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Teste qui-quadrado

Teste qui-quadrado

Compara teórico e observado.

Testa se os dados de uma amostra Y1,Y2, . . . ,Yn seguem uma certa
distribuição de probabilidade (ou modelo teórico).

O modelo teórico pode ser quaquer distribuição de probabilidade,
cont́ınua ou discreta.

Isto é, observamos amostra Y1,Y2, . . . ,Yn.

Supomos que estes dados são i.i.d. e com distribuição teórica F (y):
este é o modelo.

F (x) poderia ser uma Bin(20, 0.1), ou uma Poisson(5), ou uma
exp(10), ou uma N(0, 1).
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Teste qui-quadrado

Teste qui-quadrado

Amostra Y1,Y2, . . . ,Yn são v.a.’s iid de um modelo teórico F (y)?

Como verificar se isto procede?

O teste qui-quadrado é uma maneira de fazer isto.

Ele possui duas vantagens: pode ser usado com distribuições cońınuas
OU discretas; e ele sabe como lidar com quantidades estimadas a
partir dos dados (mais sobre isto + tarde).
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Teste qui-quadrado

Teste qui-quadrado: PASSO 1

Particione o conjunto de valores posśıveis de Y em N categorias (ou
intervalos). Por exemplo:

Se o modelo teórico é uma Bin(20, 0.1), podemos criar 5 categorias
de valores posśıveis: Y = 0, Y = 1, Y = 2, Y = 3 e Y ≥ 4.

Modelo é uma Poisson(5), com 12 categorias: Y = 0,
Y = 1, . . . ,Y = 10 e Y ≥ 11.

Modelo é uma exp(10), com 5 categorias-intervalos: [0, 0.05),
[0.05, 0.1), [0.1, 0.2), [0.2, 0.4), [0.4,∞)

Modelo é N(0, 1), com 4 categorias-intervalos: (−∞,−2), [−2,−1),
[−1, 0), [0, 1), [1, 2), e (2,∞).

Em prinćıpio os intervalos-categorias são arbitrários mas na prática
escolhemos de forma que não tenham nem probabilidades muito altas
nem muito altas.
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Teste qui-quadrado

Teste qui-quadrado: PASSO 2

Para cada k-ésimo intervalo-categoria, calcule o número Nk de
elementos da amostra Y1,Y2, . . . ,Yn que caem no intervalo k (a
freqüência observada)

Calcule também o número esperado Ek de observações que deveria
cair no intervalo k.

Isto é, calcule Ek = n × P(Y ∈ Intervalo k).

Por exemplo, se o modelo teórico é uma Bin(20, 0.1), se temos
amostra de tamanho n = 53 e se a categoria é Y = 0:

Então o número esperado é
E = 53 ∗ P(Y = 0) = 53 ∗ (1− 0.1)20 = 6.44.

Se observamos 53 repetições de uma Bin(20, 0.1) esperamos que 6.44
delas sejam iguais a zero.
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Teste qui-quadrado

Outro exemplo

Modelo teórico é uma Poisson(2).

Temos amostra de tamanho n = 97.

A categoria é Y ≥ 4.

Então o número esperado nesta categoria é

E = 97 ∗ P(Y ≥ 4) = 97 ∗
∞∑
j=4

2j exp(−2)

j!
= 13.86

Se observamos 97 repetições indep de uma Poisson(2), esperamos que
13.86 delas sejam maiores ou iguais a 4.
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Teste qui-quadrado

Mais um exemplo

Modelo teórico é uma exp(10).

Temos amostra de tamanho n = 147.

O intervalo-categoria é X ∈ [0.2, 0.4).

Então o número esperado de observações neste intervalo é

E = 147 ∗
∫ 0.4

0.2
10 exp(−10x)dx = 17.20

Repete-se o cálculo nos demais intervalos.
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Teste qui-quadrado

Teste qui-quadrado: PASSO 3

Ek é o valor esperado caso o modelo teórico seja verdadeiro.

Compare as freqüências observadas Nk e as freqüências esperadas Ek .

Caso Ek e Nk sejam muito diferentes, isto é uma evidência de que o
modelo teórico não é próximo da realidade.

Caso Ek e Nk sejam parecidos, isto é evidência de que o modelo gera
valores parecidos com os observados.
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Teste qui-quadrado

Teste qui-quadrado: PASSO 3

Isto quer dizer que os dados observados REALMENTE sigam o
modelo teórico? NÃO.

TRÊS razões para o NÃO:
1 Suponha que temos uma única amostra e dois (ou mais) modelos

diferentes: os valores teóricos dos modelos podem estar bem próximos
dos valores observados e não termos nenhum deles claramente melhor
que o outro.

2 ESTE ASPECTO do modelo (as contagens nos intervalos) é próximo
da realidade. Outros aspectos do modelo, quando comparados com a
realidade, podem mostrar que o modelo não é adequado.
Por exemplo, uma análise de reśıduos num modelo de regressão linear
pode mostrar alguns problemas que não são aparentes na comparação
entre Ek e Nk .

3 Finalmente, ninguém acredita que a realidade siga fielmente uma
fórmula matemática perfeita. Precisamos apenas que a fórmula seja
uma BOA APROXIMAÇÃO para a realidade.
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Teste qui-quadrado

Teste qui-quadrado: AINDA O PASSO 3

Como então comparar as freqüências observadas Nk e as freqüências
esperadas Ek?

Podemos ter uma boa aproximação numa categoria mas uma péssima
aproximação em outra categoria. Assim, precisamos de um resumo,
uma idéia global de como é a aproximação em geral, considerando
todas as categorias.

A medida-resumo é uma espécie de “média” das diferenças |Nk − Ek |.
Note a presença do valor absoluto |Nk − Ek | ao invés das diferenças
Nk − Ek .

Se a medida-resumo for pequena, então Nk ≈ Ek e adotamos o
modelo teórico.

Se a medida-resumo for grande, vamos precisar adotar outro modelo
teórico para os dados.
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Teste qui-quadrado

Medida-resumo de comparação

Bombas em Londres: 576 quadrados com a contagem em cada um
deles. Modelo: Poisson(λ) com λ = 0.9323

Particione o conjunto de valores posśıveis em intervalos:

Y = 0, Y = 1, . . . ,Y = 5, e Y ≥ 6.
Calcular Nk , Ek e a diferença Nk − Ek para cada intervalo.

k 0 1 2 3 4 5 e acima
Nk 229 211 93 35 7 1
Ek 226.74 211.39 98.54 30.62 7.14 1.5
Nk − Ek 2.26 -0.39 -5.54 4.38 -0.14 -0.50

onde Ek = 576× P(Y = k) = 576 0.9323k

k! e−0.9323.

Talvez uma medida-resumo seja a média das diferenças (em valor
absoluto):

1

6

5∑
k=0

|Nk − Ek |

Esta não é uma boa idéia...Vamos ver porque.
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Teste qui-quadrado

Diferenças absolutas ou relativas?

Imagine três categorias com as seguintes diferenças |Nk − Ek |: 11.5,
10.6 e 0.9.

Estas diferenças são grandes ou pequenas?

Depende... do quê? Do valor esperado nessas categorias.

Considere duas posśıveis situações com apenas três categorias

k 0 1 2

Nk 20 1 6
Ek 8.5 11.6 6.9

|Nk − Ek | 11.5 -10.6 -0.9

N∗k 1020 1001 1006
E ∗k 1008.5 1011.6 1006.9

|N∗k − E ∗k | 11.5 -10.6 -0.9
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Teste qui-quadrado

Diferenças absolutas ou relativas?

Repetindo a tabela:
k 0 1 2
Nk 20 1 6
Ek 8.5 11.6 6.9

|Nk − Ek | 11.5 -10.6 -0.9

N∗
k 1020 1001 1006

E∗
k 1008.5 1011.6 1006.9

|N∗
k − E∗

k | 11.5 -10.6 -0.9

As diferenças são idênticas mas, RELATIVAMENTE AO QUE
ESPERAMOS CONTAR EM CADA CATEGORIA, as diferenças são
muito menores na segunda situação.
Quando esperamos contar 11.6 numa categoria e observamos apenas
1, erramos por 10.6 e este erro parece grande.
Mas quando esperamos 1011.6 e observamos 1001 o erro parece
pequeno mesmo que a diferença seja a mesma de antes.
Parece razoável considerar as diferenças |Nk − Ek | maiores (em
ALGUM sentido) do que as diferenças |N∗k − E ∗k |
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Teste qui-quadrado

Medida-resumo de comparação

Talvez uma medida-resumo mais apropriada seja então a média das
diferenças RELATIVAS ao esperado em cada categoria.

Isto é, com N categorias ao todo, um candidato a medida-resumo
seria:

1

N

∑
k

|Nk − Ek |
Ek

Pearson estudou esta medida e achou que, embora intuitiva e simples,
ela não era matematicamente manejável.

A razão é que a distribuição dessa media-resumo dependia de
aspectos espećıficos do problema sendo analisado. Dependia do
tamanho da amostra, da distrbuição particular sob estudo
(binmomial, Poisson, exponencial, etc).

Num toque de gênio ele propôs uma medida-resumo diferente.
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Teste qui-quadrado

Medida-resumo de Pearson

Calcule Nk , Ek e a diferença Nk − Ek para cada valor posśıvel.

Ao invés de calcular
1

N

∑
k

|Nk − Ek |
Ek

calcule a medida-resumo de Pearson:

X 2 =
∑
k

(Nk − Ek)2

Ek

No caso das bombas em Londres

X 2 =
(2.26)2

226.74
+

(−0.39)2

211.39
+ . . .+

(−0.50)2

1.5
= 1.13

Como saber se X 2 é grande ou pequeno? A resposta precisou do
gênio de Pearson e, ao mesmo tempo, ela justifica por que usamos a
diferença ao QUADRADO na medida-resumo.
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Teste qui-quadrado

A distribuição de X 2

Considerando o nosso problema das bombas em Londres como
ilustração, vamos entender o que Pearson se perguntou.

SUPONHA QUE O MODELO TEÓRICO Poisson(λ) SEJA
VERDADEIRO.

Mesmo neste caso, X 2 nunca será exatamente a zero.

Dependendo da amostra, ele pode ser pequenino ou um pouco maior.

Não deve ser muito grande pois o modelo é verdadeiro e portanto Nk

deve ser próximo de Ek .

Qual a variação natural de X 2 quando o modelo teórico é verdadeiro?

Vamos responder isto com um experimento no R
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Teste qui-quadrado

A distribuição por simulação

Execute o seguinte algoritmo em R:

Crie um vetor E de dimensão 6 com as contagens esperadas de
X = 0, X = 1, . . . ,X = 4, e X ≥ 5 em 576 Poisson(0.9323).

Isto é, E = c(226.74, 211.39, 98.54, 30.62, 7.14, 1.5)

Crie um vetor Qui com 1000 posições.

for(i in 1:1000) faça

Gere X1, . . . ,X576 iid Poisson(λ = 0.9323)
Conte o número Nk de Xi ’s iguais a 0, 1, . . . , 4,≥ 5
Faça Qui [i ]← X 2 =

∑
k(Nk − Ek)2/Ek

Faça um histograma dos 1000 valores gerados do vetor Qui.

Este histograma mostra a variabilidade que se pode esperar de X 2

quando o modelo é verdadeiro.
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Teste qui-quadrado

A distribuição por simulação
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Figura: Histograma de 1000 simulações e densidade de Qui-quadrado com 5 df
superimposta

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 18 / 61



Teste qui-quadrado

Distribuição Qui-quadrado

Pearson descobriu que a distribuição de X 2 era (aproximadamente) a
MESMA qualquer que fosse a distribuição do modelo (Poisson,
normal, gama, ou QUALQUER OUTRO MODELO PARA OS
DADOS).

Era uma distribuição universal.

Ele conseguiu uma fita métrica para medir desvios dos dados
observados em relação a QUALQUER modelo teórico.

É um resultado incŕıvel:

QUALQUER QUE SEJA a DISTRIBUIÇÃO dos dados da amostra, a
distribuição de X 2 é uma só: uma qui-quadrado.

Não precisamos fazer nenhuma simulação Monte Carlo para encontrar
quais os valores razoáveis para X 2 quando o modelo teórico for
correto.
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Teste qui-quadrado

Um pouco mais de rigor

A distribuição de X 2 não é EXATAMENTE igual a uma distribuição
qui-quadrado (com a densidade que acabei de mostrar no gráfico).

Ela é APROXIMADAMENTE igual a uma qui-quadrado quando o
tamanho da amostra é grande.

O que é uma amostra grande?

No caso Poisson, com λ ≈ 1, basta ter n > 200. Com λ’s maiores,
n = 100 pode ser suficiente. O fato que comamostras não muito
grandes já podmeos usar a aproximação.

Precisamos do número dos graus de liberdade k . Ele é igual ao
número de categorias menos 1 e menos p, onde p é o número de
parâmetros estimados.

No caso das bombas de Londres, número de categorias é 6 e tivemos
de estimar λ com os dados (obtivemos λ̂ = 0.9323).

Então, graus de liberdade k = 6− 1− 1.
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Teste qui-quadrado

Como usar este resultado de Pearson?

Quando o modelo teórico é verdadeiro, o valor de X 2 segue
(aproximadamente) uma distribuição qui-quadrado com k graus de
liberdade.

k = no. de categorias− 1− p onde p é o número de parâmetros
estimados com os dados.

No caso das bombas em Londres, temos k = 6− 1− 1 = 4 g.l.

Quais são os valores t́ıpicos de uma qui-quadrado com 4 g.l.?

E quais são os valores não-t́ıpicos, os valores que dificilmente viriam
de uma qui-quadrado com 4 g.l.?
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Teste qui-quadrado

A densidade de uma qui-quadrado com 4 g.l.
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Figura: Densidade de uma distribuição qui-quadrado com 4 g.l.
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Teste qui-quadrado

Distribuição Qui-quadrado

Qui-quadrado com k graus de liberdade (é uma Gama(k/2, 1/2)).

Densidade

f (x) =
1

2k/2Γ(k/2)
xk/2−1e−x/2

Figura: Densidades da distribuição qui-quadrado com k = 1, 2, 3, 4, 5
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Teste qui-quadrado

Karl Pearson
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Teste qui-quadrado

Como usar o teste qui-quadrado?

Assim, os valores t́ıpicos são aqueles entre 0 e 10.

Os valores entre 10 e 15 são raros, tem probabilidade
P(X 2 ∈ (10, 15)) = 0.036.

Os valores acima de 15 são posśıveis mas ALTAMENTE improváveis.
Eles ocorrem com probabilidade P(X 2 > 15) = 0.005.

Calcule o valor realizado de X 2 usando os dados da amostra.

Este valor realizado é um número real positivo.

Por exemplo, no caso das bomabas em Londres, tivemos X 2 = 1.13
com k = 4 g.l.

O valor 1.13 é um valor t́ıpico de uma qui-quadrado com 4 g.l.?
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Teste qui-quadrado

Valor observado e densidade
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Figura: 1.13 é o valor observado de X 2 no caso das bombas em Londres. Gráfico
da densidade de uma qui-quadrado com 4 g.l.
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Teste qui-quadrado

P-valor

É óbvio que 1.13 é um valor t́ıpico de uma qui-quadrado com 4 g.l.

Ele está bem no meio da faixa de variação razoável dos valores da v.a.
X 2.

Isto é sinal de que as diferenças entre as contagens observadas na
amostra e as contagens esperadas pelo modelo são aquelas que se
espera QUANDO O MODELO É VERDADEIRO.

Uma forma de expressar quão discrepante é o valor observado de X 2 é
calcular a probabilidade de observar uma v.a. qui-quadrado com 4 g.l.
MAIOR OU IGUAL a 1.13

Esta probabilidade é chamada de p-valor e, no caso das bombas em
Londres, ela é igual a 0.89.

É a área da densidade da qui-quadrado com 4 g.l. que está acima do
valor 1.13 observado na amostra.

Um p-valor próximo de zero é sinal de que o modelo não se ajusta
bem aos dados. Não foi este o caso aqui.
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Teste qui-quadrado

Como provar o resultado de Pearson? Idéia da prova

Se Z1,Z2, . . . ,Zk são iid N(0, 1) então Y = Z 2
1 + . . .+ Z 2

k ∼ χ2
k , uma

qui-quadrado com k g.l.
Temos

X 2 =
∑
k

(Nk − Ek )2

Ek

Porque X 2 segue uma qui-quadrado?
Nk é a contagem dos elementos da amostra que caem na categoria k
Nk ∼ Bin(n, θ) onde θ = P(X ∈ categoria k)
Se n é grande, pelo Teorema Central do Limite,

Nk − nθ

nθ(1− θ)
=

Nk − Ek

Ek (1− θ)
≈ N(0, 1)

Se (1− θ) ≈ 1 então

Nk − Ek

Ek
≈ N(0, 1) 7−→

(Nk − Ek )2

Ek
≈ N2(0, 1) = χ2

1

Somando sobre as categorias, teremos uma qui-quadrado (estou
omitindo vários detalhes e sutilezas).
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Teste qui-quadrado

Ajuste clássico de Poisson: coices de cavalo

Von Botkiewicz: mortos por coices de cavalo em certas corporações
do exército prussiano durante vinte anos (1875-1894)

Em cada ano, durante 20 anos: número de mortos em cada uma das
10 corporações.

no k de mortes no ano Freqüência Nk

0 109
1 65
2 22
3 3
≥ 4 1

Total 200=20 (anos) x 10 (corporações)
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Teste qui-quadrado

Ajuste clássico de Poisson: coices de cavalo

Comparando observado e esperado:
k Nk Ek

0 109 108.7
1 65 66.3
2 22 20.2
3 3 4.1
≥ 4 1 0.7

Muito próximos. Verificando pelo critério do teste qui-quadrado:

X 2 =
(109− 108.7)2

108.7
+

(65− 66.3)2

66.3
+

(22− 20.2)2

20.2
+

(3− 4.1)2

4.1
+

(1− 0.7)2

0.7
= 0.61

Este valor realizado de X 2 deve ser comparado com os valores
prováveis da v.a. X 2 caso o modelo seja verdadeiro (que segue uma
qui-quadrado com k = 5− 1− 1 g.l.
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Teste qui-quadrado

Alguns exemplos clássicos: coices de cavalo
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Figura: Valor observado X 2 = 0.61 e densidade de qui-quadrado com 3 g.l.
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Teste qui-quadrado

Resumo: Kolmogorov versus Qui-quadrado

Dados Y1,Y2, . . . ,Yn forma uma amostra i.i.d. de uma
distribuição-modelo F (y)?

Duas opções: Kolmogorov e Qui-quadrado.

Kolmogorov: modelo F (y) tem de ser cont́ınuo; Teoria não vale se for
discreta.

Kolmogorov: Teste só é válido se não precisarmos estimar parâmetros
de F (y).

Por exemplo, Y1,Y2, . . . ,Yn segue uma N(µ, σ2)? Podemos usar
Kolomogorov?

Se µ e σ2 forem especificados de antemão, antes de olhar os dados,
OK, é válido.

Se eles NÃO são especificados de antemão mas, ao contrário,
precisam ser estimados a partir dos dados observados: a distribuição
de
√
nDn não é conhecida e não podemos usar Kolomogorov a não

ser INFORMALMENTE.
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Teste qui-quadrado

Resumo: Kolmogorov versus Qui-quadrado

Dados Y1,Y2, . . . ,Yn forma uma amostra i.i.d. de uma
distribuição-modelo F (y)?

Qui-quadrado de Pearson: pode ser aplicado com qualquer modelo,
cont́ınuo ou discreto.

Consegue incorporar o efeito de estimar parâmetros de F (y), se for
necessário.

Implementação é muito fácil.

Precisa especificar os intervalos ou classes onde as contagens vão ser
feitas.

Qual o efeito desta escolha? Quanto mais clases, melhor;

Mas usar muitas classes pode levar a categoias com probabilidades
próximas de zero.

Devemos escolher classes de forma que o número esperado em cada
uma delas seja, de preferência, pelo menos 5. Classes com contagens
esperadas menores que 1 devem ser evitadas.
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Teste Kolmogorov-Smirnov

Teste de hipótese de Kolmogorov

O teste de Kolmogorov requer um modelo teórico de referência.

Temos dados uma amostra: y1, y2, . . . , yn com distribuição F (y) **
desconhecida **.

Existe um modelo teórico com distribuição F0(y) (gaussiana,
exponencial, Poisson, etc)
Queremos testar a seguinte hipótese:

A distribuição desconhecida F (y) é igual à distribuição do modelo
teórico F0(y)?
Isto é, posso acreditar na hipótese de que F (y) = F0(y)?

O que é “testar”?
É verificar se os dados observados são compat́ıveis com a hipótese de
que F (y) = F0(y).

Rejeitamos a hipótese se julgarmos que os dados são incompat́ıveis
com ela.

Decisão baseada no p-valor da estat́ıstica
√
nDn
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Teste Kolmogorov-Smirnov

Teste de Kolmogorov-Smirnov

O teste de Kolmogorov-Smirnov testa se duas amostras possuem uma
mesma distribuição de probabilidade
Ele não requer que a gente especifique qual seria esta distribuição
comum.
O teste é baseado na distância entre as distribuições acumuladas
emṕıricas das duas amostras.

Figura: Distância entre as distribuições acumuladas emṕıricas F̂n(y) e Gn(y).Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 35 / 61



Teste Kolmogorov-Smirnov

Kolmogorov-Smirnov

Temos dados de DUAS amostras:

Amostra 1: y1, y2, . . . , yn com distribuição desconhecida F (y)
Amostra 2: y∗

1 , y
∗
2 , . . . , y

∗
m com distribuição desconhecida G (y)

Amostras podem ter m 6= n: tamanhos diferentes.

Exemplos:

pressão sistólica entre homens (amostra 1) e pressão sistólica entre
mulheres (amostra 2)
pressão entre homens jovens (amostra 1) e entre homens idosos
(amostra 2)
várias medições de y antes (amostra 1) e depois (amostra 2) de uma
intervenção
mediçães de y no lugar 1 e no lugar 2

Hipótese a ser testada: F (y) = G (y) sem precisar dizer quem são
F (y) e G (y).
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Teste Kolmogorov-Smirnov

Kolmogorov-Smirnov

Acumuladas emṕıricas das duas amostras: F̂n(y) e Ĝm(y).

Se amostras são grandes devemos ter F̂n(y) ≈ F (y) e Ĝm(y) ≈ G (y).

Portanto, se F (y) = G (y), devemos ter F̂n(y) ≈ Ĝm(y).

Calcule Dn,m = maxy |F̂n(y)− Ĝm(y)|

Figura: Distância entre as distribuições acumuladas emṕıricas F̂n(y) e Gn(y).
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Teste Kolmogorov-Smirnov

Kolmogorov-Smirnov

Se F (y) = G (y)⇒ F̂n(y) ≈ Ĝm(y).

Calcule Dn,m = maxy |F̂n(y)− Ĝm(y)|
If Dn,m is small, accept hypothesis F (y) = G (y).

If Dn,m is large, reject hypothesis F (y) = G (y).

How to establish a threshold for Dn,m?

When we should consider that Dn,m is large enough to reject the
hypothesis.
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Teste Kolmogorov-Smirnov

Kolmogorov-Smirnov

K-S provaram que, se n e m são grandes,
√

mn
m+nDn,m converge para

uma distribuição que não depende da distribuição comum
desconhecida.
That is,

√
mn
m+nDn,m ≈ K , where K is the SAME distribution of the

Kolomogorv test seen previously.
The density of K is f (x) = 8x

∑∞
k=1(−1)k−1k2xe−2k2x2

and its graph
is below.
The p-value is the area under this density in the interval (t,∞) where

t =
√

mn
m+nDn,m is calculated with the data

Figura: Densidade de K ≈
√

mn
m+nDn,m
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Teste Kolmogorov-Smirnov

p-value of Kolmogorov-Smirnov

Suppose, for example, that two samples provided the value√
mn
m+nDn,m = 1.25.

Put this 1.25 in the horizontal axis and look at the area under the
Kolmogorov density in the interval (1.25,∞): area = 0.088.
Interpretation of p-value: If the two samples were randomly sampled
from identical distributions, what is the probability that the two
cumulative frequency distributions would be as far apart as observed?

What is the probability that
√

mn
m+nDn,m would be equal to 1.25 or

even larger than that?

Figura: Densidade de K ≈
√

mn
m+nDn,m
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