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N
V.A. Continua

Composta de um intervalo e uma funcio densidade.

Um intervalo de valores reais que sdo os valores possiveis.

Uma FUNCAO densidade de probabilidade definida neste intervalo.
Exemplos:

e X €[0,1] com f(x) =1 (distribuicdo uniforme).

e X € (0,00) com f(x) = exp(—x) para x € (0, ).

o X € R com f(x) = 1/v2mexp(—x?/2).

@ A dnica restricdo: f(x) > 0 para todo x e sua integral deve ser = 1.
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N
Probabilidades estao associadas com areas

@ No caso continuo, probabilidades estdo associadas com areas sob a

b
P(X € (3, b)) = / F(x)dx

@ Olhando o gréfico de f(x) sabemos quais as faixas de valores mais

funcdo densidade.
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Modelos para dados continuos

v.a. Y continua.

@ Imagine uma amostra de 5000 lotes que constituem uma fazenda e
onde se cultiva somente soja.

@ Seja y; a colheita do lote i.

s

@ E muito pouco pratico e um tanto sem sentido trabalharmos com
uma distribuicdo discreta para uma situagdo como essa.

@ E mais util assumirmos que as colheitas dos lotes s3o os resultados de
5000 realizagdes de uma certa varidvel aleatéria continua que possua
uma forma simples e ja conhecida.

@ Qual a densidade desta Y7

o Para saber isto, faga um histograma (com &rea total = 1).
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Histograma

Quebre o eixo horizontal em pequenos intervalos de comprimento A.
Em cada pequeno intervalo i, conte o nimero n; de elementos em sua
amostra que cairam no intervalo.

@ Levente uma barra cuja altura seja igual a esta contagem (esquerda)
@ Histograma padronizado tem 4rea total = 1.
@ Para isto: levante uma barra com altura = n;/(nA).

Simples Padronizado
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Modelos para dados continuos

@ No histograma padronizado, sobreponha uma densidade candidata.

@ O histograma se parece com uma certa densidade gaussiana (ou
normal, N(9,4)).

o Entdo a distribuicdo real serd aproximada por esta distribuicdo normal
(veremos como escolhar uma distribuicdo candidata mais tarde).
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Mais exemplos para dados continuos

@ Amostras de tamanho n = 1000 geradas de 4 distribuicdes, seu

histograma padronizado e a densidade correspondente sobreposta.
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Justificativa

f*(y) = densidade verdadeira que gerou os dados.

f(y) modelo retirado da nosso catélogo de distribuigdes conhecidas.

Se o histograma da amostra é bem aproximado por f(y) entdo
acreditamos f(y) =~ *(y). Por qué?

Seja (yo — 0/2,y0 + 0/2) um pequeno intervalo do histograma
centrado em yp e de (pequeno) comprimento 6.

Aproximando a drea debaixo da curva por um retangulo:

yo+6/2
P(Y € (o — 6/2,y0 +6/2) = / F(y) dy
yo—6/2

~ (y0)d
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Justificativa

@ A probabilidade também pode ser aproximada pela fracdo de
elementos da amostra que cairam no intervalo (yo — /2, y0 + 9/2):

#{Y/se(yo—0/2,0+6/2)}

~ P(Y € (yo—9/2,y0+9/2)
@ lgualando as duas aproximacgdes e dividindo por § dos dois lados,

remes #{Y/s € (v —6/2 6/2)}
S € - ) + *
i Yo — Yo ~ F*(yo)

@ O lado esquerdo é a altura do histograma no ponto yp. O lado direito
¢ a altura da curva densidade no memso ponto yp.

@ Assim, as alturas do histograma nos pontos centrais sdo = iguais a
densidade DESCONHECIDA.

@ Olhar o histograma é olhar a densidade desconhecida
(aproximadamente).
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Esperanca e Variancia

@ Suponha que vocé VAI SIMULAR uma distribuigdo F(y).
@ Isto é, vamos gerar nimeros pseudo-aleatdrios com distribui¢do F(y).

@ Como RESUMIR grosseiramente esta longa lista de nimeros ANTES
MESMO DE GERA-LQOS?

e O valor TEORICO em torno do qual eles v3o variar: a esperanca
E(Y).

o As vezes, Y > E(Y); as vezes, Y < E(Y). Podemos esperar os
valores gerados de oscilando Y em torno de E(Y).

@ Em torno, quanto?? DP = desvio-padrio.

@ DP é o valor TEORICO que mede o quanto os valores oscilam em

torno de E(Y): o = /Var(Y).
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E(Y) no caso discreto

e Caso discreto com valores possiveis {x1,x2,...}: Entdo

E(Y) = Zx,— xP(Y = x;)

E uma soma ponderada dos valores possiveis da v.a. Y.

Os pesos s3o as probabilidades de cada valor.

Os pesos sdo > 0 e somam 1.

E(Y) geralmente NAO E um dos valores possiveis {xi, xo, . ..}.

E um valor TEORICO, n3o precisa de dados esatisticos para ser
calculado.
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|
|dentifique E(Y') em cada caso
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Figura: Sem fazer nenhuma conta, identifique as distribuicGes com as seguintes
esperangas: 5,6.67,0.53,3.33
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|
E(Y): resposta
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Figura: py = 6.67, pp = 3.33, p3 =5, ps = 0.53.
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E(Y') no caso continuo

e Caso continuo: E(Y) = [ yf(y)dy

@ Podemos raciocionar intuitivamente EXATAMENTE como no caso
discreto.

@ Quebrar todo eixo real em pequenos bins de comprimento A e
centrados em ..., Y 2.V 1,Y0, Y1, Y2, - ..
@ Entdo, em cada pequeno bin, aproxime a integral:

[ vty = wiftma
bln,'

e Portanto, E(Y) = [ yf(y)dy é igual a

/OO yf(y)dy = Z /bin yf(y)dy =~ Z yif (yi)A = Z yiP(Y € bin;)

- i=—o0 i i=—o00 i=—o00
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Desenhar

Assim, caso continuo (esperanga como integral) é a versdo continua do
caso discreto.

Desenhar no quadro.
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|
|dentifique E(Y') em cada caso
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Figura: Sem fazer nenhuma conta, identifique as distribuicGes com as seguintes
esperangas: 1.8,8,5,4
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Propriedades da esperanca: linearidade

Seja Y uma v.a. e crie uma nova v.a. Y =a+ bX onde a e b sdo
constantes.

Por exemplo, suponha que medidmos a temperatura aleatéria C de
certo ambiente em graus Celsius.

@ Suponha que o valor esperado de C seja E(C) = 28 graus.

Seja F a varidvel aleatéria que mede a mesma temperatura em graus
Fahrenheit.

E claro que C e F est3o relacionadas. Temos F = 32+ (9/5)C.
Isto é, temos a =32 e b=9/5.

E(F) =E(a+ bC) e E(C) estdo relacionadas:

A esperanca da v.a. F pode ser obtida diretamente a partir daquela
de C:

E(F) = E(32 4 (9/5)C) = 32 + (9/5)E(C) = 32 + (9/5) x 28
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Propriedades da esperanca: linearidade

o Caso geral, Y = a+ bX onde a e b sdo constantes.
e Entdo E(X) e E(Y) estdo relacionadas;

E(X) =E(a+ bY) = a+ bE(Y)
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|
E(a+ bY) = a+ bE(Y)

Prova apenas num caso especifico com v.a.’s discretas:

o Considere a v.a. X com os valores possiveis xi, X2, x3, ... onde

Consider a NOVA v.a. Y =2+ 3X que tem os valores possiveis

Y1, ¥2,¥3, ... onde y; = 2 + 3x;.
Além disso, temos

P(Y =y;) =P(Y =2 +3x) = P(X = x)
pois [Y = yj] se, e somente se, [X = x;] onde x; = (y; —2)/3 ou
Vi = 2+ 3X,'.
Por exemplo, P(Y =8) =P(Y =243 x2) =P(X = 2)
Assim, podemos calcular a esperanca de Y =2 4 3X:

E(Y) = yP(Y =y) =D _(243x)P(X = x) =2 P(X =x)+3 Y _ xP(X = x) = 2x
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Propriedades da esperanca

@ Uma escolha muito especial para estas constantes é a seguinte:

a=-EX)=—-peb=1

Neste caso, temos Y = a+ bX = X — p onde E(X) = p.

Isto é, estamos olhando para a v.a. Y = X — E(X), a v.a. X menos
seu proprio valor esperado.

@ Pela propriedade, temos
E(Y)=EX-p)=EX)—p=p—p=0
@ Dizemos que a v.a. Y é a v.a. centrada (em sua esperanga).
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Propriedades da esperanca: linearidade

@ Se X1, Xp,...,X,sdov.a.'s e ag, a1, ay, ..., a, sdo constantes entdo

E(ag + a1 X1 +aXo+...+ a,,X,,) =ap + al]E(Xl) —+ aQ]E(XQ) + ...+ anE(Xn)

@ Em particular:
E(X +Y)=E(X)+E(Y)
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|
E(X + Y) = E(X) + E(Y)

Prova do caso particular de duas v.a.'s discretas.

A v.a. X possui os valores possiveis xi, x2, . . .

A v.a. Y possui os valores possiveis yi, yo, .. .

A v.a. X + Y possui os valores possiveis x; + y; onde x; e y; varrem
todas as possibilidades para X e Y.

Assim, temos

EX+Y) = > ) (xi+y)PX=x,Y=y)
j

i

= ZZX,—IP’(X:x,-,Y:yj)—O—ZZyjIP’(X:x,-,Y:yj)
P i
= ZX,-Z]P’(X:X,-,Y:yj)—i-Zij]P’(X:x;,Y:yj)
J j i

i

@ Vamos obter as somas destas probabs.
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|
E(X + Y) = E(X) + E(Y)

e O evento [X = x;| é a unido dos eventos disjuntos [X = x;, Y = y1],
X=x,Y=wp]....[X=xi,Y =y

X =xi] = [X:X;,Y:yl]U[X:x,-,Y:yg]U...U[X:X;,Y:y
@ A probab da unido de eventos DISJUNTOS é a soma das probabs:

PX=x)=PX=x;,Y=n)+PX=x,Y=y2)+...+P(X =x;,Y = yn)
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Propriedades da esperanca: linearidade

@ Assim, temos

E(X + Y)

= E x,'E IP’(X:X,-,Y:yj)—l—E yJE P(X =x;,Y =y;)
i Jj J i

= E x,-IP‘(X:X,-)—}—E yiP(Y =y;)
i J

= E(X)+E(Y)
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Propriedades da esperanca

@ Suponha que a v.a. X seja um valor constante.

@ Isto é, para todo resultado w do experimento a v.a. assume o valor
X(w)=rc.

@ Um resultado particular ébvio mas muito atil é que, para esta variavel
que é sempre igual a ¢, o valor que podemos esperar para ela é ... c.

@ A prova é simples: X é discreta com um dnico valor possivel, c.

@ Portanto, E(X)=cP(X =c¢c)=cx1=c¢
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Dificuldades...

@ O caso continuo pode n3o ser tdo simples: pode ser que o histograma

ndo seja suficiente.

@ Abaixo, um histograma de uma amostra de uma v.a. continua com

uma densidade candidata sobreposta.

@ Como decidir? Qui-quadrado é uma op¢cao mas precisa criar as

categorias.

@ O segundo gréfico é uma funcdo menos intuitiva mas mais util.

proporgao

Frix)

50 100 150 200

tempo de vida

250

0

50 100 150 200 250

tempo de vida x
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Funcao Distribuicao Acumulada

@ A func3o distribuicdo acumulada é uma funcao matemadtica que
mostra como as probabilidades vdo se acumulando no eixo real.
@ Temos sempre F : R — [0,1]
@ Se Y é uma v.a. qualquer e y é um ponto da reta real entdo
Fly) =P(Y <y):
e Caso continuo: F(y) = [”_ f(x)dx
e Caso discreto com valores possiveis {x1, x2, ...}: Entdo
Fly) =2 <, P(Y = x)

Continuo Discreto

Fiy)
A
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Caso continuo

Funcao Densidade f(x)

04

00

Funcao Distribuicao acumulada F(x)

Fx
00 04 08

Figura: Densidade f(x) e Fung¢do Distribuicdo Acumulada F(y)

[RNEN NV EVE WA T R ( Bl (GM VI S V[ Wl n feréncia para CS Modelos univariados conti 2014 28 / 42



Caso discreto

Funcao de probabilidade Funcao Dist. Acumulada
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Figura: Fung&o de probabilidade P(Y = y) e e fungdo distribuicdo acumulada
F(y). Y tem quatro valores possiveis, 0, 1, 2, 3, com probabilidades iguais a 0.3,
0.2, 0.1 e 0.4, respectivamente
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|
Importancia de F(y)

@ A funcdo distribuigdo acumulada F(y) é menos intuitiva que a
densidade.
@ Tem importancia tedrica:

e é muito mais facil provarmos teoremas com ela (existe sempre, tanto
faz se a v.a. é discreta ou continua)

e tem seus limites entre [0, 1],

o é sempre crescente (ndo-decrescente),

e serve para medir distdncias entre distribuicdes de probab, etc.

@ Tem importancia pratica: alguns testes e técnicas.

@ Vamos ver uma delas agora.
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|
Funcdo Distribuicio Acumulada EMPIRICA

o Definicao: Seja y1,y»,...,yn um conjunto de niimeros reais. A
fungdo distribuicdo acumulada empirica Fp(y) é uma fungdo
Fn:R —[0,1] tal que, para qualquer y € R temos

_#yi <y}

(y) = =Y

E, y = Proporc¢ao dos y; que sdo < y

tempo de vida x
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Usando F,(y) com distribuicdes continuas

@ Suponha que Y seja uma v.a. continua.

@ Adotamos um modelo para Y, tal como uma exponencial com
pardametro A = 0.024.

o Calculamos a fungdo acumulada tedrica F(y).

o Com base na amostra, E SOMENATE NELA, construimos a funcao
distribuicdo acumulada empirica Fp(y).

@ Se tivermos I?,,(y) ~ F(y) para todo y concluimos que o modelo
adotado ajusta-se bem aos dados.

@ Como saber se l?n(y) ~ F(y)?
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Teste de Kolmogorov

o Considere D, = max, |Fa(y) — F(y)|
@ Se D, =~ 0 entdo o modelo adotado ajusta-se bem aos dados.

@ Como saber se D, ~ 07 Kolmogorov estudou o comportamento de
D,.

Cumulative Probability

Figura: Empirica F,(y) e a tedrica F(y).
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|
F.(y) é aleatéria

Uma amostra, n=20 Qutra, n=20
_ F; _
s
@ @ |
S b=
] 7 ] ]
£ o= £ o=
S S
o o
| T T T T e T T T T T
4 2 0 2 4 4 2 0 2 4
¥ b
As duas 10 amostras
@ @ |
S b=
] 7 ] ]
£ o= £ o=
S S
o o
| T T T T e T T
4 2 0 2 4 4 2 0 2 4
¥ b

- SN BRI T AN
Renato Martins Assungdo [((emNVIS V(@M Inferéncia para CS Modelos univariados conti 2014 34 /42



I
D, = max, |Fu(y) — F(y)]

@ Suponha que F(y) é o modelo verdadeiro (neste caso, uma N(0, 1)).
@ Entdo D, — 0 se n — .

n=20 n=100
o7 T T T T e T T T T
- 2 0 2 4 4 2 0 2 4
y y
n=200 n=500
£ =4 £ =4
ST T T T T ST T T T T
- 2 0 2 4 4 2 0 2 4
Y y y

Figura: D, — 0 se o modelo é correto
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I
D, = max, |Fu(y) — F(y)]

@ Suponha que F(y) NAO é o modelo verdadeiro.

e Uso F(y) ~ N(0,1) mas, NA VERDADE, dados sdo gerados de

N(0.3,1).

e Ent3o D, converge para um valor > 0.

n=200

08
L

00 04
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0.0 0.4 08
R -

00
L

00
L

04 08
L

o y

Fn(y)
04 08
I Loy
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I
D, = max, |Fu(y) — F(y)]

Suponha que F(y) é o modelo verdadeiro.
Entdo D, — 0 se n — oo.
Se F(y) n3o é o modelo verdadeiro, D, — a > 0.

Mas continuamos com o problema: quio préximo de zero D, tem de
ser para aceitarmos o modelo tedrico F(y)?

e D, =0.01 é pequeno? Com certeza, depende de n ja que D, — 0 se
n — 00.

@ A distancia a zero para ser considerado préximo o suficiente depende
do modelo F(y)?

@ Por exemplo, o comportamento de D,, quando F(y) for uma
gaussiana ¢ diferente do comportamento quando F(y) for uma Pareto
(power-law)?
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@ Vimos que D, — 0 se n — .

@ Com que rapidez ele decresce em diregdo a 07
@ Kolmogorov mostrou que:
o nD, — oo (degenera).
log(n)D, — 0 (degenera).
V/nD, -+ 0 e também - co.
\/nD,, fica (aleatoriamente) estabilizado.
Qualquer outra poténcia leva a resultados denegerados.
n0.5+eDn — 0.
n%5=¢p, — 0.

@ Mas e dai???
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|
Como saber se D, é pequeno?

Suponha que F(y) é o modelo verdadeiro.

Kolmogorov: v/nD, — K onde K é uma distribuicio que NAO
DEPENDE de F(y).

Isto é, \/nD,, é aleatério mas sua distribuicdo é a mesma EM TODOS
OS PROBLEMAS!!

Sabemos como /nD,, pode variar se o0 modelo for verdadeiro,
qualquer que seja este modelo verdadeiro.

Isto significa que temos uma métrica UNIVERSAL para medir
distancia entre Fp(y) e a distribuicdo verdadeira QUALQUER QUE
SEJA esta distribuicio verdadeira!l!
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-
Densidade ~ de \/nD,

@ K é a distribuicdo de uma ponte browniana (assunto muito técnico).

o Densidade de K é dada por f(x) = 8x 35°, (—1)k+1k2e=2k",

@ Se calcularmos D, usando o VERDADEIRO modelo F(y) que gerou
os dados entdo \/nD,, deve estar entre 0.4 e 1.8.

@ Se n3o usarmos o modelo verdadeiro, sabemos que /nD,, — oo.

icura: Densidade de K ~ +/nD.,
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-
Densidade ~ de \/nD,

@ Nunca teremos \/nD, EXATAMENTE igual a zero.

e Se y/nD, > 1.8 teremos uma forte evidéncia de que o F(y) escolhido
nao é o modelo gerador dos dados.

@ Um ponto de corte menos extremo: se F(y) é o modelo que gerou os
dados, entdo a probab de \/nD,, > 1.36 é apenas 5%.

densidade Kolmogorov

icura: Densidade de K ~ +/nD.,
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Resumo da dpera

Dados de uma amostra: y1,y2,..., ¥n.

Eles foram gerados i.i.d. com a distribuigdo F(y)? (distribuicdo =
hipétese = modelo)

Calcule a distribuicio acumulada empirica F,(y).

Calcule D, = max, |Fn(y) — F(y)|

Se /nD, > 1.36, rejeite F(y) como modelo para os dados

Se v/nD,, < 1.36, siga em frente com o modelo F(y).

1 :

o
o

Cumulative Probability

LS
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