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V.A. Cont́ınua

Composta de um intervalo e uma função densidade.

Um intervalo de valores reais que são os valores posśıveis.

Uma FUNÇÃO densidade de probabilidade definida neste intervalo.

Exemplos:

X ∈ [0, 1] com f (x) = 1 (distribuição uniforme).
X ∈ (0,∞) com f (x) = exp(−x) para x ∈ (0,∞).
X ∈ R com f (x) = 1/

√
2π exp(−x2/2).

A única restrição: f (x) ≥ 0 para todo x e sua integral deve ser = 1.
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Probabilidades estão associadas com áreas

No caso cont́ınuo, probabilidades estão associadas com áreas sob a
função densidade.

P(X ∈ (a, b)) =

∫ b

a
f (x)dx

Olhando o gráfico de f (x) sabemos quais as faixas de valores mais
prováveis.
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Modelos para dados cont́ınuos

v.a. Y cont́ınua.

Imagine uma amostra de 5000 lotes que constituem uma fazenda e
onde se cultiva somente soja.

Seja yi a colheita do lote i .

É muito pouco prático e um tanto sem sentido trabalharmos com
uma distribuição discreta para uma situação como essa.

É mais útil assumirmos que as colheitas dos lotes são os resultados de
5000 realizações de uma certa variável aleatória cont́ınua que possua
uma forma simples e já conhecida.

Qual a densidade desta Y ?

Para saber isto, faça um histograma (com área total = 1).

Renato Martins Assunção (DCC - UFMG) Inferência para CS Modelos univariados cont́ınuos 2014 4 / 42



Histograma

Quebre o eixo horizontal em pequenos intervalos de comprimento ∆.
Em cada pequeno intervalo i , conte o número ni de elementos em sua
amostra que cáıram no intervalo.
Levente uma barra cuja altura seja igual a esta contagem (esquerda)
Histograma padronizado tem área total = 1.
Para isto: levante uma barra com altura = ni/(n∆).

Figura: Histograma simples e padronizado.
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Modelos para dados cont́ınuos

No histograma padronizado, sobreponha uma densidade candidata.
O histograma se parece com uma certa densidade gaussiana (ou
normal, N(9, 4)).
Então a distribuição real será aproximada por esta distribuição normal
(veremos como escolhar uma distribuição candidata mais tarde).

Figura: Gráfico de histograma de dados de colheita de soja em 1000 lotes de
uma fazenda.
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Mais exemplos para dados cont́ınuos

Amostras de tamanho n = 1000 geradas de 4 distribuições, seu
histograma padronizado e a densidade correspondente sobreposta.
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Justificativa

f ∗(y) = densidade verdadeira que gerou os dados.

f (y) modelo retirado da nosso catálogo de distribuições conhecidas.

Se o histograma da amostra é bem aproximado por f (y) então
acreditamos f (y) ≈ f ∗(y). Por quê?

Seja (y0 − δ/2, y0 + δ/2) um pequeno intervalo do histograma
centrado em y0 e de (pequeno) comprimento δ.

Aproximando a área debaixo da curva por um retângulo:

P(Y ∈ (y0 − δ/2, y0 + δ/2) =

∫ y0+δ/2

y0−δ/2
f ∗(y) dy

≈ f ∗(y0)δ
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Justificativa

A probabilidade também pode ser aproximada pela fração de
elementos da amostra que cáıram no intervalo (y0 − δ/2, y0 + δ/2):

#{Y ′i s ∈ (y0 − δ/2, y0 + δ/2)}
n

≈ P(Y ∈ (y0 − δ/2, y0 + δ/2)

Igualando as duas aproximações e dividindo por δ dos dois lados,
temos

#{Y ′i s ∈ (y0 − δ/2, y0 + δ/2)}
nδ

≈ f ∗(y0)

O lado esquerdo é a altura do histograma no ponto y0. O lado direito
é a altura da curva densidade no memso ponto y0.

Assim, as alturas do histograma nos pontos centrais são ≈ iguais à
densidade DESCONHECIDA.

Olhar o histograma é olhar a densidade desconhecida
(aproximadamente).
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Esperança e Variância

Suponha que você VAI SIMULAR uma distribuição F (y).

Isto é, vamos gerar números pseudo-aleatórios com distribuição F (y).

Como RESUMIR grosseiramente esta longa lista de números ANTES
MESMO DE GERÁ-LOS?

O valor TEÓRICO em torno do qual eles vão variar: a esperança
E(Y ).

As vezes, Y > E(Y ); as vezes, Y < E(Y ). Podemos esperar os
valores gerados de oscilando Y em torno de E(Y ).

Em torno, quanto?? DP = desvio-padrão.

DP é o valor TEÓRICO que mede o quanto os valores oscilam em
torno de E(Y ): σ =

√
Var(Y ).
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E(Y ) no caso discreto

Caso discreto com valores posśıveis {x1, x2, . . .}: Então
E(Y ) =

∑
xi
xiP(Y = xi )

É uma soma ponderada dos valores posśıveis da v.a. Y .

Os pesos são as probabilidades de cada valor.

Os pesos são ≥ 0 e somam 1.

E(Y ) geralmente NÃO É um dos valores posśıveis {x1, x2, . . .}.
É um valor TEÓRICO, não precisa de dados esat́ısticos para ser
calculado.
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Identifique E(Y ) em cada caso

Figura: Sem fazer nenhuma conta, identifique as distribuições com as seguintes
esperanças: 5, 6.67, 0.53, 3.33
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E(Y ): resposta

Figura: p1 = 6.67, p2 = 3.33, p3 = 5, p4 = 0.53.
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E(Y ) no caso cont́ınuo

Caso cont́ınuo: E(Y ) =
∫∞
−∞ yf (y)dy

Podemos raciocionar intuitivamente EXATAMENTE como no caso
discreto.

Quebrar todo eixo real em pequenos bins de comprimento ∆ e
centrados em . . . , y−2, y−1, y0, y1, y2, . . ..

Então, em cada pequeno bin, aproxime a integral:∫
bini

yf (y)dy ≈ yi f (yi )∆

Portanto, E(Y ) =
∫∞
−∞ yf (y)dy é igual a∫ ∞

−∞
yf (y)dy =

∞∑
i=−∞

∫
bini

yf (y)dy ≈
∞∑

i=−∞

yi f (yi )∆ ≈
∞∑

i=−∞

yiP(Y ∈ bini )
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Desenhar

Assim, caso cont́ınuo (esperança como integral) é a versão cont́ınua do
caso discreto.
Desenhar no quadro.
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Identifique E(Y ) em cada caso

Figura: Sem fazer nenhuma conta, identifique as distribuições com as seguintes
esperanças: 1.8, 8, 5, 4
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Propriedades da esperança: linearidade

Seja Y uma v.a. e crie uma nova v.a. Y = a + bX onde a e b são
constantes.

Por exemplo, suponha que medidmos a temperatura aleatória C de
certo ambiente em graus Celsius.

Suponha que o valor esperado de C seja E(C ) = 28 graus.

Seja F a variável aleatória que mede a mesma temperatura em graus
Fahrenheit.

É claro que C e F estão relacionadas. Temos F = 32 + (9/5)C .

Isto é, temos a = 32 e b = 9/5.

E(F ) = E(a + bC ) e E(C ) estão relacionadas:

A esperança da v.a. F pode ser obtida diretamente a partir daquela
de C :

E(F ) = E(32 + (9/5)C ) = 32 + (9/5)E(C ) = 32 + (9/5)× 28
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Propriedades da esperança: linearidade

Caso geral, Y = a + bX onde a e b são constantes.

Então E(X ) e E(Y ) estão relacionadas;

E(X ) = E(a + bY ) = a + bE(Y )
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E(a + bY ) = a + bE(Y )

Prova apenas num caso espećıfico com v.a.’s discretas:

Considere a v.a. X com os valores posśıveis x1, x2, x3, . . . onde

Consider a NOVA v.a. Y = 2 + 3X que tem os valores posśıveis
y1, y2, y3, . . . onde yi = 2 + 3xi .
Além disso, temos

P(Y = yi ) = P(Y = 2 + 3xi ) = P(X = xi )

pois [Y = yi ] se, e somente se, [X = xi ] onde xi = (yi − 2)/3 ou
yi = 2 + 3xi .

Por exemplo, P(Y = 8) = P(Y = 2 + 3× 2) = P(X = 2)

Assim, podemos calcular a esperança de Y = 2 + 3X :

E(Y ) =
∑
i

yiP(Y = yi ) =
∑
i

(2+3xi )P(X = xi ) = 2
∑
i

P(X = xi )+3
∑
i

xiP(X = xi ) = 2×1+3E(X )
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Propriedades da esperança

Uma escolha muito especial para estas constantes é a seguinte:

a = −E(X ) = −µ e b = 1

Neste caso, temos Y = a + bX = X − µ onde E(X ) = µ.

Isto é, estamos olhando para a v.a. Y = X − E(X ), a v.a. X menos
seu próprio valor esperado.

Pela propriedade, temos

E(Y ) = E(X − µ) = E(X )− µ = µ− µ = 0

Dizemos que a v.a. Y é a v.a. centrada (em sua esperança).
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Propriedades da esperança: linearidade

Se X1,X2, . . . ,Xn são v.a.’s e a0, a1, a2, . . . , an são constantes então

E(a0 + a1X1 + a2X2 + . . .+ anXn) = a0 + a1E(X1) + a2E(X2) + . . .+ anE(Xn)

Em particular:
E(X + Y ) = E(X ) + E(Y )
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E(X + Y ) = E(X ) + E(Y )

Prova do caso particular de duas v.a.’s discretas.

A v.a. X possui os valores posśıveis x1, x2, . . .

A v.a. Y possui os valores posśıveis y1, y2, . . .

A v.a. X + Y possui os valores posśıveis xi + yj onde xi e yj varrem
todas as possibilidades para X e Y .
Assim, temos

E(X + Y ) =
∑
i

∑
j

(xi + yj )P(X = xi ,Y = yj )

=
∑
i

∑
j

xiP(X = xi ,Y = yj ) +
∑
j

∑
i

yjP(X = xi ,Y = yj )

=
∑
i

xi
∑
j

P(X = xi ,Y = yj ) +
∑
j

yj
∑
i

P(X = xi ,Y = yj )

Vamos obter as somas destas probabs.
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E(X + Y ) = E(X ) + E(Y )

O evento [X = xi ] é a união dos eventos disjuntos [X = xi ,Y = y1],
[X = xi ,Y = y2], . . . , [X = xi ,Y = ym]:

[X = xi ] = [X = xi ,Y = y1]
⋃

[X = xi ,Y = y2]
⋃
. . .

⋃
[X = xi ,Y = ym]

A probab da união de eventos DISJUNTOS é a soma das probabs:

P(X = xi ) = P(X = xi ,Y = y1) + P(X = xi ,Y = y2) + . . .+ P(X = xi ,Y = yn)
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Propriedades da esperança: linearidade

Assim, temos

E(X + Y ) = . . .

=
∑
i

xi
∑
j

P(X = xi ,Y = yj ) +
∑
j

yj
∑
i

P(X = xi ,Y = yj )

=
∑
i

xiP(X = xi ) +
∑
j

yjP(Y = yj )

= E(X ) + E(Y )
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Propriedades da esperança

Suponha que a v.a. X seja um valor constante.

Isto é, para todo resultado ω do experimento a v.a. assume o valor
X (ω) = c .

Um resultado particular óbvio mas muito útil é que, para esta variável
que é sempre igual a c , o valor que podemos esperar para ela é ... c .

A prova é simples: X é discreta com um único valor posśıvel, c .

Portanto, E(X ) = cP(X = c) = c × 1 = c
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Dificuldades...

O caso cont́ınuo pode não ser tão simples: pode ser que o histograma
não seja suficiente.
Abaixo, um histograma de uma amostra de uma v.a. cont́ınua com
uma densidade candidata sobreposta.
Como decidir? Qui-quadrado é uma opção mas precisa criar as
categorias.
O segundo gráfico é uma função menos intuitiva mas mais útil.

Figura: Bla
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Função Distribuição Acumulada

A função distribuição acumulada é uma função matemática que
mostra como as probabilidades vão se acumulando no eixo real.
Temos sempre F : R→ [0, 1]
Se Y é uma v.a. qualquer e y é um ponto da reta real então
F (y) = P(Y ≤ y):

Caso cont́ınuo: F (y) =
∫ y

−∞ f (x)dx
Caso discreto com valores posśıveis {x1, x2, . . .}: Então
F (y) =

∑
xi≤y P(Y = xi )

Figura: Função Distribuição Acumulada F (y)Renato Martins Assunção (DCC - UFMG) Inferência para CS Modelos univariados cont́ınuos 2014 27 / 42



Caso cont́ınuo

Figura: Densidade f (x) e Função Distribuição Acumulada F (y)
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Caso discreto

Figura: Função de probabilidade P(Y = y) e e função distribuição acumulada
F (y). Y tem quatro valores posśıveis, 0, 1, 2, 3, com probabilidades iguais a 0.3,
0.2, 0.1 e 0.4, respectivamente
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Importância de F (y)

A função distribuição acumulada F (y) é menos intuitiva que a
densidade.

Tem importância teórica:

é muito mais fácil provarmos teoremas com ela (existe sempre, tanto
faz se a v.a. é discreta ou cont́ınua)
tem seus limites entre [0, 1],
é sempre crescente (não-decrescente),
serve para medir distâncias entre distribuições de probab, etc.

Tem importância prática: alguns testes e técnicas.

Vamos ver uma delas agora.
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Função Distribuição Acumulada EMṔIRICA

Definição: Seja y1, y2, . . . , yn um conjunto de números reais. A
função distribuição acumulada emṕırica F̂n(y) é uma função
F̂n : R→ [0, 1] tal que, para qualquer y ∈ R temos

F̂n(y) =
#{yi ≤ y}

n
= Proporção dos yi que são ≤ y

Figura: Função distribuição acumulada emṕırica Fn(x) dos dados de tempos
de vida.
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Usando F̂n(y) com distribuições cont́ınuas

Suponha que Y seja uma v.a. cont́ınua.

Adotamos um modelo para Y , tal como uma exponencial com
parâmetro λ = 0.024.

Calculamos a função acumulada teórica F (y).

Com base na amostra, E SOMENTE NELA, constrúımos a função
distribuição acumulada emṕırica F̂n(y).

Se tivermos F̂n(y) ≈ F (y) para todo y concluimos que o modelo
adotado ajusta-se bem aos dados.

Como saber se F̂n(y) ≈ F (y)?
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Teste de Kolmogorov

Considere Dn = maxy |F̂n(y)− F (y)|
Se Dn ≈ 0 então o modelo adotado ajusta-se bem aos dados.

Como saber se Dn ≈ 0? Kolmogorov estudou o comportamento de
Dn.

Figura: Emṕırica F̂n(y) e a teórica F (y).
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F̂n(y) é aleatória

Figura: Caráter aleatório de F̂n(y)Renato Martins Assunção (DCC - UFMG) Inferência para CS Modelos univariados cont́ınuos 2014 34 / 42



Dn = maxy |F̂n(y)− F (y)|

Suponha que F (y) é o modelo verdadeiro (neste caso, uma N(0, 1)).

Então Dn → 0 se n→∞.

Figura: Dn → 0 se o modelo é correto
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Dn = maxy |F̂n(y)− F (y)|

Suponha que F (y) NÃO é o modelo verdadeiro.
Uso F (y) ∼ N(0, 1) mas, NA VERDADE, dados são gerados de
N(0.3, 1).
Então Dn converge para um valor > 0.

Figura: Dn 9 0 se o modelo é corretoRenato Martins Assunção (DCC - UFMG) Inferência para CS Modelos univariados cont́ınuos 2014 36 / 42



Dn = maxy |F̂n(y)− F (y)|

Suponha que F (y) é o modelo verdadeiro.

Então Dn → 0 se n→∞.

Se F (y) não é o modelo verdadeiro, Dn → a > 0.

Mas continuamos com o problema: quão próximo de zero Dn tem de
ser para aceitarmos o modelo teórico F (y)?

Dn = 0.01 é pequeno? Com certeza, depende de n já que Dn → 0 se
n→∞.

A distância a zero para ser considerado próximo o suficiente depende
do modelo F (y)?

Por exemplo, o comportamento de Dn quando F (y) for uma
gaussiana é diferente do comportamento quando F (y) for uma Pareto
(power-law)?
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Dn = O(1/
√
n)

Vimos que Dn → 0 se n→∞.

Com que rapidez ele decresce em direção a 0?

Kolmogorov mostrou que:

nDn →∞ (degenera).
log(n)Dn → 0 (degenera).√
nDn 9 0 e também 9∞.√
nDn fica (aleatoriamente) estabilizado.

Qualquer outra potência leva a resultados denegerados.
n0.5+εDn →∞.
n0.5−εDn → 0.

Mas e dáı???
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Como saber se Dn é pequeno?

Suponha que F (y) é o modelo verdadeiro.

Kolmogorov:
√
nDn → K onde K é uma distribuição que NÃO

DEPENDE de F (y).

Isto é,
√
nDn é aleatório mas sua distribuição é a mesma EM TODOS

OS PROBLEMAS!!

Sabemos como
√
nDn pode variar se o modelo for verdadeiro,

qualquer que seja este modelo verdadeiro.

Isto significa que temos uma métrica UNIVERSAL para medir
distância entre F̂n(y) e a distribuição verdadeira QUALQUER QUE
SEJA esta distribuição verdadeira!!!
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Densidade ≈ de
√
nDn

K é a distribuição de uma ponte browniana (assunto muito técnico).
Densidade de K é dada por f (x) = 8x

∑∞
k=1(−1)k+1k2e−2k2x2

.
Se calcularmos Dn usando o VERDADEIRO modelo F (y) que gerou
os dados então

√
nDn deve estar entre 0.4 e 1.8.

Se não usarmos o modelo verdadeiro, sabemos que
√
nDn →∞.

Figura: Densidade de K ≈
√
nDn
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Densidade ≈ de
√
nDn

Nunca teremos
√
nDn EXATAMENTE igual a zero.

Se
√
nDn > 1.8 teremos uma forte evidência de que o F (y) escolhido

não é o modelo gerador dos dados.
Um ponto de corte menos extremo: se F (y) é o modelo que gerou os
dados, então a probab de

√
nDn > 1.36 é apenas 5%.

Figura: Densidade de K ≈
√
nDn
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Resumo da ópera

Dados de uma amostra: y1, y2, . . . , yn.
Eles foram gerados i.i.d. com a distribuição F (y)? (distribuição =
hipótese = modelo)
Calcule a distribuição acumulada emṕırica F̂n(y).
Calcule Dn = maxy |F̂n(y)− F (y)|
Se
√
nDn > 1.36, rejeite F (y) como modelo para os dados

Se
√
nDn ≤ 1.36, siga em frente com o modelo F (y).

Figura: Emṕırica F̂n(y) e a teórica F (y).
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