q para R.

X:Q2 — R
w = X(w)

@ Isto é, uma variadvel aleatdria é qualquer funcdo matematica X que
vai de Q para R.
@ A condicdo de ser mensurdvel na definicio acima é bastante técnica.

o Toda funcao “pratica” é mensurdvel: toda funcdo envolvendo logs,
exponenciais, polindmios, fungdes trigonométricas, é mensuravel.
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Variaveis aleatérias

Varidveis aletdrias e tabelas de dados

@ Lembre-se da tabela de dados estatisticos:

e nas linhas, itens ou individuos ou exemplos (tais como diferentes
pacientes com cancer de um hospital, diferentes clientes de um banco).
Cada linha representa uma diferente realizacdo ou instanciacdo de
elementos w de €.

e nas colunas, caracteristicas ou atributos dos itens (sexo, idade e estdgio
do cincer; saldo médio na conta corrente, tempo como correntista)

e Informalmente, varidveis aleatdrias (v.a.) s3o as representacdes
matematicas ou probabilisticas dessas colunas de atributos na tabela
de dados estatisticos.
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e Informalmente, varidveis aleatdrias (v.a.) s3o as representacdes
matematicas ou probabilisticas dessas colunas de atributos na tabela
de dados estatisticos.

@ Como é a conex3o entre a tabela de dados e o modelo probabilistico?
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Espaco de probabilidade e tabela de dados

e Espaco de probabilidade: (2, A, P)
@ Tabela de dados:

spam num_char 1line breaks format number

1 no 21,705 551 html small
no 7,011 183 html big

3 yes 631 28 text none

50 no 15,829 242 html small

Tabela: Quatro primeiras linhas da tabela spam. Fonte: Openlntro Statistics
Project, https://www.openintro.org/stat/textbook. php.
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Espaco de probabilidade e tabela de dados

Q) = conjunto de todos os e-mails ja recebidos e a receber

Matriz contém aenas uma AMOSTRA dos elementos de Q2

Cada LINHA da tabela corresponde a um elemento distinto de Q
Cada coluna, representa diferente caracteristicas ou medi¢Ges sobre os
e-mails

e EM GERAL, supomos que os diferentes e-mails (diferentes linhas)
representam eventos independentes uns dos outros

@ Em cada linha, os elementos medem caracteristicas diferentes do
MESMO w

@ Assim, os elementos dentro de uma mesma linha costumam estar
associados/correlacionados (defini¢do precisa mais tarde).
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Variaveis aleatérias

Varidveis Aletdrias e tabelas de dados

@ Os elementos numa coluna da tabela de dados é vista como
instancias de uma v.a.

@ Toda v.a. pode ser pensada simplesmente como sendo a combinagao
de DOIS componentes:
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Variaveis aleatérias

Varidveis Aletdrias e tabelas de dados

@ Os elementos numa coluna da tabela de dados é vista como
instancias de uma v.a.
@ Toda v.a. pode ser pensada simplesmente como sendo a combinagao
de DOIS componentes:
e um conjunto de valores possiveis € R.
e probabilidades associadas a estes valores.
@ As probabilidades vém de um modelo (2, A, P) que muitas vezes ndo
precisa ser explicitamente apresentado. Isto facilita muito a vida.
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Tipos de v.a.’s

@ As v.a.'s sdo representadas por letras maiusculas: X, Y, W, U, Z,....

@ Temos trés tipos basicos de dados estatisticos nas tabelas de dados
estatisticos:

o dados categéricos ou ndo-numéricos, que podem ser nominais (tais
como sexo ou religido) ou ordinais (por exemplo, a resposta a uma
pergunta como “Vocé confia muito, pouco ou nada nos membros do
Congresso?")

e dados numéricos discretos: nimero de filhos,ndmero de requisicdes nas
dltimas duas horas.

e dados numéricos continuos: saldo na conta corrente, temperatura,
indice de inflag3o.

@ Estes dados sao representados por dois tipos de varidveis aleatérias:

e V.A.s Discretas: Para os dados categdricos ou numéricos discretos.
e V.A.s Continuas: Para os dados numéricos continuos.
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V.A. Discreta

@ V.A.s Discretas: Para os dados categéricos ou numéricos discretos.
@ Composta de duas LISTAS enumerdveis.

o Uma lista de valores possiveis para a v.a.: {xi,xa,...}
o Uma lista com a probabilidade associada a cada um desses valores:

{p(x). p2). .-}

@ Podemos representar as duas listas numa tabela:
Valores possiveis X1 X2 X3
Probab assoc p(x1) p(x) p(x3)
@ A lista de probabilidades deve ter valores > 0 e eles devem somar 1.
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Variaveis aleatdrias Discretas

Grafico das probabilidades associadas
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Figura: Fungdo P(X = x;) onde x; é um dos valores possiveis de X. Também
chamada de fun¢do massa de probabilidade. X tem valores possiveis {0,1,2, 3}
com probabilidades {0.5,0.3,0.1,0.1}, respectivamente.
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Variaveis aleatdrias Discretas

V.A.s discretas - exemplos

@ Uma coluna da tabela de dados indica o sexo de um individuo w
escolhido de uma populacdo.

@ Arbitrariamente, associamos o valor 0 a MASC e 1 a FEM.

@ Isto é, X(w) =0 se w for do sexo masculino e X(w) =1 se w for do
sexo feminino.

@ Para cada individuo w olhamos apenas seu sexo, representado por
X(w) € {0,1}.

@ Para acabar a especificacdo dessa v.a. discreta, precisamos especificar
a lista de probabilidades associada.

e Digamos, P(X =0) = p(0) =0.35 ¢
P(X=1)=p(1) =1-0.35=0.65.
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Variaveis aleatdrias Discretas

V.A.s discretas - exemplos

@ Num posto de gasolina, monitora-se a cada 5 minutos durante as
horas de pico o uso de suas 4 bombas de abastecimento de veiculos.

@ De 5 em 5 minutos, anota-se o nimero de bombas em uso.

@ Os itens ou instancias sdo os diferentes instantes de tempo.

@ Os dados sdo numéricos discretos e,em cada instante, podem ser 0, 1,
2, 3 ou 4.

@ Seja w um dos instantes de tempo.

e X(w) é o nimero de bombas em uso.

o E preciso também especificar as probabilidades de cada valor possivel

para X. Por exemplo:

[ Valores possiveis | 0 1 2 3 4 |
| Probab assoc | p(0)=0.32  p(1)=0.42 p(2) =021 p(3) =0.04 p(4) =0.01 |
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Variaveis aleatdrias Discretas

V.A.s discretas - exemplos

@ Numa rede social, escolha n usudrios-vértices ao acaso e conte o
ndmero de arestas incidentes de cada um deles. (seguidores).

@ Os itens ou instancias s3o os diferentes usuarios

@ Os dados s3o numéricos discretos e podem ser 0,1,2,3,... sem um
limite maximo natural.

@ Seja w um dos usudrios e X(w) o seu nimero de seguidores.

o X(w)e{0,1,2,3,...} =N.

e Especificando as probabilidades (sem explicar de onde tiramos isto):
% \F{ib:l:s,;(,;) % 0.801 0.302 04502 04304 - 0%532 ]

e A lista (infinita) de probabilidades deve ter valores > 0 e eles devem

somar 1. Isto é, 1 =372, p(k).
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Variaveis aleatdrias Discretas

V.A.s discretas - exemplos

@ Pergunta-se a uma amostra de individuos (as insténcias) qual € a sua
religido: catdlica, protestante, sem religido, outras religides cristas,
espirita, outras.

@ S3o seis categorias possiveis para cada resposta, claramente n3o
numéricas e sem ordenac3o.

@ Vamos representar esta coluna de dados com uma varidvel aleatédria
X.

@ Como X é uma funcdo de Q para R, arbitrariamente nés vamos
associar um nuimero a cada categoria da resposta.
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Variaveis aleatdrias Discretas

V.A.s discretas - exemplos

@ Seja X(w) uma varidvel aleatéria que, para cada individuo w da

populacdo, associe um niimero da seguinte forma:

,

SO w N

7

se w é catdlico

se w é protestante

se w ndo tem religiao

se w € de outras religides cristas
se w é espirita

se w é de alguma outra religido

@ A associagdo entre as categorias e os nlimeros correspondentes
écompletamente arbitraria.

@ Qualquer outra associacdo seria vdlida.

Renato Assun¢do, DCC, UFMG

Estatistica para Ciéncia dos Dados

16 /1



Variaveis aleatdrias Discretas

V.A.s discretas - exemplos

@ Por exemplo, poderiamos ter definido:

—2, sew é catdlico
—1, se w é protestante

0 se w nao tem religido
Xw)=19 ;1
) 1, se w € de outras religides cristas
5, se w é espirita

999, se w é de alguma outra religido

@ Na prética, com estes atributos nao-numéricos, os valores da varidvel
aleatdria serdo usados apenas como um rétulo (numérico) para a
categoria.
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Variaveis aleatdrias Discretas

V.A.s discretas - exemplos

@ Vamos voltar a especificagdo anterior,em que X(w) € {1,...,6}.

@ Para completar a especificacdo da v.a., precisamos também declarar
as probabilidades associadas com cada categoria de religido (ou cada
valor possivel da v.a.).

@ Por exemplo, usando os dados do IBGE, na década de 80, ao escolher
um individuo ao acaso da popula¢do brasileira, temos as seguintes
probabilidades:

[ Val. pos. k [ 1(cat) 2 (pro) 3 (srel) 4 (out. cr) 5(esp) 6 (out) |
[ Probab p(k) | _0.75 0.15 0.07 0.01 0.01 0.0 |
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Variaveis aleatdrias Discretas

@ A atribuicdo de probabilidade a cada valor possivel de uma v.a. X é
consequéncia das probabilidades definidas no espaco de probabilidade

(Q, A, P).

@ Por exemplo, lance uma moeda 6 vezes, com C = cara e C = coroa.
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Q possui 36 elementos e P(w) = 1/36.

Se ndo estivermos interessados na ordem em que os resultados
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Variaveis aleatdrias Discretas

A atribuicdo de probabilidade a cada valor possivel de uma v.a. X é
consequéncia das probabilidades definidas no espaco de probabilidade

(Q, A, P).

Por exemplo, lance uma moeda 6 vezes, com C = cara e C = coroa.

Q possui 36 elementos e P(w) = 1/36.

Se ndo estivermos interessados na ordem em que os resultados
aparecem, mas apenas no nimero total de caras, podemos focar
apenas numa versio reduzida do espaco de probabilidade.

Definimos X(w) como sendo o niimero de C's em w
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Variaveis aleatdrias Discretas

@ Formalmente,

X:Q — R

w — X(w)= nimerode C's em w
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Variaveis aleatdrias Discretas

@ Formalmente,

X:Q — R

w — X(w)= nimerode C's em w

Portanto, X(w) € {0,1,...,6} C R.

Estes sdo os valores possiveis da v.a. X.

@ Cada um desses valores possiveis possui uma probabilidade que é
induzida pelo espaco de probabilidade original (2, A, P).
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Variaveis aleatdrias Discretas

e Uma proposi¢do acerca do valor em R de uma v.a. determina um
evento A em Q. NOTACAO:

X=6]={weQ: X(w) =6} = {w = (CCCCCC)}
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VA -QeR
@ Uma proposicao acerca do valor em R de uma v.a. determina um

evento A em Q. NOTACAO:

X=6]={weQ: X(w) =6} = {w = (CCCCCC)}

[X =5] = {w € Q: X(w) = 5} = {(Eccccc), (cEcccc), ..., (cccccl)y
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Variaveis aleatdrias Discretas
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Variaveis aleatdrias Discretas

e Uma proposi¢do acerca do valor em R de uma v.a. determina um
evento A em Q. NOTACAO:

X=6]={weQ: X(w) =6} = {w = (CCCCCC)}

X=0={we: X(w) =0} = {w=(EEEEEE)}

@ Mais notacio:

[X >5]={we Q: X(w) >5} = {(ccccce), (Eccccc), (cécccc), . . ., (cccccé)yy
ou entao
X <1 ={weQ:X(w) <1} ={(EECCECL),(CEECCCE),(CCCEECC),...,(CEECCO)}

@ Eventos podem ser manipulados com unido, intersecdo etc.

[X <5AND X > 4] = {w € Q: X(w) < 5}n{w € Q: X(w) > 4} = {(Ecccce), (céccco),. .., (cccccé)}y
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Variaveis aleatdrias Discretas
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Fun¢do acumulada

Funcao distribuicao acumulada de probabilidade

@ A funcdo distribuicdo acumulada de probabilidade da v.a. X é a
funcdo matemdtica F(x) definida para todo x € R e dada por

F:R — [0,1]
x — F(x)=P(X <x)

Esta funcdo é simples e ndo possui NENHUMA informac3o adicional
alé m daquela representada na lista de probabilidades.

@ No entanto, ela é muito importante tanto na teoria quanto na pratica
de andlise de dados.

Por isto, vamos estuda-la com cuidado.

@ Vamos comegar calculando F(x) num caso particular.
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Exemplo de F(x)

@ Suponha que temos uma v.a. aleatéria discreta X com valores
possiveis {0, 1,2,3} e probabilidades associadas p(k) = P(X = k)
dadas por
Valores possiveis k | 1 2 3 4
Probab assoc p(k) | 0.1 04 02 0.3

@ Vamos calcular F(x) = P(X < x) para alguns dos valores de x:

o F(—1) =P(X < —1) =0 pois ndo existe nenhuma chance de X ser
menor ou igual a -1. O menor valor que X pode assumir é 1.
o Pela razdo acima, para qualquer x < 1, teremos F(x) = P(X < x) = 0.
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Exemplo de F(x)
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Figura: F(x) = P(X < x) para x.< 1.
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Exemplo de F(x)

e Exatamente no ponto x = 1, a fun¢do F(x) d4 um salto.

@ De fato, o evento [X < 1] é idéntico a evento [X = 1] j4 que ndo
existe nenhum w tal que X(w) < 1.

@ Dessa forma, temos
F(1)=P(X<1)=P(X=1)=0.1

@ Assim, a fungdo [F(x) salta de 0 para x < 1 para 0.1 no ponto x = 1.

@ Para x = 1.5 temos
F(1.5)=P(X <15)=P(X=1)=0.1

@ Na verdade, para qualquer x tal que 1 < x < 2 temos
F(x)=P(X=1)=0.1
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Exemplo de F(x)
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Figura: F(x) = P(X < x) para x < 2.
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Exemplo de F(x)

e Exatamente no ponto x = 2, a fungdo F(x) d4d mais um salto.
@ O evento [X < 2] é idéntico a unido de dois eventos disjuntos
X=1louX=2=[X=1U[X=2]

@ Eles sdo disjuntos pois, pela definicido de uma fun¢do matemitica,
ndo podemos ter um elemento w €  tal que X(w) =1 e, ao mesmo
tempo, X(w) = 2.

@ Assim, temos

F(2) = P(X < 2) = P(X = 1)+P(X = 2) = p(1)+p(2) = 0.14+0.4 = 0.

@ Veja que a altura do salto € igual a p(2), a probabilidade
p(2) =P(X =2).
@ Para qualquer x tal que 2 < x < 3 temos
F(x)=P(X<x)=P(X=1)+P(X =2)=p(1) +p(2) =05
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Exemplo de F(x)
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Figura: F(x) = P(X < x) para x < 3.
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Exemplo de F(x)

e Continuando desta forma, vemos que F(x) vai dar saltos em x =3 e
ex =4

A altura do salto em x = k é igual a probabilidade p(k) = P(X = k).

Quando escolhermos um valor x maior que todos os pontos possiveis
de X teremos F(x) = 1.

Por exemplo, se x = 4.5, claramente teremos

F(4.5) = P(X < 4.5) =1

pois, com certeza, teremos X < 4.5 ja que o maior valor possivel de
X é 4.

O grafico completo de F(x) é mostrado a seguir.
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Exemplo de F(x)
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Figura: F(x) = P(X < x).
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Caso geral de F(x)

@ Suponha que temos uma v.a. aleatéria discreta X com valores
possiveis x; e probabilidades associadas p(x;) = P(X = x;) dadas por
Valores possiveis X1 X2 X3
Probab assoc p(x1) p(x) p(x3)

@ A funcdo distribuicdo acumulada de probabilidade é definida como:

F(x) =P(X <x) = ) p(x)

X <x

e Isto é, F(x) é o valor acumulado (a soma) das probabilidades p(x;)
dos pontos possiveis x; que s30 menores ou iguais a x.
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Valor Esperado

Esperanca matematica E(X)

@ O valor esperado de uma v.a. discreta é uma soma dos seus valores
possiveis ponderados pelas suas probabilidades respectivas.

@ Suponha que temos uma v.a. aleatéria discreta X com valores
possiveis x; e probabilidades associadas p(x;) = P(X = x;) dadas por
Valores possiveis X1 X X3
Probab assoc p(x1) plx) p(x3)

@ Ent3o, por definicdo, temos

E(X) = > xip(x)

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 32/1



E(X)

e E(X) é um valor tedrico, matematico, associado com a distribui¢do
de probabilidade da v.a X.

@ N3o é necessario nenhum dado estatistico para calcular E(X).

@ Bastam as duas listas, a de valores possiveis e a de probabilidades
associadas.

e [E(X) n3o precisa ser igual a nenhum dos valores possiveis x; da v.a.
X.

@ Qual o significado empirico deste niimero E(X)? Como interpreta-lo
na pratica?
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Interpretando E(X)

@ Suponha uma v.a. discreta X com valores possiveis x; e
probabilidades associadas p(x;) = P(X = x;).

@ Temos uma enorme amostra de N instancias independentes de X.
@ Nesta amostra, x; apareceu N; vezes.

@ Podemos estimar as probabilidades pela frequéncia relativa da
ocorréncia de x; na amostra:

N;
p(xi) =P(X = x) = N

@ Assim,

E(X) = Zx,-p(x,-) R~ ZX"I\I\I;
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Interpretando E(X)

@ Encontramos N
E(X) = Zx,-p(x,-) R~ ZX,'Nl

@ Como x; apareceu N; vezes na amostra, isto é o0 mesmo que somar
todos os N valores da amostra e dividir por N.

@ Isto é, se a amostra é grande, devemos ter o nimero tedrico E(X)
aproximadamante igual a3 média aritmética dos N elementos da
amostra.
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E(X)

@ Vamos reforcar: E(X) é um nimero real, uma constante, associada
com a duas listas (valores possiveis e probabilidades associadas) que
constituem uma v.a.

e [E(X) ndo é, ela mesma, uma v.a.

e E(X) é apenas um resumo tedrico da distribuicdo de X (ou um
resumo das duas listas).

o E aproximadamente igual a média aritmética dos valores de uma
grande amostra de instancias de X.
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Principais Distribuicdes Discretas

Distribuicoes Especiais

@ Existem infinitas distribuicdes de probabilidade.

@ Dado um conjunto de valores possiveis, qualquer atribuicdo de
nliimeros n3o-negativos que somem constiuem uma distribuicao de
probabilidade.

@ Entretanto, algumas poucas atribuicdes recebem nomes especiais.

@ Estas distribuicdes aparecem com frequéncia na andlise de dados e
sao matematicamente tratdveis.

@ Podemos pensar no analista de dados abordando um problema pratico
com um saco de distribuicGes de probabilidade bem conhecidas.

o Ele gostaria de n3o precisar inventar uma nova distribuicdo mas sim,
de usar uma daquelas que ja estdo no seu embornal.

@ Vamos ver algumas das mais populares agora.
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Bernoulli

Distribuicao de Bernoulli

E a distribuicao mais simples: dois resultados possiveis apenas.

(]
@ X(w) sé assume dois valores possiveis: 0 ou 1.
e Isto é, X(w) € {0,1} para todo w € Q
@ Definimos duas probabilidades
o p(0)=P(X=0)=Pwe: X(w)=0)
o p(1)=P(X=1)=PweQ: X(w)=1)

Temos p(0) + p(1) =1 o que implica que p(1) =1 — p(0).
E comum escrever p(1) = p e p(0) = q.
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E(X) no caso Bernoulli

e Se p(1) = p e p(0) = g, temos
EX)=1xp+0x(1—p)=p

@ Observe que E(X) = p ndo é igual a nenhum valor possivel de X, que
sao apenas 0 ou 1 e tipicamente 0 < p < 1.

@ Se tivermos uma grande amostra de instancias de X, cada uma delas
igual a 0 ou 1, devemos ter E(X) = p aproximadamente igual a
média aritmética dos valores 0 ou 1 observados.

@ Mas uma média aritmética deste tipo é apenas a proporcdo de 1's na
amostra.

@ Isto é, como obviamente esperado, devemos ter
BX)~p= 5 2
~p=— X;
p N 2%
1
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Binomial

Distribuicao Binomial

n repeti¢des independentes de um experimento bindrio (de Bernoulli):
sucesso ou fracasso.

Probabilidade de sucesso é constante e igual a 6 € [0, 1].

X conta o ndmero total de sucessos: X ~ Bin(n, )

Lista de valores possiveis: 0,1,2,...,n

Lista de probabilidades associadas: (1 — )", n6(1 — 0),...,0"

Férmula geral:

P(X = k) = ok(1 — )"k

n!
ki(n — k)!

e Temos E(X) = nf e DP = \/V(X) = \/nf(1 — 0)

@ A forma da distribuicdo binomial depende de 6 e de n

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 40 /1



Bin(n, §) depende de n e ¢

Distribuicdo Binomial, # = 1/2, variando n
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Bin(n, §) depende de n e ¢

Distribuicdo Binomial, # = 0.1, variando n

=3 theta=0.1 n=6 theta=0.1 1= 10 theta=0.1

PO

0
00 01 02 03 o4

=20, theta=0.1 =50, theta=0.1 =100, theta=0.1

th{ »

=
00 0os
o0 00 oo ox

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 42 /1



Binomial

Testes de soros ou vacinas

@ Doenca em gado com incidéncia de 25%.

@ Testando uma vacina, recentemente descoberta: injetamos em n
animais sadios.

@ Como avaliar o resultado? Para cada animal, sucesso = sadio com
probab 0.75

@ Para uma vacina absolutamente indcua, a probab de que k dos n
animais n3o sejam contaminados é
P(X = k) = n!/(k!(n — k)!)0.75%0.25"—k
@ Para k = n = 10, essa probab vale P(X = 10) = 0.75!% = 0.056.
@ Para k = n =12, ela vale somente P(X = 12) = 0.75%2 = 0.032.
@ Assim,
e se num total de 10 ou 12 animais, nenhum é contaminado,

e teremos uma forte indicagdo de que o soro teve algum efeito embora
esse resultado n3o se constitua em prova conclusiva.
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Binomial

Testes de vacinas

Vimos que, com n = 10, tivemos P(X = 10) = 0.056.

@ Sem a vacina, a probabilidade de que dentre 17 animais, no mdximo
um deles fique infectado € igual a P(X <1) =P(X =0)+P(X =
1) = 0.75Y7 + 17 x 0.75% x 0.25 = 0.0501.

Portanto, a evidéncia a favor da vacina é mais forte quando ha 1
contaminado em 17 do que quando hd 0 em 10!

Para n = 23, temos P(X < 2) = 0.0492.

Assim, 2 ou menos infectados em 23 €, outra vez, uma evidéncia mais
forte em favor da vacina, do que 1 em 17 ou 0 em 10.
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Binomial

Binomial em redes sociais

@ Modelo de Erdos-Rényi para grafos sociais.

@ n vértices formando n(n — 1)/2 pares de possiveis arestas
ndo-direcionadas.

o Para cada PAR de vértices, jogue uma “moeda”: se cara, conecte por
aresta.

P(cara) =6

Moeda é langada independentemente

Fixe um vértice qualquer e seja Y o nimero de conexdes.
Entdo Y ~ Bin(n—1,6).

Veja que E(Y) = (n—1)8 = nb.
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Binomial

Um exemplo de Erdos-Rényi

@ Um grafo gerado pelo modelo binomial de Erdés and Rényi com
6 =0.01 e n=100.
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Binomial

Alguns resultados

@ Apenas como curiosidade (nosso curso ndo ¢ sobre redes sociais),
Erdos e Rényi provaram varios resultados matematicos sobre os grafos
aleatérios supondo que n — oo

e Considere nf ~ E(Y'), o nlimero esperado de vizinhos de um vértice
qualquer.

@ Se nf > 1. o grafo terd um componente gigante da ordem de n e o
segundo maior componente serd < O(log(n))

@ Se nf < 1: o grafo gerado quase certamente n3o terd um
componente conectado maior que O(log(n))

@ Se nf > (1+ ¢€)log(n): o grafo quase certamente serd completamente
conectado

@ Se nf < (1—¢€)log(n): o grafo quase certamente terd vértices isolados

o Etc, etc, etc...
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Binomial

Grafo segue o modelo de Erdos-Rényi?

Como saber isto?

O que podemos fazer?

@ Uma maneira ébvia é comparar a distribuicdo do nimero de vizinhos
realmente observada no grafo real com a distribuicio ESPERADA sob
o modelo de Erdos-Rényi.

Como medir a distancia entre o que observamos e o que esperamos?

Temos uma resposta genérica: o teste qui-quadrado (daqui a pouco).
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Multinomial

Distribuicao Multinomial

A multinomial é uma generalizagcdo da binomial.

A binomial conta o nimero de sucessos em n repeticdes de um
experimento bindrio.

Em cada repeticdo temos duas categorias para classificar o resultado:
sucesso ou fracasso.

Quando tivermos mais de duas categorias em cada repeticdo, teremos
a multinomial.

Na multinomial, também repetimos um experimento n
independentemente.

Entretanto, em cada experimento existem k possibilidades e n3o
apenas duas, como na binomial.

O resultado do experimento é contar quantas vezes cada uma das k
possibilidades apareceu nas n repeticoes.
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Multinomial

Multinomial: o exemplo canénico

@ Imagine que um dado desbalanceado é langcado n vezes.
@ Em cada repeticdo ocorre uma ‘“categoria”: 1,2,3,4,5 ou 6.
@ As probabilidades de cada categoria sdo: 01,65, ...,0s.
@ Ao fim dos n lancamentos teremos:
N1 = no. lang. nacat. 1
N, = no. lang. na cat. 2
Ns = no. lang. nacat. 6
@ Resultado é um VETOR aleatério multinomial com 6 posi¢Ses

contando o nimero de ocorréncia de cada categoria. NOTACAO:
(Nl,Nz,...,N6) NM(n;Hl,...,t%)
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Binomial como Multinomial

@ A binomial pode ser vista como um caso simples da multinomial.

@ Seja X ~ Bin(n, ), onde X é o nimero de sucessos em n repeticdes
de um experimento binario.

@ De forma bastante redundante, poderiamos registrar o fendémeno
aleatério na forma do ndmero de sucesso e do niimero de fracassos:
(X,n—X).

o Este vetor é uma multinomial com duas categorias.

@ Na nossa notac3o:

(X,;n—X) ~ M(n;6,1—0)
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Multinomial

Multinomial: suporte

@ Voltando ao caso do dado desbalanceado langado n vezes:
N = (Nl,NQ,...,NG) ~M(n;01,...,96)

@ Qual o suporte deste vetor aleatério N?

@ Para qualquer sequéncia de lancamentos, o resultado N serd um vetor
(n1,...,ne) de inteiros > 0 com ny + ...ng = n.

@ Assim, existe um nimero finito (mas bem grande) de valores possiveis
para N.
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Multinomial

Multinomial: probabilidades associadas

Quais as probabilidades associadas com os elementos do suporte?

Vamos calcular um caso particular antes de dar a férmula geral.

@ Usando n = 8 langmentos do dado, vamos calcular a probabilidade
P(N =(2,0,2,1,0,3))

@ Isto é, a chance de rolar o dado 8 vezes e terminar tendo a face 1
duas vezes, a face 2 nenhuma vez, a face 3 duas vezes, a face 4 uma
vez, a face b zero vezes e a face 6 trés vezes.

Existem varias sequéncias w de 8 lancamentos que levam ao resultado
acima.
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Multinomial

Multinomial: probabilidades associadas

@ Por exemplo, se os 8 lancamentos forem
w=1(3,1,6,6,1,4,6,3)
teremos
N(w) = (M (w), ..., Ne(w)) =(2,0,2,1,0,3)

@ Esta ndo a (nica sequéncia com estas contagens mas vamos nos
concentrar nela(por hora).

@ Qual é a probabilidade P(w) desta sequéncia de 8 langamentos?

@ Como os lancamentos sdo independentes teremos:

P(w=(3,1,6,6,1,4,6,3)) P (sair 3 no lo. E sair 1 no 20. E ... sair 3 no 80.)
= P(sair 3 no 1o.) P (sair 1 no 20.) ... P ( sair 3 no 8o. )
= 03 01 05 O 01 04 05 03

= 02 09 63 0} 62 63
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Multinomial

Multinomial: probabilidade mais geral

@ Generalizando, se a sequéncia w de n lancamentos tiver
e ny apari¢cOes da face 1
e ny apari¢cOes da face 2
°:
@ ng apari¢coes da face 6

teremos
P(w) =0 0m 0 or o o
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Multinomial

Multinomial: probabilidade mais geral

@ Voltando aos n = 8 lancamentos do dado, vamos calcular a
probabilidade
P(N =(2,0,2,1,0,3))

@ Seja A o evento formado portodos os w (seq. de n = 8 lanc.) tais que
existem 2 1's, 0 2's, 2 3's, 0 4’s, e 3 6's.
@ Como calculamos antes, todo w € A terd a mesma probabilidade
P(w) =67 65 65 6} 62 63
@ Assim,
P(N = (2,0,2,1,0,3)) =) P(w)=Cx0; 03 63 6; 02 63
w€eA

onde C é o nimero de sequéncias de tamanho 8 onde colocamos um
elemento de {1,2,...,6} em cada posicdo e em que temos
exatamente 2 1's, 0 2's, ..., 3 6's.
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Multinomial

Multinomial: probabilidade mais geral

@ Este nimero de possibilidades é igual a

8 -8 1680
2,0,2,1,0,3/ 210121110131

e E o ndmero de permutacoes distintas do vetor
w=1(3,1,6,6,1,4,6,3)
@ Generalizando para qualquer n e k catgorias, se
N = (N, Noy ..oy N) ~ M(n; 01, ...,0k)

entao

n!

P(N = (n,n2,...,nk)) = |0"1 032 ...0."

nilnp! ... ng
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Multinomial

Exemplos de Multinomial

@ Suponha que uma amostra de n = 22343 individuos escolhidos

independentemente da populacdo brasileira e classificados em k = 6
categorias de religido.

Categorias i Catdlica Protestante Sem Relig Espirita Outras Crist. Outras
0; 0.75 0.15 0.07 0.01 0.01 0.01
N; 16692 3398 1568 241 221 223

@ As contagens aleatdrias do nlimero de pessoas em cada categoria

seguem uma distribuicdo multinomial

N = (N1, Ny, ..

Renato Assun¢do, DCC, UFMG
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Multinomial

Exemplos de Multinomial

@ Suponha que uma amostra de n = 538 individuos escolhidos

independentemente dentre pacientes com linfoma de Hodgkins (um
tipo de cancer do sistema linfitico) sdo classificados em 12 categorias

de acordo com sua resposta a um certo tratamento e seu tipo

histolégico:

Tipo Histolégico

Positiva

Resposta

Parcial

Sem Resposta

Total

LP
NS
MC
LD

74
68
154
18

18
16
54
10

12
12
58
44

104
96
266
72

[ Total

Il 314

[

98

[

126

I

538

I

@ As contagens aleatdrias do niimero de individuos em cada categoria

seguem uma distribuicdo multinomial

Renato Assun¢do, DCC, UFMG

N = (Nq, No, .

Estatistica para Ciéncia dos Dados

PN N12) ~ M(538; (91, ..

. 7012)
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Multinomial e o modelo Bag of Words

Classificacdo de textos

@ Imagine uma grande colegdo de textos (chamada de corpus), tais
como artigos de jornal, em que cada documento é classificado em um
de 3 tépicos: esporte, politica ou outros.

@ Esta colec3o é classificada manualmente exigindo uma grande
quantidade de homem-hora de trabalho.

@ O objetivo agora é criar uma regra de classificagdo automatica em
uma dessas 3 categorias de outros textos nio considerados, tais como
textos a serem escritos no futuro.

@ Uma maneira de fazer isto usa a distibuicdo multinomial para modelar
os textos.
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Multinomial e o modelo Bag of Words

Textos como sequéncia de palavras

Considere um dos tépicos. Por exemplo, esporte.

Vamos pensar num modelo generativo de um texto de esporte.

@ O texto serd gerado como uma sequéncia de palavras escolhidas ao
acaso de uma lista de palavras.

A escolha das palavras é feita independentemente uma das outras.

Ignorando alguns detalhes praticos, vamos chamar uma lista ordenada
de D palavras distintas da lingua portuguesa de vocabulario.

Associamos uma probabilidade #; a palavra i do vocabulario.
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Multinomial e o modelo Bag of Words

Um dado com N faces

@ Podemos imaginar um “dado” com D faces, cada face representando
uma das palavras distintas do vocabulario.

A chance de escolher a palavra i é a probabilidade 6; do “dado”

o
produzir a face /.
palavra-face 1] 2 D | Soma
probabilidades | 61 | 0> 0p 1
@ O texto é gerado rolando o “dado” sucessivamente e

independentemente.

@ Assim, um texto de esportes poderia ser gerado a partir desse modelo

produzindo, por exemplo, gol, Neymar, jogo, gol, cheio, gol, etc.

Renato Assun¢do, DCC, UFMG

Estatistica para Ciéncia dos Dados
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Multinomial e o modelo Bag of Words

Modelo n3o é realista

@ Obviamente, é muito pequena a chance deste modelo generativo
gerar um texto minimamente similar a um texto real de jornal.

@ A sequéncia de palavras a ser gerada dificilmente terd a estrutura
sintatica do portugués ou um sentido semantico.

o E surpreendente que seja Gtil um modelo t3o simples e tao
flagrantemente falso como modelo para geracdo de textos da
realidade.

@ A lista de probabilidades vai variar de tépico para tépico.

@ A lista de D palavras distintas (o vocabulario) é a mesma para todos
os tdpicos.

@ Entretanto, cada tépico vai atribuir probabilidades diferentemente.

@ No tépico esporte, as palavras gol, jogador, rede terdo probabilidades
f; maiores que sob os tdpicos politica e outros.
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Obtendo as probabilidades de cada tépico

@ As probabilidades das palavras de cada tépico sdo obtidas a partir das
frequéncias simples calculadas na colecdo manualmente rotulada.

@ Tome todos os documentos da colegcdo que foram classificados como
esporte.

@ Coloque todas as palavras usadas no texto num saco de palavras
(modelo bag of words).

@ Se a palavra jogo aparecer 523 vezes ao longo dos textos, 523
palavras gol serao colocadas no saco de palavras.

@ Conte quantas vezes cada uma das D palavras do vocabuldrio aparece
no saco de palavras e divida pelo nimerototal de palavras dentro do
saco de maneira a obter propor¢des que somam 1.

@ Por exemplo, se a palavra gol aparece 1.5% das vezes dentro do saco
esporte entao 0y, = 0.015.

@ Isto é repetido para cada tépico criando um saco de palavras diferente
e portanto diferentes probabilidades ;.
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Evitando #; = 0

@ Geralmente, ao fim desse pocesso de estimacdo de probabilidades,
muitas palavras do vocabulario terdo 6; = 0.

@ A razdo é que, por exemplo, a palavra inefidvel pode n3o ter aparecido
nem uma Unica vez na colecdo esporte.

@ Isto indicaria que esta palavra nunca poderia aparecer no futuro num
texto de esporte.

@ Queremos evitar esta impossibilidade futura da palavra aparecer num
texto de esporte.

@ A impossibilidade é devido a #; = 0 nestas palavras e é criada pela
flutuacdo estatistica em palavras com probabilidades pequenas.

@ Uma colecdo de textos de esporte, mesmo que bem grande, terd zero
ocorréncias de muitas palavras que, embora improvaveis num texto de
esporte, nao sao impossiveis.
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Multinomial e o modelo Bag of Words

Uma solucao

@ Uma solugdo simples é colocar uma cépia de cada uma das D
palavras distintas do diciondrio no saco de palavras, além das préprias
palavras vinda da colec3o de textos de esporte.

@ Suponha que existam D palavras distintas e a colecdo de textos tem
um total de M palavras.

@ A palavra i aparece m; vezes na colecdo, onde m; pode zer igual a
zero.

@ Ao invés de estimar 0; pela fragdo m;/M, use o estimador
0i = (mi +1)/(M+ D).
@ Este estimador é chamado de estimador de Laplace.

e Veja que, se m; = 0, teremos ; = 1/(M + D), um valor bem
pequeno mas estritamente maior que zero.
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As probabilidades de cada tépico

@ Suponha que as probabilidades das D palavras distintas do
vocabulario foram estimadas usando o estimador de Laplace em cada
colecdo de textos, de esporte, de politica, e outros.

@ O resultado estd numa tabela:

palavra 1 2 |...| D | Soma
01;, esporte || 011 | O12 | ... | 61D 1
0»;, politica || 021 | 622 | ... | bop 1
03;, outros 031 | O3 | ... | O3p 1

@ Um novo texto aparece e desejamos classificad-lo automaticamente
numa das trés categorias.

@ Usamos a distribuicdo multinomial para isto.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 67 /1



Multinomial e o modelo Bag of Words

Classificando um novo texto

@ O novo texto tem M palavras ao todo, algumas repetidas varias vezes
ao longo do texto:

Novo texto = (x1,x2,X3,...,XMm)

one x; € a palavra j do novo texto.

@ Usando o modelo bag of words, qual a probabilidade deste novo texto
ter sido escrito usando as probabilidades 6; do tépico esporte?

@ Seja N; o nimero aleatério de vezes que a palavra i do dicionario
vaiaparecer no novo texto.

@ Se o texto é de esportes e 0 modelo bag of words for vélido, temos
uma multinomial para estas contagens:

N:(Nl,N2,...,ND)NM(M;(GL...,HD))
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A probabilidade do texto

@ Suponha que as contagens efetivamente observadas no novo texto
foram os inteiros ny, no, etc.

@ Calculamos agora a probabilidade de observarmos este novo texto
DADO QUE O TOPICO E ESPORTE:

n! n
— — D
]P’(N—(nl,ng,...,nD)| esporte) —ﬁﬁ 07%...073
1:Mm2 np
@ Fazemos o mesmo célculo para os outros dois tépicos:
P(N = litica ) = ——"—_gm gm . g0
( —(nl,ng,...,nD)|p0||ca)—ﬁ21 5 - 050
1:N2!...Np:
e
P(N = ( )| outros ) = — 0% 0502
= (n1, no,...,np)| outros _—
1, 112, s "D n1In2| np 32 3D

@ Observe que a constante multinomial envolvendo os fatoriais é a
mesma nos trés casos.
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Multinomial e o modelo Bag of Words

Evitando calcular a constante

@ Podemos fixar uma das categorias-tépico como referéncia e comparar
as probabilidades relativamente a esta categoria-base.

@ Por exemplo, suponha que fixemos a categoria esporte e calculamos
duas razoes.

@ A primeira delas:

P(N = (n1,n2,...,np)| politica )
r, =
p-e P(N = (n1,m,...,np)| esporte )

S 1)
011)  \bip 1\

@ Note que a constante desapareceu.

o Note também que, se a palavra i ndo aparecer no novo texto (e
portanto n; = 0), ent3o o fator (6;/61;)"¢é igual a 1 e n3o precisa ser
calculado.
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Multinomial e o modelo Bag of Words

Usando as razoes

o Calculamos também a segunda raz3o:

]P(N = (n1, n2,...,np)| outro )

fo.e = P(N = (n1,n2,...,np)| esporte )

@ Suponha que r, ¢ seja maior que 1. Por exemplo r, o = 4.3.

e Isto significa que a chance de ter estas contagens ny, ny, etc. (isto é,
ter este novo texto) quando o tépico é politica é 4.3 vezes maior que
a mesma chance quando o tdpico é esporte:

P(N = (n1,m,...,np)| politica ) =4.3 P(N = (ny,n,...,np)| esporte )
@ Se ry e for menor que 1, o raciocinio é o oposto. Por exemplo,

rp.e = 0.1, a probabilidade do texto sob o tépico politica é 10 vezes
menor que a mesma probabilidade sob o tépico esporte.
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Multinomial e o modelo Bag of Words

Tomando decisoes

@ Uma regra de decisdo entdo pode ser a seguinte:

o Caso max{rp.e,ro.e} < 1, atribua o novo texto a categoria de referéncia
esporte.

o Caso max{rpe, fo.e} > 1, atribua o novo texto a categoria-numerador
que leva ao maximo das razoes.

o Caso max{rp.e, fo.e} = 1, ndo existe evidéncia suficiente no novo texto
para alocar a uma das categorias. Pode-se escolher ao acaso uma das
categorias que compdem uma razoes que é igual a 1.

o Esta regra de decisdo funciona bem em varios casos mas em algumas
situacdes ela pode (e deve) ser melhorada.

@ A quest3o esta relacionada a diferenca entre P(A|B) e P(BJA).
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Multinomial e o modelo Bag of Words

Qual probabilidade queremos?

@ Nossa regra de decisdo é baseada na comparacdo de probabilidades
como
P(N = (n1,n2,...,np)| esporte )
@ Mas o que realmente gostariamos de saber é o valor da probabilidade
inversa:
P ( esporte [N = (n1, n2,...,np))
@ A primeira probabilidade calcula a chance de ter o texto novo DADO
que ele foi escrito na categoria esporte.

@ A segunda probabilidade calcula a chance de que o texto seja da
categoria esporte DADO que ele possui a configuracdo de palavras
observada.

@ Em geral, estas probabilidades ndo s3o iguais e, na verdade, podem
ser bem diferentes.
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Multinomial e o modelo Bag of Words

Calculando a probabilidade inversa

@ Podemos usar a regra de Bayes para inverter as probabilidades de
interesse.
@ Por exemplo,

]P(N =(nm,no,..., nD)‘ esporte ) P ( esporte )

P te |N = (n1,m, . .., -
(espor e ‘ (n1, m2 nD)> FN= (m,m,....70))

(S

P(N = (n1,m,...,np)| politica ) P ( politica )
P(N = (n1,n,...,np))

IP’( politica ’N = (m,m,..., nD))

@ Observe que os denominadores do lado direito das duas expressGes sdo
idénticos e vao desaparecer se tomarmos as razdes das probabilidades:

P ( politica [N = (n1,m,...,np))  P(N=(n1,nm,...,np)| politica) P( politica )
P ( esporte [N = (n1, n2,...,np)) P(N = (n1,n2,...,np)| esporte ) P( esporte )
_ P ( politica )
= pe —

P ( esporte )
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Multinomial e o modelo Bag of Words

Decisao a priori

@ Repetindo:
P ( politica [IN = (ny, mp,...,np)) P ( politica )
= T, _—
P ( esporte [N = (n1,n,...,np))  7° P( esporte)

@ Concluimos que a decisdo deve ser baseada na razdo r, . calculada
anteriormente MAS corrigida pelo produto da razdo
P( politica ) /P ( esporte )

o Esta razdo calcula qudo frequente é a apariado de um texto de
politica em relagdo a frequéncia de um texto de esporte.

@ Por exemplo, suponha que textos de esporte sejam 100 vezes mais
frequentes que textos de politica de forma que
P ( politica ) /P ( esporte ) = 1—(1)0.
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Multinomial e o modelo Bag of Words

Atualizando a priori

@ A priori, sem olhar o novo texto, sabemos que existem muito mais
artigos de esporte que de politica.

@ Uma regra de decisdo razodvel, que decida a priori, sesm nem olhar o
texto novo, é alocar qualquer texto que surja a categoria esporte.

@ De posse do novo texto, olhando a configuragdo das palavras,
podemos mudar a nossa regra de decisdo a priori alocando o texto
novo a politica.

@ Mas esporte é tdo frequente que vamos fazer isto apenas se a
evidéncia a favor de politica no novo texto for bem forte.

@ Por exemplo, se rp . = 1.1, hd alguma mas n3o muita evidéncia
favoravel a politica.

o Afinal, isto significa que a chance de ter a configuragao de palavras
do texto novo quando o tépico é politica é apenas 10% maior que a
mesma chance quando o tépico é esporte.
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Atualizando a priori
@ Com esporte sendo 100 vezes mais frequente que politica em geral e
com o novo texto tendo r, . = 1.1 obtemos

P ( politica [N = (n1, n2,...,np)) P ( politica ) 1.1
=rpe == —o0.011
P ( esporte [N = (n1,n2,...,np)) P( esporte ) 100

@ Isto é, a chance de ser de politica continua sendo aprox. 100 vezes
menor que a chance de ser de politica mesmo sendo r, o > 1.

@ Continuamos a atribuir o texto a esporte.
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Um problema numérico

Seja (61,...,0p) um vetor onde 6; é a probabilidade da palavra / do
diciondrio ser usada num texto de certo tépico (esportes, digamos).
@ As probabilidades somam 1.

@ Um texto especifico é analisado e vocé obtem as contagens
ni,...,np de modo que n; é o nimero de vezes que a palavra / do
diciondrio apareceu neste texto.

@ Dado que o texto é realmente de esportes, a probabilidade de que ele
tenha estas contagens é dada pelo modelo multinomial:

n!
_ _ n n np
P( N = (n1,n2,...,np)| esporte | = ﬁﬁll 05 ...05
niing:...Nnp:
@ Ja vimos que a constante n3o precisa ser calculada e portanto seu
problema é obter o valor numérico da expressao

ny n2 np
om0 ..o
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Multinomial e o modelo Bag of Words

Um problema numérico

@ Queremos
D

o7 0500 =]o"
i=1
O nidmero D de palavras do vocabuldrio é muito grande.
A maioria das probabilidades #; sdo nimeros préximos de zero.
O produto de muitas delas elevadas a poténcia n; rapidamente leva

ao limite de precisdo numérica da maquina.

E o produto é transformado em 0. Um exemplo ilustrativo:
pl = runif(1000) # mil numeros aleatorios entre 0 e 1

# padronizando para que pl tenha probabilidades somando 1
pl = p1/sum(pl)

# gerando 1000 contagens entre 1 e 100 ao acaso

contagens = sample(1:100, 1000, replace=T)

# calculando theta™n

aux = (pl) contagens

# obtendo o seu produto: retorna O

prod (aux)

(11 o
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Multinomial e o modelo Bag of Words

Tomando logs

@ O truque para fazer este calculo é usar logaritmos.
@ Na escala log, produtos sdo transformados em somas e, por isto,
costumam ficar muito mais estdveis numericamente.

log P(texto) = log (]P’(N = (n1,n,...,np)| esporte ))

= cte. +log (07%) + log (652) + ...+ (0/P)
= cte.+ nilog(01) + mlog(62) + ...+ np (6p)

D
= cte.+ Z n; log (6;)
i=1

e Na prética, a constante pode ser ignorada (e ndo precisa ser
calculada) pois ela serd a mesma em todos os tépicos (esportes,
politica, etc). Em R:
1pl = log(pl)
aux = contagens*lpl
sum (aux)

# sendo mais sintetico em R, em uma unica linha de comando
sum(contagens * log(pl))
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Multinomial e o modelo Bag of Words

Resolvendo o problema

@ Em geral, queremos calcular a probabilidade de observar um certo
texto dado que ele é de politica dividida pela probabilidade de
observar este mesmo texto dado que ele é de esportes.

o Esta razdo é igual a rpe:

P(N = (n1,n2,...,np)| politica )
P(N = (n1,n2,...,np)| esporte )

(o) ()
011 \bip

D n;
B2i\ "
- 11(*)

i=1

I'p.e

@ O mesmo truque de tomar logaritmos se aplica aqui.
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Multinomial e o modelo Bag of Words

Resolvendo o problema

@ A constante jd desapareceu e usando logaritmos, temos

D

log(rp.e) = > nilog (92'> Z n; (log(62;) — log(617))

i=1
@ Se pl e p2 sao os vetores de probabilidades dos dois tépicos em R,
basta escrever
o sum(contagens * (log(pl)-log(p2)))

o Este valor estd na escala log. Assim, rp > 1 implica em log(rp.e) > 0
enquanto que r, . < 1 implica em log(rp.e) < 0.
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Poisson

Decaimento atomico

Uma massa atémica emite particulas radioativas.

Um contador registra o niimero de particulas atingindo uma placa
num intervalod de 7.5 segundos

Valores possiveis para a contagem: 0,1,2,...,007

Probabilidades associadas: empirico ou tedrico.

Um modelo tedrico para a emissao de particulas
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Poisson

Um modelo tedrico

Hipdtese 1: A probabilidade da chegada de k particulas num intervalo
de tempo depende apenas do comprimento do intervalo

Hipdtese 2: Os némeros de particulas em intervalos de tempo
disjuntos s3o v.a.'s independentes

Hipotese 3: As particulas chegam sozinhas e ndo simultaneamente.

Pode-se provar que um sistema estocastico com estas propriedades
. , k
necessariamente terd P(Y = k) = 77~

para k=10,1,2,...
e onde )\ é uma constante positiva associada com o massa radioativa.
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Poisson

Distribuicao de Poisson

@ Temos uma constante A > 0.

@ Os valores possiveis s3o 0,1, 2, ... e as probabilidades associadas sdo
e P(Y=0)= é—?e"\ e

o P(Y = ):)1‘—ie*’\:)\e*A

o P(Y =2)= e

o P(Y =3)=2e

o P(Y =4)= f‘TTe_A

o Etc.

e De maneira geral: P(Y = k) = i‘(’:e A
@ Pode-se provar que E(Y) = A
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Poisson

Um caso particular

Por exemplo, se A = 3.87, entado

P(0 particulas em 7.5 segundos) = P(Y = 0) = e~38" = 0.021
P(Y =1) =3.87 x e 38 =0.081

P(Y =2) =3.87%/2! x 738 =0.156

P(Y =3) =3.873/3! e 387 = 0.201

Etc.

Temos E(Y) = 3.87.
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A funcao de probabilidade

Poisson com A = 3.87

0.20
I

P(X=K)

0.05
I
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Poisson: variando )\
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Poisson

Um pouco de realidade

@ Esta férmula matematica bate com a realidade?
e Rutherford, Chadwick e Ellis (1920)

@ “Repetiram” o experimento um grande nimero de vezes: 2608
intervalos de tempo consecutivos de 7.5 segundos cada um

@ Sejam y; =4, o =3,y3=0,..., yo608 = 4 a contagem de particulas
emitidas em cada intervalo.

@ Vamos assumir que eles sao os valores instanciados das v.a.'s i.i.d
Y1, Y2, ..., Yosos, todas com distribui¢do Poisson(\).

@ Se este modelo Poisson para a emissio de particulas estiver correto o

que podemos esperar nas contagens observadas?

- ko
o Vamos comparar os valores tedricos P(Y = k) = 77e™* com a

frequéncia observada de intervalos com contagens iguais a k
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Poisson

Comparando os dados com o modelo Poisson

@ Vamos calcular P(emitir k particulas em 7.5 segundos) usando o
modelo de Poisson.

7 k f—
o Isto &, vamos calcular P(Y = k) = 77~
@ N3o usaremos os dados aqui.

@ A seguir, vamos calcular a propor¢ao dos 2608 intervalos em que
obtivemos k particulas.

@ Veja que n3o usamos nenhum modelo aqui, apenas os dados
observados.

@ Se o modelo estiver correto, estes dois valores devem ser parecidos
para todo k.
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Poisson

Um dltimo passo

o Na verdade, para calcular P(Y = k) = ?{—T

valor para .
@ No caso Poisson, E(Y;) = A.

@ Assim, A é o valor esperado de Y ou tipico.

e~ precisamos de algum

o Calcule a média aritmética das observcdes como uma aproximacao

para A:
@ Use = (y1 +yo+.. .y2608)/2608 =3.87
@ Assim, vamos calcular P(Y = k) = %e‘”ﬂ
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Poisson

A comparacao

k | P(Y =k)= 3‘,?!7k e~38 | Frequéncia empirica no experimento
0 0.02086 57/2608 = 0.02186
1 0.08072 203/2608 = 0.07784
2 0.15619 0.14686

3 0.20149 0.20130

4 0.19495 0.20399

5 0.15089 0.15644

6 0.09732 0.10968

7 0.05381 0.05329

8 0.02603 0.01725

9 0.01119 0.01035

Tabela: Probabilidades tedricas obtidas através do modelo de Poisson e
frequéncias empiricas obtidas através dos dados.
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Poisson

Comparacao visual
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Poisson

Distribuicao de Poisson

@ Duas situacdes em que a distribuicao de Poisson aparece:

@ Quando contamos nimero de ocorréncias sem um limite claro para o
ndimero maximo
e numero de colisdes no trafego de BH durante o ano.
e numero de automéveis entrando na UFMG entre 7 e 8 da manha
e numero de consultas médicas que um cliente de um plano de satde faz
durante o ano
@ Aproximagdo para uma binomial X ~ Bin(n,#) com um nidemro
maximo possivel n muito grande e 8 muito pequeno:
e nimero de mortos por cancer de es6fago durante o ano em BH.
e numero de apdlices de uma carteira com 2 ou mais sinistros durante o
ano.
e numero de sinistros de uma apdlice especifica durante um ano.
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Bombas em Londres

o WW2: Bombas voadoras V2 atiradas do continente europeu através
do Canal da Mancha em Londres

@ Segredos militares: os alemaes tinham mira?

o SE OS ALEMAES NAO possuiam mira, o niimero de bombas num
pequeno quadrado seria uma v.a. com distribuicdo Poisson(\),
mesmo A onde quer que estivesse o quadrado

@ Por qué?
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Poisson

Bombas em Londres

Fixe um pequeno quadrado no mapa.

Seja X o timero de bombas no quadrado.

Um grande niimero de bombas,

Pequena probabilidade 6 de atingir um quadrado especifico.
Bombas langadas independentemente.

Aproximagdo da binomial pela Poisson com A = nf.

SE NAO TEM MIRA, a probabilidade 8 é a MESMA para todo
pequeno quadrado.

n quadradinhos com contagens Y1, ..., Y, iid Poisson(\).

Este modelo tedrico ajusta-se aos dados? Se sim, evidéncia a favor da
hipétese de nao mira.
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Poisson

Bombas em Londres

@ Foram mapeados os locais atingidos por bombas.
o Area foi dividida em N = 576 quadradinhos, 0.25km?.

F |
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Poisson

Bombas em Londres

Foram mapeados os locais atingidos por bombas.

Area foi dividida em N = 576 quadradinhos, 0.25km?.

Seja Y; o nimero de bombas no quadradinho i.

Y1,..., Yy sdo iid Poisson(\)??77?

Vamos calcular as probabilidades P(Y = 0), P(Y = 1), P(Y = 2), etc
usando os modelo de Poisson (ndo vamos usar os dados aqui).

A seguir, vamos calcular a propor¢do dos quadradinhos em que
Y =0, Y =1, Y =2, etc usando apenas os dados empiricos.

@ Vamos entdo comparar as probabilidades tedricas de Poisson com as
frequéncia baseadas apenas nos dados.

@ Se forem similares, os dados sdo compativeis com o modelo.
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Poisson

Bombas em Londres

@ O numero total de bombas em Londres é 537 e existem N = 576
quadradinhos.

@ O nidmero médio de bombas por quadradinho é
A =537/576 = 0.9323.

@ Seja Y; o nimero de bombas no quadradinho ;.
@ Y1,..., Y, sdoiid Poisson(\) com A = 0.9323777
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Poisson

Bombas em Londres

k Nk | Ni/576 | P(Y = k)
0 229 0.398 0.394
1 211 0.366 0.367
2 93 0.161 0.171
3 35 0.061 0.053
4 7 0.012 0.012
>5 1 0.002 0.003
Total | 576 1 1

Tabela: k é o nimero de bombas num quadradinho, Ny é o niimero de
quadradinhos que foram atingidos por k bombas, N /576 é a propor¢do de
quadradinhos atingidos por k bombas e P(Y = k) = 0.9323k /kle=0:9323 ¢ 5
probabilidade de uma v.a. Poisson(\ = 0.9323) ser igual a k.
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Geométrica

Distribuicao geométrica

@ Y é o nimero de fracassos em uma sequéncia de ensaios
independentes de Bernoulli até que o primeiro sucesso seja observado.

Em cada ensaio a probabilidade de sucesso é 6

Y = 0 significa que o primeiro ensaio foi um sucesso

Temos P(Y =0) =P(S) =10

Y =1 significa que o primeiro ensaio foi um fracasso e osegundo foi

um Sucesso.

Assim, P(Y =2) =P(FS) = (1—0)0
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Geométrica

Distribuicao geométrica

o P(Y =k)=2?

o P(Y=0)=P(S) =

o P(Y=1)=P(FS) = ( —0)0

o P(Y =2)=P(FFS) = (1 - 0)%0

o P(Y =3)=P(FFFS) = (1 - 0)30

o De forma geral: P(Y = k) = (1 — )0, para k =0,1,2,...

@ Pode-se mostrar que E(Y) = 1/6 quando Y é geométrica com

pardmetro de sucesso igual a 6.
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Geométrica

Distribuicao geométrica

P(Y=k)
06 08

04
1

02
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Distribuicao de Zipf ou de Pareto

e X €{1,2,3,...,N}. O valor de N pode ser finito ou infinito.
o P(X=k)= k1+a com o > 0.

@ C é uma constante garantindo que as probabilidades somem 1:
1 = PX=1)+P(X=2)+P(X=3)+

1 1 1
= C 11+a + 21+a + 31+a +..
= C & 1
- Z k1t+o
k=1

1
1
Zk:l klt+o

o que implica que C =
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Distribuicao de Zipf ou de Pareto

o P(X =k)= k1+a com a > 0.
@ Por exemplo, se « =1, temos P(X = k) =

e O que realmente importa é o seguinte: a probabilidade P(Y = k)
decresce de acordo com uma poténcia de k.

@ Ela n3o cai com uma rapidez exponencial como é o caso de uma
Poisson e uma geométrica.
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Grafico de duas Zipf ou Pareto

=10 =12

PY=K)

00 01 02 03 04 05 O
P{Y=K)

00 01 02 03 04 05 0

Figura: Probabilidades P(Y = k) = c/k!*4/Pha de uma distribuigdo Pareto com
a =1 (esquerda) e de uma Pareto com « = 1/2 (direita). A escala do eixo
vertical € a mesma nos dois casos.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 106 / 1



Zipf ou Pareto

Zipf classica

P(Y =k)x1/k com k=1,2,...,N e N finito.
Assim, temos

o P(Y=1)x1

o P(Y =2)x1/2

o P(Y =3) x1/3, etc.

Exemplo: frequéncia de palavras.

Considere um longo texto (ou vérios textos num tnico documento).

Algumas palavras aparecem pouco, s3o raramente usadas.

Outras aparecem com grande frequéncia
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Zipf ou Pareto

Frequéncia de palavras em portugues

@ Por exemplo, em portugues brasileiro temos:

palavra posto (rank) | frequéncia
de 1 79607
a 2 48238
ser 27 4033
amor 802 174
chuva 2087 70
probabilidade 8901 12
iterativo 14343 6
algoritmo 21531 3

Tabela: Posto (ou rank) de algumas palavras e frequéncia de sua aparicdo
por milhdo de palavras em textos de portugués brasileiro

@ Retirado de www.linguatec.pt.
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www.linguatec.pt

Zipf ou Pareto

Experimento

Imagine o seguinte experimento: escolha uma palavra completamente
ao acaso do texto.

Seja Y o posto (ou rank) da palavra escolhida ao acaso.
Por exemplo, se Y = 1, a palavra escolhida é a mais frequente.

Se Y =2, a palvra escolhida é a 2a. mais frequente.

Se a distribuicdo de Zipf for um bom modelo devemos ter

C

com o ~ 0.
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Zipf ou Pareto

Na escala log

@ Se tivermos
C

P(Y:k)%m7

ao tomarmos log dos dois lados teremos:
log (P(Y = k)) =~ log(C) — (1 + «) log(k)

@ Assim, um plot de log (P(Y = k)) versus log(k) deveria ser
aproximadamente uma linha reta com intercepto log(C) e inclinagdo
(1+a)=1.
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Zipf ou Pareto

Verificando...

@ Pela visdo frequentista de probabilidade, sabemos que
ng = 10°P(Y = k) é aproximadamente igual 4 frequéncia (por
milhdo) da palavra de posto k

@ Entdo, se o modelo Zipf for adequado,

log(nk) ~ log(10°)+log(P(Y = k)) ~ (log(10°) + log(C)) —(1+a) log(k
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Zipf ou Pareto

Portugués brasileiro
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Figura: Grafico do posto k versus a freqéncia n, para algumas palavras do
portugués (esquerda). O gréfico da direita mostra os mesmos dados num gréfico
log-log (isto é, os pontos sdo (log(k),log(nk)). A reta

log(nk) = 11.51 — 0.999 log(k)).
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Zipf ou Pareto

Pareto

@ Zipf é um caso particular da distribuicdo de Pareto.
@ Pareto é muito comum em estudos da web.

@ Uns poucos sites possuem milhdes de paginas mas milhGes de sites
possuem apenas umas poucas paginas.

@ Poucos sites contém milhdes de links, enquanto a maioria ndo possui
mais que uma dezena de links.

@ Milhdes de usuarios visitam uns poucos sites dando pouca atenc3o a
milhdes de outros.
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Zipf ou Pareto

Pareto ou power-law

@ A distribuicdo de Pareto também é chamada de lei de poténcia

(power-law) por qué a probabilidade de k é o inverso de uma poténcia
de k.

@ Pareto da uma probabilidade finita e aprecidavel a ndimeros k muito
grandes, muito maiores que a imensa maioria dos valores muito
frequentes.

@ Nas distribuicdes binomial, Poisson ou geométrica, némeros muio
maiores que a maioria sdo muito improvéveis, quase impossiveis.
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Zipf ou Pareto

Como identificar uma Pareto?

@ A maneira mais efetiva de checar informalmente se a distribuicdo de
Paretoé um bom modelo para os dados é olhar para o grafico de
log(k) versus o log da frequéncia log(ng).

@ Se o0 modelo Pareto for adequado,devemos observar aproximadamente
uma linha reta neste plot.

@ Entretanto, os valores muito altos e pouco frequentes de k vao gerar
muito ruido na extremidade esquerda do grafico.
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Gerei 1000 Pareto(ar = 1)
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Figura: Esquerda: grafico dos valores gerados sequencialmente. Direita: Gréfico
de k versus sua frequéncia, escala log nos dois eixos.
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Bins?

e Agregando e contando a frequéncia em pequenos intervalos (bins)
ndo resolve o problema.

e Uma solugdo parcial 'e calcular bins logaritmicos: (1,2), (3,4), (5,8),
(9,16), (17,32), etc,

o Falta figura ...
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Funcdo P(Y > k)

@ A melhor maneira de visualizar se a distribuicio Pareto é um bom
modelo é plotar a fung¢do P(Y > k) versus k, ambas na escala log.
@ A razdo é que, no modelo Pareto,

P(Y >k) = P(Y=K+P(Y=k+1)+...

> C
= D it
1=k
C*
ke

@ Assim, tomando log dos dois lados, temos

Q

log(P(Y > k)) =~ log(C*) — alog(k)

e O plot de log(P(Y > k)) versus log(k) dard aproximadamente uma
linha reta se o modelo for adequado.
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Zipf ou Pareto

Grafico

e Para cada k estime P(Y > k) pela proprogdo de elementos da
amostra que s3o maiores ou iguais a k.

@ Podemos também simplesmente contar o niimero absoluto ny de
elementos da amostra que sdo maiores ou iguais a k.

@ O plot de log(nk) versus log(k) deveria ser aproximadamente uma
linha reta.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 119 /1



Gerei 1000 Pareto(ar = 1)
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Figura: eixos.
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Comparagdo entre as distribuices

Poisson x geométrica x Pareto

@ Qual a diferenca mais relevante?

@ Todas sdo distribuicdes sobre os inteiros positivos
@ Diferenca estd no comportamento na cauda:
e Poisson tem cauda curta, valores com probabilidades significativas
estdo concentrados em uma faixa estreita torno de E(Y) = A.
e Pareto gera facilmente valores muito grandes, ordens de grandeza
maiores que E(Y).
o Geométrica é um caso intermedidrio.
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Comparagdo entre as distribuices

Comparando as trés

@ Poisson:
P(Y =k+1) - e*’\)\"+1/(k+ ! A

P(Y =k) e /Kl k+1
se k = 00. Isto é P(Y = k+ 1) <<< P(Y = k) se k é grande.

—0

@ Geométrica:

P(Y=k+1) (1-0) 0
By=k ~ (@_epe - 0=h

constante em k. Isto é P(Y = k+1) = (1 —0)P(Y = k), uma queda
geométrica ou exponencial.

P(Y=k+1) [ k \’
P(Y = k) _<k+1> —1

Isto é P(Y = k+ 1) = P(Y = k) se k é grande, uma queda muito lenta.

@ Pareto:
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