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Normal bivariada: introdução

Normal bivariada
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Figura: Densidade da normal bivariada
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Normal bivariada: introdução

Normal bivariada

Importante distribuição para um vetor aleatório Y = (Y1,Y2)

Cada uma das v.a’s separadamente segue uma gaussiana com sua
própria esperança µj e variância σ2

j

Isto é, Y1 ∼ N(µ1, σ
2
1) e Y2 ∼ N(µ2, σ

2
2)

As amostras de Y formam nuvens de pontos em forma de elipses
centradas em (µ1, µ2).

Além disso, elas não são (em geral) independentes: A distribuição de
Y2 MUDA SE SOUBERMOS O VALOR DE Y1.

Um único parâmetro ρ ∈ [−1, 1] controla o grau de associação ou
correlação entre Y1 e Y2.
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Normal bivariada: introdução

Densidade e amostra
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Figura: Normal bivariada com Y1 ∼ N(µ1 = 0, σ2
1 = 1) e Y2 ∼ N(µ2 = 0, σ2

2 = 1)
e com correlação ρ = 0
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Normal bivariada: introdução

Densidade e amostra
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Figura: Normal bivariada com Y1 ∼ N(µ1 = 0, σ2
1 = 1) e Y2 ∼ N(µ2 = 0, σ2

2 = 1)
e com correlação ρ = 0.80
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Normal bivariada: introdução

Uma amostra de uma normal bivariada

n = 100 instâncias do vetor aleatório
Y = (Y1,Y2).

Existem os valores MARGINAIS:

E(Y1) = µ1√
V(Y1) = σ1

e também E(Y2) = µ2

e
√
V(Y2) = σ2

Estes valores são facilmente estimados
a partir das MARGENS do gráfico.

Por exemplo:

E(Y1) = µ1 ≈ 10
σ1 ≈ 2.5

Agora você: E(Y2) = µ2 ≈??? e
σ2 ≈???
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Figura: Amostra de normal bivariada
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Normal bivariada: introdução

Uma amostra de uma normal bivariada

Temos E(Y2) = µ2 ≈ 50

E σ2 ≈ 15

Os valores de Y1 e Y2 medidos num
mesmo ω não são independentes.

O valor de Y1 dá informação sobre o
valor de Y2.

Como assim?

Vamos ser mais espećıficos...
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Figura: Amostra de normal bivariada
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Normal bivariada: introdução

Distribuição de Y DADO QUE Y1 = 14?

Qual a distribuição de Y2

DADO QUE Y1 = 14?

O que podemos dizer do valor
esperado de Y2 DADO QUE
Y1 = 14?

Este valor esperado continua
igual à esperança marginal
µ2 = 50?
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Figura: Amostra de normal bivariada
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Normal bivariada: introdução

E(Y2|Y1 = 14)

Queremos ter uma ideia de
E(Y2|Y1 = 14).

Temos µ2 = 50 mas
E(Y2|Y1 = 14) deve ser
> 50 = µ2

Qual a sua estimativa para
E(Y2|Y1 = 14) no olhômetro?

Suponha que um ponto
aleatório será escolhido da
distribuição CONDICIONAL
de Y2 dados Y1 = 14.

→ o ponto estará na linha
vertical (14, y2).
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Figura: Amostra de normal bivariada
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Normal bivariada: introdução

Distribuição de (Y2|Y1 = 14)

Os pontos (y1, y2) da amostra que
possuem y1 ≈ 14 indicam o que deve
ser o comportamento probabiĺıstico da
v.a. Y2 DADO que Y1 = 14.

Vemos que E(Y2|Y1 = 14) ≈ 70

Veja que 70 >> 50 = E(Y2) = µ2.

µ2 é a esperança MARGINAL de Y2.

A esperança condicional E(Y2|Y1 = 14)
é bem maior que a marginal E(Y2).
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Figura: Amostra de normal bivariada
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Normal bivariada: introdução

Distribuição de (Y2|Y1 = 14)

Se E(Y2|Y1 = 14) ≈ 70, quanto é√
V(Y2|Y1 = 14) ?

Olhando os pontos (y1, y2) que possuem
y1 ≈ 14, qual o tamanho médio dos
desvios de Y2 EM TORNO DE SUA
ESPERANÇA E(Y2|Y1 = 14) ≈ 70??

Os pontos estão no intervalo de [50, 80]
grosseiramente.

Eu chutaria (ou estimaria) que√
V(Y2|Y1 = 14) ≈ (80− 30)/4 = 7.5

Veja que 7.5 << 15 =
√

V(Y2), que é
o DP marginal de Y2.
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Figura: Amostra de normal bivariada
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Normal bivariada: introdução

Dos momentos para a distribuição

Estes são os dois primeiros MOMENTOS condicionais da v.a.
Y2|Y1 = 14, a esperança e variância condicionais.

Eles são RESUMOS da distribuição de probabilidade de Y2|Y1 = 14.

E qual é a distribuição de probabilidade de Y2|Y1 = 14?

Normal? Gama? Uniforme?

É UMA NORMAL.

Isto é, (Y2|Y1 = 14) ≈ N(70, 7.52)
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Normal bivariada: introdução

Dos momentos para a distribuição

E que tal Y2|Y1 = y com y genérico?

Conseguimos obter uma fórmula geral para expressar qual é esta distribuição genérica.

Ela depende do coeficiente de correlação ρ que neste exemplo vale ρ = 0.8.

Temos
(Y2|Y1 = y) ∼ N(µY2|Y1=y , σ

2
Y2|Y1=y )

com
µY2|Y1=y = µ2 +

ρσ2

σ1
(y − µ1)

e
σY2|Y1=y = σ2

√
1− ρ2

Por exemplo, com y2 = 14 temos

µY2|Y1=14 = µ2 +
ρσ2

σ1
(14− µ1) = 50 +

0.8 ∗ 15

2.5
(14− 10) = 69.2

e
σY2|Y1=y = σ2

√
1− ρ2 = 15

√
1− 0.82 = 9

e portanto
(Y2|Y1 = 14) ∼ N(69.2, 92)
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Normal bivariada: introdução

Como sabemos essa fórmula?

Fazendo o cálculo matemático da densidade condicional:

fY2|Y1
(y2|y1 = a) =

fY(a, y2)

fY1(a)

a partir da densidade conjunta da normal bivariada.

Para entender esta importante expressão, vamos começar definindo a
matriz 2 x 2 simétrica de covariância

∑
dada por

∑
=

[
σ2

1 ρσxσy
ρσxσy σ2

y

]
onde ρ ∈ [−1, 1] e σx e σy são os desvios padrões de cada marginal.
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Normal bivariada: introdução

Como sabemos essa fórmula?

Seja o vetor-COLUNA 2× 1 das esperanças marginais:

µ = (µ1, µ2)′ = (E(Y1),E(Y2))

A fórmula geral de uma normal bivariada é igual a

fY(y) = cte× exp

(
− 1

2
d2(y,µ)

)
onde d2(y,µ) é uma medida de distância entre o ponto y e o vetor
esperado µ.

Esta medida de distância é MUITO importante e não é a distância
euclidiana:

d2(y,µ) = (y − µ)′Σ−1(y − µ)

Vamos estudá-la a seguir.
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Normal bivariada: introdução

Resumo: densidade de normal multivariada

Em resumo, um vetor normal multivariado tem uma densidade
conjunta que é proporcional à exponencial de MENOS uma medida
de distância ao quadrado.

fY(y) = cte× exp

(
− 1

2
d2(y,µ)

)
Densidade decai exponencialmente à medida que a distância AO
QUADRADO entre y e µ aumenta.
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Normal bivariada: introdução

Decaimento exponencial

Veja o efeito de decair eponencialmente e de decair com
exponencialmente AO QUADRADO.
Decai mais depressa com a distância e o pico é mais suave

Figura: exp(−|x |) e exp(−x2)
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Resumo - Uma variável

Resumos teóricos

Considere uma única variável aleatória Y .

Sua distribuição de probabilidade fica determinada por:

Caso Cont́ınuo: função densidade de probabilidade f (y)
Caso Discreto: função de probabilidade p(y) = P(Y = y)
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Resumo - Uma variável

Resumos teóricos

Podemos resumir a sua distribuição de probabilidade com os resumos
numéricos (e teóricos) esperança E(Y ) e desvio-padrão
DPY =

√
V(Y ).

Os resumos E(Y ) e DPY =
√

V(Y ) não DEPENDEM de dados
estat́ısticos.

São resultados de cálculos matemáticos e resumem a DISTRIBUIÇÃO
teórica de uma v.a.

Vamos agora passar a olhar DADOS ESTAT́ISTICOS.

Suponha que temos uma amostra aleatória de Y .

Isto é, v.a.’s Y1,Y2, . . . ,Yn i.i.d. com a mesma distribuição que Y .

Estes n números ficam numa das colunas de nossa tabela de dados.
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Resumo - Uma variável

Resumos emṕıricos, a partir dos dados

Para ter uma idéia de TODA A distribuição de probabilidade de Y :
Caso Cont́ınuo: histograma. A altura do histograma em y é ≈ f (y).
Caso Discreto: gráfico de barras com as frequências emṕıricas nk/n
onde nk é o número de elementos da amostra iguais a k. Temos
nk/n ≈ P(Y = k).
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Resumo - Uma variável

Contraparte emṕırica dos resumos

Podemos ESTIMAR os resumos TEÓRICOS E(Y ) e
σ = DPY =

√
V(Y ) a partir dos dados.

Pela Lei dos Grandes Números, se o tamanho n da amostra é grande,
temos

A média aritmética Y = (Y1 + . . .+ Yn) ≈ E(Y )

O DP amostral S =

√∑
i

(
Yi − Y

)2
/n ≈ σ

Às vezes, define-se S usando n − 1 no denominador. A diferença é
ḿınima a não ser que n seja muito pequeno.

Note que Y 6= E(Y )

E que S 6= σ

Y e S dependem dos dados e variam de amostra para amostra,
MESMO QUE O MECANISMO GERADOR DOS DADOS NÃO
MUDE.
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Correlação

Desvio padronizado

Um desvio em relação a µ = E(Y ): é a v.a. Y − µ
Desvio padronizado: Z = (Y − µ)/σ

Desvio padronizado é medido relativamente ao desvio-padrão σ da
v.a. Y .

Um desvio padronizado Z = 2 significa um afastamento de 2 DPs em
relação a µ

Qualquer que seja a distribuição de Y , termos Z > 4 é muito raro
(pela desiguladade de Tchebyshev).

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 22 / 186



Correlação

Duas variáveis

Como medir a associação entre duas variáveis Y1 e Y2 medidas num
MESMO item.

Estas variáveis poderiam ser qualquer par de colunas da nossa tabela
de dados.

Seja Z1 = (Y1 − µ1)/σ1 o desvio padronizado de Y1

e Z2 = (Y2 − µ2)/σ2 o desvio padronizado de Y2

Quando Z1 é grande existe alguma TENDÊNCIA de também termos
Z2 grande?

Se sim, diremos que Y1 e Y2 possuem um grau de associação ou
correlação.

Como formalizar este conceito?
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Correlação

Duas variáveis

Vamos começar com a versão EMṔIRICA da associação.

Amostra de 147 pessoas (os itens) trabalhando em ocupações
fisicamente demandantes.

Em cada item, medimos o par de variáveis (Y1,Y2).

Y1 é a força do aperto de mão (ou grip strength)

Y2 é a força do braço (ou arm strength)
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Correlação

Duas variáveis: scatterplot
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Figura: Relação entre força de preensão (do aperto de mão) e força do braço para
147 pessoas que trabalham em empregos fisicamente extenuantes.
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Correlação

Duas variáveis: scatterplot
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Figura: Linhas verticais indicando aproximadamente µ1 e µ2. A maioria dos
pontos está nos quadrantes 1 e 3. Quando Z1 > 0, em geral, temos Z2 > 0.
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Correlação

Produto dos desvios

Existem várias formas intuitivas de medir a associação entre Y1 e Y2.

Uma forma não intuitiva mas que tem excelentes propriedades
teóricas é o ı́ndice de correlação de Pearson.

Considere o produto dos desvios padronizados:

Z1Z2 =
Y1 − µ1

σ1
× Y2 − µ2

σ2

Se desvios grandes e positivos de Y1 tendem a ocorrer com desvios
grandes e positivos de Y2, seu produto será maior ainda.

Ao mesmo tempo, se os desvios grandes e negativos de Y1 tendem a
ocorrer com desvios grandes e positivos de Y2, seu produto será maior
ainda.
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Correlação

Produto dos desvios
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Figura: Tipicamente, em média, o produto dos desvios padronizados Z1Z2 é
positivo (esquerda), próximo de zero (centro) e negativo (direita).
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Correlação

Natureza de Z1Z2

(Y1,Y2) é um vetor aleatório: duas v.a.’s são medidas no mesmo
item.

Considere

Z1Z2 =
Y1 − µ1

σ1
× Y2 − µ2

σ2

O que é µ1? Uma constante? Uma v.a.?

O mesmo vale para µ2, σ1 e σ2.

E o produto Z1Z2?

É uma constante?

Uma v.a.?
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Correlação

Correlação

O produto Z1Z2 é uma v.a. !!

Como resumir esta v.a. num único número?

Já sabemos fazer isto com QUALQUER v.a.: tome o seu valor
esperado.

Isto é, vamos calcular

ρ = Corr(Y1,Y2) = E (Z1Z2) = E
(
Y1 − µ1

σ1
× Y2 − µ2

σ2

)
Este resumo é o ı́ndice de correlação de Pearson.
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Correlação

Propriedades de ρ

ρ está SEMPRE entre -1 e 1.

Esta é uma das razões para usar ρ como medida de associação entre
Y1 e Y2: uma escala fixa em qualquer problema.

Além disso, pela definição,

Corr(Y1,Y2) = E (Z1Z2) = Corr(Y2,Y1)

Também temos que Corr(Y ,Y ) = 1: a correlação de uma v.a.
consigo mesma é 1.
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Correlação

Propriedades de ρ

Se Y1 é uma v.a. independente da v.a. Y2 então ρ = 0.

Neste caso, uma amostra de valores do vetor (Y1,Y2) formará um
gráfico de dispersão com forma indistinta, uma nuvem sem inclinação.

Se ρ ≈ ±1 então Y2 é aproximadamente uma função linear perfeita
de Y1.

Isto é, uma amostra de valores do vetor (Y1,Y2) formará uma gráfico
de dispersão na forma aproximada de uma linha reta.
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Correlação

Amostras do vetor (Y1,Y2) com diferentes ρ
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Matriz de correlação

Correlation Matrix

Correlação é uma medida de associação entre DUAS v.a.’s

E quando tivermos p v.a.’s simultaneamente, todas medidas no
mesmo item?

Suponha que tenhamos um vetor (Y1,Y2, . . . ,Yp) de v.a.’s

Podemos fazer uma matriz p × p de correlação.

Na posição (i , j) teremos

ρij = Corr(Yi ,Yj) = E
(
Yi − µi
σi

×
Yj − µj
σj

)
Como Corr(Yi ,Yj) = Corr(Yj ,Yi ) a matriz é simétrica.

E como Corr(Yi ,Yi ) = 1 a diagonal principal é toda de 1’s.
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Matriz de correlação

Exemplo: Correlation Matrix

Temos um vetor aleatório (Y1,Y2, . . . ,Y9).

As 9 variáveis aleatórias são escores obtidos em 9 testes de habilidade
cognitiva, todos aplicados num mesmo indiv́ıduo.

As v.a.’s são as seguintes:

3 v.a.’s medindo habilidade verbal: Word Meaning, Sentence
Completion, and Odd words;
3 v.a.’s medindo habilidade quantitativa: Mixed Arithmetic,
Remainders, and Missing numbers;
3 v.a.’s medindo habilidade espacial: Gloves, Boots, and Hatchets.

Como poderia ser a matriz de correlação 9× 9 entre estas v.a’s?
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Matriz de correlação

Matriz de correlação 9× 9

Figura: Correlações entre pares formados a partir de 9 medidas feitas num mesmo
indiv́ıduo em um teste de personalidade
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Matriz de correlação

Visualizando a matriz de correlação

Figura: Amostra de 244 indiv́ıduos e scatterplots dos pares de suas 9 medidas no
teste de habilidade cognitiva
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Matriz de correlação

Visualizando outra matriz de correlação

Figura: A partir de dados amostrais mostra-se o FORMATO da nuvem de pontos
de uma amostra de VINHOS com 14 variáveis medidas em cada um dos vinhos.
Gráfico em R + rattle
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Matriz de correlação

Mais uma visualização

Figura: Mais uma visualização com R + rattle
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Matriz de correlação

Uma visualização com MUITAS v.a.’s: rede

Figura: Uma visualização com qgraph: v.a.’s são vértices e correlações são
arestas. Verde = correlação positiva e vermelha = negativa. As arestas mais
grossas e saturadas tem |ρ| grande.
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Matriz de correlação

Nem sempre, os gráficos são simples

Figura: Scatterplot matrix of 4 lab variables to test liver functioning commonly
used in clinical research
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Matriz de correlação

Misturas de diferentes populações

Figura: Scatterplot matrix de 4 variáveis medidas numa flor: comprimento de
pétala, largura de pétala, comprimento de sétala, largura de sétala. Três espécies
distintas misturadas. Relação entre as variáveis é diferente, ela depende da
espécie.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 42 / 186



Matriz de correlação

Propriedades de ρ

Se ρ = −1 ou ρ = +1, podemos predizer o valor de Y2 como função
linear de Y1, sem erro, de forma perfeita.

Isto é, se ρ = ±1, temos Y2 = α + βY1

Se ρ = 0 pode acontecer que Y1 seja fortemente relacionada a Y2 de
uma forma não-linear. São casos raros na prática.
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Matriz de correlação

Propriedades de ρ

ρ é invariante por mudança linear de escala.

Por ex, Y1 é o estoque de café num certo mês e Y2 é o preço do café
em reais no mesmo mês.

Seja ρ = Corr(Y1,Y2).

Suponha que outra variável seja usada: o preço Y3 do café em dólares
e que Y3 = 2.3Y2.

Neste caso,

Corr(Y1,Y3) = Corr(Y1, 2.3Y2) = Corr(Y1,Y2)

Do mesmo modo, se medirmos em graus cent́ıgrados (Y2) ou em
graus Farenheit (Y3 = 32 + 1.8Y2), a correlação com outra variável
Y1 é

Corr(Y1,Y3) = Corr(Y1, 32 + 1.8Y2) = Corr(Y1,Y2)
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Matriz de correlação

Estimando ρ

ρ é um resumo teórico da distribuição CONJUNTA de duas v.a.’s

Ele não depende de dados para ser obtido, é uma conta matemática.

Relembre a definição:

ρ = Corr(Y1,Y2) = E
(
Y1 − µ1

σ1
× Y2 − µ2

σ2

)
Precisa de µ1 = E(Y1), σ2

1 = V(Y1), etc.

Em seguida precisa calcular (usando teoria de probabilidade) o valor
esperado do produto dos desvios.

Para várias distribuições, esta conta matemática é inviável
(não-anaĺıtica).

No entanto, com dados, podemos estimar ρ.
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Matriz de correlação

Estimando ρ

Como Y ≈ E(Y )

e como S =

√∑
i

(
Yi − Y

)2
/n ≈ σ

podemos aproximar

ρ = E
(
Y1 − µ1

σ1
× Y2 − µ2

σ2

)
≈ E

(
Y1 − Y1

S1
× Y2 − Y2

S2

)
onde Y1 é a média aritmética dos n valores da variável 1, etc.

é, Y1 é média aritmética da coluna associada com a variável 1 na
tabela de dados.

Mas ainda precisaŕıamos calcular uma esperança matemática que é
inviável na maioria das distribuições.
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Matriz de correlação

Desvio padronizado emṕırico

Solução: calcule o desvio realizado de cada um dos n valores das duas
variáveis.
Para a variável 1 com os n valores y11, . . . , yn1 da coluna 1 da tabela,
calcule a nova coluna formada por

zi1 =
yi1 − y1

s1

Faça o memso para a coluna 2, criando uma outra coluna de desvios
padronizados emṕıricos:

zi2 =
yi2 − y2

s2

A seguir, multiplique as duas colunas de desvios padronizados e tire a
sua média aritmética calculando

r =
1

n

n∑
i=1

zi1zi2 =
1

n

n∑
i=1

(
yi1 − y1

s1

)(
yi2 − y2

s2

)
Pela Lei dos Grandes Números (de novo), teremos r ≈ ρ se n for
grande.
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Distância Estat́ıstica

Pressão sistólica

A pressão sistólica mede a força do sangue nas artérias, à medida que
o coração contrai para impulsionar o sangue através do corpo.

Se alta, ela pode levar a doença de coração, angina e doenças
vasculares nas pernas.

Pressao sistólica saudável: entre 120 e 140 mm Hg

Pressão sistólica > 140 mm Hg: não saudável

Pressão diastólica: deve ficar em torno de 80.

Acima de 100 não é saudável.
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Distância Estat́ıstica

Pressão sistólica e diastólica em amostra

Amostra de 250 indiv́ıduos (instâncias)

Pressão em duas medições (atributos):

Diastólica
sistólica

Como fica o gráfico dos atributos dessas 250 instâncias?
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Distância Estat́ıstica

Pressão de 250 indiv́ıduos
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Figura: Amostra de (yi1, yi2) com i = 1, 2, . . . , 250.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 50 / 186



Distância Estat́ıstica

Médias para referência

250 instâncias do vetor aleatáorio: Y = (Y1,Y2)
Vetor com os valores esperados de cada variável do vetor:

E(Y ) = E(Y1,Y2) = (E(Y1),E(Y2)) = (µ1, µ2) = µ
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Figura: Amostra de (yi1, yi2) com i = 1, 2, . . . , 250.
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Distância Estat́ıstica

Quem está distante do centro?

Centro µ = (µ1, µ2) é o perfil esperado ou t́ıpico.
Quem está longe do perfil t́ıpico? Quem é anômalo?
Medida baseada na distância euclidiana
d(y1, y2) =

√
(y1 − 120)2 + (y2 − 80)2

É razoável?
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Figura: Amostra de (yi1, yi2) com i = 1, 2, . . . , 250.
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Distância Estat́ıstica

Exagerando um pouco...

E se o segundo atributo for assim? Fazendo o aspect/raio = 1.
Centro µ = (µ1, µ2) continua o mesmo.
Mas quem está distante do centro agora? Quem é anômalo?
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Figura: Amostra de (yi1, yi2) com i = 1, 2, . . . , 250.
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Distância Estat́ıstica

Distantes são óbvios, não?

Mas qualé a medida de distância que estamos usando implicitamente,
sem nem mesmo perceber?
Não é a distância euclidiana!
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Figura: Amostra de (yi1, yi2) com i = 1, 2, . . . , 250.
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Distância Estat́ıstica

Pontos à igual distância?

Todos os pontos do ćırculo estão à mesma distância euclidiana do
centro da nuvem de pontos.
Queremos os dois pontos em vermelho à igual distância
ESTAT́ISTICA do centro queos pontos em azul?
NÃO!!! Pontos vermelhos estão ESTATISTICAMENTE muito mais
distantes do centro (µ1, µ2) do que os pontos azuis.
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Distância Estat́ıstica

Pontos vermehos mais distantes

Como fazer os pontos vermelhos mais distantes que os pontos azuis?
Andar poucas unidades na direção norte-sul te leva para fora da
nuvem de pontos (vira anomalia).
Precisa andar MAIS unidades na direção leste-oeste para sair fora da
nuvem de pontos.
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Figura: Amostra de (yi1, yi2) com i = 1, 2, . . . , 250.
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Distância Estat́ıstica

Pontos vermehos mais distantes

Então N unidades eucidlianas na direção leste-oeste VALEM O
MESMO que N/k na direção norte-sul (onde k > 1).
Como achar este k?
Como equalizar as distâncias?
RESPOSTA: Medindo distâncias em unidades de DESVIOS-PADRÃO.
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Figura: Amostra de (yi1, yi2) com i = 1, 2, . . . , 250.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 57 / 186



Distância Estat́ıstica

Medida de dispersão

Desvio-padrão DP: um para cada eixo, um DP para cada atributo.

DP mede quanto, em média, um atributo aleatório desvia-se de seu
valor esperados

Por exemplo, DP = 10 significa:

Em geral, observações desviam-se de 10 unidades em torno de seu valor
esperado
Às vezes mais de 10 unidades; às vezes, menos de 10 unidades
Em média, um afastamento de 10 unidades: isto é o DP.
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Distância Estat́ıstica

Qual o desvio padrão de cada variável?

Centro E(Y ) = µ = (µ1, µ2) = (120, 80)
DP1 = σ1 =??
DP2 = σ2 =??
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Figura: Amostra de (yi1, yi2) com i = 1, 2, . . . , 250.
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Distância Estat́ıstica

Qual o desvio padrão de cada variável?

Centro E(Y ) = µ = (µ1, µ2) = (120, 80)
DP1 = σ1 = 10
DP2 = σ2 = 2
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Figura: Amostra de (yi1, yi2) com i = 1, 2, . . . , 250.
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Distância Estat́ıstica

Distância medida em DP

(µ1, µ2) = (120, 80) e (σ1, σ2) = (10, 2)
AZUL: afastou-se do centro apenas ao longo do eixo 1 e afastou-se 15
unidades ou 1.5σ1)
VERMELHO: afastou-se do centro apenas ao longo do eixo 2 e
afastou-se 15 unidades ou 7.5σ2)
O ponto VERMELHO está muito mais distante do centro em termos
de DPs.
Mas como fazer com pontos que afastam-se do centro não somente
ao longo de um dos eixos?
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Figura: Amostra de (yi1, yi2) com i = 1, 2, . . . , 250.
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Distância Estat́ıstica

Distância medida em DP

(µ1, µ2) = (120, 80) e (σ1, σ2) = (10, 2)
Andar nσ1 ao longo do eixo 1 É EQUIVALENTE a andar nσ2 no eixo
2.
Por exemplo, 20 unidades ao longo do eixo 1 (ou 2σ1) é
ESTATISTICAMENTE EQUIVALENTE a 4 unidades ao (ou 2σ2)
longo do eixo 2.
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Figura: Amostra de (yi1, yi2) com i = 1, 2, . . . , 250.
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Distância Estat́ıstica

Distância medida em DP

Vamos medir o desvio em cada eixo EM UNIDADES DE SEU
DESVIO-PADRÃO e calcular a distância com estes desvios
padronizados.

DESVIO PADRONIZADO ao longo do eixo 1: z1 = y1−µ1
σ1

= y1−120
10

DESVIO PADRONIZADO ao longo do eixo 2: z2 = y2−µ2
σ2

= y2−80
2

Distância:

d(y ,µ) =
√

z2
1 + z2

2

=

√(
y1 − 120

10

)2

+

(
y2 − 80

2

)2

=

√(
y1 − µ1

σ1

)2

+

(
y2 − µ2

σ2

)2
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Distância Estat́ıstica

Pontos a igual distância

NESTA NOVA MÉTRICA, quais os pontos (y1, y2) que estão a uma
MESMA distância do centro (µ1, µ2)?
Tome uma distância fixa (por exemplo, 1).
Eles formam uma ELIPSE centrada em (µ1, µ2) e com eixos paralelos
aos eixos coordenados.

d(y ,µ) =

√(
y1 − 120

10

)2

+

(
y2 − 80

2

)2

= 1

Os pontos que satisfazem a equação acima formam uma elipse (esta é
a equação de uma elipse).

Figura: Lugar geométrico dos pontos a igual distância do centro: elipses.
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Distância Estat́ıstica

Tamanhos dos eixos

Distância c > 0 do centro: pontos satisfazem a equação

d(y ,µ) =

√(
y1 − 120

10

)2

+

(
y2 − 80

2

)2

= c

Os eixos têm comprimentos iguais a cσ1 e cσ2. O eixo maior da
elipse: variável com maior DP.

Quantas vezes maior é o eixo maior em relação ao eixo menor?
Se σ1 é o maior DP,

eixo maior

eixo menor
=

cσ1

cσ2
=
σ1

σ2

Não depende da distância c: variando c , teremos elipses concêntricas.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 65 / 186



Distância Estat́ıstica

Variando a distância

Figura: Pontos (y1, y2) que estão a uma distância c igual a 1, 2 ou 3 do centro
(µ1, µ2). Isto é, os pontos de cada elipse satisfazem d(y ,µ) = c para diferentes
c ’s.

.
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Distância Estat́ıstica

Jogando fora a raiz quadrada

Preferimos trabalhar com a distância AO QUADRADO

E se podemos complicar, por quê simplificar?

d2(y ,µ) =

(
y1 − µ1

σ1

)2

+

(
y2 − µ2

σ2

)2

= (y1 − µ1, y2 − µ2)

[
1/σ2

1 0
0 1/σ2

2

] (
y1 − µ1

y2 − µ2

)
= (y1 − µ1, y2 − µ2)

[
σ2

1 0
0 σ2

2

]−1 (
y1 − µ1

y2 − µ2

)
=

(
y1 − µ1

y2 − µ2

)′
Σ−1

(
y1 − µ1

y2 − µ2

)
= (y − µ)′Σ−1(y − µ)
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Distância Estat́ıstica

Elipses e distâncias

Vimos que

d2(y ,µ) =

(
y1 − µ1

σ1

)2

+

(
y2 − µ2

σ2

)2

= (y − µ)′Σ−1(y − µ)

onde ∑
=

[
σ2

1 0
0 σ2

2

]
é a equção de uma elipse centrada no vetor µ = (µ1, µ2).

Quando a matriz
∑

é DIAGONAL com elementos positivos (com as
variâncias σi ’s), então a elipse tem eixos paralelos aos eixos e o
tamanho de cada eixo é porporcional ao σi da variável associada.
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Distância Estat́ıstica

Caso mais realista

Variáveis são associadas, não são independentes
Dizemos que são correlacionadas: redundância da informação
O valor de uma variável dá informação sobre o valor da variável
Pode-se predizer (com algum erro) uma variável em função da outra
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Distância Estat́ıstica

Distância eĺıptica, e não circular

Pelo mesmo racioćınio intuitivo que fizemos antes, os pontos na
ELIPSE abaixo tendem a estar a igual distância do perfil esperado
E(Y ) = µ = (µ1, µ2).
Pontos estatisticamente equidistantes de µ NÃO estão mais numa
elipse paralela aos eixos.
A elipse está inclinada seguindo a associação entre as variáveis.
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Figura: Amostra de (yi1, yi2) com i = 1, 2, . . . , 250.
Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 70 / 186



Distância Estat́ıstica

Forma Quadrática

Medida de distância é uma FORMA QUADRÁTICA.

d2(y ,µ) = (y − µ)′Σ−1(y − µ)

É a mesma expressão matricial de distância que usamos antes MAS...
...a matriz Σ não é mais DIAGONAL
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Figura: Amostra de (yi1, yi2) com i = 1, 2, . . . , 250.
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Distância Estat́ıstica

Quem é
∑

?

Medida de distância é uma FORMA QUADRÁTICA:

d2(y ,µ) = (y − µ)′Σ−1(y − µ)

Matriz
∑

é matriz 2 x 2 simétrica chamada de matriz de covariância

∑
=

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]

onde ρ = Corr(Y1,Y2) é o ı́ndice de correlação de Pearson entre Y1 e
Y2.

Temos sempre −1 ≤ ρ ≤ 1.

Os elementos fora da diagonal, ρσ1σ2, são chamados de Covariância
entre Y1 e Y2.

Costumamos escrever Cov(Y1,Y2) = ρσ1σ2 = σ12
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Distância Estat́ıstica

Relação entre
∑

e a elipse

Distância é
d2(y ,µ) = (y − µ)′Σ−1(y − µ)

onde a matriz
∑

é 2× 2 simétrica e dada por∑
=

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
Pontos equidistantes de µ = (µ1, µ2) estão numa elipse.
Eixos da elipse: na direção dos AUTOVETORES da matriz Σ−1.
O tamanho de cada eixo é proporcional à raiz do AUTOVALOR
correspondente.
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Distância Estat́ıstica

Autovetor e autovalor de Σ−1

Definição: autovetor de uma matriz quadrada A é um vetor y tal que

A · y = λ y

onde λ é uma constante (pode até ser um número complexo).

A constante λ é chamada de autovalor associado ao autovetor y.

Na nossa situação de distância estat́ıstica em que usamos a inversa da
matriz de covariância como Σ−1 temos dois resultados especiais:

sempre temos dois autovetores ORTOGONAIS entre si.
autovalores são sempre REAIS E POSITVOS (e portanto podemos
tomar sua raiz ou invertê-los).

Voltaremos a este importante resultado daqui a pouco.
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Distância Estat́ıstica

Autovetores de Σ e Σ−1

Os autovetores de Σ e Σ−1 são os mesmos.

Prova: Suponha que vé autovetor de Σ com autovalor λ > 0:

Σ · v = λ v

Multiplique dos dois lados (pela esquerda) por Σ−1:

Σ−1Σ · v = Σ−1 (λ v)

ou seja
v = λΣ−1 v

ou ainda, como λ > 0,
1

λ
v = λΣ−1 v
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Distância Estat́ıstica

Distância estat́ıstica em k dimensões

Seja Y = (Y1, . . . ,Yk) um vetor aleatório de dimensão k .

Seja µ = (µ1, . . . , µk) seu VETOR-COLUNA de valores esperados

Seja
∑

a matriz k × k com a covariância σij = ρijσiσj onde ρij é a
correlação entre Yi e Yj .

Distância estat́ıstica:

d2(y ,µ) = (y − µ)′Σ−1(y − µ)

Pontos equidistantes de µ formam um elipsóide em k dimensões com
eixos nas direções dos autovetores de

∑
e com tamanhos

proporcionais aos seus respectivos autovetores.
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Distância Estat́ıstica

Caso 3-dim

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 77 / 186



Distância Estat́ıstica

Distância estat́ıstica em k dimensões

∑
é a matriz de covariância k × k de um vetor aleatório Y de

dimensão k, temos:

sempre temos k autovetores ORTOGONAIS entre si.
autovalores são sempre REAIS E POSITVOS.

Esta afirmação é uma consequência do teorema espectral de álgebra
linear.

Para todo ponto y que não seja o vetor esperado µ, queremos que a
distância d2(y ,µ) seja > 0.

Uma matriz com esta propriedade é chamada de positiva definida.
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Distância Estat́ıstica

Resumo de normal multivariada

O vetor aleatório Y = (Y1, . . . ,Yk) segue uma distribuição normal
(ou gaussiana) multivariada se sua densidade conjunta for da forma

fY(y) = cte× exp

(
− 1

2
d2(y,µ)

)
onde

d2(y,µ) = (y − µ)′Σ−1(y − µ)

e
∑

é a matriz de covariância entre as variáveis e µ é o vetor de
valores esperados.

Notação: Y ∼ Nk(µ,
∑

)

A densidade decresce com d2. As superf́ıcies de ńıvel da densidade
são elipsoides concêntricos centrados em µ.

Os eixos do elipsóide estão na direçãodos autovetores de
∑

e com
comprimentos proporcionaisa raiz do autovalor.
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Simulação de uma normal multivariada

Simulando uma normal multivariada

Sabemos gerar gaussiana univariada N(0, 1) com média µ = 0 e DP
σ = 1.

Basta usar o algoritmo de Box-Muller (já vimos).

Então sabemos gerar Z = (Z1, . . . ,Zk) INDEPENDENTES e
IDENTICAMENTE DISTRIBÚIDOS onde cada Zi ∼ N(0, 1).

Podemos passar de Z para um vetor Y ∼ Nk(µ,
∑

) apenas
manipulando matrizes.

Seja L uma matriz k × k tal que LLt =
∑

.

Calcule Y = µ + LZ.

Temos Y ∼ Nk(µ,
∑

)
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Simulação de uma normal multivariada

Como achar L

Precisamos achar uma matriz L que seja k × k e tal que LLt =
∑

.

É como se estivéssemos achando uma espécie de raiz quadrada de
∑

.

Quem é esta L? Qualquer uma que satisfaa̧ LLt =
∑

.

OK, mas como achar uma dessas?

Pela decomposição de Cholesky: uma matriz simétrica e postiva
definida

∑
possui uma matriz L triangular inferior tal que LLt =

∑
.

Em R: t(chol(A)) (precisa transpor pois a sáıda de chol é
triangular superior)

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 81 / 186



Decomposição de Cholesky

Algoritmo para decomposição de Cholesky

A = LLt =

 l11 0 0
l21 l22 0
l31 l32 l33

 l11 l21 l31

0 l22 l32

0 0 l33


=

 l2
11 l21l11 l31l11

l21l11 l2
21 + l2

22 l31l21 + l32l22

l31l11 l31l21 + l32l22 l2
31 + l2

32 + l2
33



O que deve ser o valor l11?

Iguale o elemento 11 da matriz A e o elemento 11 da matriz produto
LLt .

Vemos que l211 = a11, ou seja, l11 =
√
a11.
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Decomposição de Cholesky

Algoritmo para decomposição de Cholesky

A = LLt =

 l11 0 0
l21 l22 0
l31 l32 l33

 l11 l21 l31

0 l22 l32

0 0 l33


=

 l2
11 ∗ ∗

l21l11 l2
21 + l2

22 ∗
l31l11 l31l21 + l32l22 l2

31 + l2
32 + l2

33



Iguale o elemento 21 de A com o elemento 21 de LtL.

Temos l21l11 = a21. Como já obtivemos l11 =
√
a11, encontramos

l21 = a21/
√
a11.
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Decomposição de Cholesky

Algoritmo para decomposição de Cholesky

A = LLt =

 l11 0 0
l21 l22 0
l31 l32 l33

 l11 l21 l31

0 l22 l32

0 0 l33


=

 l2
11

l21l11 l2
21 + l2

22

l31l11 l31l21 + l32l22 l2
31 + l2

32 + l2
33



De maneira idêntica, obtemos l31 = a31/
√
a11.

Primeira coluna de L está pronta. Vamos agora obter a segunda
coluna de L.

Iguale o elemento a22 e o elemento 22 do produto LLt :
a22 = l221 + l222).

Assim, l22 =
√
a22 − l221 =

√
a22 − a2

21/a11.
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Decomposição de Cholesky

Algoritmo para decomposição de Cholesky

A = LLt =

 l11 0 0
l21 l22 0
l31 l32 l33

 l11 l21 l31

0 l22 l32

0 0 l33


=

 l2
11

l21l11 l2
21 + l2

22

l31l11 l31l21 + l32l22 l2
31 + l2

32 + l2
33



Tendo obtido l11, l21, l31, l22 , passamos agora a l32

Iguale o elemento a32 e o elemento 32 do produto LLt

E assim sucessivamente.
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Decomposição de Cholesky

 25 15 −5
15 18 0
−5 0 11

 =

 l11 0 0
l21 l22 0
l31 l32 l33

 l11 l21 l31

0 l22 l32

0 0 l33


primeira coluna de L

 25 15 −5
15 18 0
−5 0 11

 =

 5 0 0
3 l22 0
−1 l32 l33

 5 3 −1
0 l22 l32

0 0 l33


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Decomposição de Cholesky

conclusão:

 25 15 −5
15 18 0
−5 0 11

 =

 5 0 0
3 3 0
−1 1 3

 5 3 −1
0 3 1
0 0 3


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Exemplo de simulação

Exemplo - simulando N4(µ,
∑

)

Suponha que queremos gerar uma amostra de 200 instâncias de um
vetor Y gaussiano multivariado de dimensão 4 tal que Y ∼ N4(µ,

∑
).

µ = (µ1, . . . , µ4) = (0, 10, 0, 1020)

A matriz de covariância:

∑
=


1.0 −0.1 0 −0.7
−0.1 16 −0.4 20

0 −0.4 0.04 −0.1
−0.7 20 −0.1 64


Veja que a raiz quadrada da diagonal fornece os desvios-padrão:√

diag(
∑

) =
√

(1.0, 16, 0.04, 64) = (1.0, 4, 0.2, 8)
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Exemplo de simulação

Exemplo - simulando N4(µ,
∑

)

Como a covariância está associada com a correlação e os
desvios-padrão,

σij = ρijσiσj

podemos escrever a matriz de covariância como resultado de
manipular matricialmente a matriz de correlação:∑

= V1/2 ρ V1/2

onde V é uma matriz diagonal com as variâncias (σ2
1, . . . , σ

2
k) e ρ é

uma matriz quadrada com as correlações ρij .

Portanto, podemos também escrever

ρ =
(

V1/2
)−1 ∑ (

V1/2
)−1
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Exemplo de simulação

Exemplo - simulando N4(µ,
∑

)

No nosso exemplo:

∑
=


1.0 −0.1 0 −0.7
−0.1 16 −0.4 20

0 −0.4 0.04 −0.1
−0.7 20 −0.1 64

 = V1/2 ρ V1/2

onde

V1/2 =


√

1 0 0 0

0
√

16 0 0

0 0
√

0.04 0

0 0 0
√

64


e

ρ =


1.0000 −0.0250 0.0000 −0.0875
−0.0250 1.0000 −0.5000 0.6250

0.0000 −0.5000 1.0000 −0.0625
−0.0875 0.6250 −0.0625 1.0000


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Exemplo de simulação

Exemplo - simulando N4(µ,
∑

)

Na direção inversa

ρ =


1.0000 −0.0250 0.0000 −0.0875
−0.0250 1.0000 −0.5000 0.6250

0.0000 −0.5000 1.0000 −0.0625
−0.0875 0.6250 −0.0625 1.0000

 = V−1/2
∑

V−1/2

onde V−1/2 =
(
V1/2

)−1
é dada por

√
1 0 0 0

0
√

16 0 0

0 0
√

0.04 0

0 0 0
√

64


−1

=


1.000 0 0 0

0 0.250 0 0
0 0 5.000 0
0 0 0 0.125


A partir da matriz de correlação ρ vemos que Y1 é praticamente
não-correlacionada com as outras três.
Já Y2 é possui uma correlação moderada com Y3 (negativa) e com
Y4 (positiva).
Apesar disso, curiosamente, Y3 e Y4 são praticamente
não-correlacionadas.
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Exemplo de simulação

Exemplo - simulando N4(µ,
∑

)

nsims = 100

mu = matrix(c(0, 10, 0, 1020), ncol=1)

S = matrix(c(1, -0.1, 0, -0.7,

-0.1, 16, -0.4, 20,

0, -0.4, 0.04, -0.1,

-0.7, 20, -0.1, 64), ncol=4)

L = t(chol(S))

Z = matrix(rnorm(4*nsims), nrow=4)

Y = mu + L %*% Z # matriz 4 x nsims

pairs(t(Y)) # ver proximo slide
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Exemplo de simulação

Exemplo - simulando N4(µ,
∑

)

Figura: Amostra gerada: scatterplots de pares de variáveisRenato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 93 / 186



Exemplo de simulação

Exemplo - simulando N4(µ,
∑

)

Podemos criar scatterplots TRI-dimensionais com os vetores que
simulamos.

Como os vetores são 4-dim, vamos escolher três das 4 variáveis para
fazer o plot.

Precisamos do pacote scatterplot3d.

Usamos a função scatterplot3d(x, y, z).

library(scatterplot3d)

scatterplot3d(Y[2,], Y[3,], Y[4,])
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Exemplo de simulação

Exemplo - simulando N4(µ,
∑

)
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Exemplo de simulação

Exemplo - simulando N4(µ,
∑

)

Scatterplot 3-dim com cores e linhas ajudando a localizar os pontos
no espaço.
Pontos são desenhados com cores diferentes de acordo com sua
coordenada y (de outra forma, fica dif́ıcil ver que pontos estão mais à
frente ou atrás no cubo 3-dim).

library(scatterplot3d)

scatterplot3d(Y[2,], Y[3,], Y[4,], pch=16,

highlight.3d=TRUE, type="h", main="3D Scatterplot")
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Exemplo de simulação

Exemplo - simulando N4(µ,
∑

)

Um scatter 3-dim dinâmico: plot3D(x, y, z) do pacote rgl.
Cria um catter 3-dim que pode ser rotacionado com o mouse.
col= e size= controlam a cor e tamanho dos pontos.

library(rgl)

plot3d(Y[2,], Y[3,], Y[4,], col="red", size=3)
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Forma quadrática

Forma quadrática

Seja y = (y1, . . . , yk) um VETOR-COLUNA em Rk .

Seja A uma matriz k × k .
Forma quadrática é qualquer expressão assim:

y′ A y =
∑
ij

Aijyiyj

Por exemplo, se y = (y1, y2) e A for 2× 2:

(y1, y2) A

(
y1

y2

)
que são iguais a

A11y
2
1 + A12y1y2 + A21y2y1 + A22y

2
2

Envolvem combinações lineares dos produtos de pares de variáveis
(produto de duas variáveis distintas ou produto de uma variável por
ela mesma).
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Forma quadrática

Exemplos de formas quadráticas

Exemplos bi-dimensionais:

(y1, y2)

[
1 0
0 1

] (
y1

y2

)
= y2

1 + y2
2

(y1, y2)

[
9 0
0 4

] (
y1

y2

)
= 9y2

1 + 4y2
2

(y1, y2)

[
9 3
3 4

] (
y1

y2

)
= 9y2

1 + 4y2
2 + 3y1y2 + 3y2y1 = 9y2

1 + 4y2
2 + 6y1y2
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Forma quadrática

Formas quadráticas simétricas

A matriz A na forma quadrática

y′ A y =
∑
ij

Aijyiyj

pode ser SEMPRE tomada como simétrica.
Por exemplo, no caso bi-dimensional

y′ A y = (y1, y2)

[
9 2
4 4

] (
y1

y2

)
= 9y2

1 + 4y2
2 + 2y1y2 + 4y2y1

= 9y2
1 + 4y2

2 + 6y1y2

= (y1, y2)

[
9 3
3 4

] (
y1

y2

)

Caso geral: ver lista de exerćıcios.

De agora em diante, A em formas quadráticas é sempre simétrica.
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Matrizes positivas definidas

Matrizes positivas definidas

Queremos que uma medida de distância mais geral que a euclidiana.

Se a distância ao quadrado de y até a origem 0 = (0, . . . , 0) for uma
forma quadrática, precisamos garantir que, PARA TODO VETOR y
que não seja nulo tenhamos

d2(y, 0) = y′ A y =
∑
ij

Aijyiyj > 0

Matrizes que atendem esta condição são chamadas de matrizes
definidas positivas.
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Matrizes positivas definidas

Exemplos de matrizes positivas definidas

Exemplos de positiva defnida em que y′Ay > 0 para todo y 6= 0 :

(y1, y2)

[
9 0
0 4

] (
y1

y2

)
= 9y2

1 + 4y2
2 > 0

Outro exemplo:

(y1, y2)

[
9 −3
−3 4

] (
y1

y2

)
= 9y2

1 + 4y2
2 − 3y1y2 − 3y2y1 = 9y2

1 + 4y2
2 − 6y1y2 > 0

Não é óbvio que esta última matriz seja dp. E é apenas um caso
2-dim!!

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 102 / 186



Matrizes positivas definidas

Exemplos de matrizes que NÃO SÃO positiva definida

Um exemplo:

(y1, y2)

[
9 0
0 −4

] (
y1

y2

)
= 9y2

1 − 4y2
2

pois é menor que zero se (y1, y2) = (0, 1), por exemplo.

Outro exemplo:

(y1, y2)

[
1 −2
−2 1

] (
y1

y2

)
= y2

1 + y2
2 − 4y1y2

É menor que zero se tomarmos (y1, y2) = (1, 1), por exemplo.
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Matrizes positivas definidas

Checando se matriz é positiva definida

Como verificar, em geral, se uma matriz simétrica A de dimensão
k × k é definida positiva?

Dif́ıcil se k for grande.

Checando todos os infinitos y??

Não...

A é definida positiva se, e somente se, todos os seus autovalores
forem positivos.

Algoritmos para encontrar autovalores são custosos, especialmente se
a matriz é grande.

A é definida positiva se, e somente se, existir a sua decomposição de
Cholesky.

Este é algoritmo simples e rápido.

Vamos ver um exemplo
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Matrizes positivas definidas

Nossa matriz é positiva definida

Nossa matriz A será de um tipo especial: será uma matriz de
covariância.

Neste caso, A será sempre def pos (a não ser em exemplos
patológicos, que não ocorrem na prática).
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Matrizes positivas definidas

Qual a relação entre
∑

e a elipse?

Suponha que a medida de distância do vator aleatório y até o perfil
esperado µ é dada por

d2(y ,µ) = (y − µ)′Σ−1(y − µ)

onde Σ é uma matriz de covariância simétrica e definida positiva.
Os pontos y que são equidistantes de µ formam uma elipse centrada
em µ e com eixos na direção dos autovetores da matriz

∑
. Os

tamanhos dos semi-eixos da elipse são proporcionais a (raiz quadrada)
dos seus respectivos autovalores.

100 110 120 130 140

60
70

80
90

10
0

x

y

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

µ2

µ1

Figura: Amostra de (yi1, yi2) com i = 1, 2, . . . , 250.
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Autovetores e autovalores

Autovetores de matrizes simétricas

Autovetor e autovalor de matriz QUADRADA A.

Definição: Av = λv
Autovalor λ pode ser um número complexo.

Se A for simétrica então λ é real.

Só nos interessam as matrizes simétricas.
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Autovetores e autovalores

Imagine a matriz como uma transformação

O que é um autovetor de uma matriz A de dimensaão p × p?

Olhe a definição de novo: Av = λv
Um autovetor é uma direção muito especial em Rp.

É uma direção v tal que, quando A é aplicado a v , temos apenas v
espichado (se λ > 1) ou encolhido (se 0 < λ < 1)

Se λ < 0, a direção muda de sentido.
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Autovetores e autovalores

Imagine a matriz como uma transformação

Matriz real e simétrica A de dimensão p × p.

Pense na transformação de Rp para Rp pela aplicação da matriz A.

Isto é, considere a transformação linear T : Rp 7→ Rp tal que
T (v) = Av .

Por exemplo, pense numa imagem em R2, um desenho feito com
linhas e curvas.

Cada ponto do deseho será identificado com um vetor de R2.

Cada ponto será transformado através de uma matriz simétrica A de
dimensão 2× 2.

O que será o novo desenho?
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Autovetores e autovalores

Imagine a matriz como uma transformação

Em geral, a imagem Av de um ponto não tem uma relação
geométrica simples com v .

Em geral, é dif́ıcil antecipar qual será o resultado de aplicar A em v .

A seguir, veremos o efeito de

A =

(
1 1.2

1.2 5

)
Em p dimensões não teremos uma imagem para olhar...
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Autovetores e autovalores

Imagine a matriz como uma transformação

Matriz
A =

(
1 1.2

1.2 5

)

−20 −10 0 10 20
−

20
−

10
0

10
20

*o

−100 −50 0 50 100

−
10

0
−

50
0

50
10

0 *

o

O ponto-estrela da esquerda é levado por A no ponto-estrela da
direita.

O ponto-bolinha da direita é levado por A no ponto-bolinha da direita.

Podemos ANTECIPAR o efeito de A num ponto arbitrário (x , y)?

Onde ele será levado?

Isto parece ser uma tarefa dif́ıcil.
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Autovetores e autovalores

Imagine a matriz como uma transformação

Se A for p × p, teremos vetores em p dimensões: não teremos uma
imagem para olhar...

Antecipar onde o vetor x ∈ Rp será levado por A parece uma tarefa
imposśıvel.

E no entanto...

Ao longo de ALGUMAS DIREÇÕES v , o comportamento da
transformação por A é fácilmente entendido.

Pense num vetor que esteja numa destas direções especiais.

Então A simplesmente espicha ou encolhe o ponto-vetor, SEM
ALTERAR A SUA DIREÇÃO.
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Autovetores e autovalores

Cara Engraçada
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Autovetores e autovalores

Espichando verticalmente

Espichando verticalmente com

A =

(
1 0
0 2

)
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Autovetores e autovalores

Espichando lateralmente

Espichando lateralmente com

A =

(
2 0
0 1

)
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Autovetores e autovalores

E se o desenho estiver rotacionado?
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5
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5

Figura: Queremos espichar apenas lateralmente o desenho da face mas mantendo
a sua orientação. Como fazer?
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Autovetores e autovalores

Direções especiais

Existem duas direções especiais associadas com a transformação
linear T que desejamos fazer na figura.
Ao longo dessas duas direções especiais, basta espichar lateralmente
ao longo de UMA delas para fazer a face ficar mais “gordinha”.
Basta espichar ou contrair a projeção do vetor ao longo dessa direção
para obter o efeito desejado.
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Autovetores e autovalores

Direções especiais

Então Av pode ser pensado assim: expresse v com coordenadas na
base ortogonal formada pelas duas direções especiais.
Espiche ou contraia cada uma das coordenadas dessas direções
especiais.
Volte para o sistema de coordenadas original.
Se esta história de espichar a cara não ficou muito clara, não se
preocupe. O que você REALMENTE precisa saber está resumido a
seguir.
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Autovetores e autovalores

Autovetor = Direção especial

O que é um autovetor v de uma matriz simétrica A de dimensão
p × p?

Por definição: Av = λv
Um autovetor é uma direção muito especial em Rp.

É uma direção v tal que, quando A é aplicado a v , temos apenas v
espichado (se λ > 1) ou encolhido (se 0 < λ < 1).
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Autovetores e autovalores

Teorema Espectral - 1

Seja A uma matriz p × p simétrica e positiva definida.

Existem p autovalores associados com A.

Estes p autovalores são números reais pois A é simétrica

Estes autovalores são POSITIVOS pois A é positiva definida.

A cada autovalor corresponde um autovetor ou direção em Rp.

O que podemos falar desses autovetores?
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Autovetores e autovalores

Teorema Espectral - 2

Os p autovetores são ortogonais entre si.

Tomando todos esses autovetores com comprimento 1 e colocando-os
como p colunas de uma matriz P, teremos PtP = I pois eles são
ortogonais entre si.

Seja D uma matriz diagonal p × p com os autovalores (na mesma
ordem que as colunas de P).

Teorema Espectral: A = PDPt

O que isto significa: A age simplesmente como uma matriz diagonal
D (que é fácil de ser entendida) se trabalharmos no sistema de
coordenadas dos autovetores (que são as colunas de P) !!

Dizemos que A é diagonalizavel.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 121 / 186



Autovetores e autovalores

Coordenadas

No sistema de coordenadas dos autovetores, a matriz A funciona
como uma matriz diagonal.

x no novo sistema de coordenadas dos autovetores é x∗ = Px .

Se x∗ é o conjunto de coordenadas no sistema de autovetores, para
voltar ao sistema original simplesmente multiplique pela inversa de P
que é ... Pt .

Lembre-se que PtP = I .
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Autovetores e autovalores

Resumindo...

Pontos na ELIPSE tendem a estar a igual distância do perfil esperado
µ = (µ1, µ2)

A maneira correta de medir distância ao perfil esperado µ = (µ1, µ2)
é pela forma quadrática

d2(y ,µ) = (y − µ)′Σ−1(y − µ)

A elipse é determinada pelos autovetores e autovalores de Σ−1, a
inversa da matriz de covariância das v.a.’s envolvidas.

Os autovetores de Σ−1 e de Σ são os mesmos

Os autovalores de Σ−1 são os inversos 1/λ dos autovalores de λ
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Exemplo de normal multivariada

Um exemplo de normal multivariada

O retorno diário de uma ação é a variação percentual no seu preço de
um dia para o outro.

Seja S(t) o preço no dia t

O retorno da ação no dia t + 1 é dado por

Z (t + 1) =
S(t + 1)− S(t)

S(t)

É a diferença no preço da ação entre hoje e ontem
RELATIVAMENTE ao preço de ontem.
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Exemplo de normal multivariada

Quatro ações

Assim, se Z (t + 1) = 0.1 isto siginifica que

Z (t + 1) =
S(t + 1)− S(t)

S(t)
= 0.1⇒ S(t + 1) = (1 + 0.1)S(t)

Ou seja, um aumento de 10% no preço.

Se Z (t + 1) = −0.1, temos então S(t + 1) = (1− 0.1)S(t), uma
diminuição de 10% no preço.

Uma suposição muito comum é que os retornos diários de uma ação
segue uma normal.

E que os retornos de várias ações num mesmo dia seguem uma
normal multivariada
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Exemplo de normal multivariada

Quatro ações

Vamos olhar os dados dos retornos diários de algumas das principais
ações da Bolsa do Estado de São Paulo (BOVESPA).

Dados diários do peŕıodo de 4/Nov/1996 a 18/Junho/1998

Vamos olhar apenas 4 ações, como ilustração:

Eletrobrás,
Vale do Rio Doce,
Petrobrás,
Suzano (empresa de papel e celulose)
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Exemplo de normal multivariada

Telebrás no tempo
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Exemplo de normal multivariada

Telebrás no tempo
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Exemplo de normal multivariada

Vale no tempo
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Exemplo de normal multivariada

Petrorás no tempo
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Exemplo de normal multivariada

Suzano no tempo
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Exemplo de normal multivariada

As quatro no tempo
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Exemplo de normal multivariada

Histogramas e ajustes gaussianos
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Exemplo de normal multivariada

Scatterplot dos pares de ações

Figura: Tele, Vale e Pet são bem correlacionadas. Quando uma sobe muito, as
outras duas também sobem. Suzano não parece ser muito correlacionada com
estas outras.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 134 / 186



Exemplo de normal multivariada

Correlação no tempo

E a correlaçao de UMA MESMA açao em dias sucessivos?

Por exemplo, se a ação da Vale subir bastante hoje, o que podemos
esperar para seu movimento amanhã?

Surpreendente: quase não existe correlação.

Não uma tendência detectável na VARIAÇÃO dos preços das ações
em dias sucessivos.

Não acredita? Veja os próximos gráficos.
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Exemplo de normal multivariada

Correlação no tempo

Figura: Gráfico de yt+1 versus yt para as quatro ações. Não existe correlação
entre os retornos de uma mesma aa̧ão em dias sucessivos.
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Exemplo de normal multivariada

Matriz de correlação

Seja Yt = (Y1t ,Y2t ,Y3t ,Y4t) os retornos das quatro ações no dia t.

Vamos calcular empiricamente o coeficiente de correlação de Pearson
para os pares de ações.

Temos 401 instâncias de Yt correspondentes a 401 dias.
O vetor esperado pode ser estimado a partir dos dados

µ = (µ1, µ2, µ3, µ4) ≈ (ȳ1, ȳ2, ȳ3, ȳ4) = ȳ = (1.094, 0.276, 1.038,−1.459)× 10−3

onde x̄j é a média aritmética

x̄j =
1

401

∑
t

Ytj

Assim, o retorno diário no peŕıodo é pequeno, ligeiramente positivo
pra as três primeiras, e negativo para SUZ.
Quanto ao desvio padrão para cada uma delas, estimando dos dados
encontramos

(σ1, σ2, σ3, σ4) ≈ (s1, s2, s3, s4) = (0.030, 0.030, 0.032, 0.028)
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Exemplo de normal multivariada

Matriz de correlação

Seja Yt = (Y1t ,Y2t ,Y3t ,Y4t) os retornos da quatro ações no dia t.

Vamos calcular empiricamente o coeficiente de correlação de Pearson
para os pares de ações.

Temos 401 instâncias de Yt correspondentes a 401 dias.

Matriz de correlação:

ρ =


Tel4 Val5 Pet4 Suz4

Tel4 1.00 0.72 0.79 0.30
Val5 0.72 1.00 0.68 0.24
Pet4 0.79 0.68 1.00 0.33
Suz4 0.30 0.24 0.33 1.00


De fato, TEL, PET e VALE são bem correlacionadas (positivamente)
enquanto SUZ mostra pouca correlação com estas outras três ações.
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Exemplo de normal multivariada

Matriz de covariância

Matriz de covariância:

∑
≈ S = 10−4


Tel4 Val5 Pet4 Suz4

Tel4 9.08 6.58 7.49 2.53
Val5 6.58 9.27 6.53 2.00
Pet4 7.49 6.53 10.01 2.86
Suz4 2.53 2.00 2.86 7.69


Veja que, ao contrário da matriz de correlação, os números dessa
matriz de covariância são dif́ıceis de interpretar.

Como uma primeira aproximação, podemos dizer que os retornos das
quatro ações num dado dia seguem Yt ∼ N4(µ,

∑
)

com µ ≈ ȳ e
∑
≈ S.
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Propriedades da normal multivariada

Marginais da normal multivariada

Suponha que Y = (Y1, . . . ,Yk) ∼ Nk(µ,Σ) seja um vetor aleatório
com distribuição gaussiana multivariada.

A distribuição de cada uma das entradas Yi do vetor Y é uma
gaussiana.

Além disso, a esperança e variância da distribuição s ao extráıdos
diretamente dos parâmetros de Y sem necessidade de nenhum cálculo.

Yi ∼ N(µi ,Σii ) onde µi é a i-ésima entrada do vetor µ e
∑

ii a
i-ésima entrada da diagonal de

∑
.
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Propriedades da normal multivariada

Exemplo: marginais de Nk(µ,Σ)

Y = (Y1,Y2,Y3,Y4) tem vetor esperado µ = (4, 3,−2, 2) e matriz de
covariância

∑
=


3 0 2 2
0 1 1 0
2 1 9 −2
2 1 9 −2
2 0 −2 4


Então a distribuição marginal é diretamente obtida desta conjunta:

Y3 ∼ N(µ3,Σ33) = N(−2, 9)
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Propriedades da normal multivariada

Marginais de Nk(µ,
∑

)

Obtemos não apenas a distribuição de cada entrada individual de Y
mas a distribuição marginal de qualquer sub-vetor de Y.

Por exemplo, se Y = (Y1,Y2,Y3,Y4) tem vetor esperado
µ = (4, 3,−2, 2) e matriz de covariância

∑
=


3 0 2 2
0 1 1 0
2 1 9 −2
2 1 9 −2
2 0 −2 4


Então a distribuição marginal do sub-vetor (Y1,Y3) é dada por

(Y1,Y3) ∼ N2

((
µ1

µ3

)
,

(
Σ11 Σ13

Σ31 Σ33

))
= N2

((
4
−2

)
,

(
3 2
2 9

))
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Propriedades da normal multivariada

A importância desta propriedade

Aparentemente, esta propriedade é boba.

Da conjunta que é normal multivariada chegamos a marginais que
também são normais.

Isto não é óbvio?

Não, não é.

Acontece que é muito dif́ıcil e raro que a gente consiga saber quais
são as marginais apenas mirando a fórmula da conjunta.

Na maioria dos casos, a única maneira de obter as marginais é
integrando ou somando sobre os valores das demais variáveis.
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Propriedades da normal multivariada

A importância desta propriedade

Por exemplo, suponha que

fXY (x , y) = cte
(
yx2 +

√
y exp(−xy + x2)

)
com suporte em [0, 1]2.

Não é posśıvel saber quais são as marginais fX (x) e fY (y)
diretamente a partir da expressão da conjunta.

A única maneira de obter fX (x) é integrando fXY (x , y) com respeito a
y :

fX (x) =

∫ 1

0
cte
(
yx2 +

√
y exp(−xy + x2)

)
dy

Este não é caso da normal multivariada.

Para escrever a densidade conjunta precisamos de µ e de
∑

.

Com estes dois elementos temos também todas as marginais.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 144 / 186



Propriedades da normal multivariada

Combinação linear de normais

Suponha que Y = (Y1, . . . ,Yk) ∼ Nk(µ,Σ) seja um vetor aleatório
com distribuição gaussiana multivariada.

Queremos criar um indicador baseado nestas variáveis, uma nova
variável aleatória:

X = c1Y1 + . . .+ ckYk

Por exemplo, podemos criar um ı́ndice para o movimento no mercado
de ações.

Usando apenas os retornos das quatro ações que vimos antes,
podeŕıamos estabelecer o ı́ndice

Xt = 0.2PETt + 0.2VALEt + 0.2TELt + 0.4SUZt

Os coeficientes ci náo precisam somar 1 ou serem positivos.

Por exemplo, por alguma razão, podeŕıamos querer

Xt = 1.2PETt + 2.0VALEt + 4.3TELt − 3.5SUZt
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Propriedades da normal multivariada

Combinação linear de normais

Se Y = (Y1, . . . ,Yk) ∼ Nk(µ,Σ) qual é a distribuição de
probabilidade do indicador X?
Note que este tipo de indicador pode ser escrito em forma vetorial:

X = c1Y1 + . . .+ ckYk = c′Y = (c1, . . . , ck )


Y1

Y2

Y3

Y4


Adivinhe: X continua gaussiano.

Isto é, temos que X ∼ N(??, ??) = N(µX , σ
2
X )

Como X é univariado, basta acharmos o seu valor esperado µX e sua
variância σ2

X .

Estes momentos são facilmente obtidos a partir dos momentos µ e
∑

da normal multivariada, como veremos a seguir.
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Momentos de combinação linear

Momentos de c′Y

O cálculo do valor esperado E(X ) = E(c′Y) e da variância
V(X ) = V(c′Y) não depende da distribuição do vetor Y.

Qualquer que seja a distribuição do vetor Y, gaussiana ou não,
cont́ınua ou discreta, podemos obter E(X ) = E(c′Y) e
V(X ) = V(c′Y) facilmente.

Isto tem relevância pois é muito comum criar indicadores que são
combinações lineares de algumas variáveis.

Portanto, o cálculo a seguir usa apenas as propriedades de esperança
e variância, sem recorrer à especificação de uma distribuição conjunta
para o vetor Y.
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Momentos de combinação linear

E(c′Y)

Começando com o valor esperado:

E(X ) = E(c1Y1 + c2Y2 + . . .+ ckYk )

= c1E(Y1) + c2E(Y2) + . . .+ ckE(Yk ))

= c1µ1 + c2µ2 + . . .+ ckµk

= c′µ

Isto é,
E
(
c′Y
)

= c′E (Y)

O vetor de constantes c vai para fora do śımbolo de esperança.
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Momentos de combinação linear

V(c′Y)

Agora a variância.

V(X ) = V(c1Y1 + c2Y2 + . . .+ ckYk )

Basta usar a definição de variância (e um pouco de paciência):

V(X ) = E (X − E(X ))2

= E ((c1Y1 + c2Y2 + . . .+ ckYk )− (c1µ1 + c2µ2 + . . .+ ckµk ))2

= E ((c1(Y1 − µ1) + c2(Y2 − µ2) + . . .+ ck (Yk − µk ))2

= E

∑
i

c2
i (Yi − µi )2 +

∑
i 6=j

cicj (Yi − µi )(Yj − µj )

 (abrindo o quadrado)

=
∑
i

E
(
c2
i (Yi − µi )2

)
+
∑
i 6=j

E
(
cicj (Yi − µi )(Yj − µj )

)
(linearidade da esperança)

=
∑
i

c2
i E (Yi − µi )2 +

∑
i 6=j

cicjE
(
(Yi − µi )(Yj − µj )

)
(linearidade de novo)

=
∑
i

c2
i V(Yi ) +

∑
i 6=j

cicjCov(Yi ,Yj ) (pela def de Var e Cov)
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Momentos de combinação linear

V(c′Y)

Assim, temos

V(c′Y) = V(c1Y1 + c2Y2 + . . .+ ckYk )

= (c1, . . . , ck )
∑ c1

...
ck


= c′Σc

onde
∑

é matriz de covariância do vetor Y.

Veja que no caso univariado t́ınhamos a fórmula

V(cY ) = c2 V(Y ) = c V(Y ) c ,

que é versão univariada de V(c′Y) = c′Σc
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Momentos de combinação linear

Enfatizando

Mais uma vez, repetimos:

Seja Y = (Y1, . . . ,Yk) um vetor aleatório com QUALQUER
distribuição.

Seja E(Y) = µ com matriz de covariância V(Y) =
∑

.

Então
E
(
c′Y
)

= c′µ

e
V(c′Y) = c′Σc

Estes resultados são válidos mesmo no caso em que Y não é nomal
multivariado.

Caso Y ∼ Nk(µ,Σ) então c′Y ∼ N(c′µ, c′Σc)
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Momentos de combinação linear

Retorno de portfólio de ações

Seja Yt = (Y1t ,Y2t ,Y3t ,Y4t) os retornos das quatro ações no dia t.
Suponha que Y ∼ N4(µ,Σ) com

µ = 10−3 × (1.10.31.0− 1.5)

e

∑
= 10−4


Tel4 Tel5 Pet4 Suz4

Tel4 9.08 6.58 7.49 2.53
Tel5 6.58 9.27 6.53 2.00
Pet4 7.49 6.53 10.01 2.86
Suz4 2.53 2.00 2.86 7.69


Vamos criar um portfólio com 30% de ações da Telebrás, 20% da
Vale, 30% da Petrobrás e 20% da Suzano.

O retorno deste mix de ações será o mix dos retornos das ações.

Isto é, o retorno do portfólio é a v.a.

X = 0.3Y1 + 0.2Y2 + 0.3Y3 + 0.2Y4

Qual a distribuição do retorno deste portfólio?
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Momentos de combinação linear

Retorno de portfólio de ações

Temos

X = 0.3Y1+0.2Y2+0.3Y3+0.2Y4 ∼ N(µx , σ
2
x) = N(0.00039, (0.0247)2)

onde

µx = (0.3, 0.2, 0.3, 0.2) 10−3


1.1
0.3
1.0
−1.5

 = 0.00039

e

σ2
x = (0.3, 0.2, 0.3, 0.2)

∑ 
0.3
0.2
0.3
0.2

 = 6.1247× 10−4 = (0.0247)2
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Mais propriedades da normal multivariada

Mais propriedades

Podemos encontrar a distribuição conjunta de vários ı́ndices
simulatâneos
Seja Y ∼ Nk(µ,

∑
)

Seja A um matriz q × k de constantes e usada para gerar q ı́ndices:

A
q×k

Y
k×1

=


a11 a12 . . . a1k

a21 a22 . . . a2k

...
aq1 aq2 . . . aqk




Y1

Y2

...
Yk



=


a11Y1 + a12Y2 + . . .+ a1kYk

a21Y1 + a22Y2 + . . .+ a2kYk

...
aq1Y1 + aq2Y2 + . . .+ aqkYk

 =


X1

X2

...
Xq


Qual a distribuição CONJUNTA dos q ı́ndices no vetor X?
Uma maneira intuitiva de ver isto é pensar que, se duas linhas de A
forem muito parecidas, esperamos que os dois ı́ndices associados
sejam muito correlacionados.
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Mais propriedades da normal multivariada

Distribuição e combinações lineares

RESULTADO: Se Y ∼ Nk(µ,Σ) então

A
q×k

Y
k×1
∼ Nq

(
Aµ,AΣA′

)
Além disso, Y + c, onde c é um vetor k × 1 de constantes, é
distribúıdo como

Y + c ∼ Nk(µ + c,Σ)
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Mais propriedades da normal multivariada

Independência e covariância
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Mais propriedades da normal multivariada

Distribuição condicional

Outra propriedade fantástica da normal multivariada é a facilidade de
obter a distribuição condicional de um sub-vetor dados os valores dos
outros elementos do vetor aleatório Y.

Em geral, para uma distribuição conjunta arbitrária, isto não é
posśıvel.

Dada a conjunta f (y1, . . . , yk) dificlmente conseguimos saber qual é a
distribuição de Y1 dados os valores das demais variáveis.

Temos a fórmula para obter esta distribuição condicional,

fY1|Y2,...,Yk
(y1|y2, . . . , yk) =

fY1,Y2,...,Yk
(y1, y2, . . . , yk)

fY2,...,Yk
(y2, . . . , yk)

mas não é óbvio de antemão qual será o resultado desta fórmula.

Este não é o caso da normal multivariada.

Podemos obter imediatamente e sem muitas contas a distribuiç ao
condicional.
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Mais propriedades da normal multivariada

Distribuição condicional
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Mais propriedades da normal multivariada

Condicional: exemplo

Seja Yt = (Y1t ,Y2t ,Y3t ,Y4t) os retornos das quatro ações no dia t.

Suponha que Y ∼ N4(µ,Σ) com

Y ∼ N4(µ,Σ) = N4




0.001
0.003
0.001
−0.001

 , 10−4


Tel4 Vale5 Pet4 Suz4

Tel4 9.08 6.58 7.49 2.53
Vale5 6.58 9.27 6.53 2.00
Pet4 7.49 6.53 10.01 2.86
Suz4 2.53 2.00 2.86 7.69




Suponha que, de alguma forma,antecipamos o retorno das duas
últimas ações, PET4 e SUZ4, no dia seguinte.

Estima-se que PET4 e SUZ4 terão ambas um aumento de 5% (isto é,
Y3t = Y4t = 0.05).

O que podemos dizer sobre os valores mais prováveis para TEL4 e
VALE5?
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Mais propriedades da normal multivariada

Condicional: exemplo

Distribuição de (Y1t ,Y2t) dado que Y3t = 0.05 e Y4t = 0.05: Como

µ =


0.001
0.003
0.001
−0.001

 e Σ = 10−4


Tel4 Vale5 Pet4 Suz4

Tel4 9.08 6.58 7.49 2.53
Vale5 6.58 9.27 6.53 2.00
Pet4 7.49 6.53 10.01 2.86
Suz4 2.53 2.00 2.86 7.69


sabemos que (Y1t ,Y2t) será uma normal bivariada N2(m,Φ) com os
seguintes parâmetros:

m = µ12 + Σ12Σ−1
22

(
y3 − µ3

y4 − µ4

)
=

(
0.001
0.003

)
+

(
7.49 2.53
6.53 2.00

)(
10.01 2.86
2.86 7.69

)−1 (
0.05− 0.001
0.05 + 0.001

)
=

(
0.040
0.036

)
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Mais propriedades da normal multivariada

Condicional: exemplo

A matriz de covariância de (Y1t ,Y2t) dado que Y3t = 0.05 e
Y4t = 0.05:

Φ = Σ11 −Σ12 Σ−1
22 Σ21

= 10−4

((
9.08 6.58
6.58 9.27

)
−
(

7.49 2.53
6.53 2.00

)(
10.01 2.86
2.86 7.69

)−1 (
7.49 6.53
2.53 2.00

))

= 10−4

(
3.45 1.69
1.69 5.01

)

Assim, olhando diretamente as duas marginais CONDICIONADAS ao
evento Y3t = 0.05 e Y4t = 0.05 e a correlação condicional:

(Y1t |Y3t = 0.05,Y4t = 0.05) ∼ N(0.040, (0.019)2)

(Y2t |Y3t = 0.05,Y4t = 0.05) ∼ N(0.036, (0.022)2)
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Mais propriedades da normal multivariada

Condicional: exemplo

Assim, antes de saber o valor de Y3t e Y4t , sab́ıamos que

Y1t ∼ N(0.001, (0.0301)2) texte Y2t ∼ N(0.003, (0.0304)2)

Isto é, espera-se uma valorização de 0.1% ao dia para PET4 e de
0.3% para VALE5.
Agora que somos informados de que as ações PET4 e SUZ4 tiveram
uma grande valorização de 5% de um dia para o outro, podemos
revisar o que esperamos para as outras duas ações, PET4 e VALE5:

(Y1t |Y3t = 0.05,Y4t = 0.05) ∼ N(0.040, (0.019)2)

(Y2t |Y3t = 0.05,Y4t = 0.05) ∼ N(0.036, (0.022)2)

Note que agora esperamos uma valorização de 4% para PET4 (40
vezes maior que antes) e de 3.6% para VALE5 (ou 12 vezes maior que
antes).

Note também como o DP diminuiu nos dois casos.
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Mais propriedades da normal multivariada

Condicional: exemplo

Marginalmente, Y1tce Y3t são correlacionadas e ρ12 = 0.72.

A correlação condicional Cor(Y1t ,Y2t |Y3t = 0.05,Y4t = 0.05) entre
estas duas ações PET4 e VALE5 é dada por

Cov(Y1t ,Y2t |Y3t = 0.05,Y4t = 0.05)√
V(Y1t |Y3t = 0.05,Y4t = 0.05)V(Y2t |Y3t = 0.05,Y4t = 0.05)

1.69× 10−4

0.019× 0.022
= 0.40

Assim, conhecer o evento Y3t = 0.05 e Y4t = 0.05) DIMINUI a
correlação entre as variáveis Y1t e Y4t de 0.70 para 0.40.

Em resumo: as distribuições de Y1t e Y4t bem como sua correlação
são bastante impactadas pelo evento Y3t = 0.05 e Y4t = 0.05).
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Mais propriedades da normal multivariada

Condicional: exemplo

Elipse vermelha: região em que (Y1,Y2) cai com probabilidade 95%.
Elipse azul: dado que Y3 = 0.05 e Y4 = 0.05, esta é a região em que
(Y1,Y2) cai com probabilidade 95%.
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Mais propriedades da normal multivariada

Propriedades: resumo
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Detecção de anomalias multivariadas

Distância estat́ıstica e anomalias

Seja Y ∼ Nk(µ,Σ).

Considere a distância estat́ıstica de um ponto aleatório Y até seu
vetor médio µ:

D2 = (Y − µ)′Σ−1 (Y − µ)

Se Y é um ponto aleatório, a distância D2 também é aleatória.

Algumas vezes esta distância é grande, algumas vezes ela é pequena.

Qual a distribuição de probabilidade desta distância?

Quando um ponto aleatório Y poderá ser considerado anômalo?

Quando sua distância poderá ser considerada excessiva?
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Detecção de anomalias multivariadas

Uma coordenada por vez?

Basta olhar cada coordenada, não?

Sabemos que cada coordenada Yi segue uma normal.

Neste caso, a chance de cada coordenada Yi se afastar de sua média
µi por mais de 2DPs σi é aproximadamente 5%.

E de se afastar mais de 3 DPs σi é 0.3% enquanto se afastar mais de
4 DPs é apenas 0.006%.

Assim, temos um critério para determinar se um ponto é
moderadamente ou muito anômalo olhando uma coordenada de cada
vez.

Acontece que podemos fazer melhor.

Podemos ter um ponto muito anômalo n espaço k-dimensional mas
NENHUMA de suas coordenadas é anômala!!
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Detecção de anomalias multivariadas

Anomalias em k dimensões

Para ilustrar este fenômeno, vamos considerar apenas o caso
bi-dimensional.
Veja o gráfico abaixo de uma amostra de uma normal bi-variada
N2(0,Σ) onde o valor esperado de cada variável é zero, a variância é
1 e a correlação é ρ = 0.85.
O ponto vermelho é claramente uma anomalia mas olhando-se os
valores de cada uma de suas coordenadas isoladamente não nenhuma
evidência de que seja uma anomalia.
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Detecção de anomalias multivariadas

Distribuição de D2

Como usar o resultado abaixo?

Calcule a distâcia estat́ıstica d2 para cada ponto y.
Plote estes distância versus um certo valor esperado sob a hipótese de
normalidade.
O plot deveria se parecer com uma linha reta com inclinação 1 e
passando pela origem.
Uma curva sistematicamente desviando-seda reta indica que a
distribuição não é normal multivariada.
Apenas um ou dois pontos desviando-se muito acima da reta indicam
grandes distâncias ou anomalias.
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Detecção de anomalias multivariadas

Exemplo: N2 sem outliers
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Detecção de anomalias multivariadas

Exemplo: N2 com dois outliers
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QQ-plot de D2

2-dim ou k-dim

O mais relevante é o QQ-plot,o terceiro plot.

Se os vetores são 2-dim, um simples scatterplot das duas variáveis
mostra quais são as anomalias: QQ-plot não ajuda muito.

A principal utilidade dos QQ-plots é quando a dimensão do vetor for
maior que 2.

Não conseguimos visualizar todos as dimensões ao mesmo tempo.

Em R:

d2 = mahalanobis(x, center = mu, cov=S)

qqplot(qchisq(ppoints(length(d2)), df = ncol(x)), d2)
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QQ-plot de D2

Distribuição qui-quadrado

Vimos que D2 segue uma distribuição qui-quadrado com k graus de
liberdade quando o vetor Y ∼ Nk(µ,Σ).

Já encontramos esta distribuição no teste qui-quadrado.

Esta distribuição só depende da dimensão do vetor.

Não interessa os valores t́ıpicos nem a escala dos elementos do vetor
Y.

Ela é uma métrica universal para desvios em k dimensões quano os
dados são gaussianos.

Como é a cara desta distribuição qui-quadrado?

Ela é uma distribuição cont́ınua com uma densidade

f (x) = cte xk/2−1e−x/2
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Distribuição qui-quadrado

Por exemplo:

f (x) = cte e−x/2 com k = 2 degrees of freedom

f (x) = cte xe−x/2 com k = 4 d.f.

f (x) = cte x9e−x/2 com k = 20 d.f.
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Quantil de qui-quadrado

Como D2 ∼ χ2(k), achamos o valor de x que deixa uma proporção p
da área da χ2(k) abaixo dele.

Este valor é chamado de quantil e denotado por q(p).

quantil p = q(p) tal que P(χ2(k) ≤ q(p)) = p

Por exemplo, para a proporção p = 0.65, queremos

quantil 0.65 = q(0.65) tal que P(χ2(k) ≤ q(0.65)) = 0.65

Sendo mais espećıficos, suponha que a dimensão do vetor é k = 4.

Então queremos

quantil 0.65 = q(0.65) tal que P(χ2(4) ≤ q(0.65)) = 0.65

Esta valor é q(0.65) = 4.438 e facilmente encontrado em R com
qchisq(0.65, 4).
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Quantil de qui-quadrado

Dois quantis de uma qui-quadrado com 4 graus de liberdades.
Seta vermelha: com p = 0.65, o quantil q(0.65)
Seta azul: com p = 0.90, o quantil q(0.90)
Estes quantis são valores TEÓRICOS, não precisam de dados para
serem obtidos, apenas da densidade de probabilidade.
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Os quantis q(p)

Para fazer o QQ-plot com uma amostra de tamanho n, os quantis
q(p) de interesse são os valores p no conjunto

p ∈
{

1− 0.5

n
,

2− 0.5

n
,

3− 0.5

n
, . . . ,

n − 0.5

n

}
Por exemplo, se n = 137 então calculamos os quantis q(p) para p no
conjunto

p ∈
{

1− 0.5

137
,

2− 0.5

137
,

3− 0.5

137
, . . . ,

137− 0.5

137

}
= {0.0036, 0.0109, 0.0182, . . . , 0.9963}

A subtração de 0.5 no numerador épara evitar problemas nos
extremos: não queremos o quantil associado com a proporção
p = n/n = 1. Para manter a consistância, 0.5 é subtráıdo de todos os
elementos.
Se a dimensão do vetor é k = 4, estes quantis são obtidos em R com
os comandos

prop = ppoints(nsims) # conjunto de pontos p

qp = qchisq(prop, df = 4)
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Os quantis q(p) e a amostra

Sabemos que o valor teórico q(p) para a distância estat́ıstica é aquele
valor que deixaria aproximadamente p100% das distâncias de uma
amostra abaixo dele.

Isto é, como
P(D2 ≤ q(p)) = p

então esperamos p100% dos pontos com uma distância estat́ıstica
menor que q(p).

Por exemplo, com um vetor de dimensão k = 4, o quantil
q(0.65) = 4.438 pois

P(χ2(4) ≤ 4.438) = 0.65

Assim, ao calcular a distância estat́ıstica D2 para cada ponto da
amostra, esperamos que 65% deles tenham distância menor que
4.438.
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QQ-plot de D2

Quantil teórico e emṕırico

Podemos obter uma boa estimativa do valor TEÓRICO q(p) a partir
da amostra.

Calcular a distância estat́ıstica D2 para cada ponto da amostra e
ordene os valores:

D2
(1) ≤ D2

(2) ≤ . . . ≤ D2
(n)

O śımbolo (i) no sub-́ındice indica a i-ésima estat́ıstica de ordem.

Considere uma proporção p = i/n.

Por exemplo, suponha que k = 4, n = 100 e queremos
p = 76/100 = 0.76.

Temos q(0.76) = 5.4969 = qchisq(0.76, 4):

P(D2 ≤ 5.4969)) = 0.76
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Quantil teórico e emṕırico

A 76-ésima estat́ıstica de ordem D2
76 deixa 76% dos pontos abaixo ou

igual a ela.

Assim, se quiseremos uma estimativa EMPÍRICA (baseada nos dados)
do valor teórico q(0.76) = 5.4969 (obtido da densidade da χ2), o
valor D2

76 é um bom candidato.

Esperamos D2
(76) ≈ q(0.76) = 5.4969 pois como

P(D2 ≤ 5.4969) = 0.76 ,

esperamos 76% da amostra abaixo do valor teórico q(0.76) = 5.4969.

Como temos exatamente 76% abaixo do valor EMṔIRICO D2
(76),

proporção das variáveis leqD2
(76) = 76/100 ,

podemos esperar D2
(76) ≈ q(0.76) = 5.4969.
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Então, fazendo o QQ-plot

Tome a proporção p = (i − 0.5)/n e ache o quantil TEÓRICO

quantil
i − 0.5

n
= qi tal que P(χ2(k) ≤ qi ) =

i − 0.5

n

Variamos i calculamos os quantis qi para i = 1, 2, . . . , n.

Para cada i , pareamos qi e a i-ésima distância ordenada D2
(i).

Devemos ter qi ≈ D2
(i) para todo i .

Portanto, os pares (qi ,D
2
(i)) devem cair ao longo da reta y = x se os

pontos são uma amostra aleatória de uma nomal multivariada.

Renato Assunção, DCC, UFMG Estat́ıstica para Ciência dos Dados 181 / 186



QQ-plot de D2

Checando em R

Vamos simular alguns dados de uma normal multivariada e verficar
que seu QQ-plot segue o padrão esperado.

Seja Y ∼ N4(µ,Σ) onde µ = (4, 3, 2, 1) e matriz de covariância

Σ =


3 0 2 2
0 1 1 0
2 1 9 −2
2 0 −2 4


Vamos gerar uma amostra de nsims=200 vetores i.i.d. desta
distribuiçãao e fazer o QQ-plot com as distâncias estat́ısticas.

NOTE QUE: Na prática, temos APENAS a amostra, sem os valores
teóricos µ e Σ, que devem ser estimados a partir dos dados.
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Script R

require(MASS); nsims=200; set.seed(1)

Sigma = matrix(c(3,0,2,2,0,1,1,0,2,1,9,-2,2,0,-2,4),4,4)

pts = mvrnorm(nsims, c(4,3,2,1), Sigma)

m = apply(pts, 2, mean)

round(m, 3) # [1] 3.863 2.997 1.909 0.998

S = cov(pts); round(S, 2)

# [,1] [,2] [,3] [,4]

#[1,] 2.97 -0.09 1.50 2.17

#[2,] -0.09 1.16 0.98 -0.02

#[3,] 1.50 0.98 7.87 -1.66

#[4,] 2.17 -0.02 -1.66 3.96

d2 = mahalanobis(pts, m, S)

# Passamos m e S, as ESTIMATIVAS de mu e Sigma
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Script R

par(mfrow=c(1,2))

hist(d2, n=15, prob=T, main = "Histograma de D2")

rug(d2)

aux = seq(0, 15, by=0.01)

yaux = dchisq(xaux, df=ncol(pts))

lines(xaux, yaux, , lwd=2, col="blue")

qqplot(qchisq(ppoints(nrow(pts)), df = ncol(pts)), d2,

main = expression("Q-Q plot:" * ~D^2 *

" x quantiles " * ~ chi[2]^2))

abline(0, 1, col = ’gray’)
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Amostra de N4(µ,Σ)
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Amostra com outliers

Figura: Adicionando dois outliers
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Script: mais dois outliers

set.seed(1)

pts = mvrnorm(nsims, c(4,3,2,1), Sigma)

pts = rbind(pts, c(4,3,-3,-5), c(10,6,2,4))

m = apply(pts, 2, mean); S = cov(pts)

d2 = mahalanobis(pts, m, S)

par(mfrow=c(1,2))

hist(d2, n=15, prob=T, main = "Histograma de D2"); rug(d2)

aux = seq(0, 15, by=0.01); yaux = dchisq(xaux, df=ncol(pts))

lines(xaux, yaux, , lwd=2, col="blue")

qqplot(qchisq(ppoints(nrow(pts)), df = ncol(pts)), d2,

main = expression("Q-Q plot:" * ~D^2 *

" x quantiles " * ~ chi[2]^2))

abline(0, 1, col = ’gray’)
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