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Normal bivariada: introdugdo

Normal bivariada

Figura: Densidade da normal bivariada
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Normal bivariada: introdugdo

Normal bivariada

e Importante distribuicdo para um vetor aleatério Y = (Y7, Y2)

@ Cada uma das v.a's separadamente segue uma gaussiana com sua

prépria esperanga ji; e variancia af

@ Isto é, Y] ~ N(,ul,a%) e Yy ~ N(,LLQ,O'%)
@ As amostras de Y formam nuvens de pontos em forma de elipses
centradas em (u1, p2).

e Além disso, elas ndo sdo (em geral) independentes: A distribuicdo de
Y> MUDA SE SOUBERMOS O VALOR DE Y;.

@ Um dnico pardmetro p € [—1, 1] controla o grau de associa¢do ou
correlacdo entre Yi e Y5.
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Normal bivariada: introdugdo

Densidade e amostra
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Figura: Normal bivariada com Y; ~ N(u; = 0,02 =1) e Yo ~ N(up = 0,03 = 1)

e com correlagdo p =0
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Normal bivariada: introdugdo

Densidade e amostra
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Figura: Normal bivariada com Y; ~ N(u; = 0,02 =1) e Yo ~ N(up = 0,03 = 1)
e com correlacdo p = 0.80
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Normal bivariada: introdugdo

Uma amostra de uma normal bivariada

@ n = 100 instancias do vetor aleatério
Y = (Y1, Y2).

@ Existem os valores MARGINAIS: °©
E(\Y1) = m )

4] \/V(Yl) =01

e também E(Y2) = uo

80
I

60
I

y2

@ e \/V(Yg) = 02
@ Estes valores sio facilmente estimados N % SR
a partir das MARGENS do grafico. : K
@ Por exemplo: &7 .
o E(V1) = ~ 10 < s s wm 2 B w
e 01~ 2.5 v
@ Agora vocé: E(Y2) = pup =777 e
o &7

Figura: Amostra de normal bivariada
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Normal bivariada: introdugdo

Uma amostra de uma normal bivariada
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@ Como assim? g 4 o .
@ Vamos ser mais especificos... : : - : : : :
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Figura: Amostra de normal bivariada
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Normal bivariada: introdugdo

Distribuicao de Y DADO QUE Y;

@ Qual a distribuicdo de Y5
DADO QUE Y; = 147

@ O que podemos dizer do valor
esperado de Yo DADO QUE
Y, = 147

@ Este valor esperado continua
igual a esperanca marginal
M2 = 507

Renato Assun¢do, DCC, UFMG
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Figura: Amostra de normal bivariada
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Normal bivariada: introdugdo

E(Y,|Y:s = 14)

@ Queremos ter uma ideia de
E(Y2|Y: = 14).

@ Temos pp = 50 mas s g
E(Y2| Y1 = 14) deve ser S o Y .
> 50 = pup s =

@ Qual a sua estimativa para s e

E(Y2|Y1 = 14) no olhémetro? g 1

@ Suponha que um ponto
aleatério serd escolhido da ¥ -
distribuicio CONDICIONAL i s
de Y> dados Y; = 14. "
@ — o ponto estara na linha
vertical (14, y2). Figura: Amostra de normal bivariada
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Distribuicdo de (Y2|Y: = 14)

@ Os pontos (y1,y2) da amostra que s -
possuem y; = 14 indicam o que deve L ’
ser o comportamento probabilistico da s
v.a. Y2 DADO que Y; = 14. o

Vemos que E(Y2|Y1 = 14) = 70 <
Veja que 70 >> 50 = E(Y2) = puo.
12 é a esperanca MARGINAL de Y. 7

A esperanca condicional E(Y2|Y; = 14) . 6 s 10 1 w1
é bem maior que a marginal E(Y2). n

Figura: Amostra de normal bivariada

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 10 / 186



Distribuicdo de (Y2|Y: = 14)

@ Se E(Y2]Y1 = 14) = 70, quanto é
V(Y2|Y1 =14) ?

@ Olhando os pontos (yi,y2) que possuem
y1 =~ 14, qual o tamanho médio dos
desvios de Y EM TORNO DE SUA o
ESPERANCA E(Y,|Y; = 14) ~ 7077

@ Os pontos estdo no intervalo de [50,80] S
grosseiramente. o Y, Ta%

80
I

60
I

40

@ Eu chutaria (ou estimaria) que
VV(Y2Y1 = 14) =~ (80— 30)/4 =75

@ Veja que 7.5 << 15 = /V(Y2), que é 4 6 8 10 12 14 16
o DP marginal de Y5. yi

20

Figura: Amostra de normal bivariada
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Normal bivariada: introdugdo

Dos momentos para a distribuicao

Estes sdo os dois primeiros MOMENTOS condicionais da v.a.
Y>2|Y1 = 14, a esperanga e varidncia condicionais.

Eles sdo RESUMOS da distribuicdo de probabilidade de Y3|Y; = 14.
E qual é a distribuicdo de probabilidade de Y»|Y; = 14?7

Normal? Gama? Uniforme?

E UMA NORMAL.

Isto &, (Ya|Y1 = 14) ~ N(70,7.5%)
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Normal bivariada: introdugdo

Dos momentos para a distribuicao

E que tal Y2|Y1 =y com y genérico?
Conseguimos obter uma férmula geral para expressar qual é esta distribuicdo genérica.
Ela depende do coeficiente de correlacdo p que neste exemplo vale p = 0.8.
Temos
2
(Y2|Y1 = }/) ~ N(MYQ\le)M O—YQ\ley)
com
By vy=y = H2 + 7(}, 1)
e
Tyylvy=y = 02V 1 — p?
Por exemplo, com y» = 14 temos
po2 0.8 %15
#Y2|Y1:14=M2+7(14*M1):50+ 75 (14 -10) = 69.2
1
e

IV, 1=y = 02\/1 — p2 = 15\/1 —082=9

e portanto
(Ya|Y1 = 14) ~ N(69.2,92)

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados
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Normal bivariada: introdugdo

Como sabemos essa formula?

@ Fazendo o calculo matematico da densidade condicional:

fv(a, y2)
le(a)

a partir da densidade conjunta da normal bivariada.

frav (V2lyr = a) =

@ Para entender esta importante expressdo, vamos comecar definindo a
matriz 2 x 2 simétrica de covaridncia ) dada por

Z— |: O'% POx0Oy :|
2

POXOy o

@ onde p € [-1,1] e o e 0, sdo os desvios padrdes de cada marginal.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados
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Normal bivariada: introdugdo

Como sabemos essa formula?

@ Seja o vetor-COLUNA 2 x 1 das esperangas marginais:

p= (1, p2) = (E(Y1), E(Y2))
@ A férmula geral de uma normal bivariada é igual a

) = ctexep (5 )

onde d?(y, i) é uma medida de distancia entre o ponto y e o vetor
esperado L.

@ Esta medida de distdncia é MUITO importante e n3o é a distancia
euclidiana:

d*(y, ) = (y — )T Ny — )
Vamos estuda-la a seguir.
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Normal bivariada: introdugdo

Resumo: densidade de normal multivariada

@ Em resumo, um vetor normal multivariado tem uma densidade
conjunta que é proporcional a exponencial de MENOS uma medida

de distancia ao quadrado.

) = ctexep (5 )

@ Densidade decai exponencialmente a medida que a distancia AO
QUADRADO entre y e 1 aumenta.

16 / 186
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Normal bivariada: introdugdo

Decaimento exponencial

@ Veja o efeito de decair eponencialmente e de decair com
exponencialmente AO QUADRADO.
@ Decai mais depressa com a distancia e o pico é mais suave
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Resumo - Uma varidvel

Resumos tedricos

o Considere uma tnica varidvel aleatéria Y.
@ Sua distribuicdo de probabilidade fica determinada por:

o Caso Continuo: funcio densidade de probabilidade f(y)
o Caso Discreto: funcdo de probabilidade p(y) =P(Y = y)
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Resumo - Uma varidvel

Resumos tedricos

Podemos resumir a sua distribuicdo de probabilidade com os resumos
numéricos (e tedricos) esperanca E(Y) e desvio-padrao

DPy = /V(Y).

Os resumos E(Y) e DPy = /V(Y) ndo DEPENDEM de dados
estatisticos.

S3o resultados de calculos matemiticos e resumem a DISTRIBUICAO
tedrica de uma v.a.

Vamos agora passar a olhar DADOS ESTATISTICOS.
Suponha que temos uma amostra aleatéria de Y.
Isto é, v.a.’s Y1, Y5,..., Y, i.i.d. com a mesma distribuicdo que Y.

Estes n ndmeros ficam numa das colunas de nossa tabela de dados.
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Resumo - Uma varidvel

Resumos empiricos, a partir dos dados

@ Para ter uma idéia de TODA A distribuicdo de probabilidade de Y:
e Caso Continuo: histograma. A altura do histograma em y é ~ f(y).
e Caso Discreto: grafico de barras com as frequéncias empiricas nx/n

onde n, é o nimero de elementos da amostra iguais a k. Temos

ng/n=P(Y = k).

)

Renato Assun¢do, DCC, UFMG
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Resumo - Uma varidvel

Contraparte empirica dos resumos

o Podemos ESTIMAR os resumos TEORICOS E(Y) e
o = DPy = /V(Y) a partir dos dados.

@ Pela Lei dos Grandes Nimeros, se o tamanho n da amostra é grande,
temos

o A média aritmética Y = (Y1 + ...+ Y,) = E(Y)
o O DP amostral S = />, (V; fV)Q/nmcr

@ As vezes, define-se S usando n — 1 no denominador. A diferenca é
minima a n3o ser que n seja muito pequeno.

e Note que Y # E(Y)
e Eque S#o
@ Y e S dependem dos dados e variam de amostra para amostra,

MESMO QUE O MECANISMO GERADOR DOS DADOS NAO
MUDE.
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Correlagdo

Desvio padronizado

@ Um desvio em relagdoa p=E(Y): éava. Y —pu

e Desvio padronizado: Z = (Y — pu)/o

@ Desvio padronizado é medido relativamente ao desvio-padrdo o da
v.a. Y.

@ Um desvio padronizado Z = 2 significa um afastamento de 2 DPs em
relacdo a p

@ Qualquer que seja a distribuicdo de Y, termos Z > 4 é muito raro

(pela desiguladade de Tchebyshev).
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Correlagdo

Duas variaveis

@ Como medir a associacdo entre duas varidveis Y7 e Y5 medidas num
MESMO item.

o Estas varidveis poderiam ser qualquer par de colunas da nossa tabela
de dados.

@ Seja Z; = (Y1 — p1)/o1 o desvio padronizado de Y;
@ e Z» = (Y2 — p2) /o2 o desvio padronizado de Y,

@ Quando Z; € grande existe alguma TENDENCIA de também termos
Z grande?

@ Se sim, diremos que Y7 e Y5 possuem um grau de associacdo ou
correlacdo.

@ Como formalizar este conceito?
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Correlagdo

Duas variaveis

Vamos comecar com a versio EMPIRICA da associa¢3o.

Amostra de 147 pessoas (os itens) trabalhando em ocupag¢des
fisicamente demandantes.

Em cada item, medimos o par de varidveis (Y1, Y2).

Y1 € a forca do aperto de m3o (ou grip strength)

Y, é a for¢a do brago (ou arm strength)
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Correlagdo

Duas varidveis: scatterplot
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Figura: Relagdo entre forca de preensdo (do aperto de m&o) e forca do brago para

147 pessoas que trabalham em empregos fisicamente extenuantes.
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Correlagdo

Duas varidveis: scatterplot
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Figura: Linhas verticais indicando aproximadamente p; e pp. A maioria dos
pontos estd nos quadrantes 1 e 3. Quando Z; > 0, em geral, temos Z, > 0.
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Correlagdo

Produto dos desvios

@ Existem varias formas intuitivas de medir a associacdo entre Y7 e Y5.

@ Uma forma ndo intuitiva mas que tem excelentes propriedades
tedricas é o indice de correlacdo de Pearson.

o Considere o produto dos desvios padronizados:

Y1 — 1 o Yo — 2
o1 o2

L7y =

@ Se desvios grandes e positivos de Y7 tendem a ocorrer com desvios
grandes e positivos de Y5, seu produto serd maior ainda.

@ Ao mesmo tempo, se os desvios grandes e negativos de Y7 tendem a
ocorrer com desvios grandes e positivos de Y5, seu produto serd maior
ainda.
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Correlagdo

Produto dos desvios
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Figura: Tipicamente, em média, o produto dos desvios padronizados Z; Z, é
positivo (esquerda), préximo de zero (centro) e negativo (direita).
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Natureza de /12,

@ (Y1, Y2) é um vetor aleatério: duas v.a.'s sdo medidas no mesmo
item.
@ Considere
2.7, = Y1 — 1 y Y2 — 2
o1 02
e O que é p1?7 Uma constante? Uma v.a.?
@ O mesmo vale para pp, o1 € 02.
@ E o produto Z; 2,7
o E uma constante?
e Umav.a.?
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Correlagdo

Correlacao

O produto Z1Z> é uma v.a. !!

Como resumir esta v.a. num dnico nimero?

@ J34 sabemos fazer isto com QUALQUER v.a.: tome o seu valor
esperado.

@ Isto é, vamos calcular

Y, — _
p:Corr(Yl,Yz):E(leg):E< 1 Y “2>

g1 02

Este resumo é o indice de correlacdo de Pearson.
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Propriedades de p

@ p estd SEMPRE entre -1 e 1.

@ Esta é uma das razdes para usar p como medida de associacdo entre
Y1 e Y2: uma escala fixa em qualquer problema.

@ Além disso, pela definic3o,
COI’I’(Yl, Yg) =E (lez) = COI’F(YQ, Yl)

@ Também temos que Corr(Y,Y) = 1: a correlagdo de uma v.a.
consigo mesma € 1.
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Propriedades de p

@ Se Yj é uma v.a. independente da v.a. Y, entdo p = 0.

@ Neste caso, uma amostra de valores do vetor (Y1, Y2) formard um
grafico de dispersdo com forma indistinta, uma nuvem sem inclinac3o.

@ Se p ~ +1 entdo Y5> é aproximadamente uma func3o linear perfeita
de Yl.

@ Isto é, uma amostra de valores do vetor (Y7, Y2) formard uma grafico
de dispersdo na forma aproximada de uma linha reta.
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Amostras do vetor (Y7, Y2) com diferentes p

rho= -0.33 rho = -0.11
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Matriz de correlagdo

Correlation Matrix

Correlacdo é uma medida de associacido entre DUAS v.a.’s

E quando tivermos p v.a.'s simultaneamente, todas medidas no
mesmo item?

Suponha que tenhamos um vetor (Y1, Y2,...,Y,) dev.a.'s

Podemos fazer uma matriz p x p de correlagdo.

Na posi¢do (i,j) teremos

Y —
py = Con(;, ;) = (YL )

oj o

Como Corr(Y;, Yj) = Corr(Y], Yi) a matriz é simétrica.

E como Corr(Y;, Y;) =1 a diagonal principal é toda de 1's.
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Matriz de correlagdo

Exemplo: Correlation Matrix

Temos um vetor aleatério (Y1, Ya,..., Yo).

@ As 9 varidveis aleatdrias sdo escores obtidos em 9 testes de habilidade
cognitiva, todos aplicados num mesmo individuo.

@ As v.a.’s s3o as seguintes:

e 3 v.a.’s medindo habilidade verbal: Word Meaning, Sentence
Completion, and Odd words;

e 3 v.a.'s medindo habilidade quantitativa: Mixed Arithmetic,
Remainders, and Missing numbers;

e 3 v.a.'s medindo habilidade espacial: Gloves, Boots, and Hatchets.

Como poderia ser a matriz de correlagdo 9 x 9 entre estas v.a's?
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Matriz de correlagdo

Matriz de correlagao 9 x 9

Variable

WrdMean
SntComp
OddWrds
MxdArit
Remndrs
MissNum
Gloves
Boots
Hatchts

WrdMean, word meaning,; SntComp, sentence completion; Odd\Wrds, odd words,
MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers,

1

1

0.756
0.78
0.44
0.45
0.51
0.21
0.30
0.31

Hatchts, hatchets.

1

0.72
0.52
0.53
0.58
0.23
0.32
0.30

1

0.47
0.48
0.54
0.28
0.37
0.37

1

0.82
0.82
0.33
0.33
0.31

1

0.74
0.37
0.36
0.36

1

0.35
0.38
0.38

1
0.45
0.52

1
0.67

1

Figura: Correlagbes entre pares formados a partir de 9 medidas feitas num mesmo

individuo em um teste de personalidade

Renato Assun¢do, DCC, UFMG
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Matriz de correlagdo

Visualizando a matriz de correlacao

WrdMean SntComp OddWrds MxdArit Remndrs MissNum Gloves
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Figura: Amostra de 244 individuos e scatterplots dos pares de suas 9 medidas no
teste de habilidade cognitiva
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Matriz de correlagdo

Visualizando outra matriz de correlacao

Correlation wine.csv
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Figura: A partir de dados amostrais mostra-se 0o FORMATO da nuvem de pontos
de uma amostra de VINHOS com 14 varidveis medidas em cada um dos vinhos.

Gréfico em R + rattle
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Matriz de correlagdo

Mais uma visualizacao

MaxTemp

MaxTemp

save| print Close

Raiintall WindSpeedoam Pressuredam Tempoam Temp3pm
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duwayxen
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Temp3pm
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Figura: Mais uma visualizagdo com R + rattle

nato Assun¢do, DCC, UFMG
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Matriz de correlagdo

Uma visualizacdo com MUITAS v.a.’s: rede

Big 5 correlations

© Neuroticism
© Extraversion

© Openness

© Agreeableness

© Conscientiousness

Figura: Uma visualizacdo com qgraph: v.a.'s sdo vértices e correlacdes sdo
arestas. Verde = correlagdo positiva e vermelha = negativa. As arestas mais

grossas e saturadas tem |p| grande.
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Matriz de correlagdo

Nem sempre, os graficos sao simples

4x4 Scatter Plot Matrix with Diagonals
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Figura: Scatterplot matrix of 4 lab variables to test liver functioning commonly
used in clinical research
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Matriz de correlagdo

Misturas de diferentes populacoes

Sepallength  PetalLength  SepalWidth PetalWidth
e

SepalLength
4

PetalLength
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& &5 oot

s & o iy’
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Figura: Scatterplot matrix de 4 varidveis medidas numa flor: comprimento de
pétala, largura de pétala, comprimento de sétala, largura de sétala. Trés espécies
distintas misturadas. Relac3o entre as varidveis é diferente, ela depende da
espécie.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 42 /186



Propriedades de p

@ Se p=—1 ou p = +1, podemos predizer o valor de Y5 como fun¢do
linear de Yi, sem erro, de forma perfeita.

@ Isto é, se p= =1, temos Yo = a+ Y

@ Se p = 0 pode acontecer que Y7 seja fortemente relacionada a Y5 de
uma forma n3o-linear. S3o casos raros na pratica.
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Propriedades de p

@ p é invariante por mudanca linear de escala.

@ Por ex, Y7 é o estoque de café num certo més e Y> é o preco do café
em reais no mesmo més.

e Seja p = Corr( Y1, Y2).

@ Suponha que outra varidvel seja usada: o preco Y3 do café em ddlares
e que Y3 =2.3Y5.

@ Neste caso,

Corr( Y1, Y3) = Corr(Y1,2.3Y2) = Corr(Yi, Y2)
@ Do mesmo modo, se medirmos em graus centigrados (Y2) ou em

graus Farenheit (Y3 = 32 + 1.8Y5), a correlagdo com outra varidvel
Y: é

COI’I’(Yl, Y3) = COH’(Yl, 32 + 1.8Y2) = Corr(Yl, Yz)
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Estimando p

@ p é um resumo tedrico da distribuicdo CONJUNTA de duas v.a.’'s
@ Ele n3o depende de dados para ser obtido, é uma conta matematica.
@ Relembre a defini¢do:

p_Corr(Yl,Yg)_E(Yl_'ul o Y2—I~L2>

o1 02
e Precisa de 1 = E(Y1), 02 = V(Y1), etc.

e Em seguida precisa calcular (usando teoria de probabilidade) o valor
esperado do produto dos desvios.

@ Para varias distribuicOes, esta conta matematica é invidvel
(ndo-analitica).

@ No entanto, com dados, podemos estimar p.
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Estimando p

e Como Y ~ E(Y)
° ecom05:\/Z,(Y,-—7)2/nma

@ podemos aproximar

p—E Y1—M1XY2—M2 ~F Y1—Y1><Y2—Y2
o1 (o)) 51 52

@ onde Y; é a média aritmética dos n valores da varidvel 1, etc.

@ é, Y] é média aritmética da coluna associada com a varidvel 1 na
tabela de dados.

@ Mas ainda precisariamos calcular uma esperanca matematica que é
invidvel na maioria das distribuicdes.
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Matriz de correlagdo

Desvio padronizado empirico

@ Solucdo: calcule o desvio realizado de cada um dos n valores das duas
varidveis.

@ Para a varidvel 1 com os n valores yj1,...,yn da coluna 1 da tabela,
calcule a nova coluna formada por

Yi—n
Zp = ———
S1

@ Faca o memso para a coluna 2, criando uma outra coluna de desvios
padronizados empiricos:

Yi2 = Y2
52

@ A seguir, multiplique as duas colunas de desvios padronizados e tire a
sua média aritmética calculando

n n J— J—
1 1 Yn—Yi\ (Y2 —Y2
=L ma= 0 (T ;
i=1 i=1 1 2
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Pressao sistdlica

A pressao sistélica mede a forca do sangue nas artérias, a medida que
0 coracao contrai para impulsionar o sangue através do corpo.

Se alta, ela pode levar a doenga de coracdo, angina e doencas
vasculares nas pernas.

Pressao sistélica saudavel: entre 120 e 140 mm Hg
Pressao sistélica > 140 mm Hg: ndo saudavel
Pressdo diastdlica: deve ficar em torno de 80.

Acima de 100 n3o é saudavel.
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Distancia Estatistica

Pressao sistdlica e diastdlica em amostra

@ Amostra de 250 individuos (instancias)
@ Pressdo em duas medi¢des (atributos):

o Diastdlica
e sistdlica

@ Como fica o grafico dos atributos dessas 250 instancias?
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Distancia Estatistica

Pressao de 250 individuos

diastolica

90 100 110 120 130 140 150

sistolica

Figura: Amostra de (y;1, yiz) com i =1,2,...,250.
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Distancia Estatistica

Médias para referéncia

@ 250 instancias do vetor aleatdorio: Y = (Y1, Y2)
@ Vetor com os valores esperados de cada varidvel do vetor:

E(Y) = E(Y1, Y2) = (E(Y1), E(Y2)) = (p1, p2) = p

Figura: Amostra de (y;1, yi2) com i =1,2,...,250.
Estatistica para Ciéncia dos Dados
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Distancia Estatistica

Quem estd distante do centro?

Centro p = (u1, p2) é o perfil esperado ou tipico.
Quem esta longe do perfil tipico? Quem é andmalo?
Medida baseada na distancia euclidiana

d(y1,y2) = v/(y1 — 120)2 + (y2 — 80)?

E razoavel?

95
I

85

diastolica

b

80

75
I

8 o by

90 100 110 120 130 140

sistolica
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Distancia Estatistica

Exagerando um pouco...

@ E se o segundo atributo for assim? Fazendo o aspect/raio = 1.
o Centro p = (u1, 2) continua o mesmo.
@ Mas quem esta distante do centro agora? Quem é andmalo?

100
I

90

He o ° ety

diastolica
80

by

T T T T T
90 100 110 120 130 140

sistolica

Figura: Amostra de (y;1, ¥iz) com i =1,2,..,250.
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Distancia Estatistica

Distantes sao dbvios, nao?

@ Mas qualé a medida de distancia que estamos usando implicitamente,
sem nem mesmo perceber?
@ Na3o é a distancia euclidiana!

100
I

diastolica
80

9 100 110 120 130 140

sistolica

Figura: Amostra de (y;1, ¥i2) com i =1,2,...,250.
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Distancia Estatistica

Pontos a igual distancia?

@ Todos os pontos do circulo estio a mesma distancia euclidiana do
centro da nuvem de pontos.

@ Queremos os dois pontos em vermelho a igual distancia
ESTATISTICA do centro queos pontos em azul?

e NAO!!! Pontos vermelhos estio ESTATISTICAMENTE muito mais

distantes do centro (u1, pi2) do que os pontos azuis.

diastolica
65 70 75 80 85 90 95

Renato Assun¢do, DCC, UFMG

T T T T T
90 100 110 120 130 140
sistolica
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Distancia Estatistica

Pontos vermehos mais distantes

@ Como fazer os pontos vermelhos mais distantes que os pontos azuis?

@ Andar poucas unidades na direcdo norte-sul te leva para fora da
nuvem de pontos (vira anomalia).

@ Precisa andar MAIS unidades na direcdo leste-oeste para sair fora da
nuvem de pontos.

diastolica
65 70 75 80 85 90 95

T T T T
90 100 110 120 130 140
sistolica

Figura: Amostra de (y;1, yi2) com i =1,2,...,250.
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Distancia Estatistica

Pontos vermehos mais distantes

@ Ent3o N unidades eucidlianas na direcdo leste-oeste VALEM O
MESMO que N/k na dire¢do norte-sul (onde k > 1).

Como achar este k7

Como equalizar as distancias?

RESPOSTA: Medindo distancias em unidades de DESVIOS-PADRAO.

diastolica
65 70 75 80 85 90 95
P —

T T T T T
90 100 110 120 130 140
sistolica

Figura: Amostra de (y;1, yiz) com i =1,2,...,250.
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Medida de dispersao

@ Desvio-padrao DP: um para cada eixo, um DP para cada atributo.

@ DP mede quanto, em média, um atributo aleatdrio desvia-se de seu
valor esperados
@ Por exemplo, DP = 10 significa:
o Em geral, observacdes desviam-se de 10 unidades em torno de seu valor
esperado
o As vezes mais de 10 unidades; as vezes, menos de 10 unidades
o Em média, um afastamento de 10 unidades: isto é o DP.
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Distancia Estatistica

Qual o desvio padrao de cada variavel?

e Centro E(Y) = p = (u1, 12) = (120, 80)
e DP; =01 =77
@ DPy =0y, =77

diastolica
0

Hi

T T T T T
90 100 110 120 130 140

sistolica

Figura: Amostra de (y;1, yiz) com i =1,2,...,250.
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Distancia Estatistica

Qual o desvio padrao de cada variavel?

e Centro E(Y) = p = (u1, 12) = (120, 80)
e DP; =01 =10
e DP, =0, =2

diastolica
0

Hi

T T T T T
90 100 110 120 130 140

sistolica

Figura: Amostra de (y;1, yiz) com i =1,2,...,250.
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Distancia Estatistica

Distancia medida em DP

o (p1,m2) = (120,80) e (01,02) = (10,2)

@ AZUL: afastou-se do centro apenas ao longo do eixo 1 e afastou-se 15
unidades ou 1.501)

o VERMELHO: afastou-se do centro apenas ao longo do eixo 2 e

afastou-se 15 unidades ou 7.507)

@ O ponto VERMELHO estd muito mais distante do centro em termos
de DPs.

@ Mas como fazer com pontos que afastam-se do centro ndo somente
ao longo de um dos eixos?

diastolica
65 70 75 80 8 90 95
P MY

T T T T T T
90 100 110 120 130 140

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 61 / 186



Distancia medida em DP

b (Nla ,u2) = (1207 80) € (017 02) = (107 2)

@ Andar noy ao longo do eixo 1 E EQUIVALENTE a andar nos no eixo
2.

@ Por exemplo, 20 unidades ao longo do eixo 1 (ou 207) é
ESTATISTICAMENTE EQUIVALENTE a 4 unidades ao (ou 207)
longo do eixo 2.

toli
65 70 75 80 85 90 95
P

T T T T T T
90 100 110 120 130 140

sistolica

Figura: Amostra de (y;1, yi2) com i =1,2,...,250.
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Distancia Estatistica

Distancia medida em DP

@ Vamos medir o desvio em cada eixo EM UNIDADES DE SEU
DESVIO-PADRAO e calcular a distancia com estes desvios
padronizados.

e DESVIO PADRONIZADO ao longo do eixo 1: z; = At — xn—120

o1 10
o DESVIO PADRONIZADO ao longo do eixo 2: z, = 212 = }’2;—80

@ Distancia:

d(y, 1)

‘/zlz—i-z22
_ y17120 2780)2
N 2
}’1 yz—ug)
02
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Distancia Estatistica

Pontos a igual distancia

e NESTA NOVA METRICA, quais os pontos (y1,y2) que est3o a uma
MESMA distancia do centro (1, 12)7?

Tome uma distancia fixa (por exemplo, 1).
Eles formam uma ELIPSE centrada em (u1, p12) € com eixos paralelos
aos eixos coordenados.

d(y,p) = \/(”10120)2+ (”%80)2 =1

Os pontos que satisfazem a equagdo acima formam uma elipse (esta é
a equagdo de uma elipse).

w0

o7 om0 s
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Distancia Estatistica

Tamanhos dos eixos

@ Distdncia ¢ > 0 do centro: pontos satisfazem a equacdo

d(y,p) = \/(ylzolzof + (”%&))2 =c

@ Os eixos tém comprimentos iguais a co1 e coz. O eixo maior da
elipse: varidvel com maior DP.

@ Quantas vezes maior é o eixo maior em relacio ao eixo menor?

@ Se o1 é o maior DP,
eixo maior co1 o1

eixo menor coo o]

@ N3o depende da distdncia c: variando c, teremos elipses concéntricas.
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Distancia Estatistica

Variando a distancia

90
1

diastolica

90 100 110 120 130 140

sistolica

Figura: Pontos (y1,y2) que estdo a uma distancia ¢ igual a 1, 2 ou 3 do centro
(11, p12)- Isto é, os pontos de cada elipse satisfazem d(y, 1) = ¢ para diferentes
Cc's.
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Distancia Estatistica

Jogando fora a raiz quadrada

@ Preferimos trabalhar com a distancia AO QUADRADO

@ E se podemos complicar, por qué simplificar?
n—m\? | (-’
Pl = (D) (20
o1 b}
_ 1/of 0 } <y1—u1)
= (1 —p1,y2 — p2) [ 0 1/02 Vo — 1o
-1
[05 0 ] (y1—m>
0 o3 Y2 — 2

/
_ <y1—m) ):—1()/1_,“1>
y2 = 2 Y2 — 2

= (y-wy-mn

= (y1—p1,y2 — p2)
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Distancia Estatistica

Elipses e distancias
@ Vimos que

d*(y, ) = (yl 7”1)2 + (yz 7“2)2 =(y-wT N y—n)

g1 02

onde
-7 2
10 o3
é a equ¢do de uma elipse centrada no vetor pu = (1, p2).

@ Quando a matriz ) é DIAGONAL com elementos positivos (com as
varidncias 0;'s), entdo a elipse tem eixos paralelos aos eixos e o
tamanho de cada eixo é porporcional ao o; da varidvel associada.
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Distancia Estatistica

Caso mais realista

@ Varidveis s3o associadas, nao s3o independentes

@ Dizemos que s3o correlacionadas: redundancia da informacdo

@ O valor de uma varidvel d3 informac3o sobre o valor da varidvel

@ Pode-se predizer (com algum erro) uma varidvel em fungdo da outra

100 110 120 130 140 150

sistolica

Figura: Amostra de (y;1, ¥iz) com i =1,2,...,250.
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Distancia Estatistica

Distancia eliptica, e nao circular

@ Pelo mesmo raciocinio intuitivo que fizemos antes, os pontos na
ELIPSE abaixo tendem a estar a igual distancia do perfil esperado
E(Y) = o = (1, o). )

@ Pontos estatisticamente equidistantes de pt NAO estdo mais numa
elipse paralela aos eixos.

@ A elipse estd inclinada seguindo a associacdo entre as variaveis.

80

100 110 120 130 140
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Distancia Estatistica

Forma Quadratica

@ Medida de distancia é uma FORMA QUADRATICA.
d(y,p) =y — )Ty —n)

o E a mesma expressdo matricial de distdncia que usamos antes MAS...
@ ...a matriz X n3o é mais DIAGONAL

Figura: Amostra de (y;1, yi2) com i =1,2,...,250.
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Quem é > 77

@ Medida de distancia é uma FORMA QUADRATICA:
P(y,p)=(y — )Ty —n)
e Matriz ) é matriz 2 x 2 simétrica chamada de matriz de covaridncia
_ o? pO102
Z - { pa1102 015

onde p = Corr(Y1, Y2) é o indice de correlagdo de Pearson entre Y; e

Y.
@ Temos sempre —1 < p < 1.
@ Os elementos fora da diagonal, po10,, sdo chamados de Covariancia

entre Y1 e Y5.
@ Costumamos escrever Cov( Y1, Y2) = po1o2 = 012
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Distancia Estatistica

Relagdo entre > e a elipse

@ Distancia é
Py, m) = (y — )Ty — )
onde a matriz ) é 2 x 2 simétrica e dada por
2
=[5 7]
e Pontos equidistantes de o = (1, pi2) estdo numa elipse.
o Eixos da elipse: na direcio dos AUTOVETORES da matriz ¥ 1.

@ O tamanho de cada eixo é proporcional a raiz do AUTOVALOR
correspondente.

00 o 0
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Distancia Estatistica

Autovetor e autovalor de ¥ 1

@ Definicdo: autovetor de uma matriz quadrada A é um vetor y tal que

onde X\ é uma constante (pode até ser um nidmero complexo).

@ A constante A é chamada de autovalor associado ao autovetor y.

@ Na nossa situacdo de distancia estatistica em que usamos a inversa da
matriz de covariancia como ¥ ~1 temos dois resultados especiais:

e sempre temos dois autovetores ORTOGONAIS entre si.
o autovalores sdo sempre REAIS E POSITVOS (e portanto podemos
tomar sua raiz ou inverté-los).

@ Voltaremos a este importante resultado daqui a pouco.
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Autovetores de ¥ e ¥ 1

e Os autovetores de ¥ e ¥ ~1 s30 os mesmos.

@ Prova: Suponha que vé autovetor de ¥ com autovalor A > 0:
Y - v=J)v
o Multiplique dos dois lados (pela esquerda) por ¥ ~1:
Y ov=x1(\v)

ou seja
v=AXlvy

ou ainda, como A > 0,
v=\rlvy

> =
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Distancia Estatistica

Distancia estatistica em k dimensoes

@ SejaY =(Yi,..., Yk) um vetor aleatério de dimens3o k.
e Seja p = (p1,...,uk) seu VETOR-COLUNA de valores esperados

@ Seja ) a matriz k x k com a covaridncia oj; = pjjoioj onde p;; é a
correlagdo entre Y e Y.

@ Distancia estatistica:
Py, 1) =(y —p)T Ny —p)

@ Pontos equidistantes de p formam um elipséide em k dimensdes com
eixos nas dire¢des dos autovetores de » . e com tamanhos
proporcionais aos seus respectivos autovetores.
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Distancia Esta a

Caso 3-dim

Frame 3

ﬁwwﬁ "oy uﬂsm
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Distancia Estatistica

Distancia estatistica em k dimensoes

@ > é a matriz de covaridncia k x k de um vetor aleatério Y de
dimensdo k, temos:

e sempre temos k autovetores ORTOGONAIS entre si.
e autovalores sdo sempre REAIS E POSITVOS.

@ Esta afirmacgdo é uma consequéncia do teorema espectral de algebra
linear.

@ Para todo ponto y que n3o seja o vetor esperado p, queremos que a
distancia d?(y, ) seja > 0.

@ Uma matriz com esta propriedade é chamada de positiva definida.
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Distancia Estatistica

Resumo de normal multivariada

@ O vetor aleatério Y = (VY1,..., Yk) segue uma distribuigdo normal
(ou gaussiana) multivariada se sua densidade conjunta for da forma

) = ctexep (3 )

onde
d*(y, ) = (y — )Ty — )
e > é a matriz de covaridncia entre as varidveis e p é o vetor de
valores esperados.
e Notagdo: Y ~ Ni(p,>))
o A densidade decresce com d?. As superficies de nivel da densidade
sao elipsoides concéntricos centrados em .

@ Os eixos do elipsdide estdo na diregdodos autovetores de ) e com
comprimentos proporcionaisa raiz do autovalor.
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Simulagdo de uma normal multivariada

Simulando uma normal multivariada

@ Sabemos gerar gaussiana univariada N(0,1) com média =0 e DP
o=1.

@ Basta usar o algoritmo de Box-Muller (ja vimos).

e Entdo sabemos gerar Z = (Zy,...,Zc) INDEPENDENTES e
IDENTICAMENTE DISTRIBUIDOS onde cada Z; ~ N(0,1).

@ Podemos passar de Z para um vetor Y ~ Ny (u, > ) apenas
manipulando matrizes.

@ Seja L uma matriz k X k tal que LL' = ".
o Calcule Y = p+ LZ.
e Temos Y ~ Ni(u, ")
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Simulagdo de uma normal multivariada

Como achar L

Precisamos achar uma matriz L que seja k x k e tal que LL* =)".
E como se estivéssemos achando uma espécie de raiz quadrada de .
Quem é esta L? Qualquer uma que satisfaa LL' =Y.

OK, mas como achar uma dessas?

Pela decomposicdo de Cholesky: uma matriz simétrica e postiva
definida > possui uma matriz L triangular inferior tal que LL' =".

Em R: t(chol(A)) (precisa transpor pois a saida de chol é
triangular superior)
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Decomposi¢do de Cholesky

Algoritmo para decomposicao de Cholesky

hi 0 O hi b1 ki
A=LL" = b1 by O 0 hy I
ki k2 k3 0 0 /s
/121 /21/11 l31l11
= b1h1 B+ Bih1 + hab2

hihi  hibi + hoby B+ 1+ 1

@ O que deve ser o valor /117

o lguale o elemento 11 da matriz A e o elemento 11 da matriz produto
LLt.
e Vemos que /2 = aj1, ou seja, h1 = \/a11.
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Decomposi¢do de Cholesky

Algoritmo para decomposicao de Cholesky

/11 0 0 /11 /21 l31
A=LL" = hi hy O 0 hy ko
B k2 k3 0 0 I

l121 * *

= h1h: B+ 15 *

hihi  hibi + hohbe B+ 15+ 13

@ lguale o elemento 21 de A com o elemento 21 de L'L.

@ Temos hi1h1 = ap;. Como ja obtivemos h; = \/ai1, encontramos

b1 = az1/+/a11.
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Decomposi¢do de Cholesky

Algoritmo para decomposicao de Cholesky

hi 0 O hi b1 h
A=LL" = b1 hy O 0 hy ko
ki k2 k3 0 0 /s
It
= h1h: 13+ 15

hihi  hibi + hoby B+ 15+ 1

@ De maneira idéntica, obtemos /1 = a31/+/a11.

@ Primeira coluna de L estd pronta. Vamos agora obter a segunda
coluna de L.

@ lguale o elemento a5, e o elemento 22 do produto LLE:
an =I5+ 1%).

: _ 2 2
o Assim, by = \/322 — I3 = \/322 — a5, /a.
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Decomposi¢do de Cholesky

Algoritmo para decomposicao de Cholesky

hi 0 O hi b1 ki
A=LL" = b1 by O 0 hy I
B kb3 0 0 /s
1%
= h1h1 /221 + /222

hihi  hibi 4+ hoko By A+ 13+ s
@ Tendo obtido hi, b1, 31, by , passamos agora a 3o

@ lguale o elemento a3, e o elemento 32 do produto LL®

@ E assim sucessivamente.
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Decomposi¢do de Cholesky

25 15 -5 /11 0 0 /11 /21 /31
15 18 0 =\ b1 hy O 0 hy ko
-5 0 1 ki k2 k3 0 0 A3

@ primeira coluna de L

25 15 -5 5 0 0 5 3 -1
15 18 0 = 3 h O 0 hy ho
-5 0 11 -1 hy k3 0 0 &3
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Decomposi¢do de Cholesky

@ conclusao:

25 15 -5 5 00 5 3 -1
15 18 0 = 3 30 0 3 1
-5 0 11 -1 13 0 0 3
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Exemplo - simulando Ny(u, > )

@ Suponha que queremos gerar uma amostra de 200 instancias de um
vetor Y gaussiano multivariado de dimenséo 4 tal que Y ~ Ng(p, ).

o pu=(p1,...,ua)=(0,10,0,1020)

@ A matriz de covaridncia:

1.0 -0.1 0 -0.7
Z _ -0.1 16 -0.4 20
- 0 —-04 004 -01

-0.7 20 -0.1 64

@ Veja que a raiz quadrada da diagonal fornece os desvios-padrdo:

\/@ = /(1.0,16,0.04,64) = (1.0,4,0.2,8)
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Exemplo - simulando Ny(u, > )

@ Como a covariancia estd associada com a correlacdo e os
desvios-padrao,

Oij = pjjoio;

podemos escrever a matriz de covariancia como resultado de
manipular matricialmente a matriz de correlac3o:

Z — V1/2 p v1/2

onde V é uma matriz diagonal com as varidncias (02,...,02) e p é
uma matriz quadrada com as correlagGes pj;.

@ Portanto, podemos também escrever

o (v T ()

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 89 / 186

1



Exemplo - simulando Ny(u, > )

@ No nosso exemplo:

1.0 -0.1 0 -07
S 0.1 16 —0.4 20
0 -04 004 -0.1
—-0.7 20 -0.1 64
onde
V1 0 0
V2 — 0 V16 0
0 0 +0.04
0 0 0
e
1.0000 —0.0250  0.0000
| —0.0250  1.0000 —0.5000
p= 0.0000 —0.5000  1.0000
—0.0875 0.6250 —0.0625

Renato Assun¢do, DCC, UFMG
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Exemplo - simulando Ny(u, > )

@ Na direcdo inversa

1.0000 —0.0250  0.0000
_ —0.0250 1.0000 —0.5000
p= 0.0000 —0.5000  1.0000
—0.0875  0.6250 —0.0625
-1,
onde V~1/2 = (Vl/z) é dada por
vi oo o o0\ °

0 V16 0 0

0 0 0.04 0

0 0 0 64

—0.0875
0.6250 | _ .\, 1/ 12
o025 | =V T2V
1.0000
1.000 0 0 0
0 0.250 0 0
0 0 5.000 0
0 0 0 0.125

@ A partir da matriz de correlacdo p vemos que Y7 é praticamente

n3o-correlacionada com as outras trés.

@ J3 Y, é possui uma correlagdo moderada com Y3 (negativa) e com

Ya (positiva).

@ Apesar disso, curiosamente, Y3 e Y4 sdo praticamente

n3o-correlacionadas.

Renato Assun¢do, DCC, UFMG
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_ Eerpbdesimuaio
Exemplo - simulando Ny(u, > )

nsims = 100
mu = matrix(c(0, 10, 0, 1020), ncol=1)

S = matrix(c(1, -0.1, 0, -0.7,

-0.1, 16, -0.4, 20,

0, -0.4, 0.04, -0.1,

-0.7, 20, -0.1, 64), ncol=4)
L = t(chol(8))
Z = matrix(rnorm(4*nsims), nrow=4)
Y=mu + L %*% Z # matriz 4 x nsims

pairs(t(Y)) # ver proximo slide
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Exemplo - simulando Ny(u, > )
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Exemplo - simulando Ny(u, > )

@ Podemos criar scatterplots TRI-dimensionais com os vetores que
simulamos.

@ Como os vetores sdo 4-dim, vamos escolher trés das 4 varidveis para
fazer o plot.

@ Precisamos do pacote scatterplot3d.

@ Usamos a fungao scatterplot3d(x, y, z).

library(scatterplot3d)
scatterplot3d(Y[2,], Y[3,], Y[4,])
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Exemplo - simulando Ny(u, > )

[oR e
& 8+ o
g ° 0 ol
=} ] 2o
- 2 o ‘%)oo oO
=1 o [s)
@ o © |go0 o
8 o oo@oggz
< 7o o
(=]
- g o o |€e —
- (=] ('l]-
> ‘5_ o [s] T2 04 >—_‘
o 0.0
2 02
04
2 06
= 5 10 15 20

nato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 95 / 186



Exemplo - simulando Ny(u, > )

@ Scatterplot 3-dim com cores e linhas ajudando a localizar os pontos
no espaco.

@ Pontos sdo desenhados com cores diferentes de acordo com sua
coordenada y (de outra forma, fica dificil ver que pontos estdo mais a
frente ou atrds no cubo 3-dim).
library(scatterplot3d)
scatterplot3d(Y[2,], Y[3,], Y[4,], pch=16,

highlight.3d=TRUE, type="h", main="3D Scatterplot")

3D Scatterplot

990 1000 1010 1020 1030 1040
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Exemplo - simulando Ny(u, > )

@ Um scatter 3-dim dindmico: plot3D(x, y, z) do pacote rgl.
@ Cria um catter 3-dim que pode ser rotacionado com o mouse.
@ col= e size= controlam a cor e tamanho dos pontos.
library(rgl)
plot3d(Y[2,], Y[3,], Y[4,], col="red", size=3)
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Forma quadratica

Forma quadrética

@ Sejay = (y1,...,yx) um VETOR-COLUNA em R*.
@ Seja A uma matriz k x k.
@ Forma quadratica é qualquer expressao assim:

Y Ay=> Ay
ij

Por exemplo, se y = (y1,y2) e A for 2 x 2:

(y1,x2) A ( n )

y2
que sao iguais a

Ay? + Avayiye + Aoryoyr + Any?

Envolvem combinag¢des lineares dos produtos de pares de varidveis
(produto de duas varidveis distintas ou produto de uma variavel por
ela mesma).
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Forma quadratica

Exemplos de formas quadraticas

@ Exemplos bi-dimensionais:

10 i \_ 2, .2
(y1,¥2) [0 1] (y2 )—Y1 +y

9 0
(v1,¥2) { o 4 } ( Q ):9y12+4y22

9 3
(v1,y2) [ 3 } ( Q ):9y12+4y22+3y1y2+3y2y1 =9yZ +4y2 + 6y12
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Forma quadratica

Formas quadraticas simétricas

@ A matriz A na forma quadratica

Y Ay=>) Ay
i

pode ser SEMPRE tomada como simétrica.
@ Por exemplo, no caso bi-dimensional

say = oo [22](2)

= 9y2 4+ 4y2 + 2y1y5 + dyayn
= 9y} +4y5 +6y1y2

~wmw [33](2)

o Caso geral: ver lista de exercicios.
@ De agora em diante, A em formas quadraticas é sempre simétrica.
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Matrizes positivas definidas

Matrizes positivas definidas

@ Queremos que uma medida de distancia mais geral que a euclidiana.

@ Se a distancia ao quadrado de y até a origem 0 = (0,...,0) for uma
forma quadratica, precisamos garantir que, PARA TODO VETOR y
que nao seja nulo tenhamos

d*(y,0)=y Ay=> " Ajyiy; >0
7

@ Matrizes que atendem esta condi¢do sdo chamadas de matrizes
definidas positivas.
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Matrizes positivas definidas

Exemplos de matrizes positivas definidas

@ Exemplos de positiva defnida em que y’Ay > 0 para todoy # 0 :

9 0
(y1,¥2) [0 4] (ﬁ >=9}’12+4}’22>0

@ Qutro exemplo:

9 -3
(v1,¥2) [ 3 4 } ( ﬁ ) =9y? +4y2 — 3y1y2 — 3yoy1 = 9y? + 4yZ — 6y1y2 > 0

@ N3o é dbvio que esta ultima matriz seja dp. E é apenas um caso
2-dim!!
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Exemplos de matrizes que NAO SAO positiva definida

@ Um exemplo:
9 0 Y1) 002 4.2
(1, ¥2) [ 0 —4 } ( v ) =9y{ —4y;

@ pois é menor que zero se (y1,y2) = (0,1), por exemplo.
@ Outro exemplo:

1 -2 L
(y1,¥2) [72 1 } (Q ):y12+Y22—4y1y2

o E menor que zero se tomarmos (»1,y2) = (1,1), por exemplo.
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Matrizes positivas definidas

Checando se matriz é positiva definida

Como verificar, em geral, se uma matriz simétrica A de dimensdo
k x k é definida positiva?

Dificil se k for grande.

Checando todos os infinitos y??

N3o...

A é definida positiva se, e somente se, todos os seus autovalores
forem positivos.

Algoritmos para encontrar autovalores s3o custosos, especialmente se
a matriz é grande.

A é definida positiva se, e somente se, existir a sua decomposicdo de
Cholesky.

Este é algoritmo simples e rapido.

Vamos ver um exemplo
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Matrizes positivas definidas

Nossa matriz é positiva definida

@ Nossa matriz A sera de um tipo especial: serd uma matriz de
covariancia.

o Neste caso, A serd sempre def pos (a ndo ser em exemplos
patoldgicos, que ndo ocorrem na pratica).
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Matrizes positivas definidas

Qual a relagdo entre ) e a elipse?

@ Suponha que a medida de distancia do vator aleatério y até o perfil
esperado p é dada por

Py, m)=(y — )Ty —p)

onde X é uma matriz de covariancia simétrica e definida positiva.

@ Os pontos y que sdo equidistantes de g formam uma elipse centrada

em p e com eixos na dire¢do dos autovetores da matriz > . Os

tamanhos dos semi-eixos da elipse sdo proporcionais a (raiz quadrada)
dos seus respectivos autovalores.

Renato Assun¢do, DCC, UFMG
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Autovetores e autovalores

Autovetores de matrizes simétricas

Autovetor e autovalor de matriz QUADRADA A.
Definicdo: Av = Av
Autovalor A pode ser um nimero complexo.

Se A for simétrica ent3o )\ é real.

Sé nos interessam as matrizes simétricas.
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Autovetores e autovalores

Imagine a matriz como uma transformacao

O que é um autovetor de uma matriz A de dimensado p x p?
Olhe a definicdo de novo: Av = Av

Um autovetor é uma direcdo muito especial em RP.

E uma direcdo v tal que, quando A é aplicado a v, temos apenas v
espichado (se A > 1) ou encolhido (se 0 < A < 1)

Se A < 0, a direcdo muda de sentido.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 108 / 186



Autovetores e autovalores

Imagine a matriz como uma transformacao

@ Matriz real e simétrica A de dimens3o p X p.
@ Pense na transformacdo de RP para RP pela aplicagdo da matriz A.
@ Isto é, considere a transformacdo linear T: RP — RP tal que
T(v) = Av.
@ Por exemplo, pense numa imagem em R?, um desenho feito com
linhas e curvas.
e Cada ponto do deseho serd identificado com um vetor de R?.

@ Cada ponto sera transformado através de uma matriz simétrica A de
dimensdo 2 x 2.

@ O que serad o novo desenho?

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 109 / 186



Autovetores e autovalores

Imagine a matriz como uma transformacao

@ Em geral, a imagem Av de um ponto ndo tem uma relagio
geométrica simples com v.

@ Em geral, é dificil antecipar qual serd o resultado de aplicar A em v.

@ A seguir, veremos o efeito de

1 12
A‘(1.2 5 )

@ Em p dimensGes ndo teremos uma imagem para olhar...
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Autovetores e autovalores

Imagine a matriz como uma transformacao

o Matriz

e O ponto-estrela da esquerda é levado por A no ponto-estrela da
direita.

@ O ponto-bolinha da direita é levado por A no ponto-bolinha da direita.

e Podemos ANTECIPAR o efeito de A num ponto arbitrario (x, y)?

@ Onde ele serd levado?

@ Isto parece ser uma tarefa dificil.
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Autovetores e autovalores

Imagine a matriz como uma transformacao

@ Se A for p x p, teremos vetores em p dimensdes: n3o teremos uma
imagem para olhar...

@ Antecipar onde o vetor x € R serd levado por A parece uma tarefa
impossivel.

@ E no entanto...

@ Ao longo de ALGUMAS DIRECOES v, o comportamento da
transformac3o por A é facilmente entendido.

@ Pense num vetor que esteja numa destas dire¢Oes especiais.

o Ent3o A simplesmente espicha ou encolhe o ponto-vetor, SEM
ALTERAR A SUA DIRECAO.
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Autovetores e autovalores

Cara Engracada

2.0

0.5

0.0

T T T 1
0.0 0.4 0.8
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Autovetores e autovalores

Espichando verticalmente

@ Espichando verticalmente com

(4 9)

0.0
0.0
1

0.0 0.4 0.8 0.0 0.4 0.8
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Autovetores e autovalores

Espichando lateralmente

@ Espichando lateralmente com

(3 9)

. Al . =X\~
? 5
T T T T T T T T T T
-1.0 -05 0.0 0.5 1.0 -1.0 0.5 0.0 0.5 10
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Autovetores e autovalores

E se o desenho estiver rotacionado?

Figura: Queremos espichar apenas lateralmente o desenho da face mas mantendo
a sua orientacdo. Como fazer?
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Autovetores e autovalores

Direcoes especiais

@ Existem duas direcOes especiais associadas com a transformacao
linear T que desejamos fazer na figura.

@ Ao longo dessas duas diregcOes especiais, basta espichar lateralmente
ao longo de UMA delas para fazer a face ficar mais “gordinha”.

@ Basta espichar ou contrair a projecao do vetor ao longo dessa direcdo
para obter o efeito desejado.

-10 -05 00 05 10 -10 -05 00 05 10
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Autovetores e autovalores

Direcoes especiais

@ Entdo Av pode ser pensado assim: expresse v com coordenadas na
base ortogonal formada pelas duas direcées especiais.

@ Espiche ou contraia cada uma das coordenadas dessas direcGes
especiais.

@ Volte para o sistema de coordenadas original.

@ Se esta histdria de espichar a cara n3o ficou muito clara, ndo se
preocupe. O que vocé REALMENTE precisa saber estd resumido a
seguir.

R 25
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Autovetor = Direcao especial

@ O que é um autovetor v de uma matriz simétrica A de dimens3o
p X p?
Por definicdo: Av = A\v

Um autovetor é uma direcao muito especial em RP.

E uma direcdo v tal que, quando A ¢ aplicado a v, temos apenas v
espichado (se A > 1) ou encolhido (se 0 < A < 1).
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Autovetores e autovalores

Teorema Espectral - 1

Seja A uma matriz p X p simétrica e positiva definida.
Existem p autovalores associados com A.

Estes p autovalores s3o niimeros reais pois A é simétrica
Estes autovalores sdo POSITIVOS pois A é positiva definida.

A cada autovalor corresponde um autovetor ou direcdo em RP.

O que podemos falar desses autovetores?
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Autovetores e autovalores

Teorema Espectral - 2

@ Os p autovetores s3o ortogonais entre si.

@ Tomando todos esses autovetores com comprimento 1 e colocando-os
como p colunas de uma matriz P, teremos PP = | pois eles s3o
ortogonais entre si.

@ Seja D uma matriz diagonal p x p com os autovalores (na mesma
ordem que as colunas de P).

@ Teorema Espectral: A= PDP!

@ O que isto significa: A age simplesmente como uma matriz diagonal
D (que é facil de ser entendida) se trabalharmos no sistema de
coordenadas dos autovetores (que sdo as colunas de P) !!

@ Dizemos que A é diagonalizavel.
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Autovetores e autovalores

Coordenadas

@ No sistema de coordenadas dos autovetores, a matriz A funciona
como uma matriz diagonal.

@ x no novo sistema de coordenadas dos autovetores é x* = Px.

@ Se x* é o conjunto de coordenadas no sistema de autovetores, para
voltar ao sistema original simplesmente multiplique pela inversa de P
que é ... Pt

o Lembre-se que PtP = |.
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Autovetores e autovalores

Resumindo...

@ Pontos na ELIPSE tendem a estar a igual disténcia do perfil esperado
p= (p1, p12)

@ A maneira correta de medir distancia ao perfil esperado p = (11, 112)
é pela forma quadratica

Py, m)=(y — )Ty —p)

A elipse é determinada pelos autovetores e autovalores de ¥ 1, a
inversa da matriz de covariancia das v.a.'s envolvidas.

Os autovetores de Y1 e de ¥ s3o os mesmos

Os autovalores de ¥ ! s3o os inversos 1/ dos autovalores de A
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Exemplo de normal multivariada

Um exemplo de normal multivariada

@ O retorno didrio de uma acdo é a variagcdo percentual no seu preco de
um dia para o outro.

@ Seja S5(t) o prego no dia t
@ O retorno da agdo no dia t + 1 é dado por

Z(t+1) = S(t +51()t)— S(t)

e Ea diferenca no preco da acdo entre hoje e ontem
RELATIVAMENTE ao preco de ontem.
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Exemplo de normal multivariada

Quatro acoes

@ Assim, se Z(t+ 1) = 0.1 isto siginifica que

S(t+1)—S(¢)
5(t)
Ou seja, um aumento de 10% no preco.

Se Z(t+1) = —0.1, temos entdo S(t + 1) = (1 — 0.1)5(¢t), uma
diminui¢do de 10% no preco.

Z(t+1)= =01=5(t+1)=(1+0.1)5(¢)

@ Uma suposicdo muito comum é que os retornos didrios de uma acdo
segue uma normal.

@ E que os retornos de varias agoes num mesmo dia seguem uma
normal multivariada
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Exemplo de normal multivariada

Quatro acoes

@ Vamos olhar os dados dos retornos didrios de algumas das principais
a¢des da Bolsa do Estado de S3o Paulo (BOVESPA).

e Dados didrios do periodo de 4/Nov/1996 a 18/Junho/1998

@ Vamos olhar apenas 4 a¢bes, como ilustracao:

Eletrobras,

Vale do Rio Doce,

Petrobras,

Suzano (empresa de papel e celulose)
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Exemplo de normal multivariada

Telebras no tempo

Telebras
o
= A
w
o 4
(=]
(=]
o
(=]
w
= _]
<
uw
.
T T T T T
0 100 200 300 400
t
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Exemplo de normal multivariada

Telebras no tempo

Telebras
o
= A
w
o 4
(=]
(=]
o
(=]
w
= _]
<
uw
.
T T T T T
0 100 200 300 400
t
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Exemplo de normal multivariada

Vale no tempo

Vale do Rio Doce

0.05

0.00

-0.05

-0.10

o 4

100 200 300 400

—
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Exemplo de normal multivariada

Petroras no tempo

Petrobras
(=]
= A
(=]
o 4
o
=
.
o
o~
<
T T T T T
0 100 200 300 400
t
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Exemplo de normal multivariada

Suzano no tempo

Suzano
o
=
w
o
(=]
uw
o
S
w
S
T T T T T
0 100 200 300 400
t
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Exemplo de normal multivariada

As quatro no tempo

Telebras Vale do Rio Doce
— W
o <
=l =
w7 o
s 2
T T T T T = T T T T
0 100 200 300 400 100 200 300 400
t t
Petrobras Suzano
o
[=
8 ] =1
o 4 =
g7 2
o T T T T < T T T T
0 100 200 300 400 100 200 300 400
t t
Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 132 / 186



Exemplo de normal multivariada

Histogramas e ajustes gaussianos

Telebras Vale
v
=
w w
= T T T 1 = (L T T T
020 010 000 005 010 010 -005 000 005 010
dados$TEL4 dados$VALS
Petrobras Suzano
o
=T
o
o
o~
w
e T 1 T T T T 1 = T T T T T T 1
020 010 0.00 010 015 005 005 010 015
dados$PET4 dados$SUZ4
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Exemplo de normal multivariada

Scatterplot dos pares de acoes

015 005 0.05

TTT T 7T
045 000

010 000 0410

-020 -005 010

° Suz4

015 000

LI S s
-020 -010 000 0.0

Figura: Tele, Vale e Pet sdo bem correlacionadas. Quando uma sobe muito, as
outras duas também sobem. Suzano n3o parece ser muito correlacionada com
estas outras.
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Exemplo de normal multivariada

Correlacao no tempo

E a correlagao de UMA MESMA acgao em dias sucessivos?

Por exemplo, se a acdo da Vale subir bastante hoje, o que podemos
esperar para seu movimento amanh3a?

Surpreendente: quase n3o existe correlac3o.

N3o uma tendéncia detectavel na VARIACAO dos precos das acdes
em dias sucessivos.

Nao acredita? Veja os préximos graficos.
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Exemplo de normal multivariada

Correlacao no tempo

Eletrobras Vale

005

y(t+1)

y(t+1)
-015 0.00

-0.10

015 010 -0.05 0.00 0.05 0.10

it

Petrobras

000 015

y{t+1)

yit+1)

-0.15  0.00

-0.20

020 -0.10 000 005 010 015 015 010 005 000 005 010

it i)

Figura: Grafico de y;,1 versus y; para as quatro acdes. N3o existe correlagdo
entre os retornos de uma mesma aado em dias sucessivos.
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Exemplo de normal multivariada

Matriz de correlacao

o Seja Y = (Y, Yo, Yat, Yar) os retornos das quatro agdes no dia t.
@ Vamos calcular empiricamente o coeficiente de correlacido de Pearson
para os pares de acoes.

Temos 401 instancias de Y; correspondentes a 401 dias.
O vetor esperado pode ser estimado a partir dos dados

W= (p1, pi2, 13, 1a) = (31,72, 3, ¥a) = § = (1.094,0.276,1.038, —1.459) x 103

onde X; € a média aritmética

1
X — Y
%7 401 Zt K

@ Assim, o retorno didrio no periodo é pequeno, ligeiramente positivo

pra as trés primeiras, e negativo para SUZ.

Quanto ao desvio padrdo para cada uma delas, estimando dos dados
encontramos

(]

(01,02,03,04) ~ (s1, 52, 53, 54) = (0.030, 0.030, 0.032, 0.028)
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Exemplo de normal multivariada

Matriz de correlacao

Seja Y = (Yat, Yo, Yat, Yar) os retornos da quatro agdes no dia t.

@ Vamos calcular empiricamente o coeficiente de correlagdo de Pearson
para os pares de acdes.

Temos 401 instancias de Y; correspondentes a 401 dias.

Matriz de correlacdo:

Teld Vals5 Petd Suzd

Tel4 | 1.00 0.72 0.79 0.30

p=1 Va5 |0.72 1.00 0.68 0.24
Pet4 | 0.79 0.68 1.00 0.33

Suz4 [ 0.30 0.24 0.33 1.00

De fato, TEL, PET e VALE sdo bem correlacionadas (positivamente)
enquanto SUZ mostra pouca correlacdo com estas outras trés acles.
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Exemplo de normal multivariada

Matriz de covariancia

@ Matriz de covariancia:

Tel4 Val5 Pet4 Suz4

Tel4 [ 9.08 6.58 7.49 253

Zz5:10_4 Val5 | 6.58 9.27 6.53 2.00
Pet4 | 7.49 6.53 10.01 2.86

Suz4 | 2563 2.00 2.86 7.69

@ Veja que, ao contrdrio da matriz de correlagdo, os nimeros dessa

matriz de covariancia s3o dificeis de interpretar.

@ Como uma primeira aproximac¢ao, podemos dizer que os retornos das
quatro agdes num dado dia seguem Y; ~ Na(p, ")

e compuryey ~S.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados
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Propriedades da normal multivariada

Marginais da normal multivariada

@ Suponha que Y = (Y1,..., Yk) ~ Nik(p, X) seja um vetor aleatério
com distribuicdo gaussiana multivariada.

@ A distribuicdo de cada uma das entradas Y; do vetor Y é uma
gaussiana.

@ Além disso, a esperanca e variancia da distribuicdo s ao extraidos
diretamente dos parametros de Y sem necessidade de nenhum calculo.

e Y;~ N(uj,Xj) onde 1 é a i-ésima entrada do vetor e ). a
i-ésima entrada da diagonal de > .
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Exemplo: marginais de Ny(p, X)

o Y = (Y1, Y2, Y3, Ya) tem vetor esperado pu = (4,3, —2,2) e matriz de
covariancia

30 2 2
01 1 0
2:21 9 -2
21 9 -2
2 0 -2 4

@ Entdo a distribuicdo marginal é diretamente obtida desta conjunta:

Y3 ~ N(usz, X33) = N(—2,9)
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Marginais de Ni(ut, >)

@ Obtemos n3o apenas a distribuicdo de cada entrada individual de Y
mas a distribuicdo marginal de qualquer sub-vetor de Y.

@ Por exemplo, se Y = (Y1, Y2, Y3, Ya) tem vetor esperado
© = (4,3,—-2,2) e matriz de covariancia

30 2 2
01 1 o0
Z =] 2 1 9 -2
2 1 9 -2
2 0 -2 4

e Ent3o a distribuicdo marginal do sub-vetor (Y1, Y3) é dada por

e () (B E))-m((2)(33))
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Propriedades da normal multivariada

A importancia desta propriedade

@ Aparentemente, esta propriedade é boba.

@ Da conjunta que é normal multivariada chegamos a marginais que
também s3o normais.

@ Isto n3o é Sbvio?

o Nao, nao é.

@ Acontece que é muito dificil e raro que a gente consiga saber quais
s3o as marginais apenas mirando a férmula da conjunta.

@ Na maioria dos casos, a lnica maneira de obter as marginais é
integrando ou somando sobre os valores das demais variaveis.
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Propriedades da normal multivariada

A importancia desta propriedade

Por exemplo, suponha que

fxy(x,y) = cte (yx2 + /Y exp(—xy + x2))

com suporte em [0, 1]2.

o N3o é possivel saber quais sdo as marginais fx(x) e fy(y)
diretamente a partir da expressao da conjunta.

@ A (nica maneira de obter fx(x) é integrando fxy(x,y) com respeito a
vy

1
fx(x) = /0 cte (yx2 + /y exp(—xy + x2)) dy

Este n3o € caso da normal multivariada.

Para escrever a densidade conjunta precisamos de p e de > .

Com estes dois elementos temos também todas as marginais.
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Propriedades da normal multivariada

Combinacao linear de normais

Suponha que Y = (Y1,..., Yk) ~ Nik(p, X) seja um vetor aleatério
com distribuicdo gaussiana multivariada.
@ Queremos criar um indicador baseado nestas varidveis, uma nova
variavel aleatodria:
X:C1Y1+...+Ckyk
@ Por exemplo, podemos criar um indice para o movimento no mercado
de agdes.
@ Usando apenas os retornos das quatro acdes que vimos antes,
poderiamos estabelecer o indice

X = 0.2PET; + 0.2VALE; + 0.2TEL; + 0.4SUZ;

@ Os coeficientes ¢; ndo precisam somar 1 ou serem positivos.
Por exemplo, por alguma razido, poderiamos querer

X = 1.2PET; + 2.0VALE; + 4.3TEL; — 3.55UZ;
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Propriedades da normal multivariada

Combinacao linear de normais

@ SeY =(Y1,..., Yk) ~ Ng(p, X) qual é a distribui¢do de
probabilidade do indicador X7
@ Note que este tipo de indicador pode ser escrito em forma vetorial:

X:C1Y1+...-|—Ckyk:C’Y:(C1,...,Ck)

@ Adivinhe: X continua gaussiano.

e Isto ¢, temos que X ~ N(?7,77) = N(ux,0%)

@ Como X ¢é univariado, basta acharmos o seu valor esperado ux e sua

variancia Uf(.

@ Estes momentos s3o facilmente obtidos a partir dos momentos p e >
da normal multivariada, como veremos a seguir.
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Momentos de combinagio linear

Momentos de c'Y

@ O célculo do valor esperado E(X) = E(c'Y) e da variancia
V(X) = V(c'Y) ndo depende da distribuicdo do vetor Y.

@ Qualquer que seja a distribuicdo do vetor Y, gaussiana ou n3o,
continua ou discreta, podemos obter E(X) = E(c'Y) e
V(X) = V(c'Y) facilmente.

@ Isto tem relevancia pois é muito comum criar indicadores que s3o
combinagdes lineares de algumas varidveis.

@ Portanto, o cadlculo a seguir usa apenas as propriedades de esperancga
e varidncia, sem recorrer a especificacio de uma distribuicdo conjunta
para o vetor Y.
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Momentos de combinagio linear
/
E(cY)

@ Comegando com o valor esperado:

E(X) = E(@aYi+aYo+...+cYk)
= ak(Y1) + E(Y2) + ... + «B(Yk))
= cap1+ op2+ ...+ Gk
= du

o Isto é,
E (c'Y) = E(Y)

@ O vetor de constantes c vai para fora do simbolo de esperanca.
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Momentos de combinagio linear

V(c'Y)

@ Agora a variancia.

V(X) :V(C1Y1+C2Y2+...+Ckyk)

@ Basta usar a definicdo de varidncia (e um pouco de paciéncia):

V(X)

Renato Assun¢do, DCC, UFMG

E (X - E(X))?

E((aYi+ Yo+ ...+ a Vi) — (caps + capz + ... + k)’

E((c(Y1 —p1) + (Yo — p2) + ...

(zm W+ 3 gV -

+ a(Yi — 1))?

wi)(Y; — ,uj)> (abrindo o quadrado)

i#j

Z]E (c,-2(Y,- — 1i)? )+ ZE cici(Yi — pi)(Y; — 1)) (linearidade da esperang

i i#j
Z E(Y; — i) + Z cigE — ui)(Yj — pj))  (linearidade de novo)

i#j
Z V(Y + Z ciciCov(Y;, Y;)  (pela def de Var e Cov)
i#j
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Momentos de combinagio linear
/
V(c'Y)

@ Assim, temos

V(C/Y) = V(Cl Yi+aY+ ...+ ck Yk)
1
= (Clv--'7ck)z
Ck
= dXc

onde ) é matriz de covariancia do vetor Y.

@ Veja que no caso univariado tinhamos a férmula
V(cY)=c2V(Y)=cV(Y)c,

que é versdo univariada de V(c'Y) = c'Xc
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Momentos de combinagio linear

Enfatizando

@ Mais uma vez, repetimos:
@ SejaY =(Yi,..., Yk) um vetor aleatério com QUALQUER
distribuic3o.
e Seja E(Y) = p com matriz de covaridncia V(Y) = > .
o Entdo
E(cY)=cp
e

V('Y) =c'Zc

@ Estes resultados sdo vdlidos mesmo no caso em que Y nao é nomal
multivariado.

Caso Y ~ Ni(p, X) entdo 'Y ~ N(c'u,c'Xc)
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Momentos de combinagio linear

Retorno de portfdlio de acoes

o Seja Y = (Y, Yo, Yat, Yar) os retornos das quatro agdes no dia t.
@ Suponha que Y ~ Ny(p, X) com

p=10"%x(1.10.31.0 — 1.5)

Z:w*4 Tel5 6.58

@ Vamos criar um portfélio com 30% de acdes da Telebrds, 20% da
Vale, 30% da Petrobras e 20% da Suzano.

@ O retorno deste mix de acGes serd o mix dos retornos das acdes.

@ Isto é, o retorno do portfdlio é a v.a.

X =03Y1+02Y>,+0.3Y3+0.2Y;

Tel4
Tel4 9.08
Pet4 7.49
Suz4 2.53

Tel5
6.58
9.27
6.53
2.00

Pet4
7.49
6.53
10.01
2.86

@ Qual a distribuicdo do retorno deste portfélio?

Renato Assun¢do, DCC, UFMG
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Suz4
2.53
2.00
2.86
7.69
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Momentos de combinagio linear

Retorno de portfdlio de acoes

@ Temos

X =0.3Y14+0.2Y2+0.3Y3+0.2Y, ~ N(px, 02) = N(0.00039, (0.0247)?)

onde
1.1
_3 0.3
px = (0.3,0.2,0.3,0.2) 10 1o | =0.00039
-15
e
0.3
2 _ 02 | _ —4 _ 2
02 =1(03,0.2,03,02) > 03 | =61247 x 107" = (0.0247)
0.2
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Mais propriedades da normal multivariada

Mais propriedades

@ Podemos encontrar a distribuicdo conjunta de varios indices

simulataneos

o Seja Y ~ Ny (1, Y))
@ Seja A um matriz g X k de constantes e usada para gerar g indices:

A Y
gxk kx1

ai a2
ani az
L dq1 aq2

L aq1 Y1+ a2 Y2 +.

a1 Y1 +anYa+...
a1Yi+anYs+...

4
+ a1k Yk
+ ax Yk

-+ agk Y

X2

Xq

@ Qual a distribuicio CONJUNTA dos g indices no vetor X7

@ Uma maneira intuitiva de ver isto é pensar que, se duas linhas de A
forem muito parecidas, esperamos que os dois indices associados
sejam muito correlacionados.

Renato Assun¢do, DCC, UFMG
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Mais propriedades da normal multivariada

Distribuicao e combinacoes lineares

o RESULTADO: Se Y ~ Nj(u, X) entdo

!/

@ Além disso, Y + c, onde c é um vetor k x 1 de constantes, é
distribuido como
Y+c~ Ne(pp+c,X)

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 155 / 186



Mais propriedades da normal multivariada

Independéncia e covariancia

Result 4.5.
(@) If X; and X, arcindependent,then Cov(X;,X;) = 0, aq; X g, matrix of
@7 ) (gR1)
7eros.

X, |. o)
(b) If [’x;} 15 qu_,_qz(l:-;;-z-

and only if 3, = 0.

:D, then X; and X, are independent if

(c) If X; and X, are independent and are distributed as N, (#;,%;;) and

X A
N (pz, Ez2), tespectively, then [SELJ has the multivariate normal distribution

2

D

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados
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Mais propriedades da normal multivariada

Distribuicao condicional

@ Outra propriedade fantdstica da normal multivariada é a facilidade de
obter a distribuicdo condicional de um sub-vetor dados os valores dos
outros elementos do vetor aleatério Y.

@ Em geral, para uma distribuicdo conjunta arbitraria, isto nao é
possivel.

e Dada a conjunta f(yi,. .., yx) dificlmente conseguimos saber qual é a
distribuicao de Y7 dados os valores das demais variaveis.
@ Temos a férmula para obter esta distribuicdo condicional,

fY17Y27...,Yk(y1’ Y2,... ayk)
Yo e (V255 Vi)

mas n3o ¢ ébvio de antem3o qual serd o resultado desta férmula.

le‘Yz,,,,,Yk(_yley v ,)/k) =

@ Este n3o é o caso da normal multivariada.

@ Podemos obter imediatamente e sem muitas contas a distribui¢ ao
condicional.
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Mais propriedades da normal multivariada

Distribuicao condicional

Result 4.6, Let X = [xl

X"] be distributed as N,(x,X) with u =[m:|
2

) a2
P TRRY - o )
3 = | g+ |, and | Zz2| > 0. Then the conditional distribution of X, given
211 %
that X; = x;, is normal and has

Mean = g; + X125 (x; = po)

Covariance = %,, - 222518,

Note that the covariance does not de

\ end on the itioni
variable. p he value x, of the conditioning
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Mais propriedades da normal multivariada

Condicional: exemplo

e Seja Y = (Y, Yo, Yat, Yar) os retornos das quatro agdes no dia t.
@ Suponha que Y ~ Ny(p, X) com
' Tel4 VaIeSJ‘ Pet4  Suz4

[ P [t
0.001 Teld | 9.08 658 | 7.49 253

Y~ Ng(p, X) =Ny | |- =555 -| » 107* | Vales 1 658 9.27 1 6.53  2.00
Pet4 |'7.49 ~ 653 110.01 286
Suz4 ! 253 200 | 2.86 7.69

@ Suponha que, de alguma forma,antecipamos o retorno das duas
dltimas acdes, PET4 e SUZ4, no dia seguinte.

@ Estima-se que PET4 e SUZ4 terdo ambas um aumento de 5% (isto §,
Y3t == Y4t = 005)

@ O que podemos dizer sobre os valores mais provaveis para TEL4 e
VALES?
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Mais propriedades da normal multivariada

Condicional: exemplo

@ Distribui¢do de (Y1, Y2:) dado que Y3; = 0.05 e Yy = 0.05: Como

e " T4\ 008 658 | 749 253

r= |- ~006i " eX =10""[ Vale51658 9.27 | 653 2.00
0001 Pet4 1'7.49 653 110.01 2.86
' Suz4 ' 253 200 ' 2.86 7.69

@ sabemos que (Yit, Y2¢) sera uma normal bivariada Na(m, ®) com os
seguintes pardmetros:

_ sox-1( ¥3—hs

m KBip + 21225, ( Va — ja
_ 0.001 I 749 253 10.01 2.86 -1 0.05 — 0.001
- 0.003 6.53 2.00 2.86 7.69 0.05 + 0.001

_ 0.040
= 0.036
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Condicional: exemplo
@ A matriz de covaridncia de (Yi¢, Y2¢) dado que Y3: = 0.05 e
Ys: = 0.05:

) Ti - X0 555 Ty

10-4 9.08 658 \ ([ 7.49 253 1001 286 \ '/ 7.49 6.53
6.58 9.27 6.53 2.00 286 7.69 2.53 2.00

_ -4 ( 345 1.69
= 10 (1.69 5.01)

@ Assim, olhando diretamente as duas marginais CONDICIONADAS ao
evento Y3; = 0.05 e Y4+ = 0.05 e a correlacio condicional:

(Y1t|Ya: = 0.05, Ys; = 0.05) ~ N(0.040, (0.019)?)

(Yae| Yar = 0.05, Yar = 0.05) ~ N(0.036, (0.022)2)

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 161 / 186



Mais propriedades da normal multivariada

Condicional: exemplo

@ Assim, antes de saber o valor de Y3; e Ya¢, sabiamos que

Yi: ~ N(0.001, (0.0301)%) texte Ya; ~ N(0.003,(0.0304)3)

@ Isto é, espera-se uma valorizacdo de 0.1% ao dia para PET4 e de

0.3% para VALES.
@ Agora que somos informados de que as acdoes PET4 e SUZ4 tiveram

uma grande valorizacdo de 5% de um dia para o outro, podemos
revisar o que esperamos para as outras duas acoes, PET4 e VALES:

(Y1e] Y3t = 0.05, Ya: = 0.05) ~ N(0.040, (0.019)?)
(Yat| Y3 = 0.05, Yy = 0.05) ~ N(0.036, (0.022)?)

o Note que agora esperamos uma valorizagdo de 4% para PET4 (40
vezes maior que antes) e de 3.6% para VALE5 (ou 12 vezes maior que
antes).

@ Note também como o DP diminuiu nos dois casos.
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Mais propriedades da normal multivariada

Condicional: exemplo

@ Marginalmente, Yi:ce Y3: sdo correlacionadas e p1p = 0.72.

@ A correlagdo condicional Cor(Yie, Yat|Ya: = 0.05, Y = 0.05) entre
estas duas acées PET4 e VALES ¢é dada por

Cov(Yit, Yar| Yar = 0.05, Y = 0.05)
V'V (Y1t Y3 = 0.05, Yar = 0.05)V(Ya¢| V3¢ = 0.05, Yar = 0.05)

1.69 x 10—*
0.019 x 0.022

@ Assim, conhecer o evento Y3; = 0.05 e Ys: = 0.05) DIMINUI a
correlacdo entre as varidveis Yi;: e Yi: de 0.70 para 0.40.

=0.40

@ Em resumo: as distribuicdes de Yi: e Y4: bem como sua correlacdo
sdo bastante impactadas pelo evento Y3: = 0.05 e Ya: = 0.05).
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Mais propriedades da normal multivariada

Condicional: exemplo

o Elipse vermelha: regido em que (Y1, Y2) cai com probabilidade 95%.
@ Elipse azul: dado que Y3 = 0.05 e Y3 = 0.05, esta é a regido em que
(Y1, Y2) cai com probabilidade 95%.

y2

-0.05

T T T T T
-0.10 -0.05 0.00 0.05 0.10

yi
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Mais propriedades da normal multivariada

Propriedades: resumo

‘The following are true for a random vector X having a multivariate normal
distribution:
1. Linear combinations of the components of X are normally distributed.
2. All subsets of the components of X have a (multivariate) normal distribution,

3. Zero covariance implies that the corresponding components are independently
"distributed.

4. The conditional distributions of the components are (multivariate) normal.
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Detecgdo de anomalias multivariadas

Distancia estatistica e anomalias

Seja Y ~ Ny(p, X).
o Considere a distancia estatistica de um ponto aleatério Y até seu
vetor médio p:

D*=(Y —p) T (Y — p)
Se Y é um ponto aleatério, a distdncia D? também é aleatdria.
Algumas vezes esta distancia é grande, algumas vezes ela é pequena.
Qual a distribuicdo de probabilidade desta distancia?

Quando um ponto aleatério Y podera ser considerado anémalo?

Quando sua distincia poderd ser considerada excessiva?
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Detecgdo de anomalias multivariadas

Uma coordenada por vez?

@ Basta olhar cada coordenada, n3o?
@ Sabemos que cada coordenada Y; segue uma normal.

@ Neste caso, a chance de cada coordenada Y; se afastar de sua média
; por mais de 2DPs o; é aproximadamente 5%.

@ E de se afastar mais de 3 DPs o; é 0.3% enquanto se afastar mais de
4 DPs é apenas 0.006%.

@ Assim, temos um critério para determinar se um ponto é
moderadamente ou muito anémalo olhando uma coordenada de cada
vez.

@ Acontece que podemos fazer melhor.

@ Podemos ter um ponto muito anémalo n espago k-dimensional mas
NENHUMA de suas coordenadas é anémala!!
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Detecgdo de anomalias multivariadas

Anomalias em k dimensoes

@ Para ilustrar este fenbmeno, vamos considerar apenas o caso

bi-dimensional.

@ Veja o grafico abaixo de uma amostra de uma normal bi-variada

N>(0, X) onde o valor esperado de cada varidvel é zero, a varidncia é
1 e a correlagao é p = 0.85.

@ O ponto vermelho é claramente uma anomalia mas olhando-se os

valores de cada uma de suas coordenadas isoladamente nao nenhuma
evidéncia de que seja uma anomalia.

Renato Assun¢do, DCC, UFMG

Estatistica para Ciéncia dos Dados

168 / 186



Distribuicdo de D?

Como usar o resultado abaixo?

Result 4.7. Let X be distributed as Np(u, X) with | Z| > 0. Then

(@) (X — p}EY(X — p) is distributed as x%, where x2 denotes the chi-square
distribution with p degrees of freedom.

(b) The N,(p,X) distribution assigns probability 1 — & to the solid ellipsoid
{x:(x — p)E(x — p) = xi(a)}, where x%(a) denotes the upper (100a)th
percentile of the )(g distribution.

Calcule a distacia estatistica d? para cada ponto y.

Plote estes distancia versus um certo valor esperado sob a hipdtese de
normalidade.

O plot deveria se parecer com uma linha reta com inclinacdo 1 e
passando pela origem.

Uma curva sistematicamente desviando-seda reta indica que a
distribuicdo n3o é normal multivariada.

Apenas um ou dois pontos desviando-se muito acima da reta indicam
grandes distancias ou anomalias.
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Detecgdo de anomalias multivariadas

Exemplo: N, sem outliers

Amostra Histograma de D2 Q-Q plot: D x quantiles >
o |
2
= 8 Ied 3 2
a L
e g
2 ER - -
T T T T T ————_ T T T T T T T
100 110 120 130 140 0 5 10 15 0 2 4 (] 8 0 12
x a2 ‘qchisg(ppoints(nsims), df = 2)
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Detecgdo de anomalias multivariadas

Exemplo: N, com dois outliers

Histograma de D2

Estatistica para Ciéncia dos Dados
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2-dim ou k-dim

O mais relevante é o QQ-plot,o terceiro plot.

Se os vetores sdo 2-dim, um simples scatterplot das duas varidveis
mostra quais sdo as anomalias: QQ-plot ndo ajuda muito.

A principal utilidade dos QQ-plots é quando a dimensao do vetor for
maior que 2.

Nao conseguimos visualizar todos as dimensdes ao mesmo tempo.
Em R:

d2 = mahalanobis(x, center = mu, cov=S)
qgqplot (qchisq(ppoints(length(d2)), df = ncol(x)), d2)
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Distribuicao qui-quadrado

e Vimos que D? segue uma distribuicio qui-quadrado com k graus de
liberdade quando o vetor Y ~ Ny(u, X).

Ja encontramos esta distribuicao no teste qui-quadrado.

Esta distribuicdo sé depende da dimens3o do vetor.

N3o interessa os valores tipicos nem a escala dos elementos do vetor
Y.

@ Ela é uma métrica universal para desvios em k dimensdes quano os
dados sdo gaussianos.

Como é a cara desta distribui¢cdo qui-quadrado?

o Ela é uma distribuicdo continua com uma densidade

f(x) = cte xk/2=1g=x/2
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Distribuicao qui-quadrado

@ Por exemplo:
f(x) = cte e /2 com k = 2 degrees of freedom
f(x) = cte xe ™2 com k =4df.
f(x) = cte x’e /2 com k =20d.f.
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Quantil de qui-quadrado

e Como D? ~ x?(k), achamos o valor de x que deixa uma propor¢do p
da 4rea da x?(k) abaixo dele.

Este valor é chamado de quantil e denotado por q(p).

quantil p = g(p) tal que P(x*(k) < q(p)) = p

Por exemplo, para a propor¢ao p = 0.65, queremos

quantil 0.65 = ¢(0.65) tal que P(x?(k) < ¢(0.65)) = 0.65

Sendo mais especificos, suponha que a dimens3o do vetor é k = 4.

Ent3o queremos
quantil 0.65 = ¢(0.65) tal que P(x%(4) < q(0.65)) = 0.65

o Esta valor é g(0.65) = 4.438 e facilmente encontrado em R com
qchisq(0.65, 4).
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Quantil de qui-quadrado

@ Dois quantis de uma qui-quadrado com 4 graus de liberdades.

@ Seta vermelha: com p = 0.65, o quantil g(0.65)

@ Seta azul: com p = 0.90, o quantil ¢(0.90)

@ Estes quantis sdo valores TEORICOS, n3o precisam de dados para
serem obtidos, apenas da densidade de probabilidade.
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000 005
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<
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Os quantis g(p)

o Para fazer o QQ-plot com uma amostra de tamanho n, os quantis
q(p) de interesse sdo os valores p no conjunto

{170.5 2-05 3-05 n70‘5}
pe

) ) PR
n n n n

@ Por exemplo, se n = 137 ent&o calculamos os quantis g(p) para p no
conjunto

{1——&5 2—-05 3-05 137 - 0.5
p

, , s = {0.0036,0.0109, 0.0182, . .., 0.9963}
137 137 ' 137 137

@ A subtracdo de 0.5 no numerador épara evitar problemas nos
extremos: ndo queremos o quantil associado com a proporcao
p = n/n=1. Para manter a consistancia, 0.5 é subtraido de todos os

elementos.
@ Se a dimens3o do vetor é k = 4, estes quantis sdo obtidos em R com
os comandos
prop = ppoints(nsims) # conjunto de pontos p
gp = qchisq(prop, df = 4)
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Os quantis g(p) e a amostra

@ Sabemos que o valor tedrico g(p) para a distancia estatistica é aquele
valor que deixaria aproximadamente p100% das distancias de uma
amostra abaixo dele.

o Isto é, como
P(D? < q(p)) = p
entdo esperamos pl00% dos pontos com uma distancia estatistica
menor que g(p).

@ Por exemplo, com um vetor de dimens3o k = 4, o quantil
q(0.65) = 4.438 pois

P(x?(4) < 4.438) = 0.65

@ Assim, ao calcular a distancia estatistica D? para cada ponto da
amostra, esperamos que 65% deles tenham distancia menor que
4.438.
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Quantil tedrico e empirico

e Podemos obter uma boa estimativa do valor TEORICO q(p) a partir
da amostra.

Calcular a distancia estatistica D? para cada ponto da amostra e
ordene os valores:

2
Dy < Dy < --- < D

O simbolo (i) no sub-indice indica a i-ésima estatistica de ordem.

Considere uma proporgdo p = i/n.

Por exemplo, suponha que kK = 4, n = 100 e queremos
p=76/100 = 0.76.
Temos q(0.76) = 5.4969 = qchisq(0.76, 4):

P(D? < 5.4969)) = 0.76
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Quantil tedrico e empirico

@ A 76-ésima estatistica de ordem D726 deixa 76% dos pontos abaixo ou
igual a ela.

o Assim, se quiseremos uma estimativa EMPIRICA (baseada nos dados)
do valor teérico q(0.76) = 5.4969 (obtido da densidade da x?), o
valor D% é um bom candidato.

@ Esperamos D(276) ~ q(0.76) = 5.4969 pois como
P(D? < 5.4969) = 0.76 ,

esperamos 76% da amostra abaixo do valor tedrico g(0.76) = 5.49609.

e Como temos exatamente 76% abaixo do valor EMPIRICO D(276),

proporcao das variaveis /qu(276) =76/100,
podemos esperar D(276) ~ q(0.76) = 5.49609.
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Ent3o, fazendo o QQ-plot

@ Tome a proporcdo p = (i — 0.5)/n e ache o quantil TEORICO

., i—05 i—0.5
quantil = g; tal que P(x%(k) < q;) = p
@ Variamos i/ calculamos os quantis g; para i =1,2,...,n.
@ Para cada i, pareamos g; e a i-ésima distancia ordenada D(zi).

@ Devemos ter g; ~ D(%.) para todo /.

e Portanto, os pares (g, D(2i)) devem cair ao longo da reta y = x se os
pontos sdo uma amostra aleatéria de uma nomal multivariada.

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 181 / 186



Checando em R

@ Vamos simular alguns dados de uma normal multivariada e verficar
que seu QQ-plot segue o padrdo esperado.
@ Seja Y ~ Ny(p,X) onde p = (4,3,2,1) e matriz de covaridncia

3 0 2 2
0o 1 1 0
= 2 1 9 =2
2 0 -2 4

@ Vamos gerar uma amostra de nsims=200 vetores i.i.d. desta
distribuicdao e fazer o QQ-plot com as distancias estatisticas.

o NOTE QUE: Na pratica, temos APENAS a amostra, sem os valores
tedricos p e X, que devem ser estimados a partir dos dados.
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Script R

require(MASS); nsims=200; set.seed(1)

Sigma = matrix(c(3,0,2,2,0,1,1,0,2,1,9,-2,2,0,-2,4),4,4)
pts = mvrnorm(nsims, c(4,3,2,1), Sigma)

m = apply(pts, 2, mean)

round(m, 3) # [1] 3.863 2.997 1.909 0.998

S = cov(pts); round(S, 2)

# [,11 [,21 [,3]1 [,4]

#[1,] 2.97 -0.09 1.50 2.17

#[2,] -0.09 1.16 0.98 -0.02

#[3,] 1.50 0.98 7.87 -1.66

#[4,] 2.17 -0.02 -1.66 3.96

d2 = mahalanobis(pts, m, S)

# Passamos m e S, as ESTIMATIVAS de mu e Sigma
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Script R

par (mfrow=c(1,2))
hist(d2, n=15, prob=T, main = "Histograma de D2")
rug(d2)
aux = seq(0, 15, by=0.01)
yaux = dchisq(xaux, df=ncol(pts))
lines(xaux, yaux, , lwd=2, col="blue")
qqplot (qchisq(ppoints(nrow(pts)), df = ncol(pts)), d2,
main = expression("Q-Q plot:" * “D72 *
" x quantiles " x ~ chi[2]72))
abline(0, 1, col = ’gray’)
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Amostra de Ny(p, X)

Histograma de D2 Q-Q plot: D* x quantiles 2

Density
0.10
1
d2

d2 qchisq(ppaints(nsims), df = 4)

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 185 / 186



Amostra com outliers

Histograma de D2 Q-Q plot: D? x quantiles ;g
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d2 qchisg(ppoints(nrow{pts)), df = ncol(pts))

Figura: Adicionando dois outliers

Renato Assun¢do, DCC, UFMG Estatistica para Ciéncia dos Dados 186 / 186



Script: mais dois outliers

set.seed(1)
pts = mvrnorm(nsims, c(4,3,2,1), Sigma)
pts = rbind(pts, c(4,3,-3,-5), c(10,6,2,4))
m = apply(pts, 2, mean); S = cov(pts)
d2 = mahalanobis(pts, m, S)
par (mfrow=c(1,2))
hist(d2, n=15, prob=T, main = "Histograma de D2"); rug(d2)
aux = seq(0, 15, by=0.01); yaux = dchisq(xaux, df=ncol(pts))
lines(xaux, yaux, , lwd=2, col="blue")
qgplot(gchisq(ppoints(nrow(pts)), df = ncol(pts)), d2,
main = expression("Q-Q plot:" * “D72 *
" x quantiles " * ~ chi[2]72))
abline(0, 1, col = ’gray’)
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