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Vetores Aleatérios

Vetores de v.a.’s

o X =(Xi,...,Xx) é um vetor aleatério de dimensdo k.

@ Cada uma das entradas X; do vetor X é uma variavel aleatédria
medida no mesmo resultado w do experimento estocastico.

@ A importancia vital de se lidar com vetores aleatérios: uma v.a. vai
dar alguma informacdo sobre o valor de outra v.a.
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Vetores Aleatérios

Varidveis no mesmo espaco amostral

O arcabougo matematico é o seguinte:

@ Temos um espaco amostral  com uma medida de probabilidade
sobre subconjuntos A de €.

Q é "complexo”: cada resultado do experimento aleatério pode ter
muitas caracteristicas de interesse: X1, X, X3, ...

Coletamos estas varias medidas num vetor aleatério
X=(X1,...,X%n).

As varidveis X1, X2, X3, ... s3o medicdes feitas no MESMO
RESULTADO w € Q do experimento.
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Vetores Aleatérios

O modelo tedrico

O modelo tedrico x=& x...x)

o Xa(w)
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Vetores Aleatérios

Exemplo: imagens

Q = { imagens n x m}

Selecione ao acaso uma das imagens.

o Caracteristicas de interesse: intensidade de cinza em cada um dos
pixels

X = (X11, X125 - - -, Xom)

Veja que todas as medi¢des sdo sobre um mesmo resultado do
experimento: a imagem selecionada.
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Exemplo: grafos

@ Considere uma rede social vista como um grafo direcionado.

@ Os nds sdo os usudrios e as arestas direcionadas s3o as relacdes de
seguidor-seguido.

@ Experimento consiste em selecionar um né ao acaso.

e Q é a colegdo de nés do grafo (com suas caracteristicas associadas)

@ k caracteristicas de interesse do nd selecionado

e X; = idade do né (intrinseco ao nd)
e X3 = ndmero de outlinks (relacional)
e X3 = nimero de inlinks (relacional)

o X = (X17X2aX3)

@ Objetivo: Qual é a relagdo probabilistica entre o nlimero de outlinks
do né com a idade do né?
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Vetores Aleatérios

Exemplo: problema de classificacdao

e Q = colegdo de itens classificados em dois (ou mais) grupos

o Colecdo de e-mails: spam versus n3o-spam

e Colegdo de tomadores de empréstimos num banco: pagam versus n ao
pagam de volta o empréstimo dentro do prazo

@ cranios humanos em escavagdo arqueoldgica: masculinos versus

femininos
@ A colecao pode nem existir ainda de forma completa: interesse nos
e-mails j& enviados mas principalmente nos que ainda serdo enviados

NO FUTURO
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Vetores Aleatérios

Classificacao

@ Em cada item da cole¢dao, medimos dois tipos de varidveis aleatdrias.
@ No caso de spam x n3o-spam:
@ Y bindria, 0 ou 1 (spam ou n3o-spam, inadimplente ou n3o)
@ Um conjunto de k = 3 atributos:
e Xi: nimero de vezes que aparece a palavra “sale”
e X, : nimero de vezes que aparece a palavra “offer”
e X3 : nimero de vezes que aparece a palavra “Viagra”
@ Vetor aleatério: X = (Y, X1, Xz, X3)
@ Objetivo: predizer o valor de Y a partir dos atributos.
@ Qual a probabilidade condicional

P(Y = spam | X1 =3,X; =1,X3 =3)
@ Como esta probabilidade muda quando alteramos alguns dos atributos
X?
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Vetores Aleatérios

Regressao: preco de imdveis

@ Alguns apartamento custam 200 mil reais, outros curtam 10 vezes
mais.

@ O que faz com que os precos Y de apartamentos variem tanto?

@ X; = Localizacdo, X, = idade, X3 = area, X4 = nimero de quartos,
X5 = piscina?.

@ Vetor aleatério: X = (Y, X1, Xz, X3, X4, Xs)

@ Interesse em conhecer a distribuicdo da varidvel aleatéria Y = preco
CONDICIONADA no valor das demais variaveis:

@ Por exemplo, saber a distribuicdo de

(Y| X1 = Sion, Xo = 10anos, X3 = 200m?, Xy = 4, X5 = ndo)
@ Como esta distrbuicdo muda quando alteramos alguns dos atributos

X?
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Vetores Aleatérios

Explorando interelacoes

e X = (Xl,XQ,. . .,Xk)

@ Podemos analisar cada v.a. separadamente das demais e ajustar um
modelo a cada uma delas (binomial, Poisson, Pareto, normal,...)

@ Isto é chamado de andlise marginal.

e E o que viemos fazendo até agora.

@ O mais interessante é quando analisamos as varidveis conjuntamente.

@ Anidlise conjunta procura explorar a existéncia de relagoes

probabilisticas entre as varidveis.
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Conjunta: caso discreto

@ Se X = (X1, Xa,...,Xk) é composto apenas de v.a.'s discretas, a
distribuicdo conjunta das v.a.'s é simples.

@ Como no caso de uma v.a. apenas, precisamos apenas especificar
uma lista de valores possiveis para o VETOR X e a lista de
probabilidades associadas.

@ Se X; tem m; valores possiveis, a lista de valores possiveis do vetor
X = (Xy,Xo,...,Xk) terd my x my x ... my possibilidades.

o Basta agora atribuir uma probabilidade > 0 a cada um deles de forma
que somem 1.

@ Todas as probabs de interesse sdo obtidas a partir desta lista de
probabilidades basicas.
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Conjunta discreta

Exemplo muito simples

@ ) = conjunto de pacientes em visita ao otorrinolaringologistaA com
problemas na garganta (faringoamigdalite aguda)

@ Incluimos em 2 os pacientes DO FUTURO

@ Suspeita da presenca de infeccdo pela bactéria estreptococcus
@ Dois tipos de testes em CADA PACIENTE:

o Teste padrdo-ouro, cultura em placa agar-sangue: resultado positivo ou
negativo

o Teste rapido, barato com resultados positivo ou negativo MAS com
menor qualidade.
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Conjunta discreta

Validacao de teste diagndstico

@ Vetor X = ( Teste-ouro, Teste-rapido) = (TO, TR)
@ V.a. TO possui dois valores: 0 ou 1
@ V.a. TR também possui dois valores: 0 ou 1

@ Vetor X possui 4 resultados possiveis

Teste-ouro Teste-rapido ‘ Probabilidade
0 0 ?

0 1 ?
1 0 ?
1 1 7
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Conjunta discreta

Validacao de teste diagndstico

@ Probabilidades P(TO = x;, TR = x2) dos 4 resultados possiveis

Teste-ouro Teste-rapido

Probabilidade

0 0 0.40
0 1 0.19
1 0 0.03
1 1 0.38
Total 1

@ Probabilidades devem ser > 0 e devem somar 1
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Marginal discreta

Distribuicao Marginal

o Distribuicido Marginal de cada v.a.: some a probab conjunta sobre

todos os valores das outras varidveis.

Teste-ouro  Teste-rdpido | Probabilidade
0 0 0.40
0 1 0.19
1 0 0.03
1 1 0.38
Total 1

@ Distribui¢cdo marginal da v.a. TO: Precisamos de P(TO = 0) e de

P(TO =1)
P(TO = 0)
P(TO =1)
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P(TO=0ATR=0)+P(TO=0ATR=1)
0.40 + 0.19 = 0.59
P(TO=1ATR=0)+P(TO=1ATR=1)
0.03+0.38 = 0.41
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Marginal discreta

Marginal de TR

@ Distribuicido marginal da v.a. TR
@ Precisamos de P(TR =0) ede P(TR =1)

Teste-ouro  Teste-rapido | Probabilidade
0 0 0.40
0 1 0.19
1 0 0.03
1 1 0.38
Total 1

P(TR = 0)

P(TR = 1)

P(TR=0ATO=0)+P(TR=0ATO = 1)
0.40 +0.03 = 0.43
P(TR=1ATO=0)+P(TR=1ATO =1)
0.19 + 0.38 = 0.57

e Na prética, como P(TR =1) =1 —P(TR = 0), basta obtermos uma
delas, a outra sendo obtida por subtra¢do.
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Marginal discreta

Independéncia de v.a’'s

@ Duas v.a.'s DISCRETAS X e Y sdo independentes se os eventos
[X = x] e [Y = y] sdo independentes para qualquer combinagcdode x
ey.

o Isto é, X e Y sdo independentes se

PX=x,Y=y)=P(X =x) P(Y =y)

para todo par (x,y).
@ Equivalentemente, X e Y sdo independentes se

P(X =x|Y =y)=P(X =x)

para todo par (x,y).
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TO e TR nao sao independentes

@ A tabela original

Teste-ouro  Teste-rapido

Probabilidade

0 0 0.40
0 1 0.19
1 0 0.03
1 1 0.38
Total 1

@ Verificando dois casos:

P(TO =1, TR = 1) = 0.38 # 0.23 = (0.03+0.38)x(0.19+0.38) = P(TO = 1) P(TR = 1)
P(TO =0, TR = 0) = 0.40 # 0.25 = (0.40+0.19) x (0.40+0.03) = P(TO = 0) P(TR = 0)

@ Se fossem independentes, TO = 1 ocorreria junto com TR =1
apenas 23% das vezes mas eles ocorrem juntos 38% de acordo com a
tabela. TO =0 e TR = 0 ocorreriam juntos 25% das vezes se

independentes mas tabela fornece 40%.

@ Os dois testes tendem a concordar muito mais frequentemente do que

se fossem independentes.
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Marginal discreta

Com mais de duas variaveis discretas

@ Suponha que X = (X1, X2, X3, X3) onde
e X; = diagnéstico de uma doenga, presente (1) ou ausente (0)
o X; = sexo, masculino (1) ou feminino (0)
e X3 = idade, classificada em trés categorias:
crianga (1), adulto jovem (2) , idoso (3)
e X, = fumante (1) ou n3o-fumante (0)
@ Existem 2 x 2 x 3 x 2 = 24 valores possiveis para X

@ Precisamos alocar probabilidades aos 24 valores possiveis, todas
nao-negativas e somando 1.
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Marginal discreta

Distribuicao conjunta

nato Assun¢do, DCC, UFMG
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Marginal discreta

Distribuicao marginal de X;

P(Xp =0) = Y P(Xg=0,X=1iXs=j,Xs=k)

100% X P

i,k
= (46+57+41+53+5.2+6.6+
+1.6 +1.8+4.9+ 0.2+ 3.1+ 4.4) /100
= 0.475
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Marginal discreta

Distribuicao marginal de X;

P(X; = 0) = 0.475  ja calculado

Por subtra¢do encontramos P(X; = 1):

P(X; =1) =1 —P(X; =0) =1 — 0.475 = 0.525
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Marginal discreta

Distribuicao marginal de X3

P(X3=1) = > P(X1=iX=j,X3=1,X =k)

ik

= (46+67+1.6+18
+1.1+ 6.8 + 3.6 + 3.7) /100

= 0.299
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Marginal discreta

Distribuicao marginal de X3

P(X3 = 1) = 0.299 (ja calculado)

100% X P

STP(Xy =i, Xo = j, X3 =2, X4 = k)
i,k
(4.145.3=14.9+0.2+
+0.5 4 4.0 + 6.6 = 6.8) /100
=0.324
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Marginal discreta

Distribuicao marginal de X3

P(X3 = 1) = 0.299 (ja calculado)

P(X3 = 2) = 0.324 (ja calculado)

P(Xzs =3) = 1—PXz=1)—P(X3=2)
= 1-P(Xz=1)—P(X3 =2)
0.377
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Marginal discreta

Marginalizacao, em geral

Seja X = (X1, X2, ..., Xk) um vetor de v.a.'s discretas
X; tem n; valores possiveis
Queremos P(X; = x) onde x é um dos seus n; valores possiveis.

Para cada valor de x, a probabilidade P(X; = x) é uma soma de
np X n3 X ... X ng elementos da tabela de distribuicdo conjunta.

Se todas as v.a.'s sdo bindrias temos 2~ parcelas para cada valor de
X.

Se quisermos P(X; = x) para todos os n; valores x possiveis para X1,
precisamos fazer o calculo anterior n; vezes.

Na verdade, n; — 1 vezes pois

P(X1 = ) =1 P(X = x1) — ..~ B(X1 = x 1)
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Marginal discreta

Distribuicao marginal de Xj e X5

P(X; =0,Xp=1) = > PX1=0X=1,X3=1i,X =)

100% X P

i
= (1.6+1.8+4.940.2+3.1+4.4)/100
= 0.16
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Marginal discreta

Independéncia de v.a’'s

X = (Xi,...,Xk) um vetor aleatério composto de v.a.'s discretas.

Elas s3o independentes se
P(Xy =x1,..., Xk = xk) = P(X1 = x1) ... P( Xk = xk)

para qualquer configuragdo de valores possiveis (xi, ..., Xk).

@ Se o vetor é composto de v.a.'s independentes ent3o
P(X1 = x1| X2 = x2, ..., Xk = xi) = P(X1 = x1)

para qualquer configuragdo de valores possiveis (xi, ..., Xk).

@ O resultado acima é vélido se Xi trocar de posicdo com qualquer
outra v.a.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 28 /92



Marginal discreta

Simulacdo de um vetor aleatério discreto

@ Seja X = (X1, X2, X3, X4) um vetor aleatério
composto de v.a.’s discretas.

@ Se quisermos simular (X), podemos usar o MESMO
procedimento aprendido para UMA v.a. discreta.

@ Simule U ~ U(0, 1) e veja em que segmento U caiu
na coluna de soma acumulada.

@ Este segmento determina o vetor X gerado.

@ Por exemplo, se U = 0.3215 entdo X = (0,0, 3,1) é
selecionado.

@ A geragio NAO E feita separadamente para cada v.a.

do vetor com base na sua distribuicdo marginal A
MENOS que as v.a.’s sejam independentes.

nato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados

X1 X5 X3 X4 100% x P Soma Acum.
0 0 1 0 4.6 4.6
0 0 1 1 6.7 11.3
0 0 2 0 4.1 15.4
0 0 2 1 5.3 20.7
0 0 3 0 5.2 25.9
0 0 3 1 6.6 325
0 1 1 0 1.6 34.1
0 1 1 1 1.8 35.9
0 1 2 0 4.9 40.8
0 1 2 1 0.2 41.0
0 1 3 0 3.1 44.1
0 1 3 1 4.4 48.5
1 0 1 0 1.1 49.6
1 0 1 1 6.8 56.4
1 0 2 0 0.5 56.9
1 0 2 1 4.0 60.9
1 0 3 0 4.0 64.9
1 0 3 1 2.9 67.8
1 1 1 0 3.6 71.4
1 1 1 1 3.7 75.1
1 1 2 0 6.6 81.7
1 1 2 1 6.8 88.5
1 1 3 0 6.6 95.1
1 1 3 1 4.9 100.0
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Marginal discreta

As vezes, array bi-dimensional

@ No caso de termos apenas duas v.a.'s discretas, é comum apresentar
a distribuicdo conjunta de probabilidade como um array de duas
entradas.

@ De volta aos dois testes de diagndsticos: teste-outo e teste-rapido

TR=0 TR=1
T0=0 0.40 0.19
T0=1 0.03 0.38

@ Colocamos os valores possiveis de Xj nas linhas.
@ Colocamos os valores de X> nas colunas.

e Na posicdo (i,j) do array colocamos a probabilidade
P(X1 = x;, X2 = xj)
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Marginal discreta

Marginais nas margens

@ Nas margens da tabela bi-dimensional colocamos as distribuicoes
marginais da varidvel coluna e da varidvel-linha.

@ A marginal de T0 é obtida somando as colunas:

TR=0 TR=1 Total
TO=0 040  0.19 P(TO = 0) =
0.40 4+ 0.19 = 0.51
T0O=1 003 038 P(TO =1) =
0.03 4 0.38 = 0.49

@ Isto explica o nome distribuicao marginal para a distribuicao de uma
Gnica varidvel: elas ficam nas margens da tabela.
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Marginal discreta

Marginais nas margens

@ Somando as linhas encontramos a marginal de TR:

TR=0 TR =1

Total

T0=0 0.40 0.19 0.51

T0=1 0.03 0.38 0.49
Total P(TR=0) = P(TR=1)=

0.40+4+0.03=0.43 0.194+0.38=0.57| 1.00

@ A soma dos valores na marginal-linha ou na marginal-coluna é o total

das probabilidades: 1.
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Marginal discreta

Exemplo: mobilidade social

@ Selecione um adulto brasileiro w ao acaso em 1988.
o Para cada w, vamos definir duas v.a.'s:
o SF(w) : o status sécio-econdmico da sua ocupagdo (6 valores): 1,2,..,6
e Ocupagdes categorizadas de acordo com caracteristicas de renda e
educacdo.
e Baixo inferior, Baixo superior, Médio inferior, Médio, Médio superior,
Alto.
o SP(w) : status social da ocupacdo de seu pai quando o pai tinha 45
anos (6 valores): 1,2,...,6
o Mesmas categorias que filho.
@ Por exemplo, executivos e juizes de tribunais superiores estavam na
categoria Alto

@ Trabalhadores bracais exigindo nenhuma instru¢do estavam na
categoria Baixo inferior.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 33/92



Marginal discreta

Arcabouco para mobilidade social

Selecione individuo w ao acaso em 1988.
Para cada individuo, mega o vetor X = (SF, SP)

@ 36 valores possiveis para o vetor X.

0 = P( pai ter status i A filho ter status j)
= P(SP =1i,5F =))

Claramente, SP e SF n3o s3o v.a.'s independentes.

Existe uma grande inércia na sociedade: filhos de pais de status baixo
tendem a continuar com status baixo.
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A distribuicdo conjunta de (SP, SF)

@ Probabilidades baseadas em amostra de 42137 homens chefes de

familia entre 20 e 64 anos em 1988

@ Dados:IBGE-PNAD, Pesquisa Nacional por Amostra de Domicilios,

1988
@ Probabilidades (x100%) sdo aproximadas pela frequéncia relativa na
amostra.
SF: status do individuo em 1988.
Baixo | Baixo | Médio - Médio
SPostatus || e | sup. | Inf, | Médio | g, | Alte
BI 217 | 128 | 132 46 2.1 1.0
BS 0.7 4.2 3.6 2.5 2.5 13
M 0.6 3.7 7.1 2.7 2.7 15
M 0.6 1.9 2.0 2.2 1.2 0.9
MS 0,3 0.6 0.6 0.7 0.7 0.5
A 0.1 0.3 0.3 0.6 0.6 0.9

Renato Assun¢do, DCC, UFMG

Estatistica para Ciéncia dos Dados

35/ 92



Marginal discreta

Questoes de interesse

@ Como mudou a distribuicdo do status entre duas geracdes?

@ Filhos de pais com status muito baixo passam com facilidade para um
status mais alto?

@ A estrutura de ocupacdao mudou drasticamente na década de 70
devido ao milagre econdmico nos anos dos governs militares.

@ Houve uma expans3do da inddstri e servicos e o Brasil deixou de ser
uma sociedade agraria.

@ Novos postos de trabalho qualificados foram abertos.

@ Houve a necessidade de recrutar pessoas vindas de pais com status
mais baixos.

Quanto da mobilidade social pode ser explicada por esta expansio?
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Marginal discreta

Distribuicoes marginais

@ Distribuicdo marginal da estrutura de status das ocupag¢des para a
geracdo dos pais e dos filhos.

SF: status do individuo em 1988 .

SP.: status || B0 | Baixo | Médio |y, Médio |y porar
dopai Inf. Sup. Inf. Sup.
BI 21.7 12.8 13.2 4.6 2.1 1.0 55.4
BS 0.7 4.2 3.6 2.5 2.5 1.3 14.8
Ml 0.6 3.7 7.1 2.7 2.7 1.5 18.3
M 0.6 1.9 2.0 2.2 1.2 0.9 8.8
MS 0.3 0.6 0.6 0.7 0.7 0.5 3.4
A 0.1 0.3 0.3 0.6 0.6 0.9 2.8
ToTAL 24.0 23.5 26.8 13.3 9.8 6.1 100%

Renato Assun¢do, DCC, UFMG
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Marginal discreta

Focando nas marginais

@ Na geracdo dos pais, 55% das ocupag¢des estavam no estrato Baixo

inferior e isto foi reduzido a apenas 24% das ocupacdes na geracdo

dos filhos.

@ Ha um deslocamento de ocupac¢des em direcdo aos status mais

elevados.

@ Nos dois niveis de status mais elevados, a porcentagem passa de 6%
para 16% entre as duas geracdes.
SF: status do individuo em 1988 .

SP,: status Baixo | Baixo | Médio Médio Médio Alto TorAL
do pal Inf. Sup. Inf. Sup.
Bl 55.4
BS 14.8
MI 18.3
M 8.8
MS 3.4
A 2.8
ToTAL 24.0 23.5 26.8 13.3 9.8 6.1 100%
Estatistica para Ciéncia dos Dados
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Marginal discreta

Calculos com a conjunta

@ Seja A o evento “pai pobre, filho rico”: o individuo tem status pelo
menos Médio superior e seu pai tem status menor ou igual a Baixo

superior.
@ Temos

P(A) = P(SF > 5ASP < 2) =
—_——

4 células da tabela

21+10+25+1.3

100

SF: status do individuo em 1988 .

= 0.069 ou 6.9%

SP: status || Baixe | Baixo | Medio 1 Medio 1 oy,
do pai Inf. Sup. Inf. Sup.
Bl 21.7 12.8 13.2 4.6 2.1 1.0 55.4
BS 0.7 4.2 3.6 25 25 1.3 14.8
Mi 0.6 3.7 7.1 2.7 2.7 1.5 18.3
M 0.6 1.9 2.0 2.2 1.2 0.9 8.8
MS 0.3 0.6 0.6 0.7 0.7 0.5 34
A 0.1 0.3 0.3 0.6 0.6 0.9 2.8
ToTAL 24.0 23.5 26.8 13.3 9.8 6.1 100%

Renato Assun¢do, DCC, UFMG
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Calculos com a conjunta

@ Seja B o evento reverso, “pai rico, filho pobre”:

o individuo tem

status menor ou igual a Baixo superior e seu pai tem status pelo

menos Médio superior.

@ Temos

P(B) = P(SP > 5 A SF < 2) =
[ —

4 células da tabela

03+06+01+03 13

100

~ 100

=0.013 ou 1.3%

SF: status do individuo em 1988 .

SP: status || Baixe | Baixo | Medio 1 Medio 1 oy,
do pai Inf. Sup. Inf. Sup.
Bl 21.7 12.8 13.2 4.6 2.1 1.0 55.4
BS 0.7 4.2 3.6 25 25 1.3 14.8
Mi 0.6 3.7 7.1 2.7 2.7 1.5 18.3
M 0.6 1.9 2.0 2.2 1.2 0.9 8.8
MS 0.3 0.6 0.6 0.7 0.7 0.5 34
A 0.1 0.3 0.3 0.6 0.6 0.9 2.8
ToTAL 24.0 23.5 26.8 13.3 9.8 6.1 100%

Renato Assun¢do, DCC, UFMG
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Condicional discreta

Distribuicao condicional: caso discreto

@ Seja X = (X1, X2, X3, X4) um vetor aleatério
composto de v.a.’s discretas.

X1 Xo X3 Xy 100% X P
@ Aprendemos a obter a distribuicio MARGINAL de 0 0 1 0 46
uma ou mais v.a.'s: some sobre os valores das demais 0 0 1 1 6.7
v.a.'s 0 0 2 0 4.1
@ Queremos agora a distibuicio de algumas v.a.’s 0 0 2 1 53
CONDICIONADA nos valores de uma ou mais das 0 0 3 0 5.2
outras v.a.'s. 0 0 3 1 6.6
0 1 1 0 1.6
@ Por exemplo, queremos a distribuicio do vetor 0 1 1 1 1.8
(X1, X2, Xq) DADO QUE X3 = 2: 0 1 2 0 4.9
0 1 2 1 0.2
- — _ — 0 1 3 0 31
P(Xy =i, X0 =j,X3 =k|X3 =2) 0 1 3 1 a2
1 0 1 0 1.1
para diferentes valores de i, j, k. 1 0 1 1 6.8
1 0 2 0 0.5
1 0 2 1 4.0
1 0 3 0 4.0
1 0 3 1 29
1 1 1 0 3.6
1 1 1 1 3.7
1 1 2 0 6.6
1 1 2 1 6.8
1 1 3 0 6.6
1 1 3 1 4.9
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Condicional discreta

Elimine os casos em que X3 # 2

@ Queremos
P(Xy =i, Xy = j, X3 = k|X3 = 2)

@ Como X3 = 2, podemos eliminar de consideragdo
TODOS OS OUTROS resultados em que X3 # 2.

@ Este é novo conjunto de valores possiveis para o
vetor X, apenas aqueles em que X3 possui o valor 2.

@ Dentro deste novo “mundo”, as probabilidades
devem somar 1.

@ Basta normalizarmos: divida os valores originais das
probabilidades pela soma dos seus termos.

nato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados

Xi | Xo | X3 | Xa | 100% x P
0 0 2 0 41
0 0 2 1 53
0 1 2 0 4.9
0 1 2 1 0.2
1 0 2 0 0.5
1 0 2 1 4.0
1 1 2 0 6.6
1 1 2 1 6.8
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Renormalize

@ Queremos

X1 Xo X3 Xy 100% X P
P(Xy =i, Xy = j, X3 = k|X3 = 2) 0 0 2 0 41
0 0 2 1 5.3
@ Eliminamos a coluna X3 ja que todos os seus valores 8 i g (1) gz
agora sdo iguais a 2. 1 0 5 0 05
@ A tabela resultante é a distribuigio CONDICIONAL 1 0 2 1 4.0
de (X1, X2, X3) DADO QUE X3 = 2. 1 1 2 0 6.6
@ A distribuicio de qualquer conjunto de v.a.’s 1 1 2 1 68
condicionado nos valores das demais é obtido do Total 324
mesmo modo.
Xq Xo X4 100% X P(...|X3 = 2)
0 0 0 100% (4.1/32.4) = 12.7
0 0 1 100% (5.3/32.4) = 16.4
0 1 0 100% (4.9/32.4) = 15.1
0 1 1 100% (0.2/32.4) = 0.6
1 0 0 100% (0.5/32.4) = 1.5
1 0 1 100% (4.0/32.4) = 12.3
1 1 0 100% (6.6/32.4) = 20.4
1 1 1 100% (6.8/32.4) = 21.0
Total 100%
nato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados
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Distibuicdo de (X1, X4| Xz = 0, X3

@ Queremos agora a distibuicio de
(X1, Xa| X2 = 0, X3 = 2)

@ Elimine todas as linhas da tabla original em que
Xy # 0 OU que X3 # 2.

@ Renormalize as linhas restantes e simplifique a tabela.

Xi | Xo | X3 | Xa | 100% x P
0 0 2 0 41
0 0 2 1 53
1 0 2 0 0.5
1 0 2 1 4.0

nato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados

44 / 92



Distibuicdo de (X1, Xq| X2 = 0, X5 = 2)

@ Queremos agora a distibuicio de
(X1, Xa| X2 = 0, X3 = 2)

X1 Xo X3 Xy 100% X P
@ Renormalize as linhas restantes e simplifique a tabela. 0 0 2 0 41
0 0 2 1 5.3
1 0 2 0 0.5
1 0 2 1 4.0
Total 13.9
X1 | Xs | 100% X P(Xy =1, Xa = j| Xz = 0, X3 = 2)
0 0 29.5
0 1 38.1
1 0 3.6
1 1 28.8
Total 13.9
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Condicional discreta

Uma visao algébrica

Queremos a distibuicdo de (X1, Xa| X2 = 0, X3 = 2)

Isto é, queremos as probabilidades P(X; = i, Xs = j| X2 = 0, X3 = 2)
para toda combinacdo de i, ;.

Pela definicdo de probabilidade condicional:

(]

P(X; =i, Xs = j,Xo = 0, X3 = 2)
P(X; =0, X3 = 2)

P(Xy =i, X4 =j|X2=0,X3=2) =

O numerador sdo o elementos que restam na tabela das
probabilidades originais
O denominador é o fator de normalizacdo ja que

P(Xo=0,X3=2)=> P(Xi=k,Xe =1,X=0,X3=2)
k1

@ Assim, esta visdo grafica de eliminar as linhas da tabelas etc.
corresponde a esta operacdo algébrica.
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Condicional discreta

De volta a mobilidade social

@ Distribuicdo condicional do SP dado que SF = Alto

@ Dado que o filho estd na elite, de onde ele veio?

SF: status do individuo em 1988.

SP: status || Baixe | Baixo | Medio 1 Medio o romar,
do pai Inf. Sup. Inf. Sup.
Bl 21.7 12.8 13.2 4.6 2.1 1.0 55.4
BS 0.7 4.2 3.6 25 25 1.3 14.8
Mi 0.6 3.7 7.1 2.7 2.7 15 18.3
M 0.6 1.9 2.0 2.2 1.2 0.9 8.8
MS 0.3 0.6 0.6 0.7 0.7 0.5 3.4
A 0.1 0.3 0.3 0.6 0.6 0.9 2.8
ToTAL 24.0 23.5 26.8 13.3 9.8 6.1 100%

Renato Assun¢do, DCC, UFMG
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Condicional discreta

Distribuicao condicional

@ Distribuicdo condicional do SP dado que SF = Alto
@ Dado que o filho estd na elite, de onde ele veio?

P(SP =i e SF = 6)

P(SP = i|SF = 6) = = cte P(SP =i, SF = 6)

P(SF = 6)
@ Basta normalizar os niimeros da coluna 6 para que somem 1:
ALTO ALTO

1.0 0.16
1.3 0.21 Esses valores em cinza s3o os valores de
15 — 0.25 | P(Y1=ilY2 =6)
0.9 0.15 para os diferentes valores de i.
0.5 0.08
0.9 0.15

S =61 S =1

e Note que P(SP = 1|SF = 6) = 0.20, isto é, 20% da elite veio dos
estratos mais baixos.
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Na outra direcao agora

e P(SF = j|SP = 1): dado que o pai era lavrador manual ou similar,
aonde foram parar seus filhos?

SF=jeSP=1)
P(SP =1)

]P’(SF:J"SP:]_):P( a P(SF =j|SP =1)

@ Estes nimeros correspondem & linha 1 da tabela de probabilidade
conjunta. Basta normaliza-los:

| Bl [217 128 132 46 21 10 |

=1 j=2 j=3 j=4 j=5 j=6
| P(SF=j|SP=1) 039 023 024 008 0.04 0.02]
@ Assim, P(SF = 6|SP = 1) = 0.02, mas P(SP = 1|SF = 6) = 0.20,
uma ordem de grandeza de diferenca!
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Condicional discreta

Como explicar esta disparidade?

@ A enorme massa de 55% de pais de baixo status enviou apenas 2% de
seus filhos para a elite.

Mas 2% de 55% formam 1% da populac3 total.
A elite da geracdo dos filhos forma 5% da populacdo total.

Estes 5% da pop total dividem-se em 1% vindos de pais de status
baixo e os outros 4% vindos de pais com status maior.

@ Assim, estes 1% dentre os 5% da elite de hoje formam os 20% da
elite que veio de baixo na pirdmide social.
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DISTRIBUICAO CONDICIONAL de X

@ Vetor aleatério X = (Xl,)gg, ooy Xk)-
@ Queremos a DISTRIBUICAOQO de probabilidade da v.a. X; dados os
valores das demais.

@ Por exemplo, queremos a distribuicdo de X; quando
Xo=0,..., X =2.

(X1|X2 =0,..., X =2) ~777

@ O que ¢ a distribuicdo de uma v.a. discreta? Duas coisas...
o Lista {a1,...,am} dos valores possiveis de X; QUANDO
Xo=0,...., X =2
o As probabilidades associadas QUANDO X; =0, ..., X, = 2):

P(Xl = a,~\X2 = 0,...,Xk = 2)
@ Ao mudar os valores condicionados de X5, ..., X\ esta distibuicio

também muda: a distribuicdo é funcdo dos valores em que estamos
condicionando as demais varidveis X, ..., X.
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DISTRIBUICAO CONDICIONAL de X

@ Queremos P(X; = aj|X2 = 0,..., Xk = 2)
@ Para estes valores fixos Xo =0, ..., X, = 2 das variaveis

condicionantes, a distribuicdo é encontrada pela férmula de
probabilidade condicional:

_P(X1=2a;,X=0,..., X =2)
- P(X2 =0,..., X, = 2)

]P(Xl :a;|X2 :0,...,Xk:2)

@ Observe que o denominador ndo depende de a; e portanto n3o varia

com o valor de a;.
o Isto é, se a; # aj, temos
P(X1=2;,%=0,...,X,=2)
P(Xy = ai|X2 =0,..., X, =2) P(X=0,.,%=2) _ P(X1 =2a;,X=0,...,X, =2)

P(Xi = a;[ X2 = 0, ..., Xx = 2)  Fa=2,%6=0,..%=2)  P(X; = a;, Xo = 0,..., X = 2
(= a1% «=2) AR xLy e Pa=aX k=2

@ Assim, podemos enxergar a distibui¢c ao condicional de uma v.a.
diretamente da tabela original de probabilidade conjunta.
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Condicional discreta

Visualizando a condicional na tabela da conjunta

@ Queremos

100% X P
4.6
6.7
4.1
5.3
5.2
6.6
1.6
1.8
4.9
0.2
31
4.4
1.1
6.8
0.5
4.0
4.0
2.9
3.6
3.7
6.6
6.8
6.6
4.9

Total 100.0
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P(X3 = a;|X1 = 0,Xp =1, X4 = 0)

@ X3 possui 3 valores possiveis: 1, 2, 3

@ Comparando a chance (condicional) de X3 = 1
versus X3 = 2

P(X3 =1|X; =0,X =1,X; =0)
P(X3 =2|X; =0,X, =1,%, =0)

P(X3=1,X, =0,X, =1, X4 = 0)
P(X3 =2,X, =0,X, =1, X4 = 0)

= — =0.33
4.9

@ Se x; e xp sdo dois dos vetores-valores possiveis para
o vetor X e se P(X = x;) for duas vezes maior que
P(X = xp) entdo esta raz3o ainda serd respeitada
entre as condicionais correspondentes.

HRRHEHERRHEERREREOO000 0000 OO0 o0 oX
»—A»—u—u—u—u—nooooooH»—A»—A»—l»—u—toooooo’?f
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Condicional discreta

Esperanca condicional

e Considere o vetor Y = (Y1, Ya,...,Y,)
@ Calculamos a distribuicdo condicional de Y; dados os valores de

Yo, .., Yp

@ Podemos calcular o valor esperado de Y; dados (ou fixados) os
valores de Y5,...,Y,

o E simplesmente como na definicdo usual de esperanca de v.a.'s
discretas:
E(Y1|Y2=a2,...,Yp = ap) ZyIP’ i=y|Ya=az,...,Yp, = ap)

@ Média ponderada dos valores possiveis de Y7 MAS USANDO a
distribuicdo condicional de Y; como peso, ao invés de usar a
distribuicao marginal de Y.
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Condicional discreta

Variancia condicional

@ Relembre: Se ;1 = E(Y) entdo

V(Y)=E(Y —p)’ =D (v — u)’P(Y =)

y

@ Podemos calcular a variabilidade de Y; em torno de sua esperanca
CONDICIONADA nos valores das outras v.a.s (Y2,..., Yp):

ViVilYa=ap,...,Yp=ap) = Z(y mPP(Yi=y|Ya=az,...,Yp = ap)

onde m=E(Y1]Y2 = a2,..., Y, = ap) é a esperanc¢a condicional.

@ Pode-se mostrar que

ViVilYa=a0,..., Yo =a,) =E(YZ|Ya=a2,...,Yp=ap) — m
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Distribuicdo conjunta de vetores

CONTINUOS
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Conjunta continua: caso bivariado

(Y1, Y2) vetor bivariado de v.a.'s continuas.

Assim, Y7 é uma v.a. continua e Y5> também é uma v.a. continua:
ambas possuem densidades fi(y) e f(y)

Mas ao invés de analisarmos as v.a.'s isoladamente, queremos estudar
o modo como elas interagem.

Existe uma versao BIVARIADA da densidade.

Vamos ver o seu significado empirico
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Distribuigdo conjunta continua

Histograma — densidade

@ Relembre a relacao entre o histograma feito com uma amostra de
uma v.a. Y e a densidade subjacente.

@ Histograma “imita” a densidade f(x)

@ Probabilidade é IGUAL a area debaixo da curva densidade.

Histogram of y

010 015

Density

005

0.00

Figura: Histograma e densidade
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Distribuigdo conjunta continua

Caso bivariado: amostra

e Uma amostra de tamanho n do VETOR aleatério bivariado (Y1, Y2):

(11, y12), (y21, ¥22), (x31, ¥32), - - -, (Y1, Yn2)

@ A amostra é composta por n vetores (y1,y2) selecionados no plano de
acordo com a densidade f(y1, y2)

@ Histograma tri-dimensional tem aproximadamente a mesma forma
que a superficie continua f(y1, y2).

@ Ver o histograma 3-dim é praticamente ver a densidade f(y1, y2).

"
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Distribuigdo conjunta continua

Caso bivariado: amostra — histograma

@ Crie uma grade regular sobre o plano e conte niimero de vetores

(Y1, Y2) que caem em cada célula.
@ A seguir, levante uma pilastra de altura proporcional a esta contagem.
@ RegiGes com mais pontos terdo pilastras mais altas.

Figura: Amostra de 100 instancias do vetor aleatério (Y, Y2) e grade regular
sobreposta.
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Distribuigdo conjunta continua

Histograma 3-dim

Weight MPG

Figura: Histograma tri-dimensional baseado em amostra de vetor (X, Y).
Histograma tri-dimensional tem aproximadamente a mesma forma que a
superficie continua f(x,y) da densidade do vetor (X, Y).
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Distribui¢do conjunta continua

Outro exemplo

Distribution of Rater by Customer Distribution of Rater by Customer
]
Count
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Figura: Amostra de n pontos do vetor aleatério (X, Y) e histograma
tri-dimensional baseado nesta amostra.
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Distribuigdo conjunta continua

Histograma 3-dim

Figura: Amostra de 250 dados de (Y1, Y2) com histograma 3d, densidade
f(y1,y2) e suas curvas de nivel
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Distribuigdo conjunta continua

Um distribuicao mais complexa

=20 15 10
1

quakes$lat
25

=35
1

165 170 175 180 185

quakes$long

Figura: Dataset quakes fornece informagdes sobre 1000 terremotos com
magnitude maior que 4.0 na escala Richter em torno da ilha Fiji na Oceania a
partir de 1964. Acima, a longitude e latitude do epicentro desses 1000 eventos.
Podemos ver a posi¢do do epicentro como um vetor aleatério (X, Y) com certa
densidade de probabilidade f(x, y).
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O histograma 3D
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Figura: Histograma construido com texttthist3D(x = xmid, y = ymid, z = xy).
Ver lista de exercicios.
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Distribuigdo conjunta continua

Um histograma 3D mais interessante

Earth quakes

depth

600
500
400
300
200
100

Figura: Histograma 3D e os dados de terremotos. Ver lista de exercicios.
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Densidade bivariada f(y1, y»)

@ Densidade do vetor
Y = (Yl) Y2)

@ Em cada estrela, medem-se

duas v.a.'s continuas: Y] =
log(intensidade da luz) eY, =
log(temperatura a superficie)

e Plot da superficie f(y1, y2)

@ Quais as combinacdes de Y7 e
Y> que s3o mais provaveis?

@ Quais as regides do espac¢o das
medicdes em Y = (Y7, Y2)
onde existe chance razoavel de
se observar uma estrela?

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados
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Old Faithful geyser

Figura: Old Faithful geyser. From the GeoCities geyser web page: Old Faithful
erupts every 35-120 minutes for 1.5-5 minutes to a height of 90-184 feet. The
rangers say that 90% of their predictions are within +/- 10 minutes. The time to
the next eruption is predicted using the duration of the current eruption. The
longer the eruption lasts, the longer the interval until the next eruption. For
instance, a 2 minute eruption results in an interval of about 50 minutes whereas a
4.5 minute eruption results in an interval of about 85 minutes. It is not possible
to predict more than one eruption in advance.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 68 / 92



Old Faithful
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Figura: Old Faithful geyser: waiting time and eruption duration
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Distribuigdo conjunta continua

Amostra e densidade

density value

Figura: Old Faithful geyser: tempo de espera e duracdo de erupcio.
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Distribui¢do conjunta continua

Vé

E mais facil visualizar em 2-dim

o
2 1
IS =
=
o
S
- %1 : &
£ £
E =
g gF®
3 3
= 3 - = e
=)
Il
2 o
B3
T T T T T T
1 2 3 4 5 6 1 2 3 4 5 6
Duration (min) Duration (min)

Figura: Old Faithful geyser: waiting time and eruption duration
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Distribuigdo conjunta continua

Caso continuo bivariado

e Y = (Y1, Y2) vetor bivariado de v.a.’s continuas.
@ Uma funcdo densidade de probabilidade é QUALQUER funcio tal
que:
o f(y1,y2) >0

/ / f(y1, y2)dyrdyr = 1

@ No caso uni-dimensional, probabilidades s ao areas debaixo da
curva-densidade f(x).

@ No caso bi-dimensional, probabilidades s3o volumes debaixo da
superficie-densidade f(x, y).
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Distribuigdo conjunta continua

Probabilidades s ao volumes sob a densidade

@ Probabilidades sdo volumes sob a superficie f(x,y) de densidade de
probabilidade.
@ Probab do vetor (X, Y') cair numa regido D do plano é

P((X, Y)eD)://Df(x,y)dxdy

= fix, ¥)
f(x.y) ™,
!

Figura: Probabilidade de (X, Y) cair em D é igual ao volume sob a superficie.
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Distribuigdo conjunta continua

Caso geral k-dim

@ No caso de um vetor aleatério Y = (Y1,..., Yx) com k v.a.’s
continuas, a densidade de probabilidade é QUALQUER func3o tal
que:

o f(bsy) = f(y1,---,yx) > 0 para todo ponto bsy € R¥

1:/ / f(y1,---,yk)dyr ... dyk

@ A probabilidade do vetor bsY cair numa regio D de R* é dada por

P((Yl,...,yk)eD)—/.../;f(yl,...,yk)dyl...dyk
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Distribuicao marginal

@ No caso discreto, a distribuicao marginal de uma v.a. é obtida
somando-se sobre todos os valores das demais varidveis. No caso
coninuo, substituimos a soma por uma integral.

@ No caso bi-dimensional (X, Y), a densidade de probabilidade da v.a.
continua X é obtida integrando sobre os valores de Y.

e Para diferenciar as densidades, vamos escrever fx(x) para a densidade
marginal de X no ponto x e fxy(x,y) para o valor da densidade
conjunta de (X, Y) no ponto (x,y).

@ Por exemplo, fx(0) e fx(1.2) sdo os valores da densidade marginal de
X nos pontos x =0e x =1.2.

e fxy(0.2,1.5) é o valor da densidade conjunta no ponto
(x,y) = (0.2,1.5).

@ Para um ponto genérico x

K= [ reedy

—00
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Marginal continua

Exercicio basico

@ Vetor continuo (X, Y) com suporte em [0, 1] x [0, 1] (isto é,
densidade é zero fora desta regido).

e Densidade: f(x,y) = k(x%y + x3y*) para (x,y) € [0,1]%.
@ Encontrar a constante de normalizac3o k:

X2 X3
1 = // k(*y +x°y*) dxdy = k/ (— + —) dx
[0,12 py\2 5
1

S SR R E T
B 6 20 60

e portanto k = 60/13

i
1
i

S

W
TS

(*x)
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Marginal continua

Exercicio basico

e Encontrar a marginal fy(y) para y € [0, 1]:

60 5
fr(y) = / Py + 3y dx = = (4y +3y7)
01 13 13
@ Veja que, avaliada no ponto y = 0.1, temos
fy(0.1) = 5/13 (4(0.1) 4 30.1?) = 0.165 enquanto que, no ponto
y = 0.9, temos fy(0.9) = 5/13 (4(0.9) + 30.9%) = 2.319.

densidade marginal fly)

0.0 0.5 1.0 15 20 25

T T T T T T
00 02 04 06 08 10

v
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Condicional continua

Distribuicao Condicional

@ No caso bi-dimensional (X, Y), a densidade de probabilidade de X
CONDICIONADA ao evento Y = y é dada por

fxy (x,y)
fr(y)

@ Por exemplo, fx|y(x|y = 0.2) € a densidade da v.a. X condicionada
ao evento Y = 0.2 e avaliada num ponto x genérico:

fxy(xly) =

fxy(x,0.2)

fX\Y(X|y =02)= fv(0.2)

@ Observe que esta é uma densidade da v.a. X (variando em x) e que o
denominador n3o depende de x.
@ O valor fy(0.2) é o mesmo para qualquer valor x.

o fx|y(x =0.3]y = 0.2) é esta densidade condicional de X avaliada no

ponto x = 0.3:
fxy(0.3,0.2)
fy(0.2)
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Condicional continua

Exercicio basico

o Densidade: f(x,y) =60/13 (x?y + x3y*) para (x,y) € [0, 1]°.
e Marginal fy(y) =5/13 (4y + 3y*) para y € [0, 1]:
@ Densidade de X condicionada ao evento Y = 0.2:

by (xly = 02) = Dr(x:02) _ 60/13 (0.2 2402453 12 (0222 + 0.0016x%)
XY ' fv(0.2) 5/13 (4 0.2+30.2%)  0.8048" '
OIO 0‘2 Of4 O‘G 0‘8 1‘0
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Condicional continua

Exercicio basico

@ Comparando duas densidades condicionais de X: condicionada ao
evento Y = 0.20 e ao evento Y = 0.95.

fxy (x,0.95)
fy(0.95)

60/13 (0.95 x2 +0.95* x3) 60
5/13 (4 0.95+3 0.954)  31.217

fx|y(xly =0.95) =

(0.95 x2 +0.95* x3)

@ N3o sdo muito diferentes neste exemplo particular.

15 20 25 30

fixly)

00 05 10
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Condicional continua

Mais um exemplo - gaussiana

e Densidade para (X, Y) é

ey (x,7) 1 ( x2 4 y2 71.4xy)
x,y) = exp | —
XYY = S ost P 1.02

com suporte em R2.

o Esta é a densidade de uma gaussiana bivariada onde a correlacao é

igual a p = 0.7 e as marginais sdo X ~ N(0,1) e Y ~ N(0,1).
o Marginal fy(y) = 1/v2mexp (—y?/2) para y € R.

(XN

Ve

X
Renato Assun¢do, DCC, UFMG
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Condicional continua

Mais um exemplo - gaussiana

e Densidade (X|Y = —2):

fxiy(xly =-2) = fxy(x,—2) ﬁ\/ﬁexp (_ W)
x| y{xXly = - fy(—=2) B 1/V2m exp (—(—2)2/2)
X 4)2
—  1/V102rexp (_ %)

@ De forma similar, obtemos fx|y(x|y = +2). Graficos abaixo.

— =2
w | - =)

fixly)
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Condicional continua

Vendo a condicional na conjunta

@ Olhar a superficie da densidade f(x, y) mostra imediatamente a
forma (shape) da densidade condicional.

@ Por exemplo,
fxy (x,0.2)

fy(0.2)
pois o denominador é uma constante COM RESPEITO A x.

@ Assim, se quisemos saber como fx|y(x|y = 0.2) varia como funcdo de
x, basta olharmos na superficie f(x,y) a curva obtida se fixarmos

y=2.

fX|Y(X‘y = 0-2) = X f)(y(X7 0.2)
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Condicional continua

Vendo a condicional na conjunta

e f(x|y = 1.0) tem a mesma forma(shape) que a curva em vermelho,

que é fxy(x,—1.0), os valores da densidade conjunta com y = —1.0
fixo.

@ A densidade condicional é esta curva multiplicada por uma constante
positiva.
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Condicional continua

Esperanca condicional

o Considere o vetor Y = (Y1, Y2,...,Y))

@ Calculamos a distribuicdo condicional de Y; dados os valores de

Yo, Y,
@ Podemos calcular o valor esperado de Y; dados (ou fixados) os
valores de Y5,..., Y,

@ E simplesmente como na definicao usual de esperanca de v.a.’s
discretas:

E(YilYa=az,...,Yp =ap) = /y e v,(Yly2 = a2, ..., yp = 3p) dy

@ Média ponderada dos valores possiveis de Y7 MAS USANDO a
densidade condicional de Y; como peso, ao invés de usar a
distribuicao marginal de Y.
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Condicional continua

Variancia condicional

@ Relembre: Se = E(Y) entdo
V) = E(Y P = [ w2 ()

@ Podemos calcular a variabilidade de Y; em torno de sua esperanca
CONDICIONADA nos valores das outras v.a.s (Ya,..., Yy):

vnlyz = 32:~"1YP:ap):/(y_m)2fY1\Y2.“Yp(y|}/2 =ap,...,yp = ap) dy

onde m=E(Y1]Y2 = ap,..., Y, = ap) é a esperanc¢a condicional.

@ Pode-se mostrar que
ViVilYa=a0,..., Yo =a,) = E(Y2|Ya = a2,..., Y, = ap) — m?
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Simulagdo de um vetor continuo

Simulando um vetor continuo

Queremos simular uma amostra do vetor aleatério bivariado (X, Y)
com densidade f(x, y).

Existem vérios métodos (ver disciplina PGM - Probabilistic Graphical
Models)

Um método simples é o de aceitacdo-rejeicdo.

Obtenha uma densidade g(x,y) de onde vocé saiba simular.
Encontre M tal que f(x,y) < Mg(x,y) para todo ponto (x,y).

while(contador < nsim){
gere (x,y) de g(x,y)
jogue moeda com P(cara) = f(x,y)/(M*xg(x,y))
se cara:
aceite (x,y)
contador = contador + 1

(]
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Simulag3o de um vetor continuo

Exemplo: Simulando um vetor continuo

@ Queremos simular 100 pontos aleatdrios (x, y) seguindo a densidade
fxy(x,y) com suporte em [—10,10]? e dada por

o) = )

onde r(x,y) = y/x2 + y? é a distincia de (x,y) a origem.
e O méaximo de fxy(x, y) ocorre em (x,y) = (0,0) e é igual a
1/44 ~ 0.0228.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 88 /92



Simulagdo de um vetor continuo

Exemplo: Simulando um vetor continuo

@ Vamos simular (X, Y) em [—10,10]? com uma distribui¢do uniforme.

e Isto é, a densidade é igual a g(x,y) = 1/20% em [—10,10]? e igual a
zero fora dessa regido.

o Gerar desta g(x, y) é muito fécil pois X e Y s3o independentes e
cada uma delas segue uma uniforme em [—10, 10].

@ Assim, gere a coordenada X ~ U(—10,10) e independentemente a
coordenada Y ~ U(—10,10).

x = runif (1000, -10, 10)
y = runif (1000, -10, 10)

@ A seguir, retenha ou descarte estes valores com probabilidade
f(x,y)/(Mg(x,y)). Quem é M?
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Simulagdo de um vetor continuo

Exemplo: Simulando um vetor continuo

@ Temos g(x,y) = 1/400 para todo (x, y) na regido.
@ Queremos 1 > f(x,y)/(Mg(x,y)) = 400f(x,y)/M.

e Como o méximo de f(x,y) ocorre na origem e é igual a 1/44,
podemos ter certeza que

f(x,y)  400f(x,y) < 4007(0,0) 400

_ _ 1
Mg (x,y) M S M 24 =

se tomarmos M > 400/44 = 9.090909. Vamos tomar M = 10.

@ Assim, basta reter os pontos (x, y) tais que a sua “moeda” resulte em

cara onde
4001xy (x,y)

P(cara) = 10

= 40fxy(X,y)
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Simulagdo de um vetor continuo

Exemplo: Simulando um vetor continuo

n = 1000; contador = 0
amostra = matrix(0, ncol=2, nrow=n)
while(contador < n)

{
x = runif (1, -10, 10)
y = runif (1, -10, 10)
r = sqrt(x"2+y~2)

fxy = abs(sin(r))/(44%r)
prob = 40 * fxy
if (runif (1) < prob){
contador = contador + 1
amostralcontador, ] = c(x,y)
}
}
plot(amostra, asp=1)
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Amostra gerada de f(x, y)

10

amostra[,2]
0
l

-10
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Amostra gerada de f(x, y)
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Amostra gerada de f(x, y)

x <- seq(-10, 10, length= 30)
y <- X
f <- function(x, y) {
r <- sqrt(x"2+y~2);
abs(sin(r))/(44x%r)
}
z <- outer(x, y, f)
image(x,y,log(z), asp=1)
points(amostra)
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