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Vetores Aleatórios

Vetores de v.a.’s

X = (X1, . . . ,Xk) é um vetor aleatório de dimensão k .

Cada uma das entradas Xi do vetor X é uma variável aleatória
medida no mesmo resultado ω do experimento estocástico.

A importância vital de se lidar com vetores aleatórios: uma v.a. vai
dar alguma informação sobre o valor de outra v.a.
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Vetores Aleatórios

Variáveis no mesmo espaço amostral

O arcabouço matemático é o seguinte:

Temos um espaço amostral Ω com uma medida de probabilidade
sobre subconjuntos A de Ω.

Ω é “complexo”: cada resultado do experimento aleatório pode ter
muitas caracteŕısticas de interesse: X1,X2,X3, . . .

Coletamos estas várias medidas num vetor aleatório
X = (X1, . . . ,Xn).

As variáveis X1,X2,X3, . . . são medições feitas no MESMO
RESULTADO ω ∈ Ω do experimento.
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Vetores Aleatórios

O modelo teórico
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Vetores Aleatórios

Exemplo: imagens

Ω = { imagens n ×m}
Selecione ao acaso uma das imagens.

Caracteŕısticas de interesse: intensidade de cinza em cada um dos
pixels

X = (X11,X12, . . . ,Xnm)

Veja que todas as medições são sobre um mesmo resultado do
experimento: a imagem selecionada.
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Vetores Aleatórios

Exemplo: grafos

Considere uma rede social vista como um grafo direcionado.

Os nós são os usuários e as arestas direcionadas são as relações de
seguidor-seguido.

Experimento consiste em selecionar um nó ao acaso.

Ω é a coleção de nós do grafo (com suas caracteŕısticas associadas)

k caracteŕısticas de interesse do nó selecionado

X1 = idade do nó (intŕınseco ao nó)
X2 = número de outlinks (relacional)
X3 = número de inlinks (relacional)

X = (X1,X2,X3)

Objetivo: Qual é a relação probabiĺıstica entre o número de outlinks
do nó com a idade do nó?
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Vetores Aleatórios

Exemplo: problema de classificação

Ω = coleção de itens classificados em dois (ou mais) grupos

Coleção de e-mails: spam versus não-spam
Coleção de tomadores de empréstimos num banco: pagam versus n ao
pagam de volta o empréstimo dentro do prazo
crânios humanos em escavação arqueológica: masculinos versus
femininos

A coleção pode nem existir ainda de forma completa: interesse nos
e-mails já enviados mas principalmente nos que ainda serão enviados
NO FUTURO
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Vetores Aleatórios

Classificação

Em cada item da coleção, medimos dois tipos de variáveis aleatórias.

No caso de spam x não-spam:

Y : binária, 0 ou 1 (spam ou não-spam, inadimplente ou não)

Um conjunto de k = 3 atributos:

X1: número de vezes que aparece a palavra “sale”
X2 : número de vezes que aparece a palavra “offer”
X3 : número de vezes que aparece a palavra “Viagra”

Vetor aleatório: X = (Y ,X1,X2,X3)

Objetivo: predizer o valor de Y a partir dos atributos.

Qual a probabilidade condicional
P(Y = spam |X1 = 3,X2 = 1,X3 = 3)

Como esta probabilidade muda quando alteramos alguns dos atributos
X?
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Vetores Aleatórios

Regressão: preço de imóveis

Alguns apartamento custam 200 mil reais, outros curtam 10 vezes
mais.

O que faz com que os preços Y de apartamentos variem tanto?

X1 = Localização, X2 = idade, X3 = área, X4 = número de quartos,
X5 = piscina?.

Vetor aleatório: X = (Y ,X1,X2,X3,X4,X5)

Interesse em conhecer a distribuição da variável aleatória Y = preço
CONDICIONADA no valor das demais variáveis:

Por exemplo, saber a distribuição de

(Y |X1 = Sion,X2 = 10anos,X3 = 200m2,X4 = 4,X5 = não)

Como esta distrbuição muda quando alteramos alguns dos atributos
X?
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Vetores Aleatórios

Explorando interelações

X = (X1,X2, . . . ,Xk)

Podemos analisar cada v.a. separadamente das demais e ajustar um
modelo a cada uma delas (binomial, Poisson, Pareto, normal,...)

Isto é chamado de análise marginal.

É o que viemos fazendo até agora.

O mais interessante é quando analisamos as variáveis conjuntamente.

Análise conjunta procura explorar a existência de relações
probabiĺısticas entre as variáveis.
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Conjunta discreta

Conjunta: caso discreto

Se X = (X1,X2, . . . ,Xk) é composto apenas de v.a.’s discretas, a
distribuição conjunta das v.a.’s é simples.

Como no caso de uma v.a. apenas, precisamos apenas especificar
uma lista de valores posśıveis para o VETOR X e a lista de
probabilidades associadas.

Se Xi tem mi valores posśıveis, a lista de valores posśıveis do vetor
X = (X1,X2, . . . ,Xk) terá m1 ×m2 × . . .mk possibilidades.

Basta agora atribuir uma probabilidade ≥ 0 a cada um deles de forma
que somem 1.

Todas as probabs de interesse são obtidas a partir desta lista de
probabilidades básicas.
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Conjunta discreta

Exemplo muito simples

Ω = conjunto de pacientes em visita ao otorrinolaringologistaÂ com
problemas na garganta (faringoamigdalite aguda)

Inclúımos em Ω os pacientes DO FUTURO

Suspeita da presença de infecção pela bactéria estreptococcus

Dois tipos de testes em CADA PACIENTE:

Teste padrão-ouro, cultura em placa agar-sangue: resultado positivo ou
negativo
Teste rápido, barato com resultados positivo ou negativo MAS com
menor qualidade.
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Conjunta discreta

Validação de teste diagnóstico

Vetor X = ( Teste-ouro, Teste-rápido) = (TO,TR)

V.a. TO possui dois valores: 0 ou 1

V.a. TR também possui dois valores: 0 ou 1

Vetor X possui 4 resultados posśıveis

Teste-ouro Teste-rápido Probabilidade

0 0 ?
0 1 ?
1 0 ?
1 1 ?
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Conjunta discreta

Validação de teste diagnóstico

Probabilidades P(TO = x1,TR = x2) dos 4 resultados posśıveis

Teste-ouro Teste-rápido Probabilidade

0 0 0.40
0 1 0.19
1 0 0.03
1 1 0.38

Total 1

Probabilidades devem ser ≥ 0 e devem somar 1
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Marginal discreta

Distribuição Marginal

Distribuição Marginal de cada v.a.: some a probab conjunta sobre
todos os valores das outras variáveis.

Teste-ouro Teste-rápido Probabilidade
0 0 0.40
0 1 0.19
1 0 0.03
1 1 0.38

Total 1

Distribuição marginal da v.a. TO: Precisamos de P(TO = 0) e de
P(TO = 1)

P(TO = 0) = P(TO = 0 ∧ TR = 0) + P(TO = 0 ∧ TR = 1)

= 0.40 + 0.19 = 0.59

P(TO = 1) = P(TO = 1 ∧ TR = 0) + P(TO = 1 ∧ TR = 1)

= 0.03 + 0.38 = 0.41
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Marginal discreta

Marginal de TR

Distribuição marginal da v.a. TR

Precisamos de P(TR = 0) e de P(TR = 1)

Teste-ouro Teste-rápido Probabilidade
0 0 0.40
0 1 0.19
1 0 0.03
1 1 0.38

Total 1

P(TR = 0) = P(TR = 0 ∧ TO = 0) + P(TR = 0 ∧ TO = 1)

= 0.40 + 0.03 = 0.43

P(TR = 1) = P(TR = 1 ∧ TO = 0) + P(TR = 1 ∧ TO = 1)

= 0.19 + 0.38 = 0.57

Na prática, como P(TR = 1) = 1− P(TR = 0), basta obtermos uma
delas, a outra sendo obtida por subtração.
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Marginal discreta

Independência de v.a’s

Duas v.a.’s DISCRETAS X e Y são independentes se os eventos
[X = x ] e [Y = y ] são independentes para qualquer combinaçãode x
e y .

Isto é, X e Y são independentes se

P(X = x ,Y = y) = P(X = x) P(Y = y)

para todo par (x , y).

Equivalentemente, X e Y são independentes se

P(X = x |Y = y) = P(X = x)

para todo par (x , y).
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Marginal discreta

TO e TR não são independentes

A tabela original

Teste-ouro Teste-rápido Probabilidade
0 0 0.40
0 1 0.19
1 0 0.03
1 1 0.38

Total 1

Verificando dois casos:

P(TO = 1,TR = 1) = 0.38 6= 0.23 = (0.03+0.38)×(0.19+0.38) = P(TO = 1) P(TR = 1)

P(TO = 0,TR = 0) = 0.40 6= 0.25 = (0.40+0.19)×(0.40+0.03) = P(TO = 0) P(TR = 0)

Se fossem independentes, TO = 1 ocorreria junto com TR = 1
apenas 23% das vezes mas eles ocorrem juntos 38% de acordo com a
tabela. TO = 0 e TR = 0 ocorreriam juntos 25% das vezes se
independentes mas tabela fornece 40%.

Os dois testes tendem a concordar muito mais frequentemente do que
se fossem independentes.
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Marginal discreta

Com mais de duas variáveis discretas

Suponha que X = (X1,X2,X3,X4) onde

X1 = diagnóstico de uma doença, presente (1) ou ausente (0)
X2 = sexo, masculino (1) ou feminino (0)
X3 = idade, classificada em três categorias:

criança (1), adulto jovem (2) , idoso (3)
X4 = fumante (1) ou não-fumante (0)

Existem 2× 2× 3× 2 = 24 valores posśıveis para X

Precisamos alocar probabilidades aos 24 valores posśıveis, todas
não-negativas e somando 1.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 19 / 92



Marginal discreta

Distribuição conjunta

X1 X2 X3 X4 100%× P
0 0 1 0 4.6
0 0 1 1 6.7
0 0 2 0 4.1
0 0 2 1 5.3
0 0 3 0 5.2
0 0 3 1 6.6
0 1 1 0 1.6
0 1 1 1 1.8
0 1 2 0 4.9
0 1 2 1 0.2
0 1 3 0 3.1
0 1 3 1 4.4
1 0 1 0 1.1
1 0 1 1 6.8
1 0 2 0 0.5
1 0 2 1 4.0
1 0 3 0 4.0
1 0 3 1 2.9
1 1 1 0 3.6
1 1 1 1 3.7
1 1 2 0 6.6
1 1 2 1 6.8
1 1 3 0 6.6
1 1 3 1 4.9

Total 100.0
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Marginal discreta

Distribuição marginal de X1

P(X1 = 0) =
∑
i,j,k

P(X1 = 0, X2 = i, X3 = j, X4 = k)

= (4.6 + 5.7 + 4.1 + 5.3 + 5.2 + 6.6+

+1.6 + 1.8 + 4.9 + 0.2 + 3.1 + 4.4) /100

= 0.475

X1 X2 X3 X4 100%× P
0 0 1 0 4.6
0 0 1 1 6.7
0 0 2 0 4.1
0 0 2 1 5.3
0 0 3 0 5.2
0 0 3 1 6.6
0 1 1 0 1.6
0 1 1 1 1.8
0 1 2 0 4.9
0 1 2 1 0.2
0 1 3 0 3.1
0 1 3 1 4.4
1 0 1 0 1.1
1 0 1 1 6.8
1 0 2 0 0.5
1 0 2 1 4.0
1 0 3 0 4.0
1 0 3 1 2.9
1 1 1 0 3.6
1 1 1 1 3.7
1 1 2 0 6.6
1 1 2 1 6.8
1 1 3 0 6.6
1 1 3 1 4.9
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Marginal discreta

Distribuição marginal de X1

P(X1 = 0) = 0.475 já calculado

Por subtração encontramos P(X1 = 1):

P(X1 = 1) = 1− P(X1 = 0) = 1− 0.475 = 0.525

X1 X2 X3 X4 100%× P
0 0 1 0 4.6
0 0 1 1 6.7
0 0 2 0 4.1
0 0 2 1 5.3
0 0 3 0 5.2
0 0 3 1 6.6
0 1 1 0 1.6
0 1 1 1 1.8
0 1 2 0 4.9
0 1 2 1 0.2
0 1 3 0 3.1
0 1 3 1 4.4
1 0 1 0 1.1
1 0 1 1 6.8
1 0 2 0 0.5
1 0 2 1 4.0
1 0 3 0 4.0
1 0 3 1 2.9
1 1 1 0 3.6
1 1 1 1 3.7
1 1 2 0 6.6
1 1 2 1 6.8
1 1 3 0 6.6
1 1 3 1 4.9
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Marginal discreta

Distribuição marginal de X3

P(X3 = 1) =
∑
i,j,k

P(X1 = i, X2 = j, X3 = 1, X4 = k)

= (4.6 + 6.7 + 1.6 + 1.8

+1.1 + 6.8 + 3.6 + 3.7) /100

= 0.299

X1 X2 X3 X4 100%× P
0 0 1 0 4.6
0 0 1 1 6.7
0 0 2 0 4.1
0 0 2 1 5.3
0 0 3 0 5.2
0 0 3 1 6.6
0 1 1 0 1.6
0 1 1 1 1.8
0 1 2 0 4.9
0 1 2 1 0.2
0 1 3 0 3.1
0 1 3 1 4.4
1 0 1 0 1.1
1 0 1 1 6.8
1 0 2 0 0.5
1 0 2 1 4.0
1 0 3 0 4.0
1 0 3 1 2.9
1 1 1 0 3.6
1 1 1 1 3.7
1 1 2 0 6.6
1 1 2 1 6.8
1 1 3 0 6.6
1 1 3 1 4.9
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Marginal discreta

Distribuição marginal de X3

P(X3 = 1) = 0.299 (já calculado)

P(X3 = 2) =
∑
i,j,k

P(X1 = i, X2 = j, X3 = 2, X4 = k)

= (4.1 + 5.3 = 4.9 + 0.2+

+0.5 + 4.0 + 6.6 = 6.8) /100

= 0.324

X1 X2 X3 X4 100%× P
0 0 1 0 4.6
0 0 1 1 6.7
0 0 2 0 4.1
0 0 2 1 5.3
0 0 3 0 5.2
0 0 3 1 6.6
0 1 1 0 1.6
0 1 1 1 1.8
0 1 2 0 4.9
0 1 2 1 0.2
0 1 3 0 3.1
0 1 3 1 4.4
1 0 1 0 1.1
1 0 1 1 6.8
1 0 2 0 0.5
1 0 2 1 4.0
1 0 3 0 4.0
1 0 3 1 2.9
1 1 1 0 3.6
1 1 1 1 3.7
1 1 2 0 6.6
1 1 2 1 6.8
1 1 3 0 6.6
1 1 3 1 4.9
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Marginal discreta

Distribuição marginal de X3

P(X3 = 1) = 0.299 (já calculado)

P(X3 = 2) = 0.324 (já calculado)

P(X3 = 3) = 1− P(X3 = 1)− P(X3 = 2)

= 1− P(X3 = 1)− P(X3 = 2)

= 0.377

X1 X2 X3 X4 100%× P
0 0 1 0 4.6
0 0 1 1 6.7
0 0 2 0 4.1
0 0 2 1 5.3
0 0 3 0 5.2
0 0 3 1 6.6
0 1 1 0 1.6
0 1 1 1 1.8
0 1 2 0 4.9
0 1 2 1 0.2
0 1 3 0 3.1
0 1 3 1 4.4
1 0 1 0 1.1
1 0 1 1 6.8
1 0 2 0 0.5
1 0 2 1 4.0
1 0 3 0 4.0
1 0 3 1 2.9
1 1 1 0 3.6
1 1 1 1 3.7
1 1 2 0 6.6
1 1 2 1 6.8
1 1 3 0 6.6
1 1 3 1 4.9
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Marginal discreta

Marginalização, em geral

Seja X = (X1,X2, . . . ,Xk) um vetor de v.a.’s discretas

Xi tem ni valores posśıveis

Queremos P(X1 = x) onde x é um dos seus n1 valores posśıveis.

Para cada valor de x , a probabilidade P(X1 = x) é uma soma de
n2 × n3 × . . .× nk elementos da tabela de distribuição conjunta.

Se todas as v.a.’s são binárias temos 2k−1 parcelas para cada valor de
x .

Se quisermos P(X1 = x) para todos os n1 valores x posśıveis para X1,
precisamos fazer o cálculo anterior n1 vezes.

Na verdade, n1 − 1 vezes pois

P(X1 = xn1) = 1− P(X1 = x1)− . . .− P(X1 = xn1−1)
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Marginal discreta

Distribuição marginal de X1 e X2

P(X1 = 0, X2 = 1) =
∑
i,j

P(X1 = 0, X2 = 1, X3 = i, X4 = j)

= (1.6 + 1.8 + 4.9 + 0.2 + 3.1 + 4.4)/100

= 0.16

X1 X2 X3 X4 100%× P
0 0 1 0 4.6
0 0 1 1 6.7
0 0 2 0 4.1
0 0 2 1 5.3
0 0 3 0 5.2
0 0 3 1 6.6
0 1 1 0 1.6
0 1 1 1 1.8
0 1 2 0 4.9
0 1 2 1 0.2
0 1 3 0 3.1
0 1 3 1 4.4
1 0 1 0 1.1
1 0 1 1 6.8
1 0 2 0 0.5
1 0 2 1 4.0
1 0 3 0 4.0
1 0 3 1 2.9
1 1 1 0 3.6
1 1 1 1 3.7
1 1 2 0 6.6
1 1 2 1 6.8
1 1 3 0 6.6
1 1 3 1 4.9
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Marginal discreta

Independência de v.a’s

X = (X1, . . . ,Xk) um vetor aleatório composto de v.a.’s discretas.

Elas são independentes se

P(X1 = x1, . . . ,Xk = xk) = P(X1 = x1) . . .P(Xk = xk)

para qualquer configuração de valores posśıveis (x1, . . . , xk).

Se o vetor é composto de v.a.’s independentes então

P(X1 = x1|X2 = x2, . . . ,Xk = xk) = P(X1 = x1)

para qualquer configuração de valores posśıveis (x1, . . . , xk).

O resultado acima é válido se X1 trocar de posição com qualquer
outra v.a.
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Marginal discreta

Simulação de um vetor aleatório discreto

Seja X = (X1, X2, X3, X4) um vetor aleatório
composto de v.a.’s discretas.

Se quisermos simular (X ), podemos usar o MESMO
procedimento aprendido para UMA v.a. discreta.

Simule U ∼ U(0, 1) e veja em que segmento U caiu
na coluna de soma acumulada.

Este segmento determina o vetor X gerado.

Por exemplo, se U = 0.3215 então X = (0, 0, 3, 1) é
selecionado.

A geração NÃO É feita separadamente para cada v.a.
do vetor com base na sua distribuição marginal A
MENOS que as v.a.’s sejam independentes.

X1 X2 X3 X4 100%× P Soma Acum.
0 0 1 0 4.6 4.6
0 0 1 1 6.7 11.3
0 0 2 0 4.1 15.4
0 0 2 1 5.3 20.7
0 0 3 0 5.2 25.9
0 0 3 1 6.6 32.5
0 1 1 0 1.6 34.1
0 1 1 1 1.8 35.9
0 1 2 0 4.9 40.8
0 1 2 1 0.2 41.0
0 1 3 0 3.1 44.1
0 1 3 1 4.4 48.5
1 0 1 0 1.1 49.6
1 0 1 1 6.8 56.4
1 0 2 0 0.5 56.9
1 0 2 1 4.0 60.9
1 0 3 0 4.0 64.9
1 0 3 1 2.9 67.8
1 1 1 0 3.6 71.4
1 1 1 1 3.7 75.1
1 1 2 0 6.6 81.7
1 1 2 1 6.8 88.5
1 1 3 0 6.6 95.1
1 1 3 1 4.9 100.0
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Marginal discreta

Às vezes, array bi-dimensional

No caso de termos apenas duas v.a.’s discretas, é comum apresentar
a distribuição conjunta de probabilidade como um array de duas
entradas.

De volta aos dois testes de diagnósticos: teste-outo e teste-rápido

TR = 0 TR = 1

T0 = 0 0.40 0.19
T0 = 1 0.03 0.38

Colocamos os valores posśıveis de X1 nas linhas.

Colocamos os valores de X2 nas colunas.

Na posição (i , j) do array colocamos a probabilidade
P(X1 = xi ,X2 = xj)

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 30 / 92



Marginal discreta

Marginais nas margens

Nas margens da tabela bi-dimensional colocamos as distribuições
marginais da variável coluna e da variável-linha.

A marginal de T0 é obtida somando as colunas:

TR = 0 TR = 1 Total

T0 = 0 0.40 0.19 P(TO = 0) =
0.40 + 0.19 = 0.51

T0 = 1 0.03 0.38 P(TO = 1) =
0.03 + 0.38 = 0.49

Isto explica o nome distribuição marginal para a distribuição de uma
única variável: elas ficam nas margens da tabela.
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Marginal discreta

Marginais nas margens

Somando as linhas encontramos a marginal de TR:

TR = 0 TR = 1 Total

T0 = 0 0.40 0.19 0.51
T0 = 1 0.03 0.38 0.49

Total P(TR = 0) = P(TR = 1) =
0.40 + 0.03 = 0.43 0.19 + 0.38 = 0.57 1.00

A soma dos valores na marginal-linha ou na marginal-coluna é o total
das probabilidades: 1.
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Marginal discreta

Exemplo: mobilidade social

Selecione um adulto brasileiro ω ao acaso em 1988.

Para cada ω, vamos definir duas v.a.’s:

SF (ω) : o status sócio-econômico da sua ocupação (6 valores): 1,2,..,6
Ocupações categorizadas de acordo com caracteŕısticas de renda e
educação.
Baixo inferior, Baixo superior, Médio inferior, Médio, Médio superior,
Alto.
SP(ω) : status social da ocupação de seu pai quando o pai tinha 45
anos (6 valores): 1,2,...,6
Mesmas categorias que filho.

Por exemplo, executivos e júızes de tribunais superiores estavam na
categoria Alto

Trabalhadores braçais exigindo nenhuma instrução estavam na
categoria Baixo inferior.
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Marginal discreta

Arcabouço para mobilidade social

Selecione indiv́ıduo ω ao acaso em 1988.

Para cada indiv́ıduo, meça o vetor X = (SF ,SP)

36 valores posśıveis para o vetor X.

θij = P( pai ter status i ∧ filho ter status j)

= P(SP = i ,SF = j)

Claramente, SP e SF não são v.a.’s independentes.

Existe uma grande inércia na sociedade: filhos de pais de status baixo
tendem a continuar com status baixo.
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Marginal discreta

A distribuição conjunta de (SP , SF )

Probabilidades baseadas em amostra de 42137 homens chefes de
faḿılia entre 20 e 64 anos em 1988

Dados:IBGE-PNAD, Pesquisa Nacional por Amostra de Domićılios,
1988

Probabilidades (×100%) são aproximadas pela frequência relativa na
amostra.

SF : status do indiv́ıduo em 1988.

SP : status
Baixo Baixo Médio

Médio
Médio

Alto
do pai Inf. Sup. Inf. Sup.

BI 21.7 12.8 13.2 4.6 2.1 1.0
BS 0.7 4.2 3.6 2.5 2.5 1.3
MI 0.6 3.7 7.1 2.7 2.7 1.5
M 0.6 1.9 2.0 2.2 1.2 0.9

MS 0,3 0.6 0.6 0.7 0.7 0.5
A 0.1 0.3 0.3 0.6 0.6 0.9
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Marginal discreta

Questões de interesse

Como mudou a distribuição do status entre duas gerações?

Filhos de pais com status muito baixo passam com facilidade para um
status mais alto?

A estrutura de ocupação mudou drasticamente na década de 70
devido ao milagre econômico nos anos dos governs militares.

Houve uma expansão da indústri e serviços e o Brasil deixou de ser
uma sociedade agrária.

Novos postos de trabalho qualificados foram abertos.

Houve a necessidade de recrutar pessoas vindas de pais com status
mais baixos.

Quanto da mobilidade social pode ser explicada por esta expansão?
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Marginal discreta

Distribuições marginais

Distribuição marginal da estrutura de status das ocupações para a
geração dos pais e dos filhos.

SF : status do indiv́ıduo em 1988 .

SP : status
Baixo Baixo Médio

Médio
Médio

Alto Total
do pai Inf. Sup. Inf. Sup.

BI 21.7 12.8 13.2 4.6 2.1 1.0 55.4
BS 0.7 4.2 3.6 2.5 2.5 1.3 14.8
MI 0.6 3.7 7.1 2.7 2.7 1.5 18.3
M 0.6 1.9 2.0 2.2 1.2 0.9 8.8

MS 0.3 0.6 0.6 0.7 0.7 0.5 3.4
A 0.1 0.3 0.3 0.6 0.6 0.9 2.8

Total 24.0 23.5 26.8 13.3 9.8 6.1 100%
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Marginal discreta

Focando nas marginais

Na geração dos pais, 55% das ocupações estavam no estrato Baixo
inferior e isto foi reduzido a apenas 24% das ocupações na geração
dos filhos.

Há um deslocamento de ocupações em direção aos status mais
elevados.

Nos dois ńıveis de status mais elevados, a porcentagem passa de 6%
para 16% entre as duas gerações.

SF : status do indiv́ıduo em 1988 .

SP : status
Baixo Baixo Médio

Médio
Médio

Alto Total
do pai Inf. Sup. Inf. Sup.

BI 55.4
BS 14.8
MI 18.3
M 8.8

MS 3.4
A 2.8

Total 24.0 23.5 26.8 13.3 9.8 6.1 100%
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Marginal discreta

Cálculos com a conjunta

Seja A o evento “pai pobre, filho rico”: o indiv́ıduo tem status pelo
menos Médio superior e seu pai tem status menor ou igual a Baixo
superior.
Temos

P(A) = P(SF ≥ 5 ∧ SP ≤ 2︸ ︷︷ ︸
4 células da tabela

) =
2.1 + 1.0 + 2.5 + 1.3

100
= 0.069 ou 6.9%

SF : status do indiv́ıduo em 1988 .

SP : status
Baixo Baixo Médio

Médio
Médio

Alto Total
do pai Inf. Sup. Inf. Sup.

BI 21.7 12.8 13.2 4.6 2.1 1.0 55.4
BS 0.7 4.2 3.6 2.5 2.5 1.3 14.8
MI 0.6 3.7 7.1 2.7 2.7 1.5 18.3
M 0.6 1.9 2.0 2.2 1.2 0.9 8.8

MS 0.3 0.6 0.6 0.7 0.7 0.5 3.4
A 0.1 0.3 0.3 0.6 0.6 0.9 2.8

Total 24.0 23.5 26.8 13.3 9.8 6.1 100%
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Marginal discreta

Cálculos com a conjunta

Seja B o evento reverso, “pai rico, filho pobre”: o indiv́ıduo tem
status menor ou igual a Baixo superior e seu pai tem status pelo
menos Médio superior.
Temos

P(B) = P(SP ≥ 5 ∧ SF ≤ 2︸ ︷︷ ︸
4 células da tabela

) =
0.3 + 0.6 + 0.1 + 0.3

100
=

1.3

100
= 0.013 ou 1.3%

SF : status do indiv́ıduo em 1988 .

SP : status
Baixo Baixo Médio

Médio
Médio

Alto Total
do pai Inf. Sup. Inf. Sup.

BI 21.7 12.8 13.2 4.6 2.1 1.0 55.4
BS 0.7 4.2 3.6 2.5 2.5 1.3 14.8
MI 0.6 3.7 7.1 2.7 2.7 1.5 18.3
M 0.6 1.9 2.0 2.2 1.2 0.9 8.8

MS 0.3 0.6 0.6 0.7 0.7 0.5 3.4
A 0.1 0.3 0.3 0.6 0.6 0.9 2.8

Total 24.0 23.5 26.8 13.3 9.8 6.1 100%
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Condicional discreta

Distribuição condicional: caso discreto

Seja X = (X1, X2, X3, X4) um vetor aleatório
composto de v.a.’s discretas.

Aprendemos a obter a distribuição MARGINAL de
uma ou mais v.a.’s: some sobre os valores das demais
v.a.’s

Queremos agora a distibuição de algumas v.a.’s
CONDICIONADA nos valores de uma ou mais das
outras v.a.’s.

Por exemplo, queremos a distribuição do vetor
(X1, X2, X4) DADO QUE X3 = 2:

P(X1 = i, X2 = j, X3 = k|X3 = 2)

para diferentes valores de i, j, k.

X1 X2 X3 X4 100%× P
0 0 1 0 4.6
0 0 1 1 6.7
0 0 2 0 4.1
0 0 2 1 5.3
0 0 3 0 5.2
0 0 3 1 6.6
0 1 1 0 1.6
0 1 1 1 1.8
0 1 2 0 4.9
0 1 2 1 0.2
0 1 3 0 3.1
0 1 3 1 4.4
1 0 1 0 1.1
1 0 1 1 6.8
1 0 2 0 0.5
1 0 2 1 4.0
1 0 3 0 4.0
1 0 3 1 2.9
1 1 1 0 3.6
1 1 1 1 3.7
1 1 2 0 6.6
1 1 2 1 6.8
1 1 3 0 6.6
1 1 3 1 4.9
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Condicional discreta

Elimine os casos em que X3 6= 2

Queremos

P(X1 = i, X2 = j, X3 = k|X3 = 2)

Como X3 = 2, podemos eliminar de consideração
TODOS OS OUTROS resultados em que X3 6= 2.

Este é novo conjunto de valores posśıveis para o
vetor X, apenas aqueles em que X3 possui o valor 2.

Dentro deste novo “mundo”, as probabilidades
devem somar 1.

Basta normalizarmos: divida os valores originais das
probabilidades pela soma dos seus termos.

X1 X2 X3 X4 100%× P

0 0 2 0 4.1
0 0 2 1 5.3

0 1 2 0 4.9
0 1 2 1 0.2

1 0 2 0 0.5
1 0 2 1 4.0

1 1 2 0 6.6
1 1 2 1 6.8
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Condicional discreta

Renormalize

Queremos

P(X1 = i, X2 = j, X3 = k|X3 = 2)

Eliminamos a coluna X3 já que todos os seus valores
agora são iguais a 2.

A tabela resultante é a distribuição CONDICIONAL
de (X1, X2, X4) DADO QUE X3 = 2.

A distribuição de qualquer conjunto de v.a.’s
condicionado nos valores das demais é obtido do
mesmo modo.

X1 X2 X3 X4 100%× P
0 0 2 0 4.1
0 0 2 1 5.3
0 1 2 0 4.9
0 1 2 1 0.2
1 0 2 0 0.5
1 0 2 1 4.0
1 1 2 0 6.6
1 1 2 1 6.8

Total 32.4

X1 X2 X4 100%× P(. . . |X3 = 2)
0 0 0 100% (4.1/32.4) = 12.7
0 0 1 100% (5.3/32.4) = 16.4
0 1 0 100% (4.9/32.4) = 15.1
0 1 1 100% (0.2/32.4) = 0.6
1 0 0 100% (0.5/32.4) = 1.5
1 0 1 100% (4.0/32.4) = 12.3
1 1 0 100% (6.6/32.4) = 20.4
1 1 1 100% (6.8/32.4) = 21.0

Total 100%
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Condicional discreta

Distibuição de (X1,X4|X2 = 0,X3 = 2)

Queremos agora a distibuição de
(X1, X4|X2 = 0, X3 = 2)

Elimine todas as linhas da tabla original em que
X2 6= 0 OU que X3 6= 2.

Renormalize as linhas restantes e simplifique a tabela.

X1 X2 X3 X4 100%× P

0 0 2 0 4.1
0 0 2 1 5.3

1 0 2 0 0.5
1 0 2 1 4.0

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 44 / 92



Condicional discreta

Distibuição de (X1,X4|X2 = 0,X3 = 2)

Queremos agora a distibuição de
(X1, X4|X2 = 0, X3 = 2)

Renormalize as linhas restantes e simplifique a tabela.
X1 X2 X3 X4 100%× P
0 0 2 0 4.1
0 0 2 1 5.3
1 0 2 0 0.5
1 0 2 1 4.0

Total 13.9

X1 X4 100%× P(X1 = i, X4 = j|X2 = 0, X3 = 2)
0 0 29.5
0 1 38.1
1 0 3.6
1 1 28.8

Total 13.9
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Condicional discreta

Uma visão algébrica

Queremos a distibuição de (X1,X4|X2 = 0,X3 = 2)

Isto é, queremos as probabilidades P(X1 = i ,X4 = j |X2 = 0,X3 = 2)
para toda combinação de i , j .
Pela definição de probabilidade condicional:

P(X1 = i ,X4 = j |X2 = 0,X3 = 2) =
P(X1 = i ,X4 = j ,X2 = 0,X3 = 2)

P(X2 = 0,X3 = 2)

O numerador são o elementos que restam na tabela das
probabilidades originais
O denominador é o fator de normalização já que

P(X2 = 0,X3 = 2) =
∑
k,l

P(X1 = k,X4 = l ,X2 = 0,X3 = 2)

Assim, esta visão gráfica de eliminar as linhas da tabelas etc.
corresponde a esta operação algébrica.
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Condicional discreta

De volta a mobilidade social

Distribuição condicional do SP dado que SF = Alto

Dado que o filho está na elite, de onde ele veio?

SF : status do indiv́ıduo em 1988.

SP : status
Baixo Baixo Médio

Médio
Médio

Alto Total
do pai Inf. Sup. Inf. Sup.

BI 21.7 12.8 13.2 4.6 2.1 1.0 55.4
BS 0.7 4.2 3.6 2.5 2.5 1.3 14.8
MI 0.6 3.7 7.1 2.7 2.7 1.5 18.3
M 0.6 1.9 2.0 2.2 1.2 0.9 8.8

MS 0.3 0.6 0.6 0.7 0.7 0.5 3.4
A 0.1 0.3 0.3 0.6 0.6 0.9 2.8

Total 24.0 23.5 26.8 13.3 9.8 6.1 100%
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Condicional discreta

Distribuição condicional

Distribuição condicional do SP dado que SF = Alto

Dado que o filho está na elite, de onde ele veio?

P(SP = i |SF = 6) =
P(SP = i e SF = 6)

P(SF = 6)
= cte P(SP = i ,SF = 6)

Basta normalizar os números da coluna 6 para que somem 1:

Alto Alto
1.0 0.16
1.3 0.21 Esses valores em cinza são os valores de
1.5 −→ 0.25 P(Y1 = i |Y2 = 6)
0.9 0.15 para os diferentes valores de i .
0.5 0.08
0.9 0.15∑
= 6.1

∑
= 1

Note que P(SP = 1|SF = 6) = 0.20, isto é, 20% da elite veio dos
estratos mais baixos.
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Condicional discreta

Na outra direção agora

P(SF = j |SP = 1): dado que o pai era lavrador manual ou similar,
aonde foram parar seus filhos?

P(SF = j |SP = 1) =
P(SF = j e SP = 1)

P(SP = 1)
α P(SF = j |SP = 1)

Estes números correspondem á linha 1 da tabela de probabilidade
conjunta. Basta normalizá-los:

B.I. 21.7 12.8 13.2 4.6 2.1 1.0

j=1 j=2 j=3 j=4 j=5 j=6

P(SF = j |SP = 1) 0.39 0.23 0.24 0.08 0.04 0.02

Assim, P(SF = 6|SP = 1) = 0.02, mas P(SP = 1|SF = 6) = 0.20,
uma ordem de grandeza de diferença!
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Condicional discreta

Como explicar esta disparidade?

A enorme massa de 55% de pais de baixo status enviou apenas 2% de
seus filhos para a elite.

Mas 2% de 55% formam 1% da populaçã total.

A elite da geração dos filhos forma 5% da população total.

Estes 5% da pop total dividem-se em 1% vindos de pais de status
baixo e os outros 4% vindos de pais com status maior.

Assim, estes 1% dentre os 5% da elite de hoje formam os 20% da
elite que veio de baixo na pirâmide social.
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Condicional discreta

DISTRIBUIÇÃO CONDICIONAL de X

Vetor aleatório X = (X1,X2, . . . ,Xk).

Queremos a DISTRIBUIÇÃO de probabilidade da v.a. X1 dados os
valores das demais.

Por exemplo, queremos a distribuição de X1 quando
X2 = 0, . . . ,Xk = 2.

(X1|X2 = 0, . . . ,Xk = 2) ∼???

O que é a distribuição de uma v.a. discreta? Duas coisas...
Lista {a1, . . . , am} dos valores posśıveis de X1 QUANDO
X2 = 0, . . . ,Xk = 2
As probabilidades associadas QUANDO X2 = 0, . . . ,Xk = 2):

P(X1 = ai |X2 = 0, . . . ,Xk = 2)

Ao mudar os valores condicionados de X2, . . . ,Xk esta distibuição
também muda: a distribuição é função dos valores em que estamos
condicionando as demais variáveis X2, . . . ,Xk .
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Condicional discreta

DISTRIBUIÇÂO CONDICIONAL de X

Queremos P(X1 = ai |X2 = 0, . . . ,Xk = 2)
Para estes valores fixos X2 = 0, . . . ,Xk = 2 das variáveis
condicionantes, a distribuição é encontrada pela fórmula de
probabilidade condicional:

P(X1 = ai |X2 = 0, . . . ,Xk = 2) =
P(X1 = ai ,X2 = 0, . . . ,Xk = 2)

P(X2 = 0, . . . ,Xk = 2)

Observe que o denominador não depende de ai e portanto não varia
com o valor de ai .
Isto é, se ai 6= aj , temos

P(X1 = ai |X2 = 0, . . . ,Xk = 2)

P(X1 = aj |X2 = 0, . . . ,Xk = 2)
=

P(X1=ai ,X2=0,...,Xk=2)
P(X2=0,...,Xk=2)

P(X1=aj ,X2=0,...,Xk=2)

P(X2=0,...,Xk=2)

=
P(X1 = ai ,X2 = 0, . . . ,Xk = 2)

P(X1 = aj ,X2 = 0, . . . ,Xk = 2)

Assim, podemos enxergar a distibuiç ao condicional de uma v.a.
diretamente da tabela original de probabilidade conjunta.
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Condicional discreta

Visualizando a condicional na tabela da conjunta

Queremos

P(X3 = ai |X1 = 0, X2 = 1, X4 = 0)

X3 possui 3 valores posśıveis: 1, 2, 3

Comparando a chance (condicional) de X3 = 1
versus X3 = 2

P(X3 = 1|X1 = 0, X2 = 1, X4 = 0)

P(X3 = 2|X1 = 0, X2 = 1, X4 = 0)
=

=
P(X3 = 1, X1 = 0, X2 = 1, X4 = 0)

P(X3 = 2, X1 = 0, X2 = 1, X4 = 0)
=

=
1.6

4.9
= 0.33

Se x1 e x2 são dois dos vetores-valores posśıveis para
o vetor X e se P(X = x1) for duas vezes maior que
P(X = x2) então esta razão ainda será respeitada
entre as condicionais correspondentes.

X1 X2 X3 X4 100%× P
0 0 1 0 4.6
0 0 1 1 6.7
0 0 2 0 4.1
0 0 2 1 5.3
0 0 3 0 5.2
0 0 3 1 6.6
0 1 1 0 1.6
0 1 1 1 1.8
0 1 2 0 4.9
0 1 2 1 0.2
0 1 3 0 3.1
0 1 3 1 4.4
1 0 1 0 1.1
1 0 1 1 6.8
1 0 2 0 0.5
1 0 2 1 4.0
1 0 3 0 4.0
1 0 3 1 2.9
1 1 1 0 3.6
1 1 1 1 3.7
1 1 2 0 6.6
1 1 2 1 6.8
1 1 3 0 6.6
1 1 3 1 4.9

Total 100.0
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Condicional discreta

Esperança condicional

Considere o vetor Y = (Y1,Y2, . . . ,Yn)

Calculamos a distribuição condicional de Y1 dados os valores de
Y2, . . . ,Yp

Podemos calcular o valor esperado de Y1 dados (ou fixados) os
valores de Y2, . . . ,Yp

É simplesmente como na definição usual de esperança de v.a.’s
discretas:

E(Y1|Y2 = a2, . . . ,Yp = ap) =
∑
y

yP(Y1 = y |Y2 = a2, . . . ,Yp = ap)

Média ponderada dos valores posśıveis de Y1 MAS USANDO a
distribuição condicional de Y1 como peso, ao invés de usar a
distribuição marginal de Y1.
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Condicional discreta

Variância condicional

Relembre: Se µ = E(Y ) então

V(Y ) = E(Y − µ)2 =
∑
y

(y − µ)2P(Y = y)

Podemos calcular a variabilidade de Y1 em torno de sua esperança
CONDICIONADA nos valores das outras v.a.s (Y2, . . . ,Yp):

V (Y1|Y2 = a2, . . . ,Yp = ap) =
∑
y

(y −m)2P(Y1 = y |Y2 = a2, . . . ,Yp = ap)

onde m = E(Y1|Y2 = a2, . . . ,Yp = ap) é a esperança condicional.

Pode-se mostrar que

V(Y1|Y2 = a2, . . . ,Yp = ap) = E(Y 2
1 |Y2 = a2, . . . ,Yp = ap)−m2
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Condicional discreta

..

Distribuição conjunta de vetores
CONT́INUOS
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Distribuição conjunta cont́ınua

Conjunta cont́ınua: caso bivariado

(Y1,Y2) vetor bivariado de v.a.’s cont́ınuas.

Assim, Y1 é uma v.a. continua e Y2 também é uma v.a. continua:
ambas possuem densidades f1(y) e f2(y)

Mas ao invés de analisarmos as v.a.’s isoladamente, queremos estudar
o modo como elas interagem.

Existe uma versão BIVARIADA da densidade.

Vamos ver o seu significado emṕırico
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Distribuição conjunta cont́ınua

Histograma → densidade

Relembre a relação entre o histograma feito com uma amostra de
uma v.a. Y e a densidade subjacente.
Histograma “imita” a densidade f(x)
Probabilidade é IGUAL a área debaixo da curva densidade.

Histogram of y
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Figura: Histograma e densidade
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Distribuição conjunta cont́ınua

Caso bivariado: amostra

Uma amostra de tamanho n do VETOR aleatório bivariado (Y1,Y2):

(y11, y12), (y21, y22), (x31, y32), . . . , (yn1, yn2)

A amostra é composta por n vetores (y1, y2) selecionados no plano de
acordo com a densidade f (y1, y2)
Histograma tri-dimensional tem aproximadamente a mesma forma
que a superf́ıcie cont́ınua f (y1, y2).
Ver o histograma 3-dim é praticamente ver a densidade f (y1, y2).
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Figura: Amostra de 250 dados de (Y1,Y2) com densidade f (y1, y2)
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Distribuição conjunta cont́ınua

Caso bivariado: amostra → histograma

Crie uma grade regular sobre o plano e conte número de vetores
(Y1,Y2) que caem em cada célula.

A seguir, levante uma pilastra de altura proporcional a esta contagem.

Regiões com mais pontos terão pilastras mais altas.

Figura: Amostra de 100 instâncias do vetor aleatório (Y1,Y2) e grade regular
sobreposta.
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Distribuição conjunta cont́ınua

Histograma 3-dim

Figura: Histograma tri-dimensional baseado em amostra de vetor (X ,Y ).
Histograma tri-dimensional tem aproximadamente a mesma forma que a
superf́ıcie cont́ınua f (x , y) da densidade do vetor (X ,Y ).
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Distribuição conjunta cont́ınua

Outro exemplo

Figura: Amostra de n pontos do vetor aleatório (X ,Y ) e histograma
tri-dimensional baseado nesta amostra.
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Distribuição conjunta cont́ınua

Histograma 3-dim

 Curvas de nível e densidade 

Figura: Amostra de 250 dados de (Y1,Y2) com histograma 3d, densidade
f (y1, y2) e suas curvas de ńıvel
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Distribuição conjunta cont́ınua

Um distribuição mais complexa

Figura: Dataset quakes fornece informações sobre 1000 terremotos com
magnitude maior que 4.0 na escala Richter em torno da ilha Fiji na Oceania a
partir de 1964. Acima, a longitude e latitude do epicentro desses 1000 eventos.
Podemos ver a posição do epicentro como um vetor aleatório (X ,Y ) com certa
densidade de probabilidade f (x , y).
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Distribuição conjunta cont́ınua

O histograma 3D

Figura: Histograma constrúıdo com texttthist3D(x = xmid, y = ymid, z = xy).
Ver lista de exerćıcios.
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Distribuição conjunta cont́ınua

Um histograma 3D mais interessante

Figura: Histograma 3D e os dados de terremotos. Ver lista de exerćıcios.
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Distribuição conjunta cont́ınua

Densidade bivariada f (y1, y2)

Densidade do vetor
Y = (Y1,Y2)

Em cada estrela, medem-se
duas v.a.’s continuas: Y1 =
log(intensidade da luz) eY2 =
log(temperatura à superf́ıcie)

Plot da superf́ıcie f (y1, y2)

Quais as combinações de Y1 e
Y2 que são mais prováveis?

Quais as regiões do espaço das
medições em Y = (Y1,Y2)
onde existe chance razoável de
se observar uma estrela?

log surface temperature

log light tem
perature

density
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Distribuição conjunta cont́ınua

Old Faithful geyser

Figura: Old Faithful geyser. From the GeoCities geyser web page: Old Faithful
erupts every 35-120 minutes for 1.5-5 minutes to a height of 90-184 feet. The
rangers say that 90% of their predictions are within +/- 10 minutes. The time to
the next eruption is predicted using the duration of the current eruption. The
longer the eruption lasts, the longer the interval until the next eruption. For
instance, a 2 minute eruption results in an interval of about 50 minutes whereas a
4.5 minute eruption results in an interval of about 85 minutes. It is not possible
to predict more than one eruption in advance.
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Distribuição conjunta cont́ınua

Old Faithful
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Figura: Old Faithful geyser: waiting time and eruption duration
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Distribuição conjunta cont́ınua

Amostra e densidade

Figura: Old Faithful geyser: tempo de espera e duração de erupção.
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Distribuição conjunta cont́ınua

É mais fácil visualizar em 2-dim
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Figura: Old Faithful geyser: waiting time and eruption duration
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Distribuição conjunta cont́ınua

Caso cont́ınuo bivariado

Y = (Y1,Y2) vetor bivariado de v.a.’s cont́ınuas.

Uma função densidade de probabilidade é QUALQUER função tal
que:

f (y1, y2) ≥ 0 ∫ ∞
−∞

∫ ∞
−∞

f (y1, y2)dy1dy2 = 1

No caso uni-dimensional, probabilidades s ao áreas debaixo da
curva-densidade f (x).

No caso bi-dimensional, probabilidades são volumes debaixo da
superf́ıcie-densidade f (x , y).
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Distribuição conjunta cont́ınua

Probabilidades s ao volumes sob a densidade

Probabilidades são volumes sob a superf́ıcie f (x , y) de densidade de
probabilidade.

Probab do vetor (X ,Y ) cair numa região D do plano é

P ((X ,Y ) ∈ D) =

∫ ∫
D
f (x , y)dxdy

Figura: Probabilidade de (X ,Y ) cair em D é igual ao volume sob a superf́ıcie.
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Distribuição conjunta cont́ınua

Caso geral k-dim

No caso de um vetor aleatório Y = (Y1, . . . ,Yk) com k v.a.’s
cont́ınuas, a densidade de probabilidade é QUALQUER função tal
que:

f (bsy) = f (y1, . . . , yk) ≥ 0 para todo ponto bsy ∈ Rk

1 =

∫ ∞
−∞

. . .

∫ ∞
−∞

f (y1, . . . , yk)dy1 . . . dyk

A probabilidade do vetor bsY cair numa região D de Rk é dada por

P ((Y1, . . . ,Yk) ∈ D) =

∫
. . .

∫
D
f (y1, . . . , yk)dy1 . . . dyk
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Marginal cont́ınua

Distribuição marginal

No caso discreto, a distribuição marginal de uma v.a. é obtida
somando-se sobre todos os valores das demais variáveis. No caso
cońınuo, substitúımos a soma por uma integral.
No caso bi-dimensional (X ,Y ), a densidade de probabilidade da v.a.
cont́ınua X é obtida integrando sobre os valores de Y .
Para diferenciar as densidades, vamos escrever fX (x) para a densidade
marginal de X no ponto x e fXY (x , y) para o valor da densidade
conjunta de (X ,Y ) no ponto (x , y).
Por exemplo, fX (0) e fX (1.2) são os valores da densidade marginal de
X nos pontos x = 0 e x = 1.2.
fXY (0.2, 1.5) é o valor da densidade conjunta no ponto
(x , y) = (0.2, 1.5).
Para um ponto genérico x

fX (x) =

∫ ∞
−∞

f (x , y)dy
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Marginal cont́ınua

Exerćıcio básico

Vetor cont́ınuo (X ,Y ) com suporte em [0, 1]× [0, 1] (isto é,
densidade é zero fora desta região).
Densidade: f (x , y) = k(x2y + x3y4) para (x , y) ∈ [0, 1]2.
Encontrar a constante de normalização k :

1 =

∫ ∫
[0,1]2

k(x2y + x3y4) dxdy = k

∫
[0,1]

(
x2

2
+

x3

5

)
dx

= k

(
1

6
+

1

20

)
=

13k

60

e portanto k = 60/13

Figura: Gráfico de f (x , y) = 60/13 (x2y + x3y4) no suporte [0, 1]× [0, 1].
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Marginal cont́ınua

Exerćıcio básico

Encontrar a marginal fY (y) para y ∈ [0, 1]:

fY (y) =

∫
[0,1]

60

13
(x2y + x3y4) dx =

5

13
(4y + 3y4)

Veja que, avaliada no ponto y = 0.1, temos
fY (0.1) = 5/13 (4(0.1) + 30.12) = 0.165 enquanto que, no ponto
y = 0.9, temos fY (0.9) = 5/13 (4(0.9) + 30.92) = 2.319.

Figura: Gráfico de fY (y) = 5/13(4y + 3y4) no suporte [0, 1].

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 77 / 92



Condicional cont́ınua

Distribuição Condicional

No caso bi-dimensional (X ,Y ), a densidade de probabilidade de X
CONDICIONADA ao evento Y = y é dada por

fX |Y (x |y) =
fXY (x , y)

fY (y)

Por exemplo, fX |Y (x |y = 0.2) é a densidade da v.a. X condicionada
ao evento Y = 0.2 e avaliada num ponto x genérico:

fX |Y (x |y = 0.2) =
fXY (x , 0.2)

fY (0.2)

Observe que esta é uma densidade da v.a. X (variando em x) e que o
denominador não depende de x .

O valor fY (0.2) é o mesmo para qualquer valor x .
fX |Y (x = 0.3|y = 0.2) é esta densidade condicional de X avaliada no
ponto x = 0.3:

fX |Y (x = 0.3|y = 0.2) =
fXY (0.3, 0.2)

fY (0.2)
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Condicional cont́ınua

Exerćıcio básico

Densidade: f (x , y) = 60/13 (x2y + x3y4) para (x , y) ∈ [0, 1]2.
Marginal fY (y) = 5/13 (4y + 3y4) para y ∈ [0, 1]:
Densidade de X condicionada ao evento Y = 0.2:

fX |Y (x |y = 0.2) =
fXY (x , 0.2)

fY (0.2)
=

60/13 (0.2 x2 + 0.24 x3)

5/13 (4 0.2 + 3 0.24)
=

12

0.8048
(0.2x2 + 0.0016x3)

Figura: Gráfico de fX |Y (x |y = 0.2) = 12/0.8048 (0.2x2 + 0.0016x3) no
suporte [0, 1].
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Condicional cont́ınua

Exerćıcio básico

Comparando duas densidades condicionais de X : condicionada ao
evento Y = 0.20 e ao evento Y = 0.95.

fX |Y (x |y = 0.95) =
fXY (x , 0.95)

fY (0.95)

=
60/13 (0.95 x2 + 0.954 x3)

5/13 (4 0.95 + 3 0.954)
=

60

31.217
(0.95 x2 + 0.954 x3)

Não são muito diferentes neste exemplo particular.

Figura: fX |Y (x |y = 0.20) e fX |Y (x |y = 0.95).
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Condicional cont́ınua

Mais um exemplo - gaussiana

Densidade para (X ,Y ) é

fXY (x , y) =
1

2π
√

0.51
exp

(
−

x2 + y2 − 1.4xy

1.02

)
com suporte em R2.

Esta é a densidade de uma gaussiana bivariada onde a correlação é
igual a ρ = 0.7 e as marginais são X ∼ N(0, 1) e Y ∼ N(0, 1).
Marginal fY (y) = 1/

√
2π exp

(
−y2/2

)
para y ∈ R.

Figura: Densidade gaussiana bivariada fXY (x , y).
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Condicional cont́ınua

Mais um exemplo - gaussiana

Densidade (X |Y = −2):

fX |Y (x |y = −2) =
fXY (x ,−2)

fY (−2)
=

1
2π
√

0.51
exp

(
− x2+y2−1.4xy

1.02

)
1/
√

2π exp (−(−2)2/2)

= 1/
√

1.02π exp

(
−

(x + 1.4)2

1.02

)
De forma similar, obtemos fX |Y (x |y = +2). Gráficos abaixo.

Figura: Gráfico de fX |Y (x |y = −2) e fX |Y (x |y = +2).
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Condicional cont́ınua

Vendo a condicional na conjunta

Olhar a superf́ıcie da densidade f (x , y) mostra imediatamente a
forma (shape) da densidade condicional.

Por exemplo,

fX |Y (x |y = 0.2) =
fXY (x , 0.2)

fY (0.2)
∝ fXY (x , 0.2)

pois o denominador é uma constante COM RESPEITO A x .

Assim, se quisemos saber como fX |Y (x |y = 0.2) varia como função de
x , basta olharmos na superf́ıcie f (x , y) a curva obtida se fixarmos
y = 2.
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Condicional cont́ınua

Vendo a condicional na conjunta

f (x |y = 1.0) tem a mesma forma(shape) que a curva em vermelho,
que é fXY (x ,−1.0), os valores da densidade conjunta com y = −1.0
fixo.
A densidade condicional é esta curva multiplicada por uma constante
positiva.

Figura: Gráfico de fXY (x ,−1.0), que é proporcional a fX |Y (x |y = −1.0).Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 84 / 92



Condicional cont́ınua

Esperança condicional

Considere o vetor Y = (Y1,Y2, . . . ,Yp)

Calculamos a distribuição condicional de Y1 dados os valores de
Y2, . . . ,Yp

Podemos calcular o valor esperado de Y1 dados (ou fixados) os
valores de Y2, . . . ,Yp

É simplesmente como na definição usual de esperança de v.a.’s
discretas:

E(Y1|Y2 = a2, . . . ,Yp = ap) =

∫
y fY1|Y2...Yp

(y |y2 = a2, . . . , yp = ap) dy

Média ponderada dos valores posśıveis de Y1 MAS USANDO a
densidade condicional de Y1 como peso, ao invés de usar a
distribuição marginal de Y1.
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Condicional cont́ınua

Variância condicional

Relembre: Se µ = E(Y ) então

V(Y ) = E(Y − µ)2 =

∫
(y − µ)2 fY (y) dy

Podemos calcular a variabilidade de Y1 em torno de sua esperança
CONDICIONADA nos valores das outras v.a.s (Y2, . . . ,Yp):

V (Y1|Y2 = a2, . . . ,Yp = ap) =

∫
(y −m)2fY1|Y2...Yp

(y |y2 = a2, . . . , yp = ap) dy

onde m = E(Y1|Y2 = a2, . . . ,Yp = ap) é a esperança condicional.

Pode-se mostrar que

V(Y1|Y2 = a2, . . . ,Yp = ap) = E(Y 2
1 |Y2 = a2, . . . ,Yp = ap)−m2
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Simulação de um vetor cont́ınuo

Simulando um vetor cont́ınuo

Queremos simular uma amostra do vetor aleatório bivariado (X ,Y )
com densidade f (x , y).

Existem vários métodos (ver disciplina PGM - Probabilistic Graphical
Models)

Um método simples é o de aceitação-rejeição.

Obtenha uma densidade g(x , y) de onde você saiba simular.

Encontre M tal que f (x , y) ≤ Mg(x , y) para todo ponto (x , y).
while(contador < nsim){

gere (x,y) de g(x,y)

jogue moeda com P(cara) = f(x,y)/(M*g(x,y))

se cara:

aceite (x,y)

contador = contador + 1

}
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Simulação de um vetor cont́ınuo

Exemplo: Simulando um vetor cont́ınuo

Queremos simular 100 pontos aleatórios (x , y) seguindo a densidade
fXY (x , y) com suporte em [−10, 10]2 e dada por

fXY (x , y) =
| sin(r(x , y))|

44 r(x , y)

onde r(x , y) =
√
x2 + y2 é a distância de (x , y) à origem.

O máximo de fXY (x , y) ocorre em (x , y) = (0, 0) e é igual a
1/44 ≈ 0.0228.

Figura: Gráfico de fXY (x , y), de onde queremos simular.
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Simulação de um vetor cont́ınuo

Exemplo: Simulando um vetor cont́ınuo

Vamos simular (X ,Y ) em [−10, 10]2 com uma distribuição uniforme.

Isto é, a densidade é igual a g(x , y) = 1/202 em [−10, 10]2 e igual a
zero fora dessa região.

Gerar desta g(x , y) é muito fácil pois X e Y são independentes e
cada uma delas segue uma uniforme em [−10, 10].

Assim, gere a coordenada X ∼ U(−10, 10) e independentemente a
coordenada Y ∼ U(−10, 10).

x = runif(1000, -10, 10)

y = runif(1000, -10, 10)

A seguir, retenha ou descarte estes valores com probabilidade
f (x , y)/(Mg(x , y)). Quem é M?
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Simulação de um vetor cont́ınuo

Exemplo: Simulando um vetor cont́ınuo

Temos g(x , y) = 1/400 para todo (x , y) na região.

Queremos 1 > f (x , y)/(Mg(x , y)) = 400f (x , y)/M.

Como o máximo de f (x , y) ocorre na origem e é igual a 1/44,
podemos ter certeza que

f (x , y)

Mg(x , y)
=

400f (x , y)

M
≤ 400f (0, 0)

M
=

400

44M
< 1

se tomarmos M > 400/44 = 9.090909. Vamos tomar M = 10.

Assim, basta reter os pontos (x , y) tais que a sua “moeda” resulte em
cara onde

P(cara) =
400fXY (x , y)

10
= 40fXY (x , y)
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Simulação de um vetor cont́ınuo

Exemplo: Simulando um vetor cont́ınuo

n = 1000; contador = 0

amostra = matrix(0, ncol=2, nrow=n)

while(contador < n)

{

x = runif(1, -10, 10)

y = runif(1, -10, 10)

r = sqrt(x^2+y^2)

fxy = abs(sin(r))/(44*r)

prob = 40 * fxy

if(runif(1) < prob){

contador = contador + 1

amostra[contador, ] = c(x,y)

}

}

plot(amostra, asp=1)

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 91 / 92



Simulação de um vetor cont́ınuo

Amostra gerada de f (x , y)

Figura: Amostra gerada de f (x , y) por aceitação-rejeição
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Simulação de um vetor cont́ınuo

Amostra gerada de f (x , y)

Figura: Amostra de f (x , y)e imagem heatmap da densidade.
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Simulação de um vetor cont́ınuo

Amostra gerada de f (x , y)

x <- seq(-10, 10, length= 30)

y <- x

f <- function(x, y) {

r <- sqrt(x^2+y^2);

abs(sin(r))/(44*r)

}

z <- outer(x, y, f)

image(x,y,log(z), asp=1)

points(amostra)
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