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Teste qui-quadrado

@ Compara tedrico e observado.

@ Testa se os dados de uma amostra Y7, Yo,..., Y, seguem uma certa
distribui¢do de probabilidade (ou modelo tedrico).

@ O modelo tedrico pode ser quaquer distribuicio de probabilidade,
continua ou discreta.

@ Isto é, observamos amostra Y1, Y5,..., Y,.

@ Supomos que estes dados sdo i.i.d. e com distribuigcdo tedrica F(y):
este é o modelo.

@ F(x) poderia ser uma Bin(20,0.1), ou uma Poisson(5), ou uma
exp(10), ou uma N(0,1).
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Teste qui-quadrado

Amostra Y1, Y2, ..., Y, sdo v.a.'s iid de um modelo tedrico F(y)?
Como verificar se isto procede?

O teste qui-quadrado é uma maneira de fazer isto.

Ele possui duas vantagens: pode ser usado com distribui¢cdes coninuas
OU discretas; e ele sabe como lidar com quantidades estimadas a
partir dos dados (mais sobre isto + tarde).
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Teste qui-quadrado: PASSO 1

e Particione o conjunto de valores possiveis de Y em N categorias (ou
intervalos). Por exemplo:

@ Se o0 modelo tedrico é uma Bin(20,0.1), podemos criar 5 categorias
de valores possiveis: Y =0, Y =1, Y =2, Y=3eY >4

@ Modelo é uma Poisson(5), com 12 categorias: Y =0,
Y=1,...,Y=10e Y > 11.

@ Modelo é uma exp(10), com 5 categorias-intervalos: [0,0.05),
[0.05,0.1), [0.1,0.2), [0.2,0.4), [0.4,0)

e Modelo é N(0,1), com 4 categorias-intervalos: (—oo, —2), [-2, —1),
[-1,0), [0,1), [1,2), e (2,0).

@ Em principio os intervalos-categorias s3o arbitrarios mas na prética
escolhemos de forma que n3o tenham nem probabilidades muito altas
nem muito altas.
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Teste qui-quadrado: PASSO 2

@ Para cada k-ésimo intervalo-categoria, calcule o nimero N, de
elementos da amostra Y, Y2,..., Y, que caem no intervalo k (a
freqiiéncia observada)

o Calcule também o nimero esperado Ej de observacbes que deveria
cair no intervalo k.

e Isto é, calcule Ex = n x P(Y € Intervalo k).

@ Por exemplo, se o modelo tedrico é uma Bin(20,0.1), se temos
amostra de tamanho n = 53 e se a categoria é Y = 0:

@ Ent3o o nidmero esperado é
E=53%P(Y =0)=53%(1-0.1)% =6.44.

@ Se observamos 53 repeti¢des de uma Bin(20,0.1) esperamos que 6.44
delas sejam iguais a zero.
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Teste qui-quadrado

Outro exemplo

Modelo tedrico é uma Poisson(2).
Temos amostra de tamanho n = 97.
A categoria é Y > 4.

Ent3o o ndmero esperado nesta categoria é
o
2 -2
E:97*P(Y24):97*Zw = 13.86
. J!
j=4

Se observamos 97 repeticdes indep de uma Poisson(2), esperamos que
13.86 delas sejam maiores ou iguais a 4.
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Teste qui-quadrado

Mais um exemplo

Modelo tedrico é uma exp(10).
Temos amostra de tamanho n = 147.
O intervalo-categoria é X € [0.2,0.4).

Ent3o o ndmero esperado de observacdes neste intervalo é

0.4
E =147 */ 10 exp(—10x)dx = 17.20
0.2

Repete-se o célculo nos demais intervalos.
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Teste qui-quadrado: PASSO 3

Ey é o valor esperado caso o modelo tedrico seja verdadeiro.

Compare as freqiiéncias observadas Ny e as freqiiéncias esperadas Ej.

Caso E, e Ni sejam muito diferentes, isto é uma evidéncia de que o
modelo tedrico ndo é préximo da realidade.

Caso Ex e Ny sejam parecidos, isto é evidéncia de que o modelo gera
valores parecidos com os observados.
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Teste qui-quadrado: PASSO 3

@ Isto quer dizer que 0s dados observados REALMENTE sigam o
modelo tedrico? NAO.

o TRES razdes para o NAO:

@ Suponha que temos uma tdnica amostra e dois (ou mais) modelos
diferentes: os valores tedricos dos modelos podem estar bem préximos
dos valores observados e n3o termos nenhum deles claramente melhor
que o outro.

@ ESTE ASPECTO do modelo (as contagens nos intervalos) é préximo
da realidade. Outros aspectos do modelo, quando comparados com a
realidade, podem mostrar que o modelo nao é adequado.

Por exemplo, uma andlise de residuos num modelo de regress3o linear
pode mostrar alguns problemas que n3o sdo aparentes na comparagio
entre Ex e Ng.

© Finalmente, ninguém acredita que a realidade siga fielmente uma
férmula matemdtica perfeita. Precisamos apenas que a férmula seja
uma BOA APROXIMACAO para a realidade.
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Teste qui-quadrado: AINDA O PASSO 3

o Como entdo comparar as freqiiéncias observadas Ny e as freqiiéncias
esperadas E;?

@ Podemos ter uma boa aproximag¢ao numa categoria mas uma péssima
aproximacdo em outra categoria. Assim, precisamos de um resumo,
uma idéia global de como é a aproximacao em geral, considerando
todas as categorias.

@ A medida-resumo é uma espécie de "média” das diferencgas |Ny — E]|.

@ Note a presenc¢a do valor absoluto |Nx — E| ao invés das diferencas
Ny — Ey.

@ Se a medida-resumo for pequena, entdo N, ~ E, e adotamos o
modelo tedrico.

@ Se a medida-resumo for grande, vamos precisar adotar outro modelo
tedrico para os dados.
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Teste qui-quadrado

Medida-resumo de comparacao

@ Bombas em Londres: 576 quadrados com a contagem em cada um

deles. Modelo: Poisson(A) com A = 0.9323

Particione o conjunto de valores possiveis em intervalos:

e Y=0,Y=1...,.Y=5eY >0

o Calcular Ny, Ex e a diferenca N — Ej para cada intervalo.
k 0 1 2 3 4 5 e acima
N 229 211 93 35 7 1
Ey 226.74 211.39 9854 3062 7.14 15

N, — Ex 2.26

-0.39 -5.54  4.38 -0.14  -0.50

absoluto):

onde Ey = 576 x P(Y = k) = 57629323 ¢-0.9323,
@ Talvez uma medida-resumo seja a média das diferencas (em valor

1 5
¢ 2 INi — Bl
k=0

@ Esta n3o é uma boa idéia...Vamos ver porque.
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Teste qui-quadrado

Diferencas absolutas ou relativas?

°
10.6 € 0.9.
o Estas diferencas sdo grandes ou pequenas?
@ Depende... do qué? Do valor esperado nessas categorias.
@ Considere duas possiveis situagdes com apenas trés categorias
k 0 1 2
Ny 20 1 6
Ex 8.5 11.6 6.9
[Nk — Ex| 11.5 -10.6 -0.9
Ny 1020 1001 1006
E; 1008.5 | 1011.6 | 1006.9
IN; — Ef| 11.5 -10.6 -0.9
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Diferencas absolutas ou relativas?

@ Repetindo a tabela:

K 0 1 2
Ny 20 1 6
Ex 8.5 11.6 6.9

INe — E| || 115 | -106 | -0.9
N} 1020 | 1001 | 1006
E; 1008.5 | 1011.6 | 1006.9

Ny —E7| || 115 | -106 | -0.9

o As diferencas sdo idénticas mas, RELATIVAMENTE AO QUE
ESPERAMOS CONTAR EM CADA CATEGORIA, as diferencas s3o
muito menores na segunda situagdo.

@ Quando esperamos contar 11.6 numa categoria e observamos apenas
1, erramos por 10.6 e este erro parece grande.

@ Mas quando esperamos 1011.6 e observamos 1001 o erro parece
pequeno mesmo que a diferenca seja a mesma de antes.

e Parece razodvel considerar as diferencas |y — Ei| maiores (em
ALGUM sentido) do que as diferencas [N} — E/|
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Teste qui-quadrado

Medida-resumo de comparacao

@ Talvez uma medida-resumo mais apropriada seja entdo a média das
diferencas RELATIVAS ao esperado em cada categoria.

@ Isto é, com N categorias ao todo, um candidato a medida-resumo

seria: ) N £ ‘
k — Ek

@ Pearson estudou esta medida e achou que, embora intuitiva e simples,
ela ndo era matematicamente manejavel.

@ A razdo é que a distribuicdo dessa media-resumo dependia de
aspectos especificos do problema sendo analisado. Dependia do
tamanho da amostra, da distrbuicdo particular sob estudo
(binmomial, Poisson, exponencial, etc).

@ Num toque de génio ele propds uma medida-resumo diferente.
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Teste qui-quadrado

Medida-resumo de Pearson

Calcule Ny, Ex e a diferenca N, — Ej para cada valor possivel.

1 [Nk — Ek|
calcule a medida-resumo de Pearson:

X2=%" (Ni — Ei)?

@ Ao invés de calcular

K Ex
@ No caso das bombas em Londres
2.26)2  (—0.39)2 (—0.50)?
X? = ( e+ =11
226.74 + 211.39 + + 1.5 3

Como saber se X? é grande ou pequeno? A resposta precisou do
génio de Pearson e, ao mesmo tempo, ela justifica por que usamos a
diferenca ao QUADRADO na medida-resumo.
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A distribuicio de X?

o Considerando o nosso problema das bombas em Londres como
ilustracdo, vamos entender o que Pearson se perguntou.

e SUPONHA QUE O MODELO TEORICO Poisson(A) SEJA
VERDADEIRO.

@ Mesmo neste caso, X2 nunca serd exatamente a zero.

@ Dependendo da amostra, ele pode ser pequenino ou um pouco maior.

@ N3o deve ser muito grande pois 0 modelo é verdadeiro e portanto Ny
deve ser préximo de Ej.

@ Qual a variacdo natural de X2 quando o modelo tedrico é verdadeiro?

@ Vamos responder isto com um experimento no R
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Teste qui-quadrado

A distribuicao por simulacdo

@ Execute o seguinte algoritmo em R:

@ Crie um vetor E de dimens3o 6 com as contagens esperadas de
X=0 X=1,...,.X=4,e X >5em 576 Poisson(0.9323).
o Isto & E = ¢(226.74,211.39,98.54,30.62,7.14, 1.5)
@ Crie um vetor Qui com 1000 posicdes.
e for(i in 1:1000) faga
e Gere Xi,..., Xs76 iid Poisson(A = 0.9323)
e Conte o nimero Ny de X;'s iguaisa 0,1,...,4,>5
o Fac;a QUI[I] — X2 = Ek(Nk — Ek)2/Ek
@ Faga um histograma dos 1000 valores gerados do vetor Qui.
o Este histograma mostra a variabilidade que se pode esperar de X?
quando o modelo é verdadeiro.
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Teste qui-quadrado

A distribuicao por simulacdo

0.15
I
\L

0.10
I

0.05
I

Figura: Histograma de 1000 simula¢des e densidade de Qui-quadrado com 5 df
superimposta
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Teste qui-quadrado

Distribuicao Qui-quadrado

@ Pearson descobriu que a distribuicio de X? era (aproximadamente) a
MESMA qualquer que fosse a distribuicdo do modelo (Poisson,
normal, gama, ou QUALQUER OUTRO MODELO PARA OS
DADOS).

@ Era uma distribuicdo universal.

@ Ele conseguiu uma fita métrica para medir desvios dos dados
observados em relacdo a QUALQUER modelo tedrico.

e E um resultado incrivel:

o QUALQUER QUE SEJA a DISTRIBUICAO dos dados da amostra, a
distribuicdo de X? é uma sé: uma qui-quadrado.

@ N3o precisamos fazer nenhuma simulacdo Monte Carlo para encontrar
quais os valores razodveis para X2 quando o modelo tedrico for
correto.
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Teste qui-quadrado

Um pouco mais de rigor

A distribuicdo de X? n3o é EXATAMENTE igual a uma distribuicio

qui-quadrado (com a densidade que acabei de mostrar no grafico).

o Ela é APROXIMADAMENTE igual a uma qui-quadrado quando o
tamanho da amostra é grande.

@ O que é uma amostra grande?

o No caso Poisson, com A ~ 1, basta ter n > 200. Com \'s maiores,
n = 100 pode ser suficiente. O fato que comamostras ndo muito
grandes ja podmeos usar a aproximac3o.

@ Precisamos do ntimero dos graus de liberdade k. Ele é igual ao
nimero de categorias menos 1 e menos p, onde p é o nimero de
parametros estimados.

@ No caso das bombas de Londres, nlimero de categorias é 6 e tivemos
de estimar A com os dados (obtivemos A = 0.9323).

@ Entdo, graus de liberdade k =6 —1 — 1.
Estatistica para Ciéncia dos Dados 20 / 61



Teste qui-quadrado

Como usar este resultado de Pearson?

@ Quando o modelo tedrico é verdadeiro, o valor de X? segue
(aproximadamente) uma distribui¢do qui-quadrado com k graus de
liberdade.

@ k = no. de categorias — 1 — p onde p é o nimero de pardmetros
estimados com os dados.

No caso das bombas em Londres, temos k =6 —-1—-1=14 g.l.

Quais sao os valores tipicos de uma qui-quadrado com 4 g.1.7

E quais sdo os valores ndo-tipicos, os valores que dificilmente viriam
de uma qui-quadrado com 4 g..7
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Teste qui-quadrado

A densidade de uma qui-quadrado com 4 g.l.

0.10 0.15
L 1

densidade de Qui-quadrado com 4 gl
0.05
I

0.00
I

Figura: Densidade de uma distribuicao qui-quadrado com 4 g.l.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 22 /61



Teste qui-quadrado

Distribuicao Qui-quadrado

@ Qui-quadrado com k graus de liberdade (é uma Gama(k/2,1/2)).
@ Densidade 1
Fx) — k/2—1_,-x/2
X) = () )

densidade qui-quadrado
00 01 02 03 04 05 06

Figura: Densidades da distribuicdo qui-quadrado com kK =1,2,3,4,5
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Teste qui-quadrado

Karl Pearson
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Teste qui-quadrado

Como usar o teste qui-quadrado?

@ Assim, os valores tipicos sdao aqueles entre 0 e 10.

@ Os valores entre 10 e 15 s3o raros, tem probabilidade
P(X? € (10,15)) = 0.036.

@ Os valores acima de 15 s3o possiveis mas ALTAMENTE improviéveis.
Eles ocorrem com probabilidade P(X? > 15) = 0.005.

°

e Calcule o valor realizado de X? usando os dados da amostra.

@ Este valor realizado é um niimero real positivo.

@ Por exemplo, no caso das bomabas em Londres, tivemos X2 =113
com k=4 gl

@ O valor 1.13 é um valor tipico de uma qui-quadrado com 4 g.I.?
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Teste qui-quadrado

Valor observado e densidade

valor observado

densidade de Qui-quadrado com 4 gl
0.05
L

Figura: 1.13 é o valor observado de X? no caso das bombas em Londres. Gréfico
da densidade de uma qui-quadrado com 4 g.l.
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Teste qui-quadrado

P-valor

E Sbvio que 1.13 é um valor tipico de uma qui-quadrado com 4 g.l.
Ele estd bem no meio da faixa de variacdo razodvel dos valores da v.a.
X2,

Isto é sinal de que as diferencas entre as contagens observadas na
amostra e as contagens esperadas pelo modelo sdo aquelas que se
espera QUANDO O MODELO E VERDADEIRO.

Uma forma de expressar quio discrepante é o valor observado de X2 é
calcular a probabilidade de observar uma v.a. qui-quadrado com 4 g.l.
MAIOR OU IGUAL a 1.13

Esta probabilidade é chamada de p-valor e, no caso das bombas em
Londres, ela é igual a 0.89.

E a 4rea da densidade da qui-quadrado com 4 g.l. que estd acima do
valor 1.13 observado na amostra.

Um p-valor préximo de zero é sinal de que o modelo n3o se ajusta
bem aos dados. Nao foi este o caso aqui.
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Teste qui-quadrado

Como provar o resultado de Pearson? |déia da prova

e Se Z1,2>,...,Z sdo iid N(0,1) entdo Y = 212+...+Z,f in, uma
qui-quadrado com k g.l.
@ Temos

2
x2 = 5~ (N — E)
Porque X2 segue uma qui-quadrado?
Ny é a contagem dos elementos da amostra que caem na categoria k
Ny ~ Bin(n, ) onde § = P(X € categoria k)
Se n é grande, pelo Teorema Central do Limite,
Ne—nb  Ne—Eq
no(1—0)  El(1-96) N©.1)
Se (1 —60) ~ 1 entdo
Ne — Ex N(O,1) —s (N — Ex)?
Ey Ey

~ N2(0,1) = x3

@ Somando sobre as categorias, teremos uma qui-quadrado (estou
omitindo vdrios detalhes e sutilezas).
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Teste qui-quadrado

Ajuste cldssico de Poisson: coices de cavalo

@ Von Botkiewicz: mortos por coices de cavalo em certas corporacoes
do exército prussiano durante vinte anos (1875-1894)

@ Em cada ano, durante 20 anos: nimero de mortos em cada uma das
10 corporagoes.

n° k de mortes no ano Freqiiéncia Ny
0 109
1 65
o 2 22
3 3
>4 1
Total 200=20 (anos) x 10 (corporagdes)
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Teste qui-quadrado

Ajuste cldssico de Poisson: coices de cavalo

@ Comparando observado e esperado:

k| N Ex
0 | 109 | 108.7
1 | 65 | 663
2 | 22 | 202
3 3 4.1
>4 | 1 0.7
@ Muito préximos. Verificando pelo critério do teste qui-quadrado:
X2 (109 — 108.7)2 (65 —66.3)> (22—120.2)> (3—4.1)2 (1-07)? 0.61
B 108.7 66.3 20.2 4.1 07

o Este valor realizado de X? deve ser comparado com os valores
provdveis da v.a. X? caso o modelo seja verdadeiro (que segue uma

qui-quadrado com k=5—-1—-1g.l.

30 / 61

Estatistica para Ciéncia dos Dados

Renato Assun¢do, DCC, UFMG



Teste qui-quadrado

Alguns exemplos classicos: coices de cavalo

valor observado

densidade de Qui-quadrado com 3 gl

Figura: Valor observado X2 = 0.61 e densidade de qui-quadrado com 3 g.I.
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Teste qui-quadrado

Resumo: Kolmogorov versus Qui-quadrado

e Dados Y1, Y3,..., Y, forma uma amostra i.i.d. de uma
distribuicdo-modelo F(y)?

@ Duas opgdes: Kolmogorov e Qui-quadrado.

e Kolmogorov: modelo F(y) tem de ser continuo; Teoria ndo vale se for

discreta.

@ Kolmogorov: Teste sé é valido se ndo precisarmos estimar pardmetros
de F(y).

e Por exemplo, Y1, Ya,..., Y, segue uma N(u,c?)? Podemos usar

Kolomogorov?

@ Se 11 e 02 forem especificados de antem3o, antes de olhar os dados,
OK, é valido.

o Se eles NAO s3o especificados de antem3o mas, ao contrario,
precisam ser estimados a partir dos dados observados: a distribuicdo
de /nD,, n3o é conhecida e nio podemos usar Kolomogorov a n3o
ser INFORMALMENTE.
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Teste qui-quadrado

Resumo: Kolmogorov versus Qui-quadrado

@ Dados Y1, Y5,...,Y, forma uma amostra i.i.d. de uma
distribui¢do-modelo F(y)?

@ Qui-quadrado de Pearson: pode ser aplicado com qualquer modelo,
continuo ou discreto.

e Consegue incorporar o efeito de estimar pardmetros de F(y), se for
necessario.

@ Implementacdo é muito facil.

@ Precisa especificar os intervalos ou classes onde as contagens vao ser
feitas.

@ Qual o efeito desta escolha? Quanto mais clases, melhor:

@ Mas usar muitas classes pode levar a categoias com probabilidades
préximas de zero.

@ Devemos escolher classes de forma que o nimero esperado em cada
uma delas seja, de preferéncia, pelo menos 5. Classes com contagens
esperadas menores que 1 devem ser evitadas.
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Teste Kolmogorov-Smirnov

Teste de hipétese de Kolmogorov

O teste de Kolmogorov requer um modelo tedrico de referéncia.

Temos dados uma amostra: y1,ys, ..., ¥, com distribuicdo F(y) **
desconhecida **.

Existe um modelo tedrico com distribuicdo Fo(y) (gaussiana,
exponencial, Poisson, etc)
@ Queremos testar a seguinte hipdtese:

o A distribuicdo desconhecida F(y) é igual a distribuicdo do modelo

tedrico Fo(y)?

o Isto é, posso acreditar na hipétese de que F(y) = Fo(y)?

o O que é “testar”?
o E verificar se os dados observados s3o compativeis com a hipdtese de

que F(y) = Fo(y).
Rejeitamos a hipdtese se julgarmos que os dados s3o incompativeis
com ela.

@ Decisdo baseada no p-valor da estatistica \/nD,
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Teste de Kolmogorov-Smirnov

@ O teste de Kolmogorov-Smirnov testa se duas amostras possuem uma
mesma distribuicdo de probabilidade

e Ele ndo requer que a gente especifique qual seria esta distribuicdo
comum.

@ O teste é baseado na distancia entre as distribuicdes acumuladas
empiricas das duas amostras.
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Teste Kolmogorov-Smirnov

Kolmogorov-Smirnov

@ Temos dados de DUAS amostras:

o Amostra 1: yi,y,...,y, com distribuicdo desconhecida F(y)
o Amostra 2: yi,y5,...,yk com distribuicdo desconhecida G(y)

@ Amostras podem ter m % n: tamanhos diferentes.

@ Exemplos:

e pressdo sistdlica entre homens (amostra 1) e pressdo sistdlica entre
mulheres (amostra 2)

o pressdo entre homens jovens (amostra 1) e entre homens idosos
(amostra 2)

o vdrias medicBes de y antes (amostra 1) e depois (amostra 2) de uma
intervencao

e medic3es de y no lugar 1 e no lugar 2

o Hipdtese a ser testada: F(y) = G(y) sem precisar dizer quem sdo

F(y) e G(y).
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Teste Kolmogorov-Smirnov

Kolmogorov-Smirnov

o Acumuladas empiricas das duas amostras: F,(y) e Gm(y).
@ Se amostras s3o grandes devemos ter F,(y) = F(y) e Gm(y) =~ G(y)
e Portanto, se F(y) = G(y), devemos ter F,(y) ~ Gm(y).
o Calcule Dy = max, |Fa(y) — Gm(y)|
£ 00 fjﬂr?
.
0_‘41-{:,'
-4 -2 ;)( 2 4

Figura: Distancia entre as distribuicdes acumuladas empiricas Fy(y) e Ga(y).
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Kolmogorov-Smirnov

Se F(y) = G(y) = Faly) = Gm(y).

Calcule Dy m = max, |Fn(y) — Gm(y)|

If Dp,m is small, accept hypothesis F(y) = G(y).
If Dp,m is large, reject hypothesis F(y) = G(y).
How to establish a threshold for D, ,,?

When we should consider that D, , is large enough to reject the
hypothesis.
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Teste Kolmogorov-Smirnov

Kolmogorov-Smirnov

@ K-S provaram que, se n e m sdo grandes, /- Dpn m converge para
uma distribuicdo que n3o depende da distribuicdo comum

desconhecida.

@ Thatis, , /m’"fn nm ~ K, where K is the SAME distribution of the

Kolomogorv test seen previously.

@ The density of K is f(x) = 8x Ziozl(—1)k_1k2xe_2k2"2 and its graph
is below.

@ The p-value is the area under this density in the interval (t,o0) where

t= m’"—#D,,,m is calculated with the data
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Teste Kolmogorov-Smirnov

p-value of Kolmogorov-Smirnov

@ Suppose, for example, that two samples provided the value
mn _
A/ Dnm = 1.25.

m—+n
@ Put this 1.25 in the horizontal axis and look at the area under the
Kolmogorov density in the interval (1.25,00): area = 0.088.
@ Interpretation of p-value: If the two samples were randomly sampled
from identical distributions, what is the probability that the two
cumulative frequency distributions would be as far apart as observed?

@ What is the probability that 10D, m would be equal to 1.25 or

m+n

even larger than that?
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